Entanglement-Assisted Quantum Turbo Codes
An unexpected breakdown in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and non-catastrophic. These properties are essential for quantum turbo code families to have a minimum distance growing with blocklength and for th...
Saved in:
| Published in | IEEE transactions on information theory Vol. 60; no. 2; pp. 1203 - 1222 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.02.2014
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9448 1557-9654 |
| DOI | 10.1109/TIT.2013.2292052 |
Cover
| Abstract | An unexpected breakdown in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and non-catastrophic. These properties are essential for quantum turbo code families to have a minimum distance growing with blocklength and for their iterative decoding algorithm to converge, respectively. Here, we show that the entanglement-assisted paradigm simplifies the theory of quantum turbo codes, in the sense that an entanglement-assisted quantum (EAQ) convolutional encoder can possess both of the aforementioned desirable properties. We give several examples of EAQ convolutional encoders that are both recursive and non-catastrophic and detail their relevant parameters. We then modify the quantum turbo decoding algorithm of Poulin , in order to have the constituent decoders pass along only extrinsic information to each other rather than a posteriori probabilities as in the decoder of Poulin , and this leads to a significant improvement in the performance of unassisted quantum turbo codes. Other simulation results indicate that entanglement-assisted turbo codes can operate reliably in a noise regime 4.73 dB beyond that of standard quantum turbo codes, when used on a memoryless depolarizing channel. Furthermore, several of our quantum turbo codes are within 1 dB or less of their hashing limits, so that the performance of quantum turbo codes is now on par with that of classical turbo codes. Finally, we prove that entanglement is the resource that enables a convolutional encoder to be both non-catastrophic and recursive because an encoder acting on only information qubits, classical bits, gauge qubits, and ancilla qubits cannot simultaneously satisfy them. |
|---|---|
| AbstractList | An unexpected breakdown in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and non-catastrophic. These properties are essential for quantum turbo code families to have a minimum distance growing with blocklength and for their iterative decoding algorithm to converge, respectively. Here, we show that the entanglement-assisted paradigm simplifies the theory of quantum turbo codes, in the sense that an entanglement-assisted quantum (EAQ) convolutional encoder can possess both of the aforementioned desirable properties. We give several examples of EAQ convolutional encoders that are both recursive and non-catastrophic and detail their relevant parameters. We then modify the quantum turbo decoding algorithm of Poulin , in order to have the constituent decoders pass along only extrinsic information to each other rather than a posteriori probabilities as in the decoder of Poulin , and this leads to a significant improvement in the performance of unassisted quantum turbo codes. Other simulation results indicate that entanglement-assisted turbo codes can operate reliably in a noise regime 4.73 dB beyond that of standard quantum turbo codes, when used on a memoryless