Entanglement-Assisted Quantum Turbo Codes

An unexpected breakdown in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and non-catastrophic. These properties are essential for quantum turbo code families to have a minimum distance growing with blocklength and for th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 60; no. 2; pp. 1203 - 1222
Main Authors Wilde, Mark M., Min-Hsiu Hsieh, Babar, Zunaira
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9448
1557-9654
DOI10.1109/TIT.2013.2292052

Cover

Abstract An unexpected breakdown in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and non-catastrophic. These properties are essential for quantum turbo code families to have a minimum distance growing with blocklength and for their iterative decoding algorithm to converge, respectively. Here, we show that the entanglement-assisted paradigm simplifies the theory of quantum turbo codes, in the sense that an entanglement-assisted quantum (EAQ) convolutional encoder can possess both of the aforementioned desirable properties. We give several examples of EAQ convolutional encoders that are both recursive and non-catastrophic and detail their relevant parameters. We then modify the quantum turbo decoding algorithm of Poulin , in order to have the constituent decoders pass along only extrinsic information to each other rather than a posteriori probabilities as in the decoder of Poulin , and this leads to a significant improvement in the performance of unassisted quantum turbo codes. Other simulation results indicate that entanglement-assisted turbo codes can operate reliably in a noise regime 4.73 dB beyond that of standard quantum turbo codes, when used on a memoryless depolarizing channel. Furthermore, several of our quantum turbo codes are within 1 dB or less of their hashing limits, so that the performance of quantum turbo codes is now on par with that of classical turbo codes. Finally, we prove that entanglement is the resource that enables a convolutional encoder to be both non-catastrophic and recursive because an encoder acting on only information qubits, classical bits, gauge qubits, and ancilla qubits cannot simultaneously satisfy them.
AbstractList An unexpected breakdown in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and non-catastrophic. These properties are essential for quantum turbo code families to have a minimum distance growing with blocklength and for their iterative decoding algorithm to converge, respectively. Here, we show that the entanglement-assisted paradigm simplifies the theory of quantum turbo codes, in the sense that an entanglement-assisted quantum (EAQ) convolutional encoder can possess both of the aforementioned desirable properties. We give several examples of EAQ convolutional encoders that are both recursive and non-catastrophic and detail their relevant parameters. We then modify the quantum turbo decoding algorithm of Poulin , in order to have the constituent decoders pass along only extrinsic information to each other rather than a posteriori probabilities as in the decoder of Poulin , and this leads to a significant improvement in the performance of unassisted quantum turbo codes. Other simulation results indicate that entanglement-assisted turbo codes can operate reliably in a noise regime 4.73 dB beyond that of standard quantum turbo codes, when used on a memoryless depolarizing channel. Furthermore, several of our quantum turbo codes are within 1 dB or less of their hashing limits, so that the performance of quantum turbo codes is now on par with that of classical turbo codes. Finally, we prove that entanglement is the resource that enables a convolutional encoder to be both non-catastrophic and recursive because an encoder acting on only information qubits, classical bits, gauge qubits, and ancilla qubits cannot simultaneously satisfy them.
An unexpected breakdown in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and non-catastrophic. These properties are essential for quantum turbo code families to have a minimum distance growing with blocklength and for their iterative decoding algorithm to converge, respectively. Here, we show that the entanglement-assisted paradigm simplifies the theory of quantum turbo codes, in the sense that an entanglement-assisted quantum (EAQ) convolutional encoder can possess both of the aforementioned desirable properties. We give several examples of EAQ convolutional encoders that are both recursive and non-catastrophic and detail their relevant parameters. We then modify the quantum turbo decoding algorithm of Poulin [etal] , in order to have the constituent decoders pass along only extrinsic information to each other rather than a posteriori probabilities as in the decoder of Poulin [etal] , and this leads to a significant improvement in the performance of unassisted quantum turbo codes. Other simulation results indicate that entanglement-assisted turbo codes can operate reliably in a noise regime 4.73 dB beyond that of standard quantum turbo codes, when used on a memoryless depolarizing channel. Furthermore, several of our quantum turbo codes are within 1 dB or less of their hashing limits, so that the performance of quantum turbo codes is now on par with that of classical turbo codes. Finally, we prove that entanglement is the resource that enables a convolutional encoder to be both non-catastrophic and recursive because an encoder acting on only information qubits, classical bits, gauge qubits, and ancilla qubits cannot simultaneously satisfy them.
