Ammonia as Green Fuel in Internal Combustion Engines: State-of-the-Art and Future Perspectives

Ammonia (NH 3 ) is among the largest-volume chemicals produced and distributed in the world and is mainly known for its use as a fertilizer in the agricultural sector. In recent years, it has sparked interest in the possibility of working as a high-quality energy carrier and as a carbon-free fuel in...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in mechanical engineering Vol. 8
Main Authors Tornatore, Cinzia, Marchitto, Luca, Sabia, Pino, De Joannon, Mara
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 22.07.2022
Subjects
Online AccessGet full text
ISSN2297-3079
2297-3079
DOI10.3389/fmech.2022.944201

Cover

Abstract Ammonia (NH 3 ) is among the largest-volume chemicals produced and distributed in the world and is mainly known for its use as a fertilizer in the agricultural sector. In recent years, it has sparked interest in the possibility of working as a high-quality energy carrier and as a carbon-free fuel in internal combustion engines (ICEs). This review aimed to provide an overview of the research on the use of green ammonia as an alternative fuel for ICEs with a look to the future on possible applications and practical solutions to related problems. First of all, the ammonia production process is discussed. Present ammonia production is not a “green” process; the synthesis occurs starting from gaseous hydrogen currently produced from hydrocarbons. Some ways to produce green ammonia are reviewed and discussed. Then, the chemical and physical properties of ammonia as a fuel are described and explained in order to identify the main pros and cons of its use in combustion systems. Then, the most viable solutions for fueling internal combustion engines with ammonia are discussed. When using pure ammonia, high boost pressure and compression ratio are required to compensate for the low ammonia flame speed. In spark-ignition engines, adding hydrogen to ammonia helps in speeding up the flame front propagation and stabilizing the combustion. In compression-ignition engines, ammonia can be successfully used in dual-fuel mode with diesel. On the contrary, an increase in NOx and the unburned NH 3 at the exhaust require the installation of apposite aftertreatment systems. Therefore, the use of ammonia seems to be more practicable for marine or stationary engine application where space constraints are not a problem. In conclusion, this review points out that ammonia has excellent potential to play a significant role as a sustainable fuel for the future in both retrofitted and new engines. However, significant further research and development activities are required before being able to consider large-scale industrial production of green ammonia. Moreover, uncertainties remain about ammonia safe and effective use and some technical issues need to be addressed to overcome poor combustion properties for utilization as a direct substitute for standard fuels.
AbstractList Ammonia (NH3) is among the largest-volume chemicals produced and distributed in the world and is mainly known for its use as a fertilizer in the agricultural sector. In recent years, it has sparked interest in the possibility of working as a high-quality energy carrier and as a carbon-free fuel in internal combustion engines (ICEs). This review aimed to provide an overview of the research on the use of green ammonia as an alternative fuel for ICEs with a look to the future on possible applications and practical solutions to related problems. First of all, the ammonia production process is discussed. Present ammonia production is not a “green” process; the synthesis occurs starting from gaseous hydrogen currently produced from hydrocarbons. Some ways to produce green ammonia are reviewed and discussed. Then, the chemical and physical properties of ammonia as a fuel are described and explained in order to identify the main pros and cons of its use in combustion systems. Then, the most viable solutions for fueling internal combustion engines with ammonia are discussed. When using pure ammonia, high boost pressure and compression ratio are required to compensate for the low ammonia flame speed. In spark-ignition engines, adding hydrogen to ammonia helps in speeding up the flame front propagation and stabilizing the combustion. In compression-ignition engines, ammonia can be successfully used in dual-fuel mode with diesel. On the contrary, an increase in NOx and the unburned NH3 at the exhaust require the installation of apposite aftertreatment systems. Therefore, the use of ammonia seems to be more practicable for marine or stationary engine application where space constraints are not a problem. In conclusion, this review points out that ammonia has excellent potential to play a significant role as a sustainable fuel for the future in both retrofitted and new engines. However, significant further research and development activities are required before being able to consider large-scale industrial production of green ammonia. Moreover, uncertainties remain about ammonia safe and effective use and some technical issues need to be addressed to overcome poor combustion properties for utilization as a direct substitute for standard fuels.
Ammonia (NH 3 ) is among the largest-volume chemicals produced and distributed in the world and is mainly known for its use as a fertilizer in the agricultural sector. In recent years, it has sparked interest in the possibility of working as a high-quality energy carrier and as a carbon-free fuel in internal combustion engines (ICEs). This review aimed to provide an overview of the research on the use of green ammonia as an alternative fuel for ICEs with a look to the future on possible applications and practical solutions to related problems. First of all, the ammonia production process is discussed. Present ammonia production is not a “green” process; the synthesis occurs starting from gaseous hydrogen currently produced from hydrocarbons. Some ways to produce green ammonia are reviewed and discussed. Then, the chemical and physical properties of ammonia as a fuel are described and explained in order to identify the main pros and cons of its use in combustion systems. Then, the most viable solutions for fueling internal combustion engines with ammonia are discussed. When using pure ammonia, high boost pressure and compression ratio are required to compensate for the low ammonia flame speed. In spark-ignition engines, adding hydrogen to ammonia helps in speeding up the flame front propagation and stabilizing the combustion. In compression-ignition engines, ammonia can be successfully used in dual-fuel mode with diesel. On the contrary, an increase in NOx and the unburned NH 3 at the exhaust require the installation of apposite aftertreatment systems. Therefore, the use of ammonia seems to be more practicable for marine or stationary engine application where space constraints are not a problem. In conclusion, this review points out that ammonia has excellent potential to play a significant role as a sustainable fuel for the future in both retrofitted and new engines. However, significant further research and development activities are required before being able to consider large-scale industrial production of green ammonia. Moreover, uncertainties remain about ammonia safe and effective use and some technical issues need to be addressed to overcome poor combustion properties for utilization as a direct substitute for standard fuels.
Author Sabia, Pino
De Joannon, Mara
Marchitto, Luca
Tornatore, Cinzia
Author_xml – sequence: 1
  givenname: Cinzia
  surname: Tornatore
  fullname: Tornatore, Cinzia
– sequence: 2
  givenname: Luca
  surname: Marchitto
  fullname: Marchitto, Luca
– sequence: 3
  givenname: Pino
  surname: Sabia
  fullname: Sabia, Pino
– sequence: 4
  givenname: Mara
  surname: De Joannon
  fullname: De Joannon, Mara
BookMark eNqNkF9rFDEUR4NUaG37AfqWLzBr_s0k49uytHWhoKB9NdxNbtqUmWRJskq_vdOuiPggPt0fF855OO_IScoJCbnibCWlGd-HGd3jSjAhVqNSgvE35EyIUXeS6fHkj31KLmt9Yoxxo81o-Bn5tp7nnCJQqPS2ICZ6c8CJxkS3qWFJMNFNnneH2mJO9Do9xIT1A_3SoGGXQ9cesVuXRiH5hWyHgvQzlrpH1-J3rBfkbYCp4uWve07ub66_bj52d59ut5v1Xedkr1o3KL8zo-rBqVEKp4NQgmOPAY1XqMZB7rQcdpr3HjhX0gVjvO6lkmboAwZ5TrZHr8_wZPclzlCebYZoXx-5PFgoLboJrV8CDcwz0E4pv5h0QNSOO-gDd8wsLnF0HdIenn_ANP0WcmZfgtvX4PYluD0GXyB-hFzJtRYM_8XovxgXl65L6FYgTv8gfwILM5i-
CitedBy_id crossref_primary_10_1016_j_fuel_2024_133420
crossref_primary_10_1016_j_ijhydene_2024_07_163
crossref_primary_10_1016_j_enconman_2024_118698
crossref_primary_10_3389_fchem_2024_1532018
crossref_primary_10_1016_j_ijhydene_2024_07_047
crossref_primary_10_5916_jamet_2023_47_3_143
crossref_primary_10_3390_en16062543
crossref_primary_10_1021_acs_energyfuels_5c00214
crossref_primary_10_1016_j_corsci_2024_112491
crossref_primary_10_1016_j_cej_2024_158863
crossref_primary_10_1016_j_joei_2024_101711
crossref_primary_10_1016_j_ijhydene_2024_04_151
crossref_primary_10_1016_j_ijhydene_2024_08_210
crossref_primary_10_3390_en17174304
crossref_primary_10_47512_meujmaf_1589195
crossref_primary_10_1016_j_ijhydene_2024_05_248
crossref_primary_10_1039_D4RA06251E
crossref_primary_10_1615_InterJEnerCleanEnv_2024051495
crossref_primary_10_1016_j_ijhydene_2024_05_166
crossref_primary_10_1007_s40996_024_01439_0
crossref_primary_10_1021_acs_energyfuels_4c02830
crossref_primary_10_1016_j_fuel_2024_131808
crossref_primary_10_3390_en17071525
crossref_primary_10_1016_j_ijhydene_2023_09_158
crossref_primary_10_1016_j_applthermaleng_2024_124189
crossref_primary_10_1016_j_fuel_2023_128507
crossref_primary_10_3390_en17164141
crossref_primary_10_3390_en17225782
crossref_primary_10_1016_j_fuel_2023_130740
crossref_primary_10_53502_RAIL_202183
crossref_primary_10_1016_j_segy_2024_100161
crossref_primary_10_7467_KSAE_2024_32_11_875
crossref_primary_10_1016_j_jece_2023_111541
crossref_primary_10_1016_j_nxsust_2025_100116
crossref_primary_10_1109_TPS_2023_3298934
crossref_primary_10_1016_j_jaecs_2024_100251
crossref_primary_10_1080_20464177_2024_2448057
crossref_primary_10_23919_CHAIN_2024_000005
crossref_primary_10_1177_17515831241301166
crossref_primary_10_3390_en18010029
crossref_primary_10_1016_j_ijhydene_2024_05_128
crossref_primary_10_3390_en16134898
crossref_primary_10_19206_CE_200289
crossref_primary_10_3390_en17051231
crossref_primary_10_1021_acscatal_3c02410
crossref_primary_10_1109_TPS_2023_3343389
crossref_primary_10_1016_j_enconman_2024_118764
crossref_primary_10_1016_j_proci_2024_105485
crossref_primary_10_1016_j_adapen_2024_100178
crossref_primary_10_1016_j_fuel_2024_132601
crossref_primary_10_1016_j_jclepro_2023_136150
crossref_primary_10_1016_j_jaecs_2023_100242
crossref_primary_10_3390_atmos14030584
crossref_primary_10_1073_pnas_2311728120
crossref_primary_10_1002_ese3_2008
crossref_primary_10_1002_kin_21779
crossref_primary_10_3389_fmech_2025_1478081
crossref_primary_10_1016_j_joei_2024_101606
crossref_primary_10_1115_1_4068030
crossref_primary_10_3390_en17092155
crossref_primary_10_1016_j_jfueco_2024_100110
crossref_primary_10_1016_j_fuel_2023_130201
crossref_primary_10_1016_j_molliq_2023_123808
crossref_primary_10_1016_j_ijhydene_2024_03_189
crossref_primary_10_3390_en17174516
crossref_primary_10_1016_j_fuproc_2025_108205
crossref_primary_10_1016_j_psep_2024_06_012
crossref_primary_10_1016_j_cattod_2024_114892
Cites_doi 10.1021/acs.iecr.8b01476
10.1016/j.combustflame.2021.111957
10.1016/j.isci.2021.103105
10.1016/j.pecs.2007.02.004
10.1016/j.jaecs.2021.100038
10.1016/j.joule.2020.04.004
10.1016/j.joei.2022.04.009
10.1016/j.proci.2016.06.153
10.1021/acs.energyfuels.6b00421
10.1016/j.ijhydene.2019.12.209
10.1016/j.fuel.2021.120845
10.3390/en15041453
10.1016/j.fuel.2016.04.100
10.4271/2019-24-0137
10.1016/j.combustflame.2003.12.008
10.1016/j.fuel.2015.06.070
10.1016/j.combustflame.2008.01.012
10.1016/j.chempr.2018.10.010
10.1007/978-3-030-35106-9
10.1016/j.combustflame.2022.112071
10.1038/s41929-019-0408-2
10.1016/j.enconman.2021.114990
10.1016/j.enconman.2021.114898
10.1016/j.ijhydene.2012.10.114
10.1080/00102200008952125
10.1016/j.combustflame.2020.04.020
10.1002/cjce.22126
10.1002/er.5460
10.1016/j.ijhydene.2015.06.080
10.1021/acs.energyfuels.0c03424
10.1016/B978-0-323-85387-3.00012-4
10.1016/j.ijhydene.2022.03.254
10.1016/j.combustflame.2012.06.003
10.1021/acssuschemeng.7b01638
10.1002/er.3141
10.1016/j.jclepro.2022.131082
10.1016/B978-0-12-820560-0.00004-7
10.1016/s0010-2180(00)00152-8
10.1016/j.rser.2021.111254
10.4271/2019-24-0237
10.1016/j.energy.2022.123642
10.1016/B978-0-08-101971-9.00003-X
10.1016/j.combustflame.2020.08.004
10.1016/j.checat.2021.09.015
10.1007/bf00786097
10.1016/0010-2180(86)90018-0
10.1016/j.combustflame.2019.05.003
10.1016/j.proci.2008.06.171
10.1016/0950-4214(91)80012-t
10.1016/j.fuel.2019.116653
10.1002/er.v44.910.1002/er.5355
10.1080/00102200108907830
10.1016/j.combustflame.2020.03.019
10.1016/j.proci.2018.09.029
10.1016/j.combustflame.2014.08.022
10.1016/j.combustflame.2019.08.033
10.1016/j.proci.2020.06.337
10.1016/1010-6030(94)03994-6
10.1021/jp020229w
10.1016/j.jhazmat.2007.11.089
10.1016/j.mset.2019.03.002
10.1016/j.fuel.2019.116720
10.1016/j.ijhydene.2012.07.071
10.1002/anie.202002337
10.1016/j.ijhydene.2019.02.041
10.1007/978-3-658-34362-0_13
10.1016/0360-1285(89)90017-8
10.1016/0010-2180(85)90139-7
10.1016/j.fuel.2020.117448
10.1016/j.ijhydene.2017.12.066
10.1021/acs.jpca.0c11011
10.1016/j.ijhydene.2013.11.098
10.1016/j.fuel.2021.122723
10.1016/j.proci.2020.07.061
10.1115/imece2014-38026
10.1016/j.fuel.2020.120095
10.1080/00102209108924092
10.1021/acs.energyfuels.8b01056
10.1016/j.scitotenv.2010.06.001
10.1039/c9re00429g
10.1016/j.rser.2021.111180
10.1016/j.spc.2018.08.001
10.1016/j.proci.2020.06.291
10.1021/ef800140f
10.1016/j.combustflame.2019.04.050
10.1016/j.combustflame.2010.12.013
10.1016/j.combustflame.2017.09.002
10.1016/j.ijhydene.2020.08.218
10.1016/j.combustflame.2009.03.005
10.1016/j.ijhydene.2011.12.137
10.1080/00102202.2020.1748018
10.1016/j.chempr.2021.01.009
10.1016/j.combustflame.2017.03.019
10.1016/s0010-2180(01)00250-4
10.1016/j.pecs.2018.07.001
10.1016/j.fuel.2020.119563
10.1016/j.fuel.2020.118761
10.1016/j.proci.2020.08.058
10.1016/j.apenergy.2013.07.065
10.1002/(sici)1097-4601(1999)31:11<757::aid-jck1>3.0.co;2-v
10.1016/j.apenergy.2013.11.067
10.1016/j.egypro.2017.03.1002
10.1016/j.combustflame.2021.02.038
10.1016/j.combustflame.2021.02.016
10.1007/978-981-16-8717-4_10
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3389/fmech.2022.944201
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2297-3079
ExternalDocumentID oai_doaj_org_article_d42060d0a7c44dcf87fee7c1ca5f1c08
10.3389/fmech.2022.944201
10_3389_fmech_2022_944201
GroupedDBID 5VS
9T4
AAFWJ
AAYXX
ACGFS
ADBBV
ADMLS
AFPKN
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
GROUPED_DOAJ
KQ8
M~E
OK1
ADTOC
ARCSS
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c354t-64db8945ac4932c7f2421e5efe8d4e4963b736b715da1143cf88d75343865fef3
IEDL.DBID DOA
ISSN 2297-3079
IngestDate Fri Oct 03 12:44:43 EDT 2025
Tue Aug 19 21:12:02 EDT 2025
Wed Oct 01 02:48:42 EDT 2025
Thu Apr 24 23:08:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-64db8945ac4932c7f2421e5efe8d4e4963b736b715da1143cf88d75343865fef3
OpenAccessLink https://doaj.org/article/d42060d0a7c44dcf87fee7c1ca5f1c08
ParticipantIDs doaj_primary_oai_doaj_org_article_d42060d0a7c44dcf87fee7c1ca5f1c08
unpaywall_primary_10_3389_fmech_2022_944201
crossref_primary_10_3389_fmech_2022_944201
crossref_citationtrail_10_3389_fmech_2022_944201
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-22
PublicationDateYYYYMMDD 2022-07-22
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-22
  day: 22
PublicationDecade 2020
PublicationTitle Frontiers in mechanical engineering
PublicationYear 2022
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Han (B33) 2022
Ashik (B5) 2018
Lhuillier (B53); 263
Song (B98) 2016; 181
B23
Comotti (B16) 2015; 40
Mathieu (B65) 2015; 162
Zakaznov (B116) 1978; 14
Ronney (B83) 1985; 62
Chen (B13) 2020; 3
Kovács (B46) 2020; 264
Ariemma (B3) 2022; 241
Reiter (B81) 2008; 22
Dai (B19) 2020; 218
Agrawal (B1) 1991; 5
Cornelius (B17) 1966; 74
Nakamura (B71) 2017; 36
Yousefi (B113) 2022; 314
Issayev (B39) 2021; 38
Ghassan (B28) 2020; 44
B38
Gardiner (B27) 2009
Yue (B115) 2021; 146
Pfahl (B78) 2000; 123
Otomo (B76) 2018; 43
B7
He (B37) 2019; 206
Tock (B105) 2015; 93
Mallouppas (B60) 2022; 15
Mashruk (B63) 2022
Boucher (B8) 1995; 88
Gray (B32) 1967; 75
Xiao (B112) 2020; 44
Sánchez (B90) 2018; 16
Klippenstein (B41) 2011; 158
Martín (B62) 2019; 5
Pearsall (B77) 1968; 76
Choe (B15) 2021; 228
Lhuillier (B51); 269
Tian (B104) 2009; 156
Mei (B66) 2019; 210
Hayakawa (B36) 2015; 159
Takizawa (B101) 2008; 155
Tay (B102) 2017; 105
Wang (B109) 2020; 221
Haputhanthri (B35) 2014; 46514
Garabedian (B26) 1966; 41
Chen (B14) 2021; 287
Han (B34) 2019; 206
Stagni (B99) 2020; 5
B106
B103
Miller (B70) 1999; 31
Michael (B68) 2002; 106
Konnov (B43) 2001; 125
Okafor (B74) 2021; 7
Rocha (B82) 2021; 193
Shrestha (B93) 2018; 32
Mathieu (B64) 2012; 37
Oh (B73) 2021; 290
Drake (B21) 1991; 75
Valera-Medina (B107) 2019; 44
Skreiberg (B96) 2004; 136
Smith (B97) 2021; 1
Wang (B110) 2021; 229
Li (B55) 2022; 102
Rouwenhorst (B85) 2021
Ahmed (B2) 2016; 30
Lhuillier (B52)
Miller (B69) 1989; 15
Duynslaegher (B22) 2012; 159
Yu (B114) 2020; 217
Feng (B24) 2020; 281
B72
Shu (B94) 2021; 38
Rasmussen (B80) 2008; 154
Piazzi (B79) 2022; 249
Ryu (B88); 39
Shen (B91) 2021; 7
Lhuillier (B50) 2021; 38
Frigo (B25) 2013; 38
Ryu (B87); 113
Konnov (B45) 2000; 152
Arunthanayothin (B4) 2021; 38
Lubrano Lavadera (B57) 2020; 35
Sabia (B89) 2020; 45
Inamuddin (B84) 2020
Skalska (B95) 2010; 408
Glarborg (B31) 1986; 65
Zhang (B117) 2022; 346
Zhang (B118) 2017; 182
Starkman (B100) 1967; 75
Lhuillier (B49)
Manna (B61) 2022
Konnov (B44) 2001; 168
Ryu (B86); 116
Capurso (B10) 2022; 251
Kobayashi (B42) 2019; 37
Kurien (B47) 2022; 251
Glarborg (B30) 2021; 125
MacFarlane (B58) 2020; 4
Long (B56) 2020; 59
Mallick (B59) 2022
Willmann (B111) 2021
Shiva Kumar (B92) 2019; 2
Li (B54) 2014; 38
Chai (B11) 2021; 147
Mével (B67) 2009; 32
Chehade (B12) 2021; 299
Dimitriou (B20) 2020; 45
Gill (B29) 2012; 37
Valera-Medina (B108) 2018; 69
Lamb (B48) 2018; 57
Bicer (B6) 2017; 5
Dagaut (B18) 2008; 34
Okafor (B75) 2018; 187
Cai (B9) 2021; 24
Jabbour (B40) 2004; 110
References_xml – volume: 57
  start-page: 7811
  year: 2018
  ident: B48
  article-title: High-Purity H2 Produced from NH3 via a Ruthenium-Based Decomposition Catalyst and Vanadium-Based Membrane
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b01476
– start-page: 111957
  year: 2022
  ident: B61
  article-title: New Insight into NH-H2 Mutual Inhibiting Effects and Dynamic Regimes at Low-Intermediate Temperatures
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2021.111957
– volume: 74
  start-page: 300
  year: 1966
  ident: B17
  article-title: Ammonia as an Engine Fuel
  publication-title: SAE Trans.
– ident: B7
– volume: 24
  start-page: 103105
  year: 2021
  ident: B9
  article-title: Lithium-mediated Electrochemical Nitrogen Reduction: Mechanistic Insights to Enhance Performance
  publication-title: iScience
  doi: 10.1016/j.isci.2021.103105
– volume: 34
  start-page: 1
  year: 2008
  ident: B18
  article-title: The Oxidation of Hydrogen Cyanide and Related Chemistry
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2007.02.004
– ident: B106
– volume: 7
  start-page: 100038
  year: 2021
  ident: B74
  article-title: Liquid Ammonia Spray Combustion in Two-Stage Micro Gas Turbine Combustors at 0.25 MPa; Relevance of Combustion Enhancement to Flame Stability and NOx Control
  publication-title: Appl. Energy Combust. Sci.
  doi: 10.1016/j.jaecs.2021.100038
– volume: 4
  start-page: 1186
  year: 2020
  ident: B58
  article-title: A Roadmap to the Ammonia Economy
  publication-title: Joule
  doi: 10.1016/j.joule.2020.04.004
– volume: 102
  start-page: 362
  year: 2022
  ident: B55
  article-title: A Comparison between Low- and High-Pressure Injection Dual-Fuel Modes of Diesel-Pilot-Ignition Ammonia Combustion Engines
  publication-title: J. Energy Inst.
  doi: 10.1016/j.joei.2022.04.009
– volume: 36
  start-page: 4217
  year: 2017
  ident: B71
  article-title: Combustion and Ignition Characteristics of Ammonia/air Mixtures in a Micro Flow Reactor with a Controlled Temperature Profile
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2016.06.153
– volume: 30
  start-page: 7691
  year: 2016
  ident: B2
  article-title: Computational Study of NOx Formation at Conditions Relevant to Gas Turbine Operation, Part 2: NOx in High Hydrogen Content Fuel Combustion at Elevated Pressure
  publication-title: Energy fuels.
  doi: 10.1021/acs.energyfuels.6b00421
– volume: 45
  start-page: 7098
  year: 2020
  ident: B20
  article-title: A Review of Ammonia as a Compression Ignition Engine Fuel
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.12.209
– volume: 299
  start-page: 120845
  year: 2021
  ident: B12
  article-title: Progress in Green Ammonia Production as Potential Carbon-free Fuel
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.120845
– volume: 15
  start-page: 1453
  year: 2022
  ident: B60
  article-title: A Review of the Latest Trends in the Use of Green Ammonia as an Energy Carrier in Maritime Industry
  publication-title: Energies
  doi: 10.3390/en15041453
– volume: 181
  start-page: 358
  year: 2016
  ident: B98
  article-title: Ammonia Oxidation at High Pressure and Intermediate Temperatures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.04.100
– ident: B52
  article-title: Performance and Emissions of an Ammonia-Fueled SI Engine with Hydrogen Enrichment
  doi: 10.4271/2019-24-0137
– volume: 75
  start-page: 785
  year: 1967
  ident: B32
  article-title: Ammonia Fuel—Engine Compatibility and Combustion
  publication-title: SAE Trans.
– volume: 136
  start-page: 501
  year: 2004
  ident: B96
  article-title: Ammonia Chemistry below 1400 K under Fuel-Rich Conditions in a Flow Reactor
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2003.12.008
– ident: B38
– volume: 159
  start-page: 98
  year: 2015
  ident: B36
  article-title: Laminar Burning Velocity and Markstein Length of Ammonia/air Premixed Flames at Various Pressures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.06.070
– volume: 76
  start-page: 3213
  year: 1968
  ident: B77
  article-title: Combustion of Anhydrous Ammonia in Diesel Engines
  publication-title: SAE Trans.
– volume: 154
  start-page: 529
  year: 2008
  ident: B80
  article-title: Sensitizing Effects of NOx on CH4 Oxidation at High Pressure
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2008.01.012
– volume: 5
  start-page: 263
  year: 2019
  ident: B62
  article-title: Electrocatalytic Reduction of Nitrogen: from Haber-Bosch to Ammonia Artificial Leaf
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.10.010
– start-page: 17
  volume-title: Sustainable Ammonia Production. Green Energy and Technology
  year: 2020
  ident: B84
  article-title: Reactor Design, Modelling and Process Intensification for Ammonia Synthesis
  doi: 10.1007/978-3-030-35106-9
– volume: 241
  start-page: 112071
  year: 2022
  ident: B3
  article-title: Ammonia/Methane Combustion: Stability and NOx Emissions
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2022.112071
– volume: 3
  start-page: 225
  year: 2020
  ident: B13
  article-title: The Progress and Outlook of Bioelectrocatalysis for the Production of Chemicals, Fuels and Materials
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0408-2
– volume: 251
  start-page: 114990
  year: 2022
  ident: B47
  article-title: Review on the Production and Utilization of Green Ammonia as an Alternate Fuel in Dual-Fuel Compression Ignition Engines
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.114990
– volume: 251
  start-page: 114898
  year: 2022
  ident: B10
  article-title: Perspective of the Role of Hydrogen in the 21st Century Energy Transition
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.114898
– volume: 38
  start-page: 1607
  year: 2013
  ident: B25
  article-title: Analysis of the Behaviour of a 4-stroke Si Engine Fuelled with Ammonia and Hydrogen
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.10.114
– ident: B23
– volume: 152
  start-page: 23
  year: 2000
  ident: B45
  article-title: Kinetic Modeling of the Thermal Decomposition of Ammonia
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102200008952125
– volume: 110
  start-page: 522
  year: 2004
  ident: B40
  article-title: Burning Velocity and Refrigerant Flammability Classification/DISCUSSION
  publication-title: ASHRAE Trans.
– volume: 218
  start-page: 19
  year: 2020
  ident: B19
  article-title: Autoignition Studies of NH3/CH4 Mixtures at High Pressure
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2020.04.020
– volume: 93
  start-page: 356
  year: 2015
  ident: B105
  article-title: Thermo-environomic Evaluation of the Ammonia Production
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.22126
– volume: 44
  start-page: 6939
  year: 2020
  ident: B112
  article-title: Experimental and Modeling Study on Ignition Delay of Ammonia/methane Fuels
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.5460
– volume: 40
  start-page: 10673
  year: 2015
  ident: B16
  article-title: Hydrogen Generation System for Ammonia-Hydrogen Fuelled Internal Combustion Engines
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2015.06.080
– volume: 35
  start-page: 7156
  year: 2020
  ident: B57
  article-title: Comparative Effect of Ammonia Addition on the Laminar Burning Velocities of Methane, N-Heptane, and Iso-Octane
  publication-title: Energy fuels.
  doi: 10.1021/acs.energyfuels.0c03424
– start-page: 105
  volume-title: Waste-to-Energy Approaches towards Zero Waste
  year: 2022
  ident: B59
  article-title: Emerging Commercial Opportunities for Conversion of Waste to Energy: Aspect of Gasification Technology
  doi: 10.1016/B978-0-323-85387-3.00012-4
– year: 2022
  ident: B63
  article-title: Combustion Features of CH4/NH3/H2 Ternary Blends
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2022.03.254
– volume: 159
  start-page: 2799
  year: 2012
  ident: B22
  article-title: Modeling of Ammonia Combustion at Low Pressure
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2012.06.003
– volume: 5
  start-page: 8035
  year: 2017
  ident: B6
  article-title: Assessment of a Sustainable Electrochemical Ammonia Production System Using Photoelectrochemically Produced Hydrogen under Concentrated Sunlight
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.7b01638
– volume: 38
  start-page: 1214
  year: 2014
  ident: B54
  article-title: Study on Using Hydrogen and Ammonia as Fuels: Combustion Characteristics and NOxformation
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.3141
– volume: 346
  start-page: 131082
  year: 2022
  ident: B117
  article-title: The Role of Hydrogen in Decarbonizing a Coupled Energy System
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2022.131082
– start-page: 41
  volume-title: Techno-Economic Challenges of Green Ammonia as an Energy Vector
  year: 2021
  ident: B85
  article-title: Ammonia Production Technologies
  doi: 10.1016/B978-0-12-820560-0.00004-7
– volume: 123
  start-page: 140
  year: 2000
  ident: B78
  article-title: Flammability Limits, Ignition Energy, and Flame Speeds in H2–CH4–NH3–N2O–O2–N2 Mixtures
  publication-title: Combust. flame
  doi: 10.1016/s0010-2180(00)00152-8
– volume: 147
  start-page: 111254
  year: 2021
  ident: B11
  article-title: A Review on Ammonia, Ammonia-Hydrogen and Ammonia-Methane Fuels
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111254
– ident: B49
  article-title: Combustion Characteristics of Ammonia in a Modern Spark-Ignition Engine
  doi: 10.4271/2019-24-0237
– volume: 249
  start-page: 123642
  year: 2022
  ident: B79
  article-title: Energy and Exergy Analysis of Different Biomass Gasification Coupled to Fischer-Tropsch Synthesis Configurations
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123642
– start-page: 45
  volume-title: Micro and Nano Technologies, Applications of Nanomaterials
  year: 2018
  ident: B5
  article-title: Nanomaterials as Catalysts
  doi: 10.1016/B978-0-08-101971-9.00003-X
– volume: 221
  start-page: 270
  year: 2020
  ident: B109
  article-title: Experimental Study and Kinetic Analysis of the Laminar Burning Velocity of NH3/syngas/air, NH3/CO/air and NH3/H2/air Premixed Flames at Elevated Pressures
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2020.08.004
– volume: 1
  start-page: 1163
  year: 2021
  ident: B97
  article-title: Guidance for Targeted Development of Ammonia Synthesis Catalysts from a Holistic Process Approach
  publication-title: Chem. Catal.
  doi: 10.1016/j.checat.2021.09.015
– volume: 14
  start-page: 710
  year: 1978
  ident: B116
  article-title: Determination of Normal Flame Velocity and Critical Diameter of Flame Extinction in Ammonia-Air Mixture
  publication-title: Combust. Explos. Shock Waves
  doi: 10.1007/bf00786097
– volume: 65
  start-page: 177
  year: 1986
  ident: B31
  article-title: Kinetic Modeling and Sensitivity Analysis of Nitrogen Oxide Formation in Well-Stirred Reactors
  publication-title: Combust. flame
  doi: 10.1016/0010-2180(86)90018-0
– volume: 206
  start-page: 214
  year: 2019
  ident: B34
  article-title: Experimental and Kinetic Modeling Study of Laminar Burning Velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air Premixed Flames
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2019.05.003
– volume: 32
  start-page: 359
  year: 2009
  ident: B67
  article-title: Hydrogen–nitrous Oxide Delay Times: Shock Tube Experimental Study and Kinetic Modelling
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2008.06.171
– volume: 5
  start-page: 139
  year: 1991
  ident: B1
  article-title: Efficient Cryogenic Nitrogen Generators: An Exergy Analysis
  publication-title: Gas Sep. Purif.
  doi: 10.1016/0950-4214(91)80012-t
– volume: 263
  start-page: 116653
  ident: B53
  article-title: Experimental Investigation on Laminar Burning Velocities of Ammonia/hydrogen/air Mixtures at Elevated Temperatures
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116653
– volume: 44
  start-page: 7183
  year: 2020
  ident: B28
  article-title: A Novel Method for a New Electromagnetic-Induced Ammonia Synthesizer
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.v44.910.1002/er.5355
– volume: 168
  start-page: 1
  year: 2001
  ident: B44
  article-title: A Possible New Route for No Formation Vian2h3
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102200108907830
– volume: 217
  start-page: 4
  year: 2020
  ident: B114
  article-title: The Effect of Ammonia Addition on the Low-Temperature Autoignition of N-Heptane: An Experimental and Modeling Study
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2020.03.019
– volume: 37
  start-page: 109
  year: 2019
  ident: B42
  article-title: Science and Technology of Ammonia Combustion
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2018.09.029
– volume: 162
  start-page: 554
  year: 2015
  ident: B65
  article-title: Experimental and Modeling Study on the High-Temperature Oxidation of Ammonia and Related NOx Chemistry
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2014.08.022
– volume: 210
  start-page: 236
  year: 2019
  ident: B66
  article-title: Experimental and Kinetic Modeling Investigation on the Laminar Flame Propagation of Ammonia under Oxygen Enrichment and Elevated Pressure Conditions
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2019.08.033
– volume: 75
  start-page: 765
  year: 1967
  ident: B100
  article-title: Ammonia as a Spark Ignition Engine Fuel: Theory and Application
  publication-title: Sae Trans.
– volume: 38
  start-page: 499
  year: 2021
  ident: B39
  article-title: Combustion Behavior of Ammonia Blended with Diethyl Ether
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2020.06.337
– volume: 88
  start-page: 53
  year: 1995
  ident: B8
  article-title: An Investigation of the Putative Photosynthesis of Ammonia on Iron-Doped Titania and Other Metal Oxides
  publication-title: J. Photochem. Photobiol. A Chem.
  doi: 10.1016/1010-6030(94)03994-6
– volume: 106
  start-page: 5297
  year: 2002
  ident: B68
  article-title: Rate Constants for H + O2 + M → HO2 + M in Seven Bath Gases
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp020229w
– volume: 155
  start-page: 144
  year: 2008
  ident: B101
  article-title: Burning Velocity Measurements of Nitrogen-Containing Compounds
  publication-title: J. Hazard Mater
  doi: 10.1016/j.jhazmat.2007.11.089
– volume: 2
  start-page: 442
  year: 2019
  ident: B92
  article-title: Hydrogen Production by PEM Water Electrolysis - A Review
  publication-title: Mater. Sci. Energy Technol.
  doi: 10.1016/j.mset.2019.03.002
– volume: 264
  start-page: 116720
  year: 2020
  ident: B46
  article-title: Determination of Rate Parameters of Key N/H/O Elementary Reactions Based on H2/O2/NOx Combustion Experiments
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116720
– volume: 37
  start-page: 15393
  year: 2012
  ident: B64
  article-title: Effects of N2O Addition on the Ignition of H2-O2 Mixtures: Experimental and Detailed Kinetic Modeling Study
  publication-title: Int. J. hydrogen energy
  doi: 10.1016/j.ijhydene.2012.07.071
– volume: 59
  start-page: 9711
  year: 2020
  ident: B56
  article-title: Direct Electrochemical Ammonia Synthesis from Nitric Oxide
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202002337
– volume: 44
  start-page: 8615
  year: 2019
  ident: B107
  article-title: Premixed Ammonia/hydrogen Swirl Combustion under Rich Fuel Conditions for Gas Turbines Operation
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2019.02.041
– start-page: 223
  volume-title: Heavy-Duty-, On- und Off-Highway-Motoren 2020
  year: 2021
  ident: B111
  article-title: Woodward L'Orange's New Injector Generation - an Ideal Platform for the Combustion of E-Fuels in Large Engines
  doi: 10.1007/978-3-658-34362-0_13
– volume: 15
  start-page: 287
  year: 1989
  ident: B69
  article-title: Mechanism and Modeling of Nitrogen Chemistry in Combustion
  publication-title: Prog. energy Combust. Sci.
  doi: 10.1016/0360-1285(89)90017-8
– volume: 62
  start-page: 107
  year: 1985
  ident: B83
  article-title: Effect of Gravity on Laminar Premixed Gas Combustion I: Flammability Limits and Burning Velocities
  publication-title: Combust. Flame
  doi: 10.1016/0010-2180(85)90139-7
– volume: 269
  start-page: 117448
  ident: B51
  article-title: Experimental Study on Ammonia/hydrogen/air Combustion in Spark Ignition Engine Conditions
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117448
– volume: 43
  start-page: 3004
  year: 2018
  ident: B76
  article-title: Chemical Kinetic Modeling of Ammonia Oxidation with Improved Reaction Mechanism for Ammonia/air and Ammonia/hydrogen/air Combustion
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.12.066
– volume: 125
  start-page: 1505
  year: 2021
  ident: B30
  article-title: On the Rate Constant for NH2+HO2 and Third-Body Collision Efficiencies for NH2+H(+M) and NH2+NH2(+M)
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.0c11011
– volume: 39
  start-page: 2390
  ident: B88
  article-title: Performance Enhancement of Ammonia-Fueled Engine by Using Dissociation Catalyst for Hydrogen Generation
  publication-title: Int. J. hydrogen energy
  doi: 10.1016/j.ijhydene.2013.11.098
– volume: 314
  start-page: 122723
  year: 2022
  ident: B113
  article-title: Effects of Ammonia Energy Fraction and Diesel Injection Timing on Combustion and Emissions of an Ammonia/diesel Dual-Fuel Engine
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122723
– volume: 38
  start-page: 345
  year: 2021
  ident: B4
  article-title: Ammonia-methane Interaction in Jet-Stirred and Flow Reactors: An Experimental and Kinetic Modeling Study
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2020.07.061
– volume: 46514
  start-page: V06AT07A071
  year: 2014
  ident: B35
  article-title: Ammonia Gasoline-Ethanol/methanol Tertiary Fuel Blends as an Alternate Automotive Fuel
  publication-title: ASME Int. Mech. Eng. Congr. Expo.
  doi: 10.1115/imece2014-38026
– volume: 290
  start-page: 120095
  year: 2021
  ident: B73
  article-title: Natural Gas-Ammonia Dual-Fuel Combustion in Spark-Ignited Engine with Various Air-Fuel Ratios and Split Ratios of Ammonia under Part Load Condition
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.120095
– volume: 75
  start-page: 261
  year: 1991
  ident: B21
  article-title: Calculations of NOx Formation Pathways in Propagating Laminar, High Pressure Premixed CH4/air Flames
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102209108924092
– ident: B72
– volume: 41
  year: 1966
  ident: B26
  article-title: The Theory of Operation of an Ammonia-Burning Internal Combustion Engine
  publication-title: USCFSTI, AD Rep. (United States)
– volume: 32
  start-page: 10202
  year: 2018
  ident: B93
  article-title: Detailed Kinetic Mechanism for the Oxidation of Ammonia Including the Formation and Reduction of Nitrogen Oxides
  publication-title: Energy fuels.
  doi: 10.1021/acs.energyfuels.8b01056
– volume: 408
  start-page: 3976
  year: 2010
  ident: B95
  article-title: Trends in NO Abatement: A Review
  publication-title: Sci. total Environ.
  doi: 10.1016/j.scitotenv.2010.06.001
– volume: 5
  start-page: 696
  year: 2020
  ident: B99
  article-title: An Experimental, Theoretical and Kinetic-Modeling Study of the Gas-phase Oxidation of Ammonia
  publication-title: React. Chem. Eng.
  doi: 10.1039/c9re00429g
– volume: 146
  start-page: 111180
  year: 2021
  ident: B115
  article-title: Hydrogen Energy Systems: A Critical Review of Technologies, Applications, Trends and Challenges
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2021.111180
– year: 2009
  ident: B27
  article-title: Energy Requirements for Hydrogen Gas Compression and Liquefaction as Related to Vehicle Storage Needs DOE Hydrogen and Fuel Cells Program Record
– volume: 16
  start-page: 176
  year: 2018
  ident: B90
  article-title: Scale up and Scale Down Issues of Renewable Ammonia Plants: Towards Modular Design
  publication-title: Sustain. Prod. Consum.
  doi: 10.1016/j.spc.2018.08.001
– volume: 38
  start-page: 261
  year: 2021
  ident: B94
  article-title: Experimental and Modeling Study on the Auto-Ignition Properties of Ammonia/methane Mixtures at Elevated Pressures
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2020.06.291
– volume: 22
  start-page: 2963
  year: 2008
  ident: B81
  article-title: Demonstration of Compression-Ignition Engine Combustion Using Ammonia in Reducing Greenhouse Gas Emissions
  publication-title: Energy fuels.
  doi: 10.1021/ef800140f
– volume: 206
  start-page: 189
  year: 2019
  ident: B37
  article-title: Auto-ignition Kinetics of Ammonia and Ammonia/hydrogen Mixtures at Intermediate Temperatures and High Pressures
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2019.04.050
– volume: 158
  start-page: 774
  year: 2011
  ident: B41
  article-title: The Role of NNH in NO Formation and Control
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2010.12.013
– volume: 187
  start-page: 185
  year: 2018
  ident: B75
  article-title: Experimental and Numerical Study of the Laminar Burning Velocity of CH4-NH3-air Premixed Flames
  publication-title: Combust. flame
  doi: 10.1016/j.combustflame.2017.09.002
– volume: 45
  start-page: 32113
  year: 2020
  ident: B89
  article-title: Mutual Inhibition Effect of Hydrogen and Ammonia in Oxidation Processes and the Role of Ammonia as "strong" Collider in Third-Molecular Reactions
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.08.218
– volume: 156
  start-page: 1413
  year: 2009
  ident: B104
  article-title: An Experimental and Kinetic Modeling Study of Premixed NH3/CH4/O2/Ar Flames at Low Pressure
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2009.03.005
– volume: 37
  start-page: 6074
  year: 2012
  ident: B29
  article-title: Assessing the Effects of Partially Decarbonising a Diesel Engine by Co-fuelling with Dissociated Ammonia
  publication-title: Int. J. hydrogen energy
  doi: 10.1016/j.ijhydene.2011.12.137
– volume: 193
  start-page: 2514
  year: 2021
  ident: B82
  article-title: Combustion and Emission Characteristics of Ammonia under Conditions Relevant to Modern Gas Turbines
  publication-title: Combust. Sci. Technol.
  doi: 10.1080/00102202.2020.1748018
– volume: 7
  start-page: 1708
  year: 2021
  ident: B91
  article-title: Electrochemical Ammonia Synthesis: Mechanistic Understanding and Catalyst Design
  publication-title: Chem
  doi: 10.1016/j.chempr.2021.01.009
– volume: 182
  start-page: 122
  year: 2017
  ident: B118
  article-title: Assessing the Predictions of a NO X Kinetic Mechanism on Recent Hydrogen and Syngas Experimental Data
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2017.03.019
– volume: 125
  start-page: 1258
  year: 2001
  ident: B43
  article-title: Temperature-dependent Rate Constant for the Reaction NNH + O → NH + NO
  publication-title: Combust. Flame
  doi: 10.1016/s0010-2180(01)00250-4
– volume: 69
  start-page: 63
  year: 2018
  ident: B108
  article-title: Ammonia for Power
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2018.07.001
– volume: 287
  start-page: 119563
  year: 2021
  ident: B14
  article-title: Effect of Hydrogen Blending on the High Temperature Auto-Ignition of Ammonia at Elevated Pressure
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.119563
– volume: 281
  start-page: 118761
  year: 2020
  ident: B24
  article-title: Low-temperature Auto-Ignition Characteristics of NH3/diesel Binary Fuel: Ignition Delay Time Measurement and Kinetic Analysis
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118761
– volume: 38
  start-page: 5859
  year: 2021
  ident: B50
  article-title: Experimental Investigation on Ammonia Combustion Behavior in a Spark-Ignition Engine by Means of Laminar and Turbulent Expanding Flames
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/j.proci.2020.08.058
– volume: 113
  start-page: 488
  ident: B87
  article-title: Performance Characteristics of Compression-Ignition Engine Using High Concentration of Ammonia Mixed with Dimethyl Ether
  publication-title: Appl. energy
  doi: 10.1016/j.apenergy.2013.07.065
– volume: 31
  start-page: 757
  year: 1999
  ident: B70
  article-title: Modeling the Thermal De-NOx Process: Closing in on a Final Solution
  publication-title: Int. J. Chem. Kinet.
  doi: 10.1002/(sici)1097-4601(1999)31:11<757::aid-jck1>3.0.co;2-v
– volume: 116
  start-page: 206
  ident: B86
  article-title: Effects of Gaseous Ammonia Direct Injection on Performance Characteristics of a Spark-Ignition Engine
  publication-title: Appl. energy
  doi: 10.1016/j.apenergy.2013.11.067
– ident: B103
– volume: 105
  start-page: 4621
  year: 2017
  ident: B102
  article-title: Effects of Injection Timing and Pilot Fuel on the Combustion of a Kerosene-Diesel/ammonia Dual Fuel Engine: A Numerical Study
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.1002
– volume: 229
  start-page: 111392
  year: 2021
  ident: B110
  article-title: Experimental and Kinetic Study on the Laminar Burning Velocities of NH3 Mixing with CH3OH and C2H5OH in Premixed Flames
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2021.02.038
– volume: 228
  start-page: 430
  year: 2021
  ident: B15
  article-title: Plasma Assisted Ammonia Combustion: Simultaneous NOx Reduction and Flame Enhancement
  publication-title: Combust. Flame
  doi: 10.1016/j.combustflame.2021.02.016
– start-page: 233
  volume-title: Engines and Fuels for Future Transport. Energy, Environment, and Sustainability.
  year: 2022
  ident: B33
  article-title: The Use of Ammonia as a Fuel for Combustion Engines
  doi: 10.1007/978-981-16-8717-4_10
SSID ssj0001878981
Score 2.5006053
SecondaryResourceType review_article
Snippet Ammonia (NH 3 ) is among the largest-volume chemicals produced and distributed in the world and is mainly known for its use as a fertilizer in the agricultural...
Ammonia (NH3) is among the largest-volume chemicals produced and distributed in the world and is mainly known for its use as a fertilizer in the agricultural...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
SubjectTerms ammonia
combustion
decarbonization
green fuel
internal combustion engine
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9BeYA-MBigFTbkhz0xpeTDjh3eCqJCPCAeVom9LHL8IVVEabW2Quyv310SSjchENpbEt058fkc3_nOvwP4qiwqiXUuUBGVMBMZXjnpA2szdAZsImNbo33epFcjfn0n7lbOwlBapaej-1QIelw1SMFtihjNcPSoMhS5qwMJcdzHFnEJO51avw4bqUB7vAMbo5vbwQ-qKhdnkjZXsiac-TLvXwtSjdvfhc1FNdWPD7osVxab4QcwT5_Z5Jjc9xfzom9-_4Pg-H_92IHt1hZlg4ZhF9Zc9RG6KwiFe_BzQHo61kzPWJ2iw4YLV7JxxdqtxJLhH6WgkmCTijWsszNWm7DBxAdoXgbYPtOVRU6KVrDb5-Ods30YDS-_X1wFbUmGwCSCz4OU20JlXGjD0fAz0lNE2QnnnbLccZzNhUzSQkbCavS0EuOVsugRcSot6p1PDqBTTSr3CRj6NcokUVw4LbiViSrSCJUmQ44w0qnoQfg0Lrlp8cqpbEaZo99C4str8eUkvrwRXw9OlizTBqzjNeJzGuwlIeFs1w9wqPJ2qHKLlGloQy0N5xZ7I71z0kRGCx-ZUPXg21JV3n7l4buoj2CL7mgjOY4_Q2f-a-G-oAU0L45bFf8D8d8DPQ
  priority: 102
  providerName: Unpaywall
Title Ammonia as Green Fuel in Internal Combustion Engines: State-of-the-Art and Future Perspectives
URI https://www.frontiersin.org/articles/10.3389/fmech.2022.944201/pdf
https://doaj.org/article/d42060d0a7c44dcf87fee7c1ca5f1c08
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2297-3079
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001878981
  issn: 2297-3079
  databaseCode: KQ8
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2297-3079
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001878981
  issn: 2297-3079
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2297-3079
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001878981
  issn: 2297-3079
  databaseCode: ADMLS
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2297-3079
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001878981
  issn: 2297-3079
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SD9qD-MT6KDl4Ulb3kWyy3tZHKaKloIV6ccnmAYVlW2yL-O-dZLe1J3vxtrtksuGbCZnJJN8gdMEVGInS2uOBLWFGE3jSzHhKJRAMqIiFyrF99uLugDwN6XCl1Jc9E1bRA1fA3SgS-rGvfMEkIUoazozWTAZSUBPI6pqvz5OVYMrtrnDGEx5UaUyIwhJQk3bJhzC8hlGEdRGYxULk-PqbaGteTsT3lyiKlUWms4t2au8Qp9Wo9tCGLvdRc4Uz8AB9pNZyRgKLKXaHZnBnrgs8KnG9uVdgmOO5LdI1LnElOr3Fzqn0xsYDh8-D_rEoFUja_AHu_164nB6iQefx7b7r1UUSPBlRMvNionKeECokAVdMMmNzvJpqo7kimsD8ylkU5yygSkDsEwGCXEGMQmyxT6NNdIQa5bjUxwhDpMFlFIS5FpQoFvE8DkCNCUj4gYhpC_kLxDJZM4jbQhZFBpGEBTlzIGcW5KwCuYUulyKTij7jr8Z3Vg3Lhpb52n0Ae8hqe8jW2UMLXS2VuP6XJ__xy1O0bbu0O75heIYas8-5PgdXZZa30Wb68PL82nbWCW-DXj99_wF72-nD
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9BeYA-MBigFTbkhz0xpeTDjh3eCqJCPCAeVom9LHL8IVVEabW2Quyv310SSjchENpbEt058fkc3_nOvwP4qiwqiXUuUBGVMBMZXjnpA2szdAZsImNbo33epFcjfn0n7lbOwlBapaej-1QIelw1SMFtihjNcPSoMhS5qwMJcdzHFnEJO51avw4bqUB7vAMbo5vbwQ-qKhdnkjZXsiac-TLvXwtSjdvfhc1FNdWPD7osVxab4QcwT5_Z5Jjc9xfzom9-_4Pg-H_92IHt1hZlg4ZhF9Zc9RG6KwiFe_BzQHo61kzPWJ2iw4YLV7JxxdqtxJLhH6WgkmCTijWsszNWm7DBxAdoXgbYPtOVRU6KVrDb5-Ods30YDS-_X1wFbUmGwCSCz4OU20JlXGjD0fAz0lNE2QnnnbLccZzNhUzSQkbCavS0EuOVsugRcSot6p1PDqBTTSr3CRj6NcokUVw4LbiViSrSCJUmQ44w0qnoQfg0Lrlp8cqpbEaZo99C4str8eUkvrwRXw9OlizTBqzjNeJzGuwlIeFs1w9wqPJ2qHKLlGloQy0N5xZ7I71z0kRGCx-ZUPXg21JV3n7l4buoj2CL7mgjOY4_Q2f-a-G-oAU0L45bFf8D8d8DPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ammonia+as+Green+Fuel+in+Internal+Combustion+Engines%3A+State-of-the-Art+and+Future+Perspectives&rft.jtitle=Frontiers+in+mechanical+engineering&rft.au=Cinzia+Tornatore&rft.au=Luca+Marchitto&rft.au=Pino+Sabia&rft.au=Mara+De+Joannon&rft.date=2022-07-22&rft.pub=Frontiers+Media+S.A&rft.eissn=2297-3079&rft.volume=8&rft_id=info:doi/10.3389%2Ffmech.2022.944201&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d42060d0a7c44dcf87fee7c1ca5f1c08
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2297-3079&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2297-3079&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2297-3079&client=summon