depolarizing channel. Furthermore, several of our quantum turbo codes are within 1 dB or less of their hashing limits, so that the performance of quantum turbo codes is now on par with that of classical turbo codes. Finally, we prove that entanglement is the resource that enables a convolutional encoder to be both non-catastrophic and recursive because an encoder acting on only information qubits, classical bits, gauge qubits, and ancilla qubits cannot simultaneously satisfy them. An unexpected breakdown in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and non-catastrophic. These properties are essential for quantum turbo code families to have a minimum distance growing with blocklength and for their iterative decoding algorithm to converge, respectively. Here, we show that the entanglement-assisted paradigm simplifies the theory of quantum turbo codes, in the sense that an entanglement-assisted quantum (EAQ) convolutional encoder can possess both of the aforementioned desirable properties. We give several examples of EAQ convolutional encoders that are both recursive and non-catastrophic and detail their relevant parameters. We then modify the quantum turbo decoding algorithm of Poulin [etal] , in order to have the constituent decoders pass along only extrinsic information to each other rather than a posteriori probabilities as in the decoder of Poulin [etal] , and this leads to a significant improvement in the performance of unassisted quantum turbo codes. Other simulation results indicate that entanglement-assisted turbo codes can operate reliably in a noise regime 4.73 dB beyond that of standard quantum turbo codes, when used on a memoryless depolarizing channel. Furthermore, several of our quantum turbo codes are within 1 dB or less of their hashing limits, so that the performance of quantum turbo codes is now on par with that of classical turbo codes. Finally, we prove that entanglement is the resource that enables a convolutional encoder to be both non-catastrophic and recursive because an encoder acting on only information qubits, classical bits, gauge qubits, and ancilla qubits cannot simultaneously satisfy them. An unexpected breakdown in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and non-catastrophic. These properties are essential for quantum turbo code families to have a minimum distance growing with blocklength and for their iterative decoding algorithm to converge, respectively. Here, we show that the entanglement-assisted paradigm simplifies the theory of quantum turbo codes, in the sense that an entanglement-assisted quantum (EAQ) convolutional encoder can possess both of the aforementioned desirable properties. We give several examples of EAQ convolutional encoders that are both recursive and non-catastrophic and detail their relevant parameters. We then modify the quantum turbo decoding algorithm of Poulin , in order to have the constituent decoders pass along only extrinsic information to each other rather than a posteriori probabilities as in the decoder of Poulin , and this leads to a significant improvement in the performance of unassisted quantum turbo codes. Other simulation results indicate that entanglement-assisted turbo codes can operate reliably in a noise regime 4.73 dB beyond that of standard quantum turbo codes, when used on a memoryless depolarizing channel. Furthermore, several of our quantum turbo codes are within 1 dB or less of their hashing limits, so that the performance of quantum turbo codes is now on par with that of classical turbo codes. Finally, we prove that entanglement is the resource that enables a convolutional encoder to be both non-catastrophic and recursive because an encoder acting on only information qubits, classical bits, gauge qubits, and ancilla qubits cannot simultaneously satisfy them. [PUBLICATION ABSTRACT] |