An unexpected breakdown in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and non-catastrophic. These properties are essential for quantum turbo code families to have a minimum distance growing with blocklength and for their iterative decoding algorithm to converge, respectively. Here, we show that the entanglement-assisted paradigm simplifies the theory of quantum turbo codes, in the sense that an entanglement-assisted quantum (EAQ) convolutional encoder can possess both of the aforementioned desirable properties. We give several examples of EAQ convolutional encoders that are both recursive and non-catastrophic and detail their relevant parameters. We then modify the quantum turbo decoding algorithm of Poulin , in order to have the constituent decoders pass along only extrinsic information to each other rather than a posteriori probabilities as in the decoder of Poulin , and this leads to a significant improvement in the performance of unassisted quantum turbo codes. Other simulation results indicate that entanglement-assisted turbo codes can operate reliably in a noise regime 4.73 dB beyond that of standard quantum turbo codes, when used on a memoryless depolarizing channel. Furthermore, several of our quantum turbo codes are within 1 dB or less of their hashing limits, so that the performance of quantum turbo codes is now on par with that of classical turbo codes. Finally, we prove that entanglement is the resource that enables a convolutional encoder to be both non-catastrophic and recursive because an encoder acting on only information qubits, classical bits, gauge qubits, and ancilla qubits cannot simultaneously satisfy them. [PUBLICATION ABSTRACT]
Author Wilde, Mark M.
Min-Hsiu Hsieh
Babar, Zunaira
Author_xml – sequence: 1
  givenname: Mark M.
  surname: Wilde
  fullname: Wilde, Mark M.
  email: mwilde@gmail.com
  organization: Sch. of Comput. Sci., McGill Univ., Montreal, QC, Canada
– sequence: 2
  surname: Min-Hsiu Hsieh
  fullname: Min-Hsiu Hsieh
  email: minhsiuh@gmail.com
  organization: ERATO-SORST Quantum Comput. & Inf. Project, Japan Sci. & Technol. Agency, Tokyo, Japan
– sequence: 3
  givenname: Zunaira
  surname: Babar
  fullname: Babar, Zunaira
  email: zunaira.babar@gmail.com
  organization: Sch. of Electron. & Comput. Sci., Univ. of Southampton, Southampton, UK
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28203321$$DView record in Pascal Francis
BookMark eNp9kE1LAzEURYNUsK3uBTcFEXQxNd_JLEupWiiIMPuQyWQkZZqpSWbhvzel1UUXrh4Pzrm8dydg5HtvAbhFcI4QLJ-rdTXHEJE5xiWGDF-AMWJMFCVndATGECJZlJTKKzCJcZtXyhAeg6eVT9p_dnZnfSoWMbqYbDP7GLRPw25WDaHuZ8u-sfEaXLa6i_bmNKegellVy7di8_66Xi42hSGMpkJIQUyNEeWGIsiEYaRFVpq6hZpyoiGWTUuY0UjUzDbaQNIILDQX3FpLyRQ8HmP3of8abExq56KxXae97YeokOAYSkGhzOj9Gbrth-DzcQrREiPCGOaZejhROhrdtUF746LaB7fT4VthiSEhGZ4CfuRM6GMMtlXGJZ1c71PQrlMIqkPRKhetDkWrU9FZhGfib_Y_yt1RcfnnP5xzgagk5AcfaIfp
CODEN IETTAW
CitedBy_id crossref_primary_10_1109_TWC_2021_3122962
crossref_primary_10_1109_ACCESS_2021_3089829
crossref_primary_10_1109_TIT_2021_3050529
