Paper-Based Solid-State Micro-supercapacitors Fabricated by Hydrophobic Wax Barrier Printing

Flexible and small-scale energy storage technologies are critical for future applications such as wearable electronics. In this context, paper has emerged as a lightweight, low-cost, and ecologically friendly flexible substrate for energy storage devices. This paper presents a simple method for fabr...

Full description

Saved in:
Bibliographic Details
Published inThe Korean journal of chemical engineering Vol. 41; no. 3; pp. 763 - 772
Main Authors Kim, Na Yeon, Oh, In Hyeok, Chang, Suk Tai
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2024
Springer Nature B.V
한국화학공학회
Subjects
Online AccessGet full text
ISSN0256-1115
1975-7220
DOI10.1007/s11814-024-00101-9

Cover

Abstract Flexible and small-scale energy storage technologies are critical for future applications such as wearable electronics. In this context, paper has emerged as a lightweight, low-cost, and ecologically friendly flexible substrate for energy storage devices. This paper presents a simple method for fabricating a micro-supercapacitor (MSC) using a wax printing approach that can achieve high resolution without requiring complex processes. In addition, the developed MnO 2 –Au-paper (MAP) microelectrodes with high porosity exhibit enhanced charge and ion transfer while maintaining a stable flexibility. The solid-state micro-supercapacitor delivers a very large areal capacitance of 624.32 mF cm −2 at 0.2 mA cm −2 and is stable under external stress. The highest energy and power densities obtained for the present MSCs (55.5 μWh cm −2 and 1.59 mW cm −2 , respectively), are much larger than those previously reported for pseudocapacitive MSCs, including flexible ones.
AbstractList Flexible and small-scale energy storage technologies are critical for future applications such as wearable electronics. In this context, paper has emerged as a lightweight, low-cost, and ecologically friendly fl exible substrate for energy storage devices. This paper presents a simple method for fabricating a micro-supercapacitor (MSC) using a wax printing approach that can achieve high resolution without requiring complex processes. In addition, the developed MnO 2 –Au-paper (MAP) microelectrodes with high porosity exhibit enhanced charge and ion transfer while maintaining a stable fl exibility. The solidstate micro-supercapacitor delivers a very large areal capacitance of 624.32 mF cm −2 at 0.2 mA cm −2 and is stable under external stress. The highest energy and power densities obtained for the present MSCs (55.5 μWh cm −2 and 1.59 mW cm −2 , respectively), are much larger than those previously reported for pseudocapacitive MSCs, including fl exible ones. KCI Citation Count: 0
Flexible and small-scale energy storage technologies are critical for future applications such as wearable electronics. In this context, paper has emerged as a lightweight, low-cost, and ecologically friendly flexible substrate for energy storage devices. This paper presents a simple method for fabricating a micro-supercapacitor (MSC) using a wax printing approach that can achieve high resolution without requiring complex processes. In addition, the developed MnO 2 –Au-paper (MAP) microelectrodes with high porosity exhibit enhanced charge and ion transfer while maintaining a stable flexibility. The solid-state micro-supercapacitor delivers a very large areal capacitance of 624.32 mF cm −2 at 0.2 mA cm −2 and is stable under external stress. The highest energy and power densities obtained for the present MSCs (55.5 μWh cm −2 and 1.59 mW cm −2 , respectively), are much larger than those previously reported for pseudocapacitive MSCs, including flexible ones.
Flexible and small-scale energy storage technologies are critical for future applications such as wearable electronics. In this context, paper has emerged as a lightweight, low-cost, and ecologically friendly flexible substrate for energy storage devices. This paper presents a simple method for fabricating a micro-supercapacitor (MSC) using a wax printing approach that can achieve high resolution without requiring complex processes. In addition, the developed MnO2–Au-paper (MAP) microelectrodes with high porosity exhibit enhanced charge and ion transfer while maintaining a stable flexibility. The solid-state micro-supercapacitor delivers a very large areal capacitance of 624.32 mF cm−2 at 0.2 mA cm−2 and is stable under external stress. The highest energy and power densities obtained for the present MSCs (55.5 μWh cm−2 and 1.59 mW cm−2, respectively), are much larger than those previously reported for pseudocapacitive MSCs, including flexible ones.