| Author | Wilde, Mark M. Min-Hsiu Hsieh Babar, Zunaira |
| Author_xml | – sequence: 1 givenname: Mark M. surname: Wilde fullname: Wilde, Mark M. email: mwilde@gmail.com organization: Sch. of Comput. Sci., McGill Univ., Montreal, QC, Canada – sequence: 2 surname: Min-Hsiu Hsieh fullname: Min-Hsiu Hsieh email: minhsiuh@gmail.com organization: ERATO-SORST Quantum Comput. & Inf. Project, Japan Sci. & Technol. Agency, Tokyo, Japan – sequence: 3 givenname: Zunaira surname: Babar fullname: Babar, Zunaira email: zunaira.babar@gmail.com organization: Sch. of Electron. & Comput. Sci., Univ. of Southampton, Southampton, UK |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28203321$$DView record in Pascal Francis |
| BookMark | eNp9kE1LAzEURYNUsK3uBTcFEXQxNd_JLEupWiiIMPuQyWQkZZqpSWbhvzel1UUXrh4Pzrm8dydg5HtvAbhFcI4QLJ-rdTXHEJE5xiWGDF-AMWJMFCVndATGECJZlJTKKzCJcZtXyhAeg6eVT9p_dnZnfSoWMbqYbDP7GLRPw25WDaHuZ8u-sfEaXLa6i_bmNKegellVy7di8_66Xi42hSGMpkJIQUyNEeWGIsiEYaRFVpq6hZpyoiGWTUuY0UjUzDbaQNIILDQX3FpLyRQ8HmP3of8abExq56KxXae97YeokOAYSkGhzOj9Gbrth-DzcQrREiPCGOaZejhROhrdtUF746LaB7fT4VthiSEhGZ4CfuRM6GMMtlXGJZ1c71PQrlMIqkPRKhetDkWrU9FZhGfib_Y_yt1RcfnnP5xzgagk5AcfaIfp |
| CODEN | IETTAW |
| CitedBy_id | crossref_primary_10_1109_TWC_2021_3122962 crossref_primary_10_1109_ACCESS_2021_3089829 crossref_primary_10_1109_TIT_2021_3050529 crossref_primary_10_1007_s11128_023_03931_4 crossref_primary_10_1007_s10773_021_04802_3 crossref_primary_10_1007_s40314_021_01644_x crossref_primary_10_1109_ACCESS_2020_3025619 crossref_primary_10_1007_s11128_018_1838_5 crossref_primary_10_1038_s41534_021_00448_5 crossref_primary_10_3390_e21121133 crossref_primary_10_1007_s11128_022_03500_1 crossref_primary_10_1073_pnas_2202235119 crossref_primary_10_1007_s11128_023_04197_6 crossref_primary_10_1016_j_ffa_2018_06_012 crossref_primary_10_1103_PhysRevA_101_052343 crossref_primary_10_1109_COMST_2017_2786748 crossref_primary_10_1142_S0219749917500174 crossref_primary_10_1109_TVT_2014_2328638 crossref_primary_10_1016_j_jksuci_2022_07_009 crossref_primary_10_1103_PRXQuantum_6_010339 crossref_primary_10_1109_TIT_2021_3117562 crossref_primary_10_1109_ACCESS_2019_2909490 crossref_primary_10_1109_ACCESS_2020_3045016 crossref_primary_10_1007_s11128_014_0830_y crossref_primary_10_1109_TIT_2021_3113367 crossref_primary_10_1007_s11128_023_04213_9 crossref_primary_10_1109_ACCESS_2019_2911515 crossref_primary_10_1038_srep38095 crossref_primary_10_1109_LCOMM_2016_2593874 crossref_primary_10_1016_j_disc_2024_113969 crossref_primary_10_1109_ACCESS_2016_2581978 crossref_primary_10_1109_TCOMM_2021_3122786 crossref_primary_10_1007_s11128_022_03685_5 crossref_primary_10_1109_TCOMM_2021_3064566 crossref_primary_10_1142_S0219749917500034 crossref_primary_10_1103_PhysRevA_102_012423 crossref_primary_10_3390_e21070633 crossref_primary_10_1109_ACCESS_2023_3312044 crossref_primary_10_1109_COMST_2018_2861361 crossref_primary_10_1007_s10773_020_04433_0 crossref_primary_10_1103_PhysRevResearch_5_033055 crossref_primary_10_1109_ACCESS_2015_2405533 crossref_primary_10_1088_1674_1056_acf492 crossref_primary_10_1103_PhysRevA_103_022617 crossref_primary_10_1109_ACCESS_2018_2808373 crossref_primary_10_1007_s00220_014_2212_9 crossref_primary_10_1103_PhysRevA_105_012432 crossref_primary_10_1109_ACCESS_2016_2591910 crossref_primary_10_1109_TCOMM_2016_2585641 crossref_primary_10_1109_TIT_2017_2711601 crossref_primary_10_3390_e25121603 crossref_primary_10_3390_e25010037 crossref_primary_10_1109_TIT_2023_3277808 crossref_primary_10_1140_epjc_s10052_017_5246_2 crossref_primary_10_1007_s11128_022_03661_z crossref_primary_10_1007_s10773_021_04732_0 crossref_primary_10_1109_ACCESS_2017_2716367 crossref_primary_10_1103_PhysRevA_106_062428 crossref_primary_10_23919_JSEE_2022_000084 crossref_primary_10_1109_TIT_2014_2313559 |
| Cites_doi | 10.1103/PhysRevA.79.042342 10.1103/PhysRevLett.98.030501 10.1103/PhysRevA.78.012337 10.1109/49.924867 10.1103/PhysRevA.83.022308 10.1103/PhysRevLett.94.180501 10.1103/PhysRevA.55.1613 10.1103/PhysRevA.82.042338 10.1109/TIT.2009.2018339 10.1109/TIT.2010.2054532 10.1109/ICC.1993.397441 10.1098/rspa.2009.0202 10.1109/4234.552145 10.1109/TIT.2010.2046217 10.1109/TIT.2010.2053903 10.1109/ISIT.2007.4557323 10.1049/el:19941434 10.1109/ISIT.2007.4557324 10.1109/ISIT.2010.5513540 10.1109/18.669119 10.1109/TIT.2006.890698 10.1103/PhysRevLett.69.2881 10.1007/s00220-005-1317-6 10.1103/PhysRevA.79.032340 10.1073/pnas.94.18.9525 10.1109/TIT.2012.2220520 10.1109/18.45271 10.1109/TIT.2008.928980 10.1103/PhysRevLett.95.230504 10.1103/PhysRevLett.77.793 10.1109/ISIT.2008.4595008 10.1109/TIT.2002.1003833 10.1103/PhysRevLett.91.177902 10.1109/TIT.2013.2246274 10.1103/PhysRevA.77.064302 10.1002/j.1538-7305.1948.tb01338.x 10.1103/PhysRevA.74.052333 10.1103/PhysRevA.54.1098 10.1103/PhysRevA.79.062325 10.1103/PhysRevLett.98.220502 10.1017/CBO9780511606267 10.1103/PhysRevA.57.830 10.1103/PhysRevA.66.052313 10.1007/978-90-481-2810-5_14 10.1109/26.764936 10.1109/ISIT.1998.708611 10.1103/PhysRevLett.78.1600 10.1109/18.985948 10.1109/TIT.2009.2034794 10.1002/9780470978481 10.1007/s11128-011-0310-6 10.1103/PhysRevA.54.3824 10.1109/TIT.2004.839515 10.1109/TC.2010.226 10.1007/s11128-010-0175-0 10.1103/PhysRevA.81.042333 10.1103/PhysRevA.77.010301 10.1109/TIT.2011.2104590 10.1103/PhysRevLett.83.3081 10.1126/science.1131563 10.1109/TIT.2011.2167593 10.1109/TCOM.1971.1090700 10.1103/PhysRevA.78.062335 10.1109/TIT.2013.2272932 10.1109/ISIT.2006.261956 10.1109/18.485713 10.1109/26.539767 10.1142/S1230161208000043 10.1007/s11128-010-0179-9 10.1103/PhysRevA.78.012341 10.1103/PhysRevA.86.032319 10.1109/TIT.2004.834737 10.1103/PhysRevA.76.062313 10.1109/9780470544693 10.1103/PhysRevLett.93.230504 10.1109/TIT.2002.802612 10.1109/ITW2.2006.323775 10.1103/PhysRevA.79.032313 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2014 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/TIT.2013.2292052 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Applied Sciences Physics |
| EISSN | 1557-9654 |
| EndPage | 1222 |
| ExternalDocumentID | 3193108211 28203321 10_1109_TIT_2013_2292052 6671483 |
| Genre | orig-research Feature |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACGOD ACIWK AENEX AETEA AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 VJK AAYXX CITATION AAYOK IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c354t-7873cb2146c41057c53f1e8cbf0a463a028df35ca17b5edac03d727a676eee43 |
| IEDL.DBID | RIE |
| ISSN | 0018-9448 |
| IngestDate | Thu Oct 02 10:27:05 EDT 2025 Mon Jun 30 05:18:17 EDT 2025 Wed Apr 02 07:21:51 EDT 2025 Wed Oct 01 03:16:05 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 Tue Aug 26 16:46:17 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Performance evaluation Convolutional code Coding circuit Turbo code Algorithm Iterative decoding recursive entanglement-assisted quantum turbo code Memoryless channel entanglement-assisted quantum error correction non-catastrophic Posterior probability Simulation Hashing Recursive method entanglement-assisted quantum convolutional code Minimal distance Quantum information Error correction Quantum communication Damaging |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c354t-7873cb2146c41057c53f1e8cbf0a463a028df35ca17b5edac03d727a676eee43 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1492135526 |
| PQPubID | 36024 |
| PageCount | 20 |
| ParticipantIDs | proquest_journals_1492135526 crossref_citationtrail_10_1109_TIT_2013_2292052 pascalfrancis_primary_28203321 crossref_primary_10_1109_TIT_2013_2292052 ieee_primary_6671483 proquest_miscellaneous_1762087408 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-02-01 |
| PublicationDateYYYYMMDD | 2014-02-01 |
| PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on information theory |
| PublicationTitleAbbrev | TIT |
| PublicationYear | 2014 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref13 ref56 ref12 ref59 ref58 ref14 tillich (ref18) 2009 ref55 ref11 ref54 ref10 ref17 ref19 ref92 ref51 ref50 ref91 ref90 ref45 lai (ref37) 2010; 88 ref48 ref47 ref86 ref42 ref85 ref41 ref88 ref44 ref87 ref43 ollivier (ref16) 2008 shor (ref8) 2002 ref49 ref7 gottesman (ref29) 1997 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 hanzo (ref52) 2011 ref83 ref79 ref35 ref78 ref34 dolinar (ref89) 1995 ref36 ref75 ref31 ref74 ref30 ref33 ref76 ref2 ref1 ref39 ref38 babar (ref53) 2013 ref71 ref70 ref73 shor (ref32) 1996 ref72 ref68 ref24 ref67 ref23 ref26 poulin (ref15) 2009 ref69 ref25 ref64 ref20 ref63 ref66 ref22 ref21 ref28 ref27 wilde (ref65) 2010 preskill (ref77) 1999 mceliece (ref46) 1998 kribs (ref80) 2006; 6 ref60 ref62 ref61 |
| References_xml | – ident: ref76 doi: 10.1103/PhysRevA.79.042342 – ident: ref55 doi: 10.1103/PhysRevLett.98.030501 – ident: ref73 doi: 10.1103/PhysRevA.78.012337 – ident: ref91 doi: 10.1109/49.924867 – year: 2002 ident: ref8 article-title: The quantum channel capacity and coherent information publication-title: MSRI Workshop Quantum Comput – ident: ref43 doi: 10.1103/PhysRevA.83.022308 – ident: ref79 doi: 10.1103/PhysRevLett.94.180501 – year: 2010 ident: ref65 publication-title: EA-Turbo – ident: ref7 doi: 10.1103/PhysRevA.55.1613 – ident: ref72 doi: 10.1103/PhysRevA.82.042338 – year: 1995 ident: ref89 publication-title: Weight distributions for turbo codes using random and nonrandom permutations – ident: ref6 doi: 10.1109/TIT.2009.2018339 – ident: ref62 doi: 10.1109/TIT.2010.2054532 – ident: ref1 doi: 10.1109/ICC.1993.397441 – volume: 88 start-page: 12320-1 year: 2010 ident: ref37 article-title: Entanglement increases the error-correcting ability of quantum error-correcting codes publication-title: Phys Rev A – ident: ref60 doi: 10.1098/rspa.2009.0202 – ident: ref51 doi: 10.1109/4234.552145 – ident: ref26 doi: 10.1109/TIT.2010.2046217 – ident: ref61 doi: 10.1109/TIT.2010.2053903 – ident: ref67 doi: 10.1109/ISIT.2007.4557323 – ident: ref88 doi: 10.1049/el:19941434 – year: 1997 ident: ref29 publication-title: Stabilizer codes and quantum error correction – ident: ref68 doi: 10.1109/ISIT.2007.4557324 – year: 2011 ident: ref52 publication-title: Near-Capacity Variable-Length Coding Regular and Exit-Chart-Aided Irregular Designs – year: 2009 ident: ref15 publication-title: Iterative Quantum Coding Schemes LDPC and Turbo Codes – ident: ref75 doi: 10.1109/ISIT.2010.5513540 – ident: ref4 doi: 10.1109/18.669119 – ident: ref12 doi: 10.1109/TIT.2006.890698 – ident: ref36 doi: 10.1103/PhysRevLett.69.2881 – ident: ref84 doi: 10.1007/s00220-005-1317-6 – ident: ref69 doi: 10.1103/PhysRevA.79.032340 – ident: ref14 doi: 10.1073/pnas.94.18.9525 – ident: ref31 doi: 10.1109/TIT.2012.2220520 – ident: ref92 doi: 10.1109/18.45271 – ident: ref59 doi: 10.1109/TIT.2008.928980 – ident: ref81 doi: 10.1103/PhysRevLett.95.230504 – ident: ref28 doi: 10.1103/PhysRevLett.77.793 – ident: ref85 doi: 10.1109/ISIT.2008.4595008 – ident: ref87 doi: 10.1109/TIT.2002.1003833 – year: 1996 ident: ref32 publication-title: Quantum error-correcting codes need not completely reveal the error syndrome – ident: ref11 doi: 10.1103/PhysRevLett.91.177902 – ident: ref64 doi: 10.1109/TIT.2013.2246274 – ident: ref35 doi: 10.1103/PhysRevA.77.064302 – ident: ref25 doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: ref45 doi: 10.1103/PhysRevA.74.052333 – ident: ref27 doi: 10.1103/PhysRevA.54.1098 – ident: ref41 doi: 10.1103/PhysRevA.79.062325 – ident: ref82 doi: 10.1103/PhysRevLett.98.220502 – ident: ref48 doi: 10.1017/CBO9780511606267 – ident: ref33 doi: 10.1103/PhysRevA.57.830 – start-page: 15 year: 1999 ident: ref77 publication-title: Quantum Computation Lecture Notes – volume: 6 start-page: 383 year: 2006 ident: ref80 article-title: Operator quantum error correction publication-title: Quantum Inf Comput – year: 2013 ident: ref53 publication-title: Convergence analysis of quantum turbo codes using EXIT charts – ident: ref38 doi: 10.1103/PhysRevA.66.052313 – ident: ref20 doi: 10.1007/978-90-481-2810-5_14 – ident: ref90 doi: 10.1109/26.764936 – ident: ref5 doi: 10.1109/ISIT.1998.708611 – ident: ref44 doi: 10.1103/PhysRevLett.78.1600 – ident: ref49 doi: 10.1109/18.985948 – ident: ref70 doi: 10.1109/TIT.2009.2034794 – ident: ref50 doi: 10.1002/9780470978481 – ident: ref63 doi: 10.1007/s11128-011-0310-6 – ident: ref54 doi: 10.1103/PhysRevA.54.3824 – ident: ref9 doi: 10.1109/TIT.2004.839515 – ident: ref42 doi: 10.1109/TC.2010.226 – ident: ref74 doi: 10.1007/s11128-010-0175-0 – ident: ref23 doi: 10.1103/PhysRevA.81.042333 – ident: ref57 doi: 10.1103/PhysRevA.77.010301 – ident: ref86 doi: 10.1109/TIT.2011.2104590 – ident: ref21 doi: 10.1103/PhysRevLett.83.3081 – ident: ref19 doi: 10.1126/science.1131563 – year: 2009 ident: ref18 publication-title: Quantum Codes Suitable for Iterative Decoding – ident: ref71 doi: 10.1109/TIT.2011.2167593 – ident: ref13 doi: 10.1109/TCOM.1971.1090700 – ident: ref56 doi: 10.1103/PhysRevA.78.062335 – ident: ref17 doi: 10.1109/TIT.2013.2272932 – ident: ref40 doi: 10.1109/ISIT.2006.261956 – ident: ref2 doi: 10.1109/18.485713 – year: 2008 ident: ref16 publication-title: Quantum turbo codes – ident: ref3 doi: 10.1109/26.539767 – ident: ref10 doi: 10.1142/S1230161208000043 – start-page: 121 year: 1998 ident: ref46 publication-title: Communications and Coding (P G Farrell 60th Birthday Celebration) – ident: ref24 doi: 10.1007/s11128-010-0179-9 – ident: ref83 doi: 10.1103/PhysRevA.78.012341 – ident: ref78 doi: 10.1103/PhysRevA.86.032319 – ident: ref66 doi: 10.1109/TIT.2004.834737 – ident: ref34 doi: 10.1103/PhysRevA.76.062313 – ident: ref47 doi: 10.1109/9780470544693 – ident: ref58 doi: 10.1103/PhysRevLett.93.230504 – ident: ref22 doi: 10.1109/TIT.2002.802612 – ident: ref30 doi: 10.1109/ITW2.2006.323775 – ident: ref39 doi: 10.1103/PhysRevA.79.032313 |