crossref_primary_10_1007_s11128_023_03931_4
crossref_primary_10_1007_s10773_021_04802_3
crossref_primary_10_1007_s40314_021_01644_x
crossref_primary_10_1109_ACCESS_2020_3025619
crossref_primary_10_1007_s11128_018_1838_5
crossref_primary_10_1038_s41534_021_00448_5
crossref_primary_10_3390_e21121133
crossref_primary_10_1007_s11128_022_03500_1
crossref_primary_10_1073_pnas_2202235119
crossref_primary_10_1007_s11128_023_04197_6
crossref_primary_10_1016_j_ffa_2018_06_012
crossref_primary_10_1103_PhysRevA_101_052343
crossref_primary_10_1109_COMST_2017_2786748
crossref_primary_10_1142_S0219749917500174
crossref_primary_10_1109_TVT_2014_2328638
crossref_primary_10_1016_j_jksuci_2022_07_009
crossref_primary_10_1103_PRXQuantum_6_010339
crossref_primary_10_1109_TIT_2021_3117562
crossref_primary_10_1109_ACCESS_2019_2909490
crossref_primary_10_1109_ACCESS_2020_3045016
crossref_primary_10_1007_s11128_014_0830_y
crossref_primary_10_1109_TIT_2021_3113367
crossref_primary_10_1007_s11128_023_04213_9
crossref_primary_10_1109_ACCESS_2019_2911515
crossref_primary_10_1038_srep38095
crossref_primary_10_1109_LCOMM_2016_2593874
crossref_primary_10_1016_j_disc_2024_113969
crossref_primary_10_1109_ACCESS_2016_2581978
crossref_primary_10_1109_TCOMM_2021_3122786
crossref_primary_10_1007_s11128_022_03685_5
crossref_primary_10_1109_TCOMM_2021_3064566
crossref_primary_10_1142_S0219749917500034
crossref_primary_10_1103_PhysRevA_102_012423
crossref_primary_10_3390_e21070633
crossref_primary_10_1109_ACCESS_2023_3312044
crossref_primary_10_1109_COMST_2018_2861361
crossref_primary_10_1007_s10773_020_04433_0
crossref_primary_10_1103_PhysRevResearch_5_033055
crossref_primary_10_1109_ACCESS_2015_2405533
crossref_primary_10_1088_1674_1056_acf492
crossref_primary_10_1103_PhysRevA_103_022617
crossref_primary_10_1109_ACCESS_2018_2808373
crossref_primary_10_1007_s00220_014_2212_9
crossref_primary_10_1103_PhysRevA_105_012432
crossref_primary_10_1109_ACCESS_2016_2591910
crossref_primary_10_1109_TCOMM_2016_2585641
crossref_primary_10_1109_TIT_2017_2711601
crossref_primary_10_3390_e25121603
crossref_primary_10_3390_e25010037
crossref_primary_10_1109_TIT_2023_3277808
crossref_primary_10_1140_epjc_s10052_017_5246_2
crossref_primary_10_1007_s11128_022_03661_z
crossref_primary_10_1007_s10773_021_04732_0
crossref_primary_10_1109_ACCESS_2017_2716367
crossref_primary_10_1103_PhysRevA_106_062428
crossref_primary_10_23919_JSEE_2022_000084
crossref_primary_10_1109_TIT_2014_2313559
Cites_doi 10.1103/PhysRevA.79.042342
10.1103/PhysRevLett.98.030501
10.1103/PhysRevA.78.012337
10.1109/49.924867
10.1103/PhysRevA.83.022308
10.1103/PhysRevLett.94.180501
10.1103/PhysRevA.55.1613
10.1103/PhysRevA.82.042338
10.1109/TIT.2009.2018339
10.1109/TIT.2010.2054532
10.1109/ICC.1993.397441
10.1098/rspa.2009.0202
10.1109/4234.552145
10.1109/TIT.2010.2046217
10.1109/TIT.2010.2053903
10.1109/ISIT.2007.4557323
10.1049/el:19941434
10.1109/ISIT.2007.4557324
10.1109/ISIT.2010.5513540
10.1109/18.669119