Author Kim, Na Yeon
Chang, Suk Tai
Oh, In Hyeok
Author_xml – sequence: 1
  givenname: Na Yeon
  surname: Kim
  fullname: Kim, Na Yeon
  organization: School of Chemical Engineering and Materials Science, Chung-Ang University
– sequence: 2
  givenname: In Hyeok
  surname: Oh
  fullname: Oh, In Hyeok
  organization: School of Chemical Engineering and Materials Science, Chung-Ang University
– sequence: 3
  givenname: Suk Tai
  surname: Chang
  fullname: Chang, Suk Tai
  email: stchang@cau.ac.kr
  organization: School of Chemical Engineering and Materials Science, Chung-Ang University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003061588$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kE1LJDEQhsPigqPuH_DU4E2IptKddHJU8WNAcVhd9rIQ0un0bHTstJUecP690RYEDx6KOtTzFlXPDtnqY-8J2Qd2BIzVxwlAQUUZz8WAAdU_yAx0LWjNOdsiM8aFpAAgtslOSg-MCSE5m5F_Czt4pKc2-ba4i6vQ0rvRjr64CQ4jTes8dXawLowRU3FhGwwuz9ui2RRXmxbj8D82wRV_7UtxahGDx2KBoR9Dv9wjPzu7Sv7XR98lfy7O78-u6PXt5fzs5Jq6UlQjVZ1nouKK2VLXuhWqkS1IpRTIytX5Hdt0jdRcMnB1BVqUvOFSau-V8M6rcpccTnt77MyjCyba8N6X0TyiOfl9PzfAKgAJPMMHEzxgfF77NJqHuMY-32e4FqKsqprpTKmJyhZSQt-ZbMCOIfYj2rDK68ybeDOJN1m8eRdv3qL8S3TA8GRx832onEIpw_3S4-dV36ReAT-plYg
CitedBy_id crossref_primary_10_1002_ece2_71
Cites_doi 10.1002/admt.202000272
10.1007/s12274-017-1448-z
10.1021/acsami.0c14441
10.1016/j.ensm.2020.02.029
10.1039/C4CS00218K
10.1002/adma.202300197
10.1021/acs.jpcc.7b10582
10.1021/ac901071p
10.1039/C8CS00581H
10.1016/j.ensm.2021.07.003
10.1039/C5RA15464B
10.1002/macp.200700161
10.1002/aenm.201903794
10.1002/aenm.201903136
10.1038/srep15936
10.1002/aenm.201901061
10.3389/fmats.2020.00001
10.1002/adfm.201702394
10.1021/acsnano.6b06326
10.1016/j.nanoen.2021.105837
10.1039/C5RA13140E
10.1016/j.est.2021.103686
10.1038/s41467-020-19985-2
10.1039/c3ee41286e
10.1007/s40242-020-0197-9
10.1016/j.ensm.2021.02.006
10.1016/j.jpowsour.2006.07.073
10.1007/s11814-021-1041-8
10.1021/cm980066h
10.1002/smll.201503527
10.1038/s41467-021-22912-8
10.1016/j.ceja.2021.100098
10.1002/smll.202004827
10.1002/smll.201603114
10.1007/s11814-023-1466-3
10.1021/nl3034976
10.1016/j.materresbull.2014.08.008
10.1016/S0022-0248(00)00359-6
10.1016/j.nanoen.2018.12.015
10.1016/j.energy.2018.12.184
10.1039/C7TA04735E
10.1039/C4RA09395J
10.1039/C5TA02770E
10.1016/j.electacta.2005.03.006
10.1002/elps.200800563
10.1021/acsaem.8b02006
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Korean Institute of Chemical Engineers, Seoul, Korea 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Korean Institute of Chemical Engineers, Seoul, Korea 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s11814-024-00101-9
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1975-7220
EndPage 772
ExternalDocumentID oai_kci_go_kr_ARTI_10411612
10_1007_s11814_024_00101_9
GrantInformation_xml – fundername: Ministry of Trade, Industry and Energy
  grantid: P0012453
  funderid: http://dx.doi.org/10.13039/501100003052
– fundername: National Research Foundation of Korea
  grantid: 2022R1A2C1005739
  funderid: http://dx.doi.org/10.13039/501100003725
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
9ZL
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG5
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
MZR
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z8N
Z8Q
Z8Z
Z92
ZMTXR
ZZE
~A9
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
CITATION
ABRTQ
ACYCR
ID FETCH-LOGICAL-c354t-8fe054280a3979d58b6d16888164c7010abfb692601c7419532b2669ee85ece83
IEDL.DBID U2A
ISSN 0256-1115
IngestDate Thu Jul 10 06:30:04 EDT 2025
Thu Sep 25 00:52:15 EDT 2025
Tue Jul 01 03:29:46 EDT 2025
Thu Apr 24 23:00:54 EDT 2025
Fri Feb 21 02:40:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Paper
Micro-supercapacitors
Wax printing
Flexible devices
Metal electrodes
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-8fe054280a3979d58b6d16888164c7010abfb692601c7419532b2669ee85ece83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2955344709
PQPubID 2044390
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10411612
proquest_journals_2955344709
crossref_citationtrail_10_1007_s11814_024_00101_9
crossref_primary_10_1007_s11814_024_00101_9
springer_journals_10_1007_s11814_024_00101_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle The Korean journal of chemical engineering
PublicationTitleAbbrev Korean J. Chem. Eng
PublicationYear 2024
Publisher Springer US
Springer Nature B.V
한국화학공학회
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: 한국화학공학회
References GuoWYuCLiSWangZYuJHuangHQiuJNano Energy2019574591:CAS:528:DC%2BC1MXosFOg
MeiBAMunteshariOLauJDunnBPilonLJ. Phys. Chem. C20181221941:CAS:528:DC%2BC2sXhvFaqs7vF
ParkHSongCJinSWLeeHKeumKLeeYHLeeGJeongYRHaJSNano Energy2021831:CAS:528:DC%2BB3MXjvVems7k%3D
WangYSunLXiaoDDuHYangZWangXTuLZhaoCHuFLuBACS Appl. Mater. Interfaces.202012438641:CAS:528:DC%2BB3cXhsl2jtL3P32902954
RenXSongYLiuAZhangJYangPZhangJAnMRSC Adv.20155649972015RSCAd...564997R1:CAS:528:DC%2BC2MXhtFylu7%2FM
JiangQKurraNMaleskiKLeiYLiangHZhangYGogotsiYAlshareefHNAdv. Energy Mater.201991901061
ZhangXZhaoWWeiLJinYHouJWangXGuoXEnergy20191703381:CAS:528:DC%2BC1MXhslChtQ%3D%3D
ZhangKHanXHuZZhangXTaoZChenJChem. Soc. Rev.20154469925200459
ZhuZJiangHGuoSChengQHuYLiCSci. Rep.20155159362015NatSR...515936Z1:CAS:528:DC%2BC2MXhslCmt7%2FL265154424626760
GaoCHuangJXiaoYZhangGDaiCLiZZhaoYJiangLQuLNat. Commun.20211226472021NatCo..12.2647G1:CAS:528:DC%2BB3MXhtFWgt7fO339761708113435
GuoRChenJYangBLiuLSuLShenBYanXAdv. Funct. Mater.2017271702394
YueYYangZLiuNLiuWZhangHMaYYangCSuJLiLLongFZouZGaoYACS Nano201610112491:CAS:528:DC%2BC28XhvVert7nO28024378
YuanYJiangLLiXZuoPXuCTianMZhangXWangSLuBShaoCZhaoBZhangJQuLCuiTNat. Commun.20201161852020NatCo..11.6185Y1:CAS:528:DC%2BB3cXisFentbrI332734567712890
LiXLiHFanXShiXLiangJAdv. Energy Mater.20201019037941:CAS:528:DC%2BB3cXhvVWjtr4%3D
ZhangLDeArmondDAlvarezNTMalikROslinNMcConnellCAduseiPKHsiehYYShanovVSmall2017131603114
BarnesMCKimD-YAhnHSLeeCOHwangNMJ. Cryst. Growth2000213832000JCrGr.213...83B1:CAS:528:DC%2BD3cXjt1GntLs%3D
LiuLNiuZChenJNano Res.2017101524
LinJZhangCYanZZhuYPengZHaugeRHNatelsonDTourJMNano Lett.201313722013NanoL..13...72L23237453
BroughtonJNBrettMJElectrochim. Acta20055048141:CAS:528:DC%2BD2MXot1Wrsb4%3D
BrousseKPinaudSNguyenSFazziniPFMakaremRJosseCThimontYChaudretBTabernaPLRespaudMSimonPAdv. Energy Mater.20201019031361:CAS:528:DC%2BC1MXitl2nsb7P
LiuYShiYXuXEnergy Storage Mater.202141677
WangYShiYZhaoCXWongJISunXWYangHYNanotechnology2014252014Nanot..25i4010W1:CAS:528:DC%2BC2MXjsFeqsLY%3D24522166
ZhangMJinDZhangLCuiXZhangZYangDLiJChem. Eng. J. Adv.202161:CAS:528:DC%2BB38XhslGhtbjJ
HuHHuaTJ. Mater. Chem. A.20175196391:CAS:528:DC%2BC2sXhtFOlsb7F
CostaMNVeigasBJacobJMSantosDSGomesJBaptistaPVMartinsRInácioJFortunatoENanotechnology2014252014Nanot..25i4006C1:CAS:528:DC%2BC2cXptVGrtrg%3D24521980
LuRShiWJiangLQinJLinBElectrophoresis20093014971:CAS:528:DC%2BD1MXlslGhu7s%3D19340829
SungJHKimSJJeongSHKimEHLeeKHJ. Power. Sources200616214672006JPS...162.1467S1:CAS:528:DC%2BD28Xht1Wmt77F
FuMLvRLeiYTerronesMSmall20211720048271:CAS:528:DC%2BB3cXisFGmu7%2FM
LiXMaYShenPZhangCCaoMXiaoSYanJLuoSGaoYAdv. Mater. Technol.2020520002721:CAS:528:DC%2BB3cXis1KrsLbJ
EzikaACSadikuERIdumahCIRaySSHamamYJ. Energy Storage.202245
NooriAEl-KadyMFRahmanifarMSKanerRBMousaviMFChem. Soc. Rev.20194812721:CAS:528:DC%2BC1MXislCltb8%3D30741286
SiWYanCChenYOswaldSHanLSchmidtOGEnergy Environ. Sci.2013632181:CAS:528:DC%2BC3sXhs1KqtrbJ
HuHBPeiZBFanHJYeCHSmall20161230591:CAS:528:DC%2BC28XmvVShu7k%3D27116677
ZhangYZWangYChengTLaiWYPangHHuangWChem. Soc. Rev.20154469925200459
ChangHSLeeBMYunJMChoiJHKorean J. Chem. Eng.20223912321:CAS:528:DC%2BB38XisFKktr0%3D
SchrinnerMPolzerFMeiYLuYHauptBBallauffMGöldelADrechslerMPreussnerJGlatzelUMacromol. Chem. Phys.200720815421:CAS:528:DC%2BD2sXos1CqtLY%3D
BrownKRLyonLAFoxAPReissBDNatanMJChem. Mater.2000123141:CAS:528:DyaK1MXotFKgt7s%3D
WangHQChenJHuSJZhangXHFanXPDuJHuangYGLiQYRSC Adv.20155724952015RSCAd...572495W1:CAS:528:DC%2BC2MXhtlGns7%2FL
OhIHParkEChangSTLimSAdv. Mater.20233523001971:CAS:528:DC%2BB3sXmsFCqu7o%3D
ZhangPWangFYangSWangGYuMFengXEnergy Storage Mater.2020281601:CAS:528:DC%2BB3cXhtFGit7jO
CarrilhoEMartinezAWWhitesidesGMAnal. Chem.20098170911:CAS:528:DC%2BD1MXosFOjsbw%3D20337388
AliGAMTanLLJoseRYusoffMMChongKFMater. Res. Bull.20146051:CAS:528:DC%2BC2cXhtlGntr%2FM
WuDXieXZhangYZhangDDuWZhangXWangBFront. Mater.2020712020FrMat...7....2W
AsbaniBRobertKRousselPBrousseTLethienCEnergy Storage Mater.202137207
ZhaoZHaoSHaoPSangYManivannanAWuNLiuHJ. Mater. Chem. A20153150491:CAS:528:DC%2BC2MXhtVShurbM
SundriyalPBhattacharyaSACS Appl. Energy Mater.2019218761:CAS:528:DC%2BC1MXit1Srsrk%3D
LiLChenDShenGChem. Res. Chin. Univ.2020366941:CAS:528:DC%2BB3cXhsVWmsrjE
KimYWOhIHChoiSNamIChangSTChem. Eng. J.20234541:CAS:528:DC%2BB38XivVCnsbnF
PengCLangJXuSWangXRSC Adv.20144546622014RSCAd...454662P1:CAS:528:DC%2BC2cXhslaqsLvP
JungMYangIChoiDLeeJJungJCKorean J. Chem. Eng.202310.1007/s11814-023-1466-33736378310229394
E Carrilho (101_CR20) 2009; 81
P Zhang (101_CR1) 2020; 28
H Hu (101_CR19) 2017; 5
J Lin (101_CR11) 2013; 13
YW Kim (101_CR34) 2023; 454
Y Yuan (101_CR45) 2020; 11
A Noori (101_CR36) 2019; 48
H Park (101_CR46) 2021; 83
P Sundriyal (101_CR14) 2019; 2
D Wu (101_CR30) 2020; 7
C Peng (101_CR26) 2014; 4
W Si (101_CR25) 2013; 6
HS Chang (101_CR4) 2022; 39
Q Jiang (101_CR13) 2019; 9
HB Hu (101_CR18) 2016; 12
Z Zhu (101_CR50) 2015; 5
Y Wang (101_CR16) 2014; 25
HQ Wang (101_CR35) 2015; 5
B Asbani (101_CR48) 2021; 37
JN Broughton (101_CR39) 2005; 50
M Jung (101_CR5) 2023
Y Yue (101_CR40) 2016; 10
M Zhang (101_CR23) 2021; 6
M Fu (101_CR49) 2021; 17
L Liu (101_CR6) 2017; 10
K Brousse (101_CR47) 2020; 10
C Gao (101_CR41) 2021; 12
IH Oh (101_CR10) 2023; 35
R Lu (101_CR21) 2009; 30
X Ren (101_CR33) 2015; 5
MN Costa (101_CR31) 2014; 25
Y Liu (101_CR2) 2021; 41
K Zhang (101_CR24) 2015; 44
YZ Zhang (101_CR8) 2015; 44
L Li (101_CR43) 2020; 36
JH Sung (101_CR12) 2006; 162
AC Ezika (101_CR3) 2022; 45
BA Mei (101_CR38) 2018; 122
X Li (101_CR37) 2020; 10
Z Zhao (101_CR7) 2015; 3
R Guo (101_CR9) 2017; 27
X Li (101_CR42) 2020; 5
KR Brown (101_CR27) 2000; 12
M Schrinner (101_CR32) 2007; 208
L Zhang (101_CR17) 2017; 13
MC Barnes (101_CR28) 2000; 213
W Guo (101_CR29) 2019; 57
Y Wang (101_CR44) 2020; 12
X Zhang (101_CR15) 2019; 170
GAM Ali (101_CR22) 2014; 60
References_xml – reference: AliGAMTanLLJoseRYusoffMMChongKFMater. Res. Bull.20146051:CAS:528:DC%2BC2cXhtlGntr%2FM
– reference: LiuYShiYXuXEnergy Storage Mater.202141677
– reference: EzikaACSadikuERIdumahCIRaySSHamamYJ. Energy Storage.202245
– reference: ZhangPWangFYangSWangGYuMFengXEnergy Storage Mater.2020281601:CAS:528:DC%2BB3cXhtFGit7jO
– reference: NooriAEl-KadyMFRahmanifarMSKanerRBMousaviMFChem. Soc. Rev.20194812721:CAS:528:DC%2BC1MXislCltb8%3D30741286
– reference: ZhangLDeArmondDAlvarezNTMalikROslinNMcConnellCAduseiPKHsiehYYShanovVSmall2017131603114
– reference: LinJZhangCYanZZhuYPengZHaugeRHNatelsonDTourJMNano Lett.201313722013NanoL..13...72L23237453
– reference: JungMYangIChoiDLeeJJungJCKorean J. Chem. Eng.202310.1007/s11814-023-1466-33736378310229394
– reference: LuRShiWJiangLQinJLinBElectrophoresis20093014971:CAS:528:DC%2BD1MXlslGhu7s%3D19340829
– reference: WuDXieXZhangYZhangDDuWZhangXWangBFront. Mater.2020712020FrMat...7....2W
– reference: ZhangKHanXHuZZhangXTaoZChenJChem. Soc. Rev.20154469925200459
– reference: BrousseKPinaudSNguyenSFazziniPFMakaremRJosseCThimontYChaudretBTabernaPLRespaudMSimonPAdv. Energy Mater.20201019031361:CAS:528:DC%2BC1MXitl2nsb7P
– reference: CostaMNVeigasBJacobJMSantosDSGomesJBaptistaPVMartinsRInácioJFortunatoENanotechnology2014252014Nanot..25i4006C1:CAS:528:DC%2BC2cXptVGrtrg%3D24521980
– reference: SundriyalPBhattacharyaSACS Appl. Energy Mater.2019218761:CAS:528:DC%2BC1MXit1Srsrk%3D
– reference: MeiBAMunteshariOLauJDunnBPilonLJ. Phys. Chem. C20181221941:CAS:528:DC%2BC2sXhvFaqs7vF
– reference: ZhangXZhaoWWeiLJinYHouJWangXGuoXEnergy20191703381:CAS:528:DC%2BC1MXhslChtQ%3D%3D
– reference: BarnesMCKimD-YAhnHSLeeCOHwangNMJ. Cryst. Growth2000213832000JCrGr.213...83B1:CAS:528:DC%2BD3cXjt1GntLs%3D
– reference: YueYYangZLiuNLiuWZhangHMaYYangCSuJLiLLongFZouZGaoYACS Nano201610112491:CAS:528:DC%2BC28XhvVert7nO28024378
– reference: OhIHParkEChangSTLimSAdv. Mater.20233523001971:CAS:528:DC%2BB3sXmsFCqu7o%3D
– reference: LiXMaYShenPZhangCCaoMXiaoSYanJLuoSGaoYAdv. Mater. Technol.2020520002721:CAS:528:DC%2BB3cXis1KrsLbJ
– reference: LiLChenDShenGChem. Res. Chin. Univ.2020366941:CAS:528:DC%2BB3cXhsVWmsrjE
– reference: GuoWYuCLiSWangZYuJHuangHQiuJNano Energy2019574591:CAS:528:DC%2BC1MXosFOg
– reference: KimYWOhIHChoiSNamIChangSTChem. Eng. J.20234541:CAS:528:DC%2BB38XivVCnsbnF
– reference: ZhaoZHaoSHaoPSangYManivannanAWuNLiuHJ. Mater. Chem. A20153150491:CAS:528:DC%2BC2MXhtVShurbM
– reference: WangYShiYZhaoCXWongJISunXWYangHYNanotechnology2014252014Nanot..25i4010W1:CAS:528:DC%2BC2MXjsFeqsLY%3D24522166
– reference: BroughtonJNBrettMJElectrochim. Acta20055048141:CAS:528:DC%2BD2MXot1Wrsb4%3D
– reference: GaoCHuangJXiaoYZhangGDaiCLiZZhaoYJiangLQuLNat. Commun.20211226472021NatCo..12.2647G1:CAS:528:DC%2BB3MXhtFWgt7fO339761708113435
– reference: AsbaniBRobertKRousselPBrousseTLethienCEnergy Storage Mater.202137207
– reference: BrownKRLyonLAFoxAPReissBDNatanMJChem. Mater.2000123141:CAS:528:DyaK1MXotFKgt7s%3D
– reference: SungJHKimSJJeongSHKimEHLeeKHJ. Power. Sources200616214672006JPS...162.1467S1:CAS:528:DC%2BD28Xht1Wmt77F
– reference: PengCLangJXuSWangXRSC Adv.20144546622014RSCAd...454662P1:CAS:528:DC%2BC2cXhslaqsLvP
– reference: WangHQChenJHuSJZhangXHFanXPDuJHuangYGLiQYRSC Adv.20155724952015RSCAd...572495W1:CAS:528:DC%2BC2MXhtlGns7%2FL
– reference: LiXLiHFanXShiXLiangJAdv. Energy Mater.20201019037941:CAS:528:DC%2BB3cXhvVWjtr4%3D
– reference: ZhangMJinDZhangLCuiXZhangZYangDLiJChem. Eng. J. Adv.202161:CAS:528:DC%2BB38XhslGhtbjJ
– reference: HuHHuaTJ. Mater. Chem. A.20175196391:CAS:528:DC%2BC2sXhtFOlsb7F
– reference: GuoRChenJYangBLiuLSuLShenBYanXAdv. Funct. Mater.2017271702394
– reference: ZhuZJiangHGuoSChengQHuYLiCSci. Rep.20155159362015NatSR...515936Z1:CAS:528:DC%2BC2MXhslCmt7%2FL265154424626760
– reference: ChangHSLeeBMYunJMChoiJHKorean J. Chem. Eng.20223912321:CAS:528:DC%2BB38XisFKktr0%3D
– reference: CarrilhoEMartinezAWWhitesidesGMAnal. Chem.20098170911:CAS:528:DC%2BD1MXosFOjsbw%3D20337388
– reference: FuMLvRLeiYTerronesMSmall20211720048271:CAS:528:DC%2BB3cXisFGmu7%2FM
– reference: YuanYJiangLLiXZuoPXuCTianMZhangXWangSLuBShaoCZhaoBZhangJQuLCuiTNat. Commun.20201161852020NatCo..11.6185Y1:CAS:528:DC%2BB3cXisFentbrI332734567712890
– reference: SchrinnerMPolzerFMeiYLuYHauptBBallauffMGöldelADrechslerMPreussnerJGlatzelUMacromol. Chem. Phys.200720815421:CAS:528:DC%2BD2sXos1CqtLY%3D
– reference: WangYSunLXiaoDDuHYangZWangXTuLZhaoCHuFLuBACS Appl. Mater. Interfaces.202012438641:CAS:528:DC%2BB3cXhsl2jtL3P32902954
– reference: ZhangYZWangYChengTLaiWYPangHHuangWChem. Soc. Rev.20154469925200459
– reference: ParkHSongCJinSWLeeHKeumKLeeYHLeeGJeongYRHaJSNano Energy2021831:CAS:528:DC%2BB3MXjvVems7k%3D
– reference: HuHBPeiZBFanHJYeCHSmall20161230591:CAS:528:DC%2BC28XmvVShu7k%3D27116677
– reference: LiuLNiuZChenJNano Res.2017101524
– reference: SiWYanCChenYOswaldSHanLSchmidtOGEnergy Environ. Sci.2013632181:CAS:528:DC%2BC3sXhs1KqtrbJ
– reference: RenXSongYLiuAZhangJYangPZhangJAnMRSC Adv.20155649972015RSCAd...564997R1:CAS:528:DC%2BC2MXhtFylu7%2FM
– reference: JiangQKurraNMaleskiKLeiYLiangHZhangYGogotsiYAlshareefHNAdv. Energy Mater.201991901061
– volume: 5
  start-page: 2000272
  year: 2020
  ident: 101_CR42
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.202000272
– volume: 10
  start-page: 1524
  year: 2017
  ident: 101_CR6
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1448-z
– volume: 12
  start-page: 43864
  year: 2020
  ident: 101_CR44
  publication-title: ACS Appl. Mater. Interfaces.
  doi: 10.1021/acsami.0c14441
– volume: 28
  start-page: 160
  year: 2020
  ident: 101_CR1
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2020.02.029
– volume: 44
  start-page: 699
  year: 2015
  ident: 101_CR8
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00218K
– volume: 35
  start-page: 2300197
  year: 2023
  ident: 101_CR10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202300197
– volume: 122
  start-page: 194
  year: 2018
  ident: 101_CR38
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.7b10582
– volume: 81
  start-page: 7091
  year: 2009
  ident: 101_CR20
  publication-title: Anal. Chem.
  doi: 10.1021/ac901071p
– volume: 48
  start-page: 1272
  year: 2019
  ident: 101_CR36
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00581H
– volume: 41
  start-page: 677
  year: 2021
  ident: 101_CR2
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.07.003
– volume: 5
  start-page: 72495
  year: 2015
  ident: 101_CR35
  publication-title: RSC Adv.
  doi: 10.1039/C5RA15464B
– volume: 208
  start-page: 1542
  year: 2007
  ident: 101_CR32
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.200700161
– volume: 10
  start-page: 1903794
  year: 2020
  ident: 101_CR37
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903794
– volume: 10
  start-page: 1903136
  year: 2020
  ident: 101_CR47
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201903136
– volume: 5
  start-page: 15936
  year: 2015
  ident: 101_CR50
  publication-title: Sci. Rep.
  doi: 10.1038/srep15936
– volume: 9
  start-page: 1901061
  year: 2019
  ident: 101_CR13
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901061
– volume: 7
  start-page: 1
  year: 2020
  ident: 101_CR30
  publication-title: Front. Mater.
  doi: 10.3389/fmats.2020.00001
– volume: 27
  start-page: 1702394
  year: 2017
  ident: 101_CR9
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201702394
– volume: 10
  start-page: 11249
  year: 2016
  ident: 101_CR40
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06326
– volume: 83
  year: 2021
  ident: 101_CR46
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2021.105837
– volume: 5
  start-page: 64997
  year: 2015
  ident: 101_CR33
  publication-title: RSC Adv.
  doi: 10.1039/C5RA13140E
– volume: 44
  start-page: 699
  year: 2015
  ident: 101_CR24
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00218K
– volume: 45
  year: 2022
  ident: 101_CR3
  publication-title: J. Energy Storage.
  doi: 10.1016/j.est.2021.103686
– volume: 11
  start-page: 6185
  year: 2020
  ident: 101_CR45
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-19985-2
– volume: 6
  start-page: 3218
  year: 2013
  ident: 101_CR25
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee41286e
– volume: 36
  start-page: 694
  year: 2020
  ident: 101_CR43
  publication-title: Chem. Res. Chin. Univ.
  doi: 10.1007/s40242-020-0197-9
– volume: 37
  start-page: 207
  year: 2021
  ident: 101_CR48
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2021.02.006
– volume: 162
  start-page: 1467
  year: 2006
  ident: 101_CR12
  publication-title: J. Power. Sources
  doi: 10.1016/j.jpowsour.2006.07.073
– volume: 39
  start-page: 1232
  year: 2022
  ident: 101_CR4
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-021-1041-8
– volume: 25
  year: 2014
  ident: 101_CR16
  publication-title: Nanotechnology
– volume: 12
  start-page: 314
  year: 2000
  ident: 101_CR27
  publication-title: Chem. Mater.
  doi: 10.1021/cm980066h
– volume: 12
  start-page: 3059
  year: 2016
  ident: 101_CR18
  publication-title: Small
  doi: 10.1002/smll.201503527
– volume: 454
  year: 2023
  ident: 101_CR34
  publication-title: Chem. Eng. J.
– volume: 12
  start-page: 2647
  year: 2021
  ident: 101_CR41
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22912-8
– volume: 6
  year: 2021
  ident: 101_CR23
  publication-title: Chem. Eng. J. Adv.
  doi: 10.1016/j.ceja.2021.100098
– volume: 17
  start-page: 2004827
  year: 2021
  ident: 101_CR49
  publication-title: Small
  doi: 10.1002/smll.202004827
– volume: 13
  start-page: 1603114
  year: 2017
  ident: 101_CR17
  publication-title: Small
  doi: 10.1002/smll.201603114
– year: 2023
  ident: 101_CR5
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-023-1466-3
– volume: 13
  start-page: 72
  year: 2013
  ident: 101_CR11
  publication-title: Nano Lett.
  doi: 10.1021/nl3034976
– volume: 60
  start-page: 5
  year: 2014
  ident: 101_CR22
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2014.08.008
– volume: 213
  start-page: 83
  year: 2000
  ident: 101_CR28
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(00)00359-6
– volume: 57
  start-page: 459
  year: 2019
  ident: 101_CR29
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.015
– volume: 170
  start-page: 338
  year: 2019
  ident: 101_CR15
  publication-title: Energy
  doi: 10.1016/j.energy.2018.12.184
– volume: 5
  start-page: 19639
  year: 2017
  ident: 101_CR19
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C7TA04735E
– volume: 4
  start-page: 54662
  year: 2014
  ident: 101_CR26
  publication-title: RSC Adv.
  doi: 10.1039/C4RA09395J
– volume: 3
  start-page: 15049
  year: 2015
  ident: 101_CR7
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA02770E
– volume: 50
  start-page: 4814
  year: 2005
  ident: 101_CR39
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2005.03.006
– volume: 25
  year: 2014
  ident: 101_CR31
  publication-title: Nanotechnology
– volume: 30
  start-page: 1497
  year: 2009
  ident: 101_CR21
  publication-title: Electrophoresis
  doi: 10.1002/elps.200800563
– volume: 2
  start-page: 1876
  year: 2019
  ident: 101_CR14
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b02006
SSID ssj0055620
Score 2.3588028
Snippet Flexible and small-scale energy storage technologies are critical for future applications such as wearable electronics. In this context, paper has emerged as a...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 763
SubjectTerms Biotechnology
Catalysis
Charge transfer
Chemistry
Chemistry and Materials Science
Energy storage
Industrial Chemistry/Chemical Engineering
Ion charge
Manganese dioxide
Materials Science
Microelectrodes
Original Article
Solid state
Substrates
Supercapacitors
Waxes
화학공학
Title Paper-Based Solid-State Micro-supercapacitors Fabricated by Hydrophobic Wax Barrier Printing
URI https://link.springer.com/article/10.1007/s11814-024-00101-9
https://www.proquest.com/docview/2955344709
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003061588
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Korean Journal of Chemical Engineering, 2024, 41(3), 288, pp.763-772
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSyMxEB_8ePDu4fDruN5pCXhvGuh-ZDf72EprVRThLCoIIcmmWlq6ZdvC-d_fzHb3qqKCD0seksyymdmdXzYzvwH4bRuRb2WkOUKRFDcossGl8yw3XuoCnco4LrL4Ly6jbi88uxW3ZVLYtIp2r44kiy_1MtkNnVGIMvEiYjSerMK6IANCK-75zer7K9CjL_6sEMMeAp4yVeZtGS_c0eo4779Amq8ORwuf09mEbyVYZM2FdrdgxY23YeO4qtG2DV-f0QnuwP2Vnrict9AxpexPNhqkvMCS7IKi7vh0jr0WnaMdUIkd1tGmqBGEg80T6z6leTZ5zMzAshv9l7V0TsXs2BXKptDoXeh12tfHXV5WT-A2EOGMy75DOObLhqaju1RIE6VehBte3CDZGJ9em76JEqIUswgrEhH4Br114pwUzjoZfIe1cTZ2P4Dh1tXTdKJnTBxGpq9j7NcoNzCB1J6pgVctorIltThVuBipJSkyLbzChVfFwqukBof_50wWxBofjj5A3aihHSjiw6b2IVPDXCHqP8VJoYfI1a_BXqU7Vb6KU-UnQhCtYQOFHFX6XHa_f8-fnxv-C774hWFRfNoerM3yudtHwDIzdVhvdlqtS2pP7s7b9cJe_wHF3-Bl
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60HqoH32J9BvSmke47e1RprY8WQYsKQkiyqZZKt2xbUH-9k-2utaKCh2UPSWY3r51vdibfAOyrsm8r5guKUCRCA4WVKdOWotKKtCMiFgTpKf56w6813Yt77z47FNbPo91zl2T6pR4fdkNl5KJMvAwxGg2nYca1GHMLMHN89nBZyb_AHur00b8Vw7GHkCc7LPOzlAmFNN1NWhNY85t7NNU61QVo5u87CjbpHA0H8ki9f6Ny_G-HFmE-g6HkeLRulmBKd5eheJpnf1uGuS9EhSvweC16OqEnqPIichO_tCOaolRSN_F8tD_EUoVqV7VN8h5SFTLNPoSV5RupvUVJ3HuOZVuRO_FKTkRi0uSRa5Rtgq5XoVmt3J7WaJaXgSrHcweUtTQCPZuVhXEKRh6TfmT5aEqj6aUC7IqQLemHhqxMIWAJPceWiANCrZmnlWbOGhS6cVevA0Gj2BLGVyhl4PqyJQIsFyjXkQ4TliyBlU8OVxlpucmd8cLHdMtmFDmOIk9HkYclOPhs0xtRdvxZew_nnHdUmxumbXN_inkn4WhPnGMj10JMbJdgK18TPNvkfW6HnmcIE8so5DCf4nHx78_c-F_1XSjWbutX_Oq8cbkJs3a6YkwU3BYUBslQbyMsGsidbBd8AAXb_Sk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4VKhU4VC0PEQrtSnCDFfF7feQVhbagSCWCA9JqX4YIZEcmkci_Z8axG0BQqQfLh12P5Zm15xvvzDcAO6Yd-0bEiiMUsRigiDYXzjNce9YFyookqar4z87jbj_8eRVdPavir7Ldmy3JaU0DsTTlo_2hzfZnhW_omEKUjweRpPF0Dj6G6Ksp_Or7B823OELvPv3LQmx7CH7qspm3ZbxwTXN5mb1Ana82Siv_0_kCn2vgyA6mlv4KH1y-DAtHTb-2ZVh6Ri24Atc9NXQlP0QnZdmf4n5geYUr2Rll4PGHMY4adJRmQO12WEfpql8QTtYT1p3YshjeFnpg2KV6ZIeqpMZ2rIeyKU16Ffqdk4ujLq87KXATROGIi8whNPNFW9E2no2Ejq0XY_CLwZJJ8OmVznScEr2YQYiRRoGv0XOnzonIGSeCNZjPi9ytA8Mw1lO0u6d1EsY6UwmOK5Qb6EAoT7fAa5QoTU0zTt0u7uWMIJkUL1HxslK8TFuw-_ea4ZRk45-zt9E28s4MJHFj0_mmkHelxAjgFC8KPUSxfgs2G9vJ-rV8kH4aRURx2EYhe409Z8Pv33Pj_6b_gE-94478fXr-6xss-tUao7S1TZgflWO3hThmpL9XS_UJnWbkfQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paper-Based+Solid-State+Micro-supercapacitors+Fabricated+by+Hydrophobic+Wax+Barrier+Printing&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Kim%2C+Na+Yeon&rft.au=Oh+In+Hyeok&rft.au=Chang+Suk+Tai&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=41&rft.issue=3&rft.spage=763&rft.epage=772&rft_id=info:doi/10.1007%2Fs11814-024-00101-9&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon