Paper-Based Solid-State Micro-supercapacitors Fabricated by Hydrophobic Wax Barrier Printing
Flexible and small-scale energy storage technologies are critical for future applications such as wearable electronics. In this context, paper has emerged as a lightweight, low-cost, and ecologically friendly flexible substrate for energy storage devices. This paper presents a simple method for fabr...
Saved in:
Published in | The Korean journal of chemical engineering Vol. 41; no. 3; pp. 763 - 772 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2024
Springer Nature B.V 한국화학공학회 |
Subjects | |
Online Access | Get full text |
ISSN | 0256-1115 1975-7220 |
DOI | 10.1007/s11814-024-00101-9 |
Cover
Abstract | Flexible and small-scale energy storage technologies are critical for future applications such as wearable electronics. In this context, paper has emerged as a lightweight, low-cost, and ecologically friendly flexible substrate for energy storage devices. This paper presents a simple method for fabricating a micro-supercapacitor (MSC) using a wax printing approach that can achieve high resolution without requiring complex processes. In addition, the developed MnO
2
–Au-paper (MAP) microelectrodes with high porosity exhibit enhanced charge and ion transfer while maintaining a stable flexibility. The solid-state micro-supercapacitor delivers a very large areal capacitance of 624.32 mF cm
−2
at 0.2 mA cm
−2
and is stable under external stress. The highest energy and power densities obtained for the present MSCs (55.5 μWh cm
−2
and 1.59 mW cm
−2
, respectively), are much larger than those previously reported for pseudocapacitive MSCs, including flexible ones. |
---|---|
AbstractList | Flexible and small-scale energy storage technologies are critical for future applications such as wearable electronics. In this context, paper has emerged as a lightweight, low-cost, and ecologically friendly fl exible substrate for energy storage devices. This paper presents a simple method for fabricating a micro-supercapacitor (MSC) using a wax printing approach that can achieve high resolution without requiring complex processes. In addition, the developed MnO 2 –Au-paper (MAP) microelectrodes with high porosity exhibit enhanced charge and ion transfer while maintaining a stable fl exibility. The solidstate micro-supercapacitor delivers a very large areal capacitance of 624.32 mF cm −2 at 0.2 mA cm −2 and is stable under external stress. The highest energy and power densities obtained for the present MSCs (55.5 μWh cm −2 and 1.59 mW cm −2 , respectively), are much larger than those previously reported for pseudocapacitive MSCs, including fl exible ones. KCI Citation Count: 0 Flexible and small-scale energy storage technologies are critical for future applications such as wearable electronics. In this context, paper has emerged as a lightweight, low-cost, and ecologically friendly flexible substrate for energy storage devices. This paper presents a simple method for fabricating a micro-supercapacitor (MSC) using a wax printing approach that can achieve high resolution without requiring complex processes. In addition, the developed MnO 2 –Au-paper (MAP) microelectrodes with high porosity exhibit enhanced charge and ion transfer while maintaining a stable flexibility. The solid-state micro-supercapacitor delivers a very large areal capacitance of 624.32 mF cm −2 at 0.2 mA cm −2 and is stable under external stress. The highest energy and power densities obtained for the present MSCs (55.5 μWh cm −2 and 1.59 mW cm −2 , respectively), are much larger than those previously reported for pseudocapacitive MSCs, including flexible ones. Flexible and small-scale energy storage technologies are critical for future applications such as wearable electronics. In this context, paper has emerged as a lightweight, low-cost, and ecologically friendly flexible substrate for energy storage devices. This paper presents a simple method for fabricating a micro-supercapacitor (MSC) using a wax printing approach that can achieve high resolution without requiring complex processes. In addition, the developed MnO2–Au-paper (MAP) microelectrodes with high porosity exhibit enhanced charge and ion transfer while maintaining a stable flexibility. The solid-state micro-supercapacitor delivers a very large areal capacitance of 624.32 mF cm−2 at 0.2 mA cm−2 and is stable under external stress. The highest energy and power densities obtained for the present MSCs (55.5 μWh cm−2 and 1.59 mW cm−2, respectively), are much larger than those previously reported for pseudocapacitive MSCs, including flexible ones. |
Author | Kim, Na Yeon Chang, Suk Tai Oh, In Hyeok |
Author_xml | – sequence: 1 givenname: Na Yeon surname: Kim fullname: Kim, Na Yeon organization: School of Chemical Engineering and Materials Science, Chung-Ang University – sequence: 2 givenname: In Hyeok surname: Oh fullname: Oh, In Hyeok organization: School of Chemical Engineering and Materials Science, Chung-Ang University – sequence: 3 givenname: Suk Tai surname: Chang fullname: Chang, Suk Tai email: stchang@cau.ac.kr organization: School of Chemical Engineering and Materials Science, Chung-Ang University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003061588$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kE1LJDEQhsPigqPuH_DU4E2IptKddHJU8WNAcVhd9rIQ0un0bHTstJUecP690RYEDx6KOtTzFlXPDtnqY-8J2Qd2BIzVxwlAQUUZz8WAAdU_yAx0LWjNOdsiM8aFpAAgtslOSg-MCSE5m5F_Czt4pKc2-ba4i6vQ0rvRjr64CQ4jTes8dXawLowRU3FhGwwuz9ui2RRXmxbj8D82wRV_7UtxahGDx2KBoR9Dv9wjPzu7Sv7XR98lfy7O78-u6PXt5fzs5Jq6UlQjVZ1nouKK2VLXuhWqkS1IpRTIytX5Hdt0jdRcMnB1BVqUvOFSau-V8M6rcpccTnt77MyjCyba8N6X0TyiOfl9PzfAKgAJPMMHEzxgfF77NJqHuMY-32e4FqKsqprpTKmJyhZSQt-ZbMCOIfYj2rDK68ybeDOJN1m8eRdv3qL8S3TA8GRx832onEIpw_3S4-dV36ReAT-plYg |
CitedBy_id | crossref_primary_10_1002_ece2_71 |
Cites_doi | 10.1002/admt.202000272 10.1007/s12274-017-1448-z 10.1021/acsami.0c14441 10.1016/j.ensm.2020.02.029 10.1039/C4CS00218K 10.1002/adma.202300197 10.1021/acs.jpcc.7b10582 10.1021/ac901071p 10.1039/C8CS00581H 10.1016/j.ensm.2021.07.003 10.1039/C5RA15464B 10.1002/macp.200700161 10.1002/aenm.201903794 10.1002/aenm.201903136 10.1038/srep15936 10.1002/aenm.201901061 10.3389/fmats.2020.00001 10.1002/adfm.201702394 10.1021/acsnano.6b06326 10.1016/j.nanoen.2021.105837 10.1039/C5RA13140E 10.1016/j.est.2021.103686 10.1038/s41467-020-19985-2 10.1039/c3ee41286e 10.1007/s40242-020-0197-9 10.1016/j.ensm.2021.02.006 10.1016/j.jpowsour.2006.07.073 10.1007/s11814-021-1041-8 10.1021/cm980066h 10.1002/smll.201503527 10.1038/s41467-021-22912-8 10.1016/j.ceja.2021.100098 10.1002/smll.202004827 10.1002/smll.201603114 10.1007/s11814-023-1466-3 10.1021/nl3034976 10.1016/j.materresbull.2014.08.008 10.1016/S0022-0248(00)00359-6 10.1016/j.nanoen.2018.12.015 10.1016/j.energy.2018.12.184 10.1039/C7TA04735E 10.1039/C4RA09395J 10.1039/C5TA02770E 10.1016/j.electacta.2005.03.006 10.1002/elps.200800563 10.1021/acsaem.8b02006 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Korean Institute of Chemical Engineers, Seoul, Korea 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
Copyright_xml | – notice: The Author(s), under exclusive licence to Korean Institute of Chemical Engineers, Seoul, Korea 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
DBID | AAYXX CITATION ACYCR |
DOI | 10.1007/s11814-024-00101-9 |
DatabaseName | CrossRef Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1975-7220 |
EndPage | 772 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10411612 10_1007_s11814_024_00101_9 |
GrantInformation_xml | – fundername: Ministry of Trade, Industry and Energy grantid: P0012453 funderid: http://dx.doi.org/10.13039/501100003052 – fundername: National Research Foundation of Korea grantid: 2022R1A2C1005739 funderid: http://dx.doi.org/10.13039/501100003725 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X 9ZL AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG5 HG6 HMJXF HRMNR HVGLF HZB HZ~ IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- MZR N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9N PF0 PT4 PT5 QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z8N Z8Q Z8Z Z92 ZMTXR ZZE ~A9 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ ACYCR |
ID | FETCH-LOGICAL-c354t-8fe054280a3979d58b6d16888164c7010abfb692601c7419532b2669ee85ece83 |
IEDL.DBID | U2A |
ISSN | 0256-1115 |
IngestDate | Thu Jul 10 06:30:04 EDT 2025 Thu Sep 25 00:52:15 EDT 2025 Tue Jul 01 03:29:46 EDT 2025 Thu Apr 24 23:00:54 EDT 2025 Fri Feb 21 02:40:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Paper Micro-supercapacitors Wax printing Flexible devices Metal electrodes |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-8fe054280a3979d58b6d16888164c7010abfb692601c7419532b2669ee85ece83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2955344709 |
PQPubID | 2044390 |
PageCount | 10 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10411612 proquest_journals_2955344709 crossref_citationtrail_10_1007_s11814_024_00101_9 crossref_primary_10_1007_s11814_024_00101_9 springer_journals_10_1007_s11814_024_00101_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | The Korean journal of chemical engineering |
PublicationTitleAbbrev | Korean J. Chem. Eng |
PublicationYear | 2024 |
Publisher | Springer US Springer Nature B.V 한국화학공학회 |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: 한국화학공학회 |
References | GuoWYuCLiSWangZYuJHuangHQiuJNano Energy2019574591:CAS:528:DC%2BC1MXosFOg MeiBAMunteshariOLauJDunnBPilonLJ. Phys. Chem. C20181221941:CAS:528:DC%2BC2sXhvFaqs7vF ParkHSongCJinSWLeeHKeumKLeeYHLeeGJeongYRHaJSNano Energy2021831:CAS:528:DC%2BB3MXjvVems7k%3D WangYSunLXiaoDDuHYangZWangXTuLZhaoCHuFLuBACS Appl. Mater. Interfaces.202012438641:CAS:528:DC%2BB3cXhsl2jtL3P32902954 RenXSongYLiuAZhangJYangPZhangJAnMRSC Adv.20155649972015RSCAd...564997R1:CAS:528:DC%2BC2MXhtFylu7%2FM JiangQKurraNMaleskiKLeiYLiangHZhangYGogotsiYAlshareefHNAdv. Energy Mater.201991901061 ZhangXZhaoWWeiLJinYHouJWangXGuoXEnergy20191703381:CAS:528:DC%2BC1MXhslChtQ%3D%3D ZhangKHanXHuZZhangXTaoZChenJChem. Soc. Rev.20154469925200459 ZhuZJiangHGuoSChengQHuYLiCSci. Rep.20155159362015NatSR...515936Z1:CAS:528:DC%2BC2MXhslCmt7%2FL265154424626760 GaoCHuangJXiaoYZhangGDaiCLiZZhaoYJiangLQuLNat. Commun.20211226472021NatCo..12.2647G1:CAS:528:DC%2BB3MXhtFWgt7fO339761708113435 GuoRChenJYangBLiuLSuLShenBYanXAdv. Funct. Mater.2017271702394 YueYYangZLiuNLiuWZhangHMaYYangCSuJLiLLongFZouZGaoYACS Nano201610112491:CAS:528:DC%2BC28XhvVert7nO28024378 YuanYJiangLLiXZuoPXuCTianMZhangXWangSLuBShaoCZhaoBZhangJQuLCuiTNat. Commun.20201161852020NatCo..11.6185Y1:CAS:528:DC%2BB3cXisFentbrI332734567712890 LiXLiHFanXShiXLiangJAdv. Energy Mater.20201019037941:CAS:528:DC%2BB3cXhvVWjtr4%3D ZhangLDeArmondDAlvarezNTMalikROslinNMcConnellCAduseiPKHsiehYYShanovVSmall2017131603114 BarnesMCKimD-YAhnHSLeeCOHwangNMJ. Cryst. Growth2000213832000JCrGr.213...83B1:CAS:528:DC%2BD3cXjt1GntLs%3D LiuLNiuZChenJNano Res.2017101524 LinJZhangCYanZZhuYPengZHaugeRHNatelsonDTourJMNano Lett.201313722013NanoL..13...72L23237453 BroughtonJNBrettMJElectrochim. Acta20055048141:CAS:528:DC%2BD2MXot1Wrsb4%3D BrousseKPinaudSNguyenSFazziniPFMakaremRJosseCThimontYChaudretBTabernaPLRespaudMSimonPAdv. Energy Mater.20201019031361:CAS:528:DC%2BC1MXitl2nsb7P LiuYShiYXuXEnergy Storage Mater.202141677 WangYShiYZhaoCXWongJISunXWYangHYNanotechnology2014252014Nanot..25i4010W1:CAS:528:DC%2BC2MXjsFeqsLY%3D24522166 ZhangMJinDZhangLCuiXZhangZYangDLiJChem. Eng. J. Adv.202161:CAS:528:DC%2BB38XhslGhtbjJ HuHHuaTJ. Mater. Chem. A.20175196391:CAS:528:DC%2BC2sXhtFOlsb7F CostaMNVeigasBJacobJMSantosDSGomesJBaptistaPVMartinsRInácioJFortunatoENanotechnology2014252014Nanot..25i4006C1:CAS:528:DC%2BC2cXptVGrtrg%3D24521980 LuRShiWJiangLQinJLinBElectrophoresis20093014971:CAS:528:DC%2BD1MXlslGhu7s%3D19340829 SungJHKimSJJeongSHKimEHLeeKHJ. Power. Sources200616214672006JPS...162.1467S1:CAS:528:DC%2BD28Xht1Wmt77F FuMLvRLeiYTerronesMSmall20211720048271:CAS:528:DC%2BB3cXisFGmu7%2FM LiXMaYShenPZhangCCaoMXiaoSYanJLuoSGaoYAdv. Mater. Technol.2020520002721:CAS:528:DC%2BB3cXis1KrsLbJ EzikaACSadikuERIdumahCIRaySSHamamYJ. Energy Storage.202245 NooriAEl-KadyMFRahmanifarMSKanerRBMousaviMFChem. Soc. Rev.20194812721:CAS:528:DC%2BC1MXislCltb8%3D30741286 SiWYanCChenYOswaldSHanLSchmidtOGEnergy Environ. Sci.2013632181:CAS:528:DC%2BC3sXhs1KqtrbJ HuHBPeiZBFanHJYeCHSmall20161230591:CAS:528:DC%2BC28XmvVShu7k%3D27116677 ZhangYZWangYChengTLaiWYPangHHuangWChem. Soc. Rev.20154469925200459 ChangHSLeeBMYunJMChoiJHKorean J. Chem. Eng.20223912321:CAS:528:DC%2BB38XisFKktr0%3D SchrinnerMPolzerFMeiYLuYHauptBBallauffMGöldelADrechslerMPreussnerJGlatzelUMacromol. Chem. Phys.200720815421:CAS:528:DC%2BD2sXos1CqtLY%3D BrownKRLyonLAFoxAPReissBDNatanMJChem. Mater.2000123141:CAS:528:DyaK1MXotFKgt7s%3D WangHQChenJHuSJZhangXHFanXPDuJHuangYGLiQYRSC Adv.20155724952015RSCAd...572495W1:CAS:528:DC%2BC2MXhtlGns7%2FL OhIHParkEChangSTLimSAdv. Mater.20233523001971:CAS:528:DC%2BB3sXmsFCqu7o%3D ZhangPWangFYangSWangGYuMFengXEnergy Storage Mater.2020281601:CAS:528:DC%2BB3cXhtFGit7jO CarrilhoEMartinezAWWhitesidesGMAnal. Chem.20098170911:CAS:528:DC%2BD1MXosFOjsbw%3D20337388 AliGAMTanLLJoseRYusoffMMChongKFMater. Res. Bull.20146051:CAS:528:DC%2BC2cXhtlGntr%2FM WuDXieXZhangYZhangDDuWZhangXWangBFront. Mater.2020712020FrMat...7....2W AsbaniBRobertKRousselPBrousseTLethienCEnergy Storage Mater.202137207 ZhaoZHaoSHaoPSangYManivannanAWuNLiuHJ. Mater. Chem. A20153150491:CAS:528:DC%2BC2MXhtVShurbM SundriyalPBhattacharyaSACS Appl. Energy Mater.2019218761:CAS:528:DC%2BC1MXit1Srsrk%3D LiLChenDShenGChem. Res. Chin. Univ.2020366941:CAS:528:DC%2BB3cXhsVWmsrjE KimYWOhIHChoiSNamIChangSTChem. Eng. J.20234541:CAS:528:DC%2BB38XivVCnsbnF PengCLangJXuSWangXRSC Adv.20144546622014RSCAd...454662P1:CAS:528:DC%2BC2cXhslaqsLvP JungMYangIChoiDLeeJJungJCKorean J. Chem. Eng.202310.1007/s11814-023-1466-33736378310229394 E Carrilho (101_CR20) 2009; 81 P Zhang (101_CR1) 2020; 28 H Hu (101_CR19) 2017; 5 J Lin (101_CR11) 2013; 13 YW Kim (101_CR34) 2023; 454 Y Yuan (101_CR45) 2020; 11 A Noori (101_CR36) 2019; 48 H Park (101_CR46) 2021; 83 P Sundriyal (101_CR14) 2019; 2 D Wu (101_CR30) 2020; 7 C Peng (101_CR26) 2014; 4 W Si (101_CR25) 2013; 6 HS Chang (101_CR4) 2022; 39 Q Jiang (101_CR13) 2019; 9 HB Hu (101_CR18) 2016; 12 Z Zhu (101_CR50) 2015; 5 Y Wang (101_CR16) 2014; 25 HQ Wang (101_CR35) 2015; 5 B Asbani (101_CR48) 2021; 37 JN Broughton (101_CR39) 2005; 50 M Jung (101_CR5) 2023 Y Yue (101_CR40) 2016; 10 M Zhang (101_CR23) 2021; 6 M Fu (101_CR49) 2021; 17 L Liu (101_CR6) 2017; 10 K Brousse (101_CR47) 2020; 10 C Gao (101_CR41) 2021; 12 IH Oh (101_CR10) 2023; 35 R Lu (101_CR21) 2009; 30 X Ren (101_CR33) 2015; 5 MN Costa (101_CR31) 2014; 25 Y Liu (101_CR2) 2021; 41 K Zhang (101_CR24) 2015; 44 YZ Zhang (101_CR8) 2015; 44 L Li (101_CR43) 2020; 36 JH Sung (101_CR12) 2006; 162 AC Ezika (101_CR3) 2022; 45 BA Mei (101_CR38) 2018; 122 X Li (101_CR37) 2020; 10 Z Zhao (101_CR7) 2015; 3 R Guo (101_CR9) 2017; 27 X Li (101_CR42) 2020; 5 KR Brown (101_CR27) 2000; 12 M Schrinner (101_CR32) 2007; 208 L Zhang (101_CR17) 2017; 13 MC Barnes (101_CR28) 2000; 213 W Guo (101_CR29) 2019; 57 Y Wang (101_CR44) 2020; 12 X Zhang (101_CR15) 2019; 170 GAM Ali (101_CR22) 2014; 60 |
References_xml | – reference: AliGAMTanLLJoseRYusoffMMChongKFMater. Res. Bull.20146051:CAS:528:DC%2BC2cXhtlGntr%2FM – reference: LiuYShiYXuXEnergy Storage Mater.202141677 – reference: EzikaACSadikuERIdumahCIRaySSHamamYJ. Energy Storage.202245 – reference: ZhangPWangFYangSWangGYuMFengXEnergy Storage Mater.2020281601:CAS:528:DC%2BB3cXhtFGit7jO – reference: NooriAEl-KadyMFRahmanifarMSKanerRBMousaviMFChem. Soc. Rev.20194812721:CAS:528:DC%2BC1MXislCltb8%3D30741286 – reference: ZhangLDeArmondDAlvarezNTMalikROslinNMcConnellCAduseiPKHsiehYYShanovVSmall2017131603114 – reference: LinJZhangCYanZZhuYPengZHaugeRHNatelsonDTourJMNano Lett.201313722013NanoL..13...72L23237453 – reference: JungMYangIChoiDLeeJJungJCKorean J. Chem. Eng.202310.1007/s11814-023-1466-33736378310229394 – reference: LuRShiWJiangLQinJLinBElectrophoresis20093014971:CAS:528:DC%2BD1MXlslGhu7s%3D19340829 – reference: WuDXieXZhangYZhangDDuWZhangXWangBFront. Mater.2020712020FrMat...7....2W – reference: ZhangKHanXHuZZhangXTaoZChenJChem. Soc. Rev.20154469925200459 – reference: BrousseKPinaudSNguyenSFazziniPFMakaremRJosseCThimontYChaudretBTabernaPLRespaudMSimonPAdv. Energy Mater.20201019031361:CAS:528:DC%2BC1MXitl2nsb7P – reference: CostaMNVeigasBJacobJMSantosDSGomesJBaptistaPVMartinsRInácioJFortunatoENanotechnology2014252014Nanot..25i4006C1:CAS:528:DC%2BC2cXptVGrtrg%3D24521980 – reference: SundriyalPBhattacharyaSACS Appl. Energy Mater.2019218761:CAS:528:DC%2BC1MXit1Srsrk%3D – reference: MeiBAMunteshariOLauJDunnBPilonLJ. Phys. Chem. C20181221941:CAS:528:DC%2BC2sXhvFaqs7vF – reference: ZhangXZhaoWWeiLJinYHouJWangXGuoXEnergy20191703381:CAS:528:DC%2BC1MXhslChtQ%3D%3D – reference: BarnesMCKimD-YAhnHSLeeCOHwangNMJ. Cryst. Growth2000213832000JCrGr.213...83B1:CAS:528:DC%2BD3cXjt1GntLs%3D – reference: YueYYangZLiuNLiuWZhangHMaYYangCSuJLiLLongFZouZGaoYACS Nano201610112491:CAS:528:DC%2BC28XhvVert7nO28024378 – reference: OhIHParkEChangSTLimSAdv. Mater.20233523001971:CAS:528:DC%2BB3sXmsFCqu7o%3D – reference: LiXMaYShenPZhangCCaoMXiaoSYanJLuoSGaoYAdv. Mater. Technol.2020520002721:CAS:528:DC%2BB3cXis1KrsLbJ – reference: LiLChenDShenGChem. Res. Chin. Univ.2020366941:CAS:528:DC%2BB3cXhsVWmsrjE – reference: GuoWYuCLiSWangZYuJHuangHQiuJNano Energy2019574591:CAS:528:DC%2BC1MXosFOg – reference: KimYWOhIHChoiSNamIChangSTChem. Eng. J.20234541:CAS:528:DC%2BB38XivVCnsbnF – reference: ZhaoZHaoSHaoPSangYManivannanAWuNLiuHJ. Mater. Chem. A20153150491:CAS:528:DC%2BC2MXhtVShurbM – reference: WangYShiYZhaoCXWongJISunXWYangHYNanotechnology2014252014Nanot..25i4010W1:CAS:528:DC%2BC2MXjsFeqsLY%3D24522166 – reference: BroughtonJNBrettMJElectrochim. Acta20055048141:CAS:528:DC%2BD2MXot1Wrsb4%3D – reference: GaoCHuangJXiaoYZhangGDaiCLiZZhaoYJiangLQuLNat. Commun.20211226472021NatCo..12.2647G1:CAS:528:DC%2BB3MXhtFWgt7fO339761708113435 – reference: AsbaniBRobertKRousselPBrousseTLethienCEnergy Storage Mater.202137207 – reference: BrownKRLyonLAFoxAPReissBDNatanMJChem. Mater.2000123141:CAS:528:DyaK1MXotFKgt7s%3D – reference: SungJHKimSJJeongSHKimEHLeeKHJ. Power. Sources200616214672006JPS...162.1467S1:CAS:528:DC%2BD28Xht1Wmt77F – reference: PengCLangJXuSWangXRSC Adv.20144546622014RSCAd...454662P1:CAS:528:DC%2BC2cXhslaqsLvP – reference: WangHQChenJHuSJZhangXHFanXPDuJHuangYGLiQYRSC Adv.20155724952015RSCAd...572495W1:CAS:528:DC%2BC2MXhtlGns7%2FL – reference: LiXLiHFanXShiXLiangJAdv. Energy Mater.20201019037941:CAS:528:DC%2BB3cXhvVWjtr4%3D – reference: ZhangMJinDZhangLCuiXZhangZYangDLiJChem. Eng. J. Adv.202161:CAS:528:DC%2BB38XhslGhtbjJ – reference: HuHHuaTJ. Mater. Chem. A.20175196391:CAS:528:DC%2BC2sXhtFOlsb7F – reference: GuoRChenJYangBLiuLSuLShenBYanXAdv. Funct. Mater.2017271702394 – reference: ZhuZJiangHGuoSChengQHuYLiCSci. Rep.20155159362015NatSR...515936Z1:CAS:528:DC%2BC2MXhslCmt7%2FL265154424626760 – reference: ChangHSLeeBMYunJMChoiJHKorean J. Chem. Eng.20223912321:CAS:528:DC%2BB38XisFKktr0%3D – reference: CarrilhoEMartinezAWWhitesidesGMAnal. Chem.20098170911:CAS:528:DC%2BD1MXosFOjsbw%3D20337388 – reference: FuMLvRLeiYTerronesMSmall20211720048271:CAS:528:DC%2BB3cXisFGmu7%2FM – reference: YuanYJiangLLiXZuoPXuCTianMZhangXWangSLuBShaoCZhaoBZhangJQuLCuiTNat. Commun.20201161852020NatCo..11.6185Y1:CAS:528:DC%2BB3cXisFentbrI332734567712890 – reference: SchrinnerMPolzerFMeiYLuYHauptBBallauffMGöldelADrechslerMPreussnerJGlatzelUMacromol. Chem. Phys.200720815421:CAS:528:DC%2BD2sXos1CqtLY%3D – reference: WangYSunLXiaoDDuHYangZWangXTuLZhaoCHuFLuBACS Appl. Mater. Interfaces.202012438641:CAS:528:DC%2BB3cXhsl2jtL3P32902954 – reference: ZhangYZWangYChengTLaiWYPangHHuangWChem. Soc. Rev.20154469925200459 – reference: ParkHSongCJinSWLeeHKeumKLeeYHLeeGJeongYRHaJSNano Energy2021831:CAS:528:DC%2BB3MXjvVems7k%3D – reference: HuHBPeiZBFanHJYeCHSmall20161230591:CAS:528:DC%2BC28XmvVShu7k%3D27116677 – reference: LiuLNiuZChenJNano Res.2017101524 – reference: SiWYanCChenYOswaldSHanLSchmidtOGEnergy Environ. Sci.2013632181:CAS:528:DC%2BC3sXhs1KqtrbJ – reference: RenXSongYLiuAZhangJYangPZhangJAnMRSC Adv.20155649972015RSCAd...564997R1:CAS:528:DC%2BC2MXhtFylu7%2FM – reference: JiangQKurraNMaleskiKLeiYLiangHZhangYGogotsiYAlshareefHNAdv. Energy Mater.201991901061 – volume: 5 start-page: 2000272 year: 2020 ident: 101_CR42 publication-title: Adv. Mater. Technol. doi: 10.1002/admt.202000272 – volume: 10 start-page: 1524 year: 2017 ident: 101_CR6 publication-title: Nano Res. doi: 10.1007/s12274-017-1448-z – volume: 12 start-page: 43864 year: 2020 ident: 101_CR44 publication-title: ACS Appl. Mater. Interfaces. doi: 10.1021/acsami.0c14441 – volume: 28 start-page: 160 year: 2020 ident: 101_CR1 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2020.02.029 – volume: 44 start-page: 699 year: 2015 ident: 101_CR8 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00218K – volume: 35 start-page: 2300197 year: 2023 ident: 101_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.202300197 – volume: 122 start-page: 194 year: 2018 ident: 101_CR38 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.7b10582 – volume: 81 start-page: 7091 year: 2009 ident: 101_CR20 publication-title: Anal. Chem. doi: 10.1021/ac901071p – volume: 48 start-page: 1272 year: 2019 ident: 101_CR36 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00581H – volume: 41 start-page: 677 year: 2021 ident: 101_CR2 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.07.003 – volume: 5 start-page: 72495 year: 2015 ident: 101_CR35 publication-title: RSC Adv. doi: 10.1039/C5RA15464B – volume: 208 start-page: 1542 year: 2007 ident: 101_CR32 publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.200700161 – volume: 10 start-page: 1903794 year: 2020 ident: 101_CR37 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903794 – volume: 10 start-page: 1903136 year: 2020 ident: 101_CR47 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201903136 – volume: 5 start-page: 15936 year: 2015 ident: 101_CR50 publication-title: Sci. Rep. doi: 10.1038/srep15936 – volume: 9 start-page: 1901061 year: 2019 ident: 101_CR13 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901061 – volume: 7 start-page: 1 year: 2020 ident: 101_CR30 publication-title: Front. Mater. doi: 10.3389/fmats.2020.00001 – volume: 27 start-page: 1702394 year: 2017 ident: 101_CR9 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702394 – volume: 10 start-page: 11249 year: 2016 ident: 101_CR40 publication-title: ACS Nano doi: 10.1021/acsnano.6b06326 – volume: 83 year: 2021 ident: 101_CR46 publication-title: Nano Energy doi: 10.1016/j.nanoen.2021.105837 – volume: 5 start-page: 64997 year: 2015 ident: 101_CR33 publication-title: RSC Adv. doi: 10.1039/C5RA13140E – volume: 44 start-page: 699 year: 2015 ident: 101_CR24 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00218K – volume: 45 year: 2022 ident: 101_CR3 publication-title: J. Energy Storage. doi: 10.1016/j.est.2021.103686 – volume: 11 start-page: 6185 year: 2020 ident: 101_CR45 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19985-2 – volume: 6 start-page: 3218 year: 2013 ident: 101_CR25 publication-title: Energy Environ. Sci. doi: 10.1039/c3ee41286e – volume: 36 start-page: 694 year: 2020 ident: 101_CR43 publication-title: Chem. Res. Chin. Univ. doi: 10.1007/s40242-020-0197-9 – volume: 37 start-page: 207 year: 2021 ident: 101_CR48 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2021.02.006 – volume: 162 start-page: 1467 year: 2006 ident: 101_CR12 publication-title: J. Power. Sources doi: 10.1016/j.jpowsour.2006.07.073 – volume: 39 start-page: 1232 year: 2022 ident: 101_CR4 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-021-1041-8 – volume: 25 year: 2014 ident: 101_CR16 publication-title: Nanotechnology – volume: 12 start-page: 314 year: 2000 ident: 101_CR27 publication-title: Chem. Mater. doi: 10.1021/cm980066h – volume: 12 start-page: 3059 year: 2016 ident: 101_CR18 publication-title: Small doi: 10.1002/smll.201503527 – volume: 454 year: 2023 ident: 101_CR34 publication-title: Chem. Eng. J. – volume: 12 start-page: 2647 year: 2021 ident: 101_CR41 publication-title: Nat. Commun. doi: 10.1038/s41467-021-22912-8 – volume: 6 year: 2021 ident: 101_CR23 publication-title: Chem. Eng. J. Adv. doi: 10.1016/j.ceja.2021.100098 – volume: 17 start-page: 2004827 year: 2021 ident: 101_CR49 publication-title: Small doi: 10.1002/smll.202004827 – volume: 13 start-page: 1603114 year: 2017 ident: 101_CR17 publication-title: Small doi: 10.1002/smll.201603114 – year: 2023 ident: 101_CR5 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-023-1466-3 – volume: 13 start-page: 72 year: 2013 ident: 101_CR11 publication-title: Nano Lett. doi: 10.1021/nl3034976 – volume: 60 start-page: 5 year: 2014 ident: 101_CR22 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2014.08.008 – volume: 213 start-page: 83 year: 2000 ident: 101_CR28 publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(00)00359-6 – volume: 57 start-page: 459 year: 2019 ident: 101_CR29 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.015 – volume: 170 start-page: 338 year: 2019 ident: 101_CR15 publication-title: Energy doi: 10.1016/j.energy.2018.12.184 – volume: 5 start-page: 19639 year: 2017 ident: 101_CR19 publication-title: J. Mater. Chem. A. doi: 10.1039/C7TA04735E – volume: 4 start-page: 54662 year: 2014 ident: 101_CR26 publication-title: RSC Adv. doi: 10.1039/C4RA09395J – volume: 3 start-page: 15049 year: 2015 ident: 101_CR7 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA02770E – volume: 50 start-page: 4814 year: 2005 ident: 101_CR39 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2005.03.006 – volume: 25 year: 2014 ident: 101_CR31 publication-title: Nanotechnology – volume: 30 start-page: 1497 year: 2009 ident: 101_CR21 publication-title: Electrophoresis doi: 10.1002/elps.200800563 – volume: 2 start-page: 1876 year: 2019 ident: 101_CR14 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b02006 |
SSID | ssj0055620 |
Score | 2.3588028 |
Snippet | Flexible and small-scale energy storage technologies are critical for future applications such as wearable electronics. In this context, paper has emerged as a... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 763 |
SubjectTerms | Biotechnology Catalysis Charge transfer Chemistry Chemistry and Materials Science Energy storage Industrial Chemistry/Chemical Engineering Ion charge Manganese dioxide Materials Science Microelectrodes Original Article Solid state Substrates Supercapacitors Waxes 화학공학 |
Title | Paper-Based Solid-State Micro-supercapacitors Fabricated by Hydrophobic Wax Barrier Printing |
URI | https://link.springer.com/article/10.1007/s11814-024-00101-9 https://www.proquest.com/docview/2955344709 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003061588 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Korean Journal of Chemical Engineering, 2024, 41(3), 288, pp.763-772 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSyMxEB_8ePDu4fDruN5pCXhvGuh-ZDf72EprVRThLCoIIcmmWlq6ZdvC-d_fzHb3qqKCD0seksyymdmdXzYzvwH4bRuRb2WkOUKRFDcossGl8yw3XuoCnco4LrL4Ly6jbi88uxW3ZVLYtIp2r44kiy_1MtkNnVGIMvEiYjSerMK6IANCK-75zer7K9CjL_6sEMMeAp4yVeZtGS_c0eo4779Amq8ORwuf09mEbyVYZM2FdrdgxY23YeO4qtG2DV-f0QnuwP2Vnrict9AxpexPNhqkvMCS7IKi7vh0jr0WnaMdUIkd1tGmqBGEg80T6z6leTZ5zMzAshv9l7V0TsXs2BXKptDoXeh12tfHXV5WT-A2EOGMy75DOObLhqaju1RIE6VehBte3CDZGJ9em76JEqIUswgrEhH4Br114pwUzjoZfIe1cTZ2P4Dh1tXTdKJnTBxGpq9j7NcoNzCB1J6pgVctorIltThVuBipJSkyLbzChVfFwqukBof_50wWxBofjj5A3aihHSjiw6b2IVPDXCHqP8VJoYfI1a_BXqU7Vb6KU-UnQhCtYQOFHFX6XHa_f8-fnxv-C774hWFRfNoerM3yudtHwDIzdVhvdlqtS2pP7s7b9cJe_wHF3-Bl |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60HqoH32J9BvSmke47e1RprY8WQYsKQkiyqZZKt2xbUH-9k-2utaKCh2UPSWY3r51vdibfAOyrsm8r5guKUCRCA4WVKdOWotKKtCMiFgTpKf56w6813Yt77z47FNbPo91zl2T6pR4fdkNl5KJMvAwxGg2nYca1GHMLMHN89nBZyb_AHur00b8Vw7GHkCc7LPOzlAmFNN1NWhNY85t7NNU61QVo5u87CjbpHA0H8ki9f6Ny_G-HFmE-g6HkeLRulmBKd5eheJpnf1uGuS9EhSvweC16OqEnqPIichO_tCOaolRSN_F8tD_EUoVqV7VN8h5SFTLNPoSV5RupvUVJ3HuOZVuRO_FKTkRi0uSRa5Rtgq5XoVmt3J7WaJaXgSrHcweUtTQCPZuVhXEKRh6TfmT5aEqj6aUC7IqQLemHhqxMIWAJPceWiANCrZmnlWbOGhS6cVevA0Gj2BLGVyhl4PqyJQIsFyjXkQ4TliyBlU8OVxlpucmd8cLHdMtmFDmOIk9HkYclOPhs0xtRdvxZew_nnHdUmxumbXN_inkn4WhPnGMj10JMbJdgK18TPNvkfW6HnmcIE8so5DCf4nHx78_c-F_1XSjWbutX_Oq8cbkJs3a6YkwU3BYUBslQbyMsGsidbBd8AAXb_Sk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB4VKhU4VC0PEQrtSnCDFfF7feQVhbagSCWCA9JqX4YIZEcmkci_Z8axG0BQqQfLh12P5Zm15xvvzDcAO6Yd-0bEiiMUsRigiDYXzjNce9YFyookqar4z87jbj_8eRVdPavir7Ldmy3JaU0DsTTlo_2hzfZnhW_omEKUjweRpPF0Dj6G6Ksp_Or7B823OELvPv3LQmx7CH7qspm3ZbxwTXN5mb1Ana82Siv_0_kCn2vgyA6mlv4KH1y-DAtHTb-2ZVh6Ri24Atc9NXQlP0QnZdmf4n5geYUr2Rll4PGHMY4adJRmQO12WEfpql8QTtYT1p3YshjeFnpg2KV6ZIeqpMZ2rIeyKU16Ffqdk4ujLq87KXATROGIi8whNPNFW9E2no2Ejq0XY_CLwZJJ8OmVznScEr2YQYiRRoGv0XOnzonIGSeCNZjPi9ytA8Mw1lO0u6d1EsY6UwmOK5Qb6EAoT7fAa5QoTU0zTt0u7uWMIJkUL1HxslK8TFuw-_ea4ZRk45-zt9E28s4MJHFj0_mmkHelxAjgFC8KPUSxfgs2G9vJ-rV8kH4aRURx2EYhe409Z8Pv33Pj_6b_gE-94478fXr-6xss-tUao7S1TZgflWO3hThmpL9XS_UJnWbkfQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Paper-Based+Solid-State+Micro-supercapacitors+Fabricated+by+Hydrophobic+Wax+Barrier+Printing&rft.jtitle=The+Korean+journal+of+chemical+engineering&rft.au=Kim%2C+Na+Yeon&rft.au=Oh+In+Hyeok&rft.au=Chang+Suk+Tai&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0256-1115&rft.eissn=1975-7220&rft.volume=41&rft.issue=3&rft.spage=763&rft.epage=772&rft_id=info:doi/10.1007%2Fs11814-024-00101-9&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-1115&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-1115&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-1115&client=summon |