10.1109/TIT.2006.890698
10.1103/PhysRevLett.69.2881
10.1007/s00220-005-1317-6
10.1103/PhysRevA.79.032340
10.1073/pnas.94.18.9525
10.1109/TIT.2012.2220520
10.1109/18.45271
10.1109/TIT.2008.928980
10.1103/PhysRevLett.95.230504
10.1103/PhysRevLett.77.793
10.1109/ISIT.2008.4595008
10.1109/TIT.2002.1003833
10.1103/PhysRevLett.91.177902
10.1109/TIT.2013.2246274
10.1103/PhysRevA.77.064302
10.1002/j.1538-7305.1948.tb01338.x
10.1103/PhysRevA.74.052333
10.1103/PhysRevA.54.1098
10.1103/PhysRevA.79.062325
10.1103/PhysRevLett.98.220502
10.1017/CBO9780511606267
10.1103/PhysRevA.57.830
10.1103/PhysRevA.66.052313
10.1007/978-90-481-2810-5_14
10.1109/26.764936
10.1109/ISIT.1998.708611
10.1103/PhysRevLett.78.1600
10.1109/18.985948
10.1109/TIT.2009.2034794
10.1002/9780470978481
10.1007/s11128-011-0310-6
10.1103/PhysRevA.54.3824
10.1109/TIT.2004.839515
10.1109/TC.2010.226
10.1007/s11128-010-0175-0
10.1103/PhysRevA.81.042333
10.1103/PhysRevA.77.010301
10.1109/TIT.2011.2104590
10.1103/PhysRevLett.83.3081
10.1126/science.1131563
10.1109/TIT.2011.2167593
10.1109/TCOM.1971.1090700
10.1103/PhysRevA.78.062335
10.1109/TIT.2013.2272932
10.1109/ISIT.2006.261956
10.1109/18.485713
10.1109/26.539767
10.1142/S1230161208000043
10.1007/s11128-010-0179-9
10.1103/PhysRevA.78.012341
10.1103/PhysRevA.86.032319
10.1109/TIT.2004.834737
10.1103/PhysRevA.76.062313
10.1109/9780470544693
10.1103/PhysRevLett.93.230504
10.1109/TIT.2002.802612
10.1109/ITW2.2006.323775
10.1103/PhysRevA.79.032313
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TIT.2013.2292052
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
Physics
EISSN 1557-9654
EndPage 1222
ExternalDocumentID 3193108211
28203321
10_1109_TIT_2013_2292052
6671483
Genre orig-research
Feature
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
AAYOK
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c354t-7873cb2146c41057c53f1e8cbf0a463a028df35ca17b5edac03d727a676eee43
IEDL.DBID RIE
ISSN 0018-9448
IngestDate Thu Oct 02 10:27:05 EDT 2025
Mon Jun 30 05:18:17 EDT 2025
Wed Apr 02 07:21:51 EDT 2025
Wed Oct 01 03:16:05 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Tue Aug 26 16:46:17 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Performance evaluation
Convolutional code
Coding circuit
Turbo code
Algorithm
Iterative decoding
recursive
entanglement-assisted quantum turbo code
Memoryless channel
entanglement-assisted quantum error correction
non-catastrophic
Posterior probability
Simulation
Hashing
Recursive method
entanglement-assisted quantum convolutional code
Minimal distance
Quantum information
Error correction
Quantum communication
Damaging
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-7873cb2146c41057c53f1e8cbf0a463a028df35ca17b5edac03d727a676eee43
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1492135526
PQPubID 36024
PageCount 20
ParticipantIDs proquest_journals_1492135526
crossref_citationtrail_10_1109_TIT_2013_2292052
pascalfrancis_primary_28203321
crossref_primary_10_1109_TIT_2013_2292052
ieee_primary_6671483
proquest_miscellaneous_1762087408
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2014
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref13
ref56
ref12
ref59
ref58
ref14
tillich (ref18) 2009
ref55
ref11
ref54
ref10
ref17
ref19
ref92
ref51
ref50
ref91
ref90
ref45
lai (ref37) 2010; 88
ref48
ref47
ref86
ref42
ref85
ref41
ref88
ref44
ref87
ref43
ollivier (ref16) 2008
shor (ref8) 2002
ref49
ref7
gottesman (ref29) 1997
ref9
ref4
ref3
ref6
ref5
ref82
ref81
ref40
ref84
hanzo (ref52) 2011
ref83
ref79
ref35
ref78
ref34
dolinar (ref89) 1995
ref36
ref75
ref31
ref74
ref30
ref33
ref76
ref2
ref1
ref39
ref38
babar (ref53) 2013
ref71
ref70
ref73
shor (ref32) 1996
ref72
ref68
ref24
ref67
ref23
ref26
poulin (ref15) 2009
ref69
ref25
ref64
ref20
ref63
ref66
ref22
ref21
ref28
ref27
wilde (ref65) 2010
preskill (ref77) 1999
mceliece (ref46) 1998
kribs (ref80) 2006; 6
ref60
ref62
ref61
References_xml – ident: ref76
  doi: 10.1103/PhysRevA.79.042342
– ident: ref55
  doi: 10.1103/PhysRevLett.98.030501
– ident: ref73
  doi: 10.1103/PhysRevA.78.012337
– ident: ref91
  doi: 10.1109/49.924867
– year: 2002
  ident: ref8
  article-title: The quantum channel capacity and coherent information
  publication-title: MSRI Workshop Quantum Comput
– ident: ref43
  doi: 10.1103/PhysRevA.83.022308
– ident: ref79
  doi: 10.1103/PhysRevLett.94.180501
– year: 2010
  ident: ref65
  publication-title: EA-Turbo
– ident: ref7
  doi: 10.1103/PhysRevA.55.1613
– ident: ref72
  doi: 10.1103/PhysRevA.82.042338
– year: 1995
  ident: ref89
  publication-title: Weight distributions for turbo codes using random and nonrandom permutations
– ident: ref6
  doi: 10.1109/TIT.2009.2018339
– ident: ref62
  doi: 10.1109/TIT.2010.2054532
– ident: ref1
  doi: 10.1109/ICC.1993.397441
– volume: 88
  start-page: 12320-1
  year: 2010
  ident: ref37
  article-title: Entanglement increases the error-correcting ability of quantum error-correcting codes
  publication-title: Phys Rev A
– ident: ref60
  doi: 10.1098/rspa.2009.0202
– ident: ref51
  doi: 10.1109/4234.552145
– ident: ref26
  doi: 10.1109/TIT.2010.2046217
– ident: ref61
  doi: 10.1109/TIT.2010.2053903
– ident: ref67
  doi: 10.1109/ISIT.2007.4557323
– ident: ref88
  doi: 10.1049/el:19941434
– year: 1997
  ident: ref29
  publication-title: Stabilizer codes and quantum error correction
– ident: ref68
  doi: 10.1109/ISIT.2007.4557324
– year: 2011
  ident: ref52
  publication-title: Near-Capacity Variable-Length Coding Regular and Exit-Chart-Aided Irregular Designs
– year: 2009
  ident: ref15
  publication-title: Iterative Quantum Coding Schemes LDPC and Turbo Codes
– ident: ref75
  doi: 10.1109/ISIT.2010.5513540
– ident: ref4
  doi: 10.1109/18.669119
– ident: ref12
  doi: 10.1109/TIT.2006.890698
– ident: ref36
  doi: 10.1103/PhysRevLett.69.2881
– ident: ref84
  doi: 10.1007/s00220-005-1317-6
– ident: ref69
  doi: 10.1103/PhysRevA.79.032340
– ident: ref14
  doi: 10.1073/pnas.94.18.9525
– ident: ref31
  doi: 10.1109/TIT.2012.2220520
– ident: ref92
  doi: 10.1109/18.45271
– ident: ref59
  doi: 10.1109/TIT.2008.928980
– ident: ref81
  doi: 10.1103/PhysRevLett.95.230504
– ident: ref28
  doi: 10.1103/PhysRevLett.77.793
– ident: ref85
  doi: 10.1109/ISIT.2008.4595008
– ident: ref87
  doi: 10.1109/TIT.2002.1003833
– year: 1996
  ident: ref32
  publication-title: Quantum error-correcting codes need not completely reveal the error syndrome
– ident: ref11
  doi: 10.1103/PhysRevLett.91.177902
– ident: ref64
  doi: 10.1109/TIT.2013.2246274
– ident: ref35
  doi: 10.1103/PhysRevA.77.064302
– ident: ref25
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: ref45
  doi: 10.1103/PhysRevA.74.052333
– ident: ref27
  doi: 10.1103/PhysRevA.54.1098
– ident: ref41
  doi: 10.1103/PhysRevA.79.062325
– ident: ref82
  doi: 10.1103/PhysRevLett.98.220502
– ident: ref48
  doi: 10.1017/CBO9780511606267
– ident: ref33
  doi: 10.1103/PhysRevA.57.830
– start-page: 15
  year: 1999
  ident: ref77
  publication-title: Quantum Computation Lecture Notes
– volume: 6
  start-page: 383
  year: 2006
  ident: ref80
  article-title: Operator quantum error correction
  publication-title: Quantum Inf Comput
– year: 2013
  ident: ref53
  publication-title: Convergence analysis of quantum turbo codes using EXIT charts
– ident: ref38
  doi: 10.1103/PhysRevA.66.052313
– ident: ref20
  doi: 10.1007/978-90-481-2810-5_14
– ident: ref90
  doi: 10.1109/26.764936
– ident: ref5
  doi: 10.1109/ISIT.1998.708611
– ident: ref44
  doi: 10.1103/PhysRevLett.78.1600
– ident: ref49
  doi: 10.1109/18.985948
– ident: ref70
  doi: 10.1109/TIT.2009.2034794
– ident: ref50
  doi: 10.1002/9780470978481
– ident: ref63
  doi: 10.1007/s11128-011-0310-6
– ident: ref54
  doi: 10.1103/PhysRevA.54.3824
– ident: ref9
  doi: 10.1109/TIT.2004.839515
– ident: ref42
  doi: 10.1109/TC.2010.226
– ident: ref74
  doi: 10.1007/s11128-010-0175-0
– ident: ref23
  doi: 10.1103/PhysRevA.81.042333
– ident: ref57
  doi: 10.1103/PhysRevA.77.010301
– ident: ref86
  doi: 10.1109/TIT.2011.2104590
– ident: ref21
  doi: 10.1103/PhysRevLett.83.3081
– ident: ref19
  doi: 10.1126/science.1131563
– year: 2009
  ident: ref18
  publication-title: Quantum Codes Suitable for Iterative Decoding
– ident: ref71
  doi: 10.1109/TIT.2011.2167593
– ident: ref13
  doi: 10.1109/TCOM.1971.1090700
– ident: ref56
  doi: 10.1103/PhysRevA.78.062335
– ident: ref17
  doi: 10.1109/TIT.2013.2272932
– ident: ref40
  doi: 10.1109/ISIT.2006.261956
– ident: ref2
  doi: 10.1109/18.485713
– year: 2008
  ident: ref16
  publication-title: Quantum turbo codes
– ident: ref3
  doi: 10.1109/26.539767
– ident: ref10
  doi: 10.1142/S1230161208000043
– start-page: 121
  year: 1998
  ident: ref46
  publication-title: Communications and Coding (P G Farrell 60th Birthday Celebration)
– ident: ref24
  doi: 10.1007/s11128-010-0179-9
– ident: ref83
  doi: 10.1103/PhysRevA.78.012341
– ident: ref78
  doi: 10.1103/PhysRevA.86.032319
– ident: ref66
  doi: 10.1109/TIT.2004.834737
– ident: ref34
  doi: 10.1103/PhysRevA.76.062313
– ident: ref47
  doi: 10.1109/9780470544693
– ident: ref58
  doi: 10.1103/PhysRevLett.93.230504
– ident: ref22
  doi: 10.1109/TIT.2002.802612
– ident: ref30
  doi: 10.1109/ITW2.2006.323775
– ident: ref39
  doi: 10.1103/PhysRevA.79.032313
SSID ssj0014512
Score 2.4540412
Snippet An unexpected breakdown in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1203
SubjectTerms Algorithms
Applied sciences
Classical and quantum physics: mechanics and fields
Coders
Codes
Coding theory
Coding, codes
Complexity theory
Convolutional codes
Decoders
Decoding
Encoders
entanglement-assisted quantum error correction
entanglementassisted quantum convolutional code
entanglementassisted quantum turbo code
Exact sciences and technology
Information theory
Information, signal and communications theory
Miscellaneous
Noise levels
non-catastrophic
Physics
Quantum communication
Quantum entanglement
Quantum information
Quantum theory
Qubits (quantum computing)
Recursive
Signal and communications theory
Simulation
Telecommunications and information theory
Turbo codes
Title Entanglement-Assisted Quantum Turbo Codes
URI https://ieeexplore.ieee.org/document/6671483
https://www.proquest.com/docview/1492135526
https://www.proquest.com/docview/1762087408
Volume 60
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50T3pwfWJ1XSp4WbBr2jRtehRRVFAQKngredWD2sru9uKvd9IXrop4KySl6Uym801nMh_ASaS0EVFMPIVowEOPzz2ey9gTJuBac0VFfVD47j66fgxvn9jTCpz2Z2GMMXXxmZnayzqXr0tV2V9llrkP0TtdhdWYR81ZrT5jEDK_6QzuowFjzNGlJElylt6ktoaLTgNLzcSCJRdUc6rYikgxR6HkDZvFjw9z7W2uhnDXrbMpMnmZVgs5VR_fWjj-90U2YaOFne55s0-2YMUU2zDsKB3c1sK3Yf1Lf8IdmFwWiB2fmwpzDzVp94R2HypUR_XmptVMlu5Fqc18F9Kry_Ti2mu5FTxFWbjw0E6pkpbVW9lCz1gxmvuGK5kTEUZUIOzQOWVK-LFkRgtFqEaog2qN8G1CugeDoizMPrgyj5kOcukLGmH4JHmgk5zpRBGiuNHUgbNO2plq-45b-ovXrI4_SJKhfjKrn6zVjwOT_o73pufGH3N3rHj7ea1kHRgvKbQfxwiTUBr4Dow6DWet1c4xDEoCHwFYEDlw3A-jvdkkiihMWeEc9B7E8hjyg98ffQhruMCwqewewWAxq8wRApeFHNc79hM_mOi5
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8UwEB5cDurBXaxrBS-CfaZN0uUoojyXJwgVvJVs9aC24nu9-OuddMMN8VZIStOZTOebzmQ-gMNQaSPCiHgK0YCHHj_24lxGnjBBrHWsqKgPCo9uw-E9u3rgD1Nw3J-FMcbUxWdmYC_rXL4uVWV_lVnmPkTvdBpmOWOMN6e1-pwB437TG9xHE8aoo0tKkuQkvUxtFRcdBJaciQdfnFDNqmJrIsUYxZI3fBY_Ps21v7lYglG30qbM5GlQTeRAvX9r4vjfV1mGxRZ4uqfNTlmBKVOswlJH6uC2Nr4KC586FK7B0XmB6PGxqTH3UJd2V2j3rkKFVC9uWr3J0j0rtRmvQ3pxnp4NvZZdwVOUs4mHlkqVtLzeypZ6RorT3DexkjkRLKQCgYfOKVfCjyQ3WihCNYIdVGyIb8PoBswUZWE2wZV5xHWQS1_QEAMoGQc6yblOFCEqNpo6cNJJO1Nt53FLgPGc1REISTLUT2b1k7X6ceCov-O16brxx9w1K95-XitZB_a-KLQfxxiTUBr4Dux0Gs5aux1jIJQEPkKwIHTgoB9Gi7NpFFGYssI56D-IZTKMt35_9D7MDdPRTXZzeXu9DfO4WNbUee_AzOStMrsIYyZyr969H5Zt7AY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entanglement-Assisted+Quantum+Turbo+Codes&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Wilde%2C+Mark+M&rft.au=Hsieh%2C+Min-Hsiu&rft.au=Babar%2C+Zunaira&rft.date=2014-02-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=60&rft.issue=2&rft.spage=1203&rft.epage=1222&rft_id=info:doi/10.1109%2FTIT.2013.2292052&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon