Decomposition-Based Memetic Algorithm for Multiobjective Capacitated Arc Routing Problem

The capacitated arc routing problem (CARP) is a challenging combinatorial optimization problem with many real-world applications, e.g., salting route optimization and fleet management. There have been many attempts at solving CARP using heuristic and meta-heuristic approaches, including evolutionary...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on evolutionary computation Vol. 15; no. 2; pp. 151 - 165
Main Authors Mei, Yi, Tang, Ke, Yao, Xin
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1089-778X
1941-0026
DOI10.1109/TEVC.2010.2051446

Cover

More Information
Summary:The capacitated arc routing problem (CARP) is a challenging combinatorial optimization problem with many real-world applications, e.g., salting route optimization and fleet management. There have been many attempts at solving CARP using heuristic and meta-heuristic approaches, including evolutionary algorithms. However, almost all such attempts formulate CARP as a single-objective problem although it usually has more than one objective, especially considering its real-world applications. This paper studies multiobjective CARP (MO-CARP). A new memetic algorithm (MA) called decomposition-based MA with extended neighborhood search (D-MAENS) is proposed. The new algorithm combines the advanced features from both the MAENS approach for single-objective CARP and multiobjective evolutionary optimization. Our experimental studies have shown that such combination outperforms significantly an off-the-shelf multiobjective evolutionary algorithm, namely nondominated sorting genetic algorithm II, and the state-of-the-art multiobjective algorithm for MO-CARP (LMOGA). Our work has also shown that a specifically designed multiobjective algorithm by combining its single-objective version and multiobjective features may lead to competitive multiobjective algorithms for multiobjective combinatorial optimization problems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1089-778X
1941-0026
DOI:10.1109/TEVC.2010.2051446