| SSID | ssj0014512 |
| Score | 2.4540412 |
| Snippet | An unexpected breakdown in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1203 |
| SubjectTerms | Algorithms Applied sciences Classical and quantum physics: mechanics and fields Coders Codes Coding theory Coding, codes Complexity theory Convolutional codes Decoders Decoding Encoders entanglement-assisted quantum error correction entanglementassisted quantum convolutional code entanglementassisted quantum turbo code Exact sciences and technology Information theory Information, signal and communications theory Miscellaneous Noise levels non-catastrophic Physics Quantum communication Quantum entanglement Quantum information Quantum theory Qubits (quantum computing) Recursive Signal and communications theory Simulation Telecommunications and information theory Turbo codes |
| Title | Entanglement-Assisted Quantum Turbo Codes |
| URI | https://ieeexplore.ieee.org/document/6671483 https://www.proquest.com/docview/1492135526 https://www.proquest.com/docview/1762087408 |
| Volume | 60 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1557-9654 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014512 issn: 0018-9448 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50T3pwfWJ1XSp4WbBr2jRtehRRVFAQKngredWD2sru9uKvd9IXrop4KySl6Uym801nMh_ASaS0EVFMPIVowEOPzz2ey9gTJuBac0VFfVD47j66fgxvn9jTCpz2Z2GMMXXxmZnayzqXr0tV2V9llrkP0TtdhdWYR81ZrT5jEDK_6QzuowFjzNGlJElylt6ktoaLTgNLzcSCJRdUc6rYikgxR6HkDZvFjw9z7W2uhnDXrbMpMnmZVgs5VR_fWjj-90U2YaOFne55s0-2YMUU2zDsKB3c1sK3Yf1Lf8IdmFwWiB2fmwpzDzVp94R2HypUR_XmptVMlu5Fqc18F9Kry_Ti2mu5FTxFWbjw0E6pkpbVW9lCz1gxmvuGK5kTEUZUIOzQOWVK-LFkRgtFqEaog2qN8G1CugeDoizMPrgyj5kOcukLGmH4JHmgk5zpRBGiuNHUgbNO2plq-45b-ovXrI4_SJKhfjKrn6zVjwOT_o73pufGH3N3rHj7ea1kHRgvKbQfxwiTUBr4Dow6DWet1c4xDEoCHwFYEDlw3A-jvdkkiihMWeEc9B7E8hjyg98ffQhruMCwqewewWAxq8wRApeFHNc79hM_mOi5 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8UwEB5cDurBXaxrBS-CfaZN0uUoojyXJwgVvJVs9aC24nu9-OuddMMN8VZIStOZTOebzmQ-gMNQaSPCiHgK0YCHHj_24lxGnjBBrHWsqKgPCo9uw-E9u3rgD1Nw3J-FMcbUxWdmYC_rXL4uVWV_lVnmPkTvdBpmOWOMN6e1-pwB437TG9xHE8aoo0tKkuQkvUxtFRcdBJaciQdfnFDNqmJrIsUYxZI3fBY_Ps21v7lYglG30qbM5GlQTeRAvX9r4vjfV1mGxRZ4uqfNTlmBKVOswlJH6uC2Nr4KC586FK7B0XmB6PGxqTH3UJd2V2j3rkKFVC9uWr3J0j0rtRmvQ3pxnp4NvZZdwVOUs4mHlkqVtLzeypZ6RorT3DexkjkRLKQCgYfOKVfCjyQ3WihCNYIdVGyIb8PoBswUZWE2wZV5xHWQS1_QEAMoGQc6yblOFCEqNpo6cNJJO1Nt53FLgPGc1REISTLUT2b1k7X6ceCov-O16brxx9w1K95-XitZB_a-KLQfxxiTUBr4Dux0Gs5aux1jIJQEPkKwIHTgoB9Gi7NpFFGYssI56D-IZTKMt35_9D7MDdPRTXZzeXu9DfO4WNbUee_AzOStMrsIYyZyr969H5Zt7AY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entanglement-Assisted+Quantum+Turbo+Codes&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Wilde%2C+Mark+M&rft.au=Hsieh%2C+Min-Hsiu&rft.au=Babar%2C+Zunaira&rft.date=2014-02-01&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=60&rft.issue=2&rft.spage=1203&rft.epage=1222&rft_id=info:doi/10.1109%2FTIT.2013.2292052&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon |