Ammonia as Green Fuel in Internal Combustion Engines: State-of-the-Art and Future Perspectives
Ammonia (NH 3 ) is among the largest-volume chemicals produced and distributed in the world and is mainly known for its use as a fertilizer in the agricultural sector. In recent years, it has sparked interest in the possibility of working as a high-quality energy carrier and as a carbon-free fuel in...
Saved in:
| Published in | Frontiers in mechanical engineering Vol. 8 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Frontiers Media S.A
22.07.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2297-3079 2297-3079 |
| DOI | 10.3389/fmech.2022.944201 |
Cover
| Abstract | Ammonia (NH
3
) is among the largest-volume chemicals produced and distributed in the world and is mainly known for its use as a fertilizer in the agricultural sector. In recent years, it has sparked interest in the possibility of working as a high-quality energy carrier and as a carbon-free fuel in internal combustion engines (ICEs). This review aimed to provide an overview of the research on the use of green ammonia as an alternative fuel for ICEs with a look to the future on possible applications and practical solutions to related problems. First of all, the ammonia production process is discussed. Present ammonia production is not a “green” process; the synthesis occurs starting from gaseous hydrogen currently produced from hydrocarbons. Some ways to produce green ammonia are reviewed and discussed. Then, the chemical and physical properties of ammonia as a fuel are described and explained in order to identify the main pros and cons of its use in combustion systems. Then, the most viable solutions for fueling internal combustion engines with ammonia are discussed. When using pure ammonia, high boost pressure and compression ratio are required to compensate for the low ammonia flame speed. In spark-ignition engines, adding hydrogen to ammonia helps in speeding up the flame front propagation and stabilizing the combustion. In compression-ignition engines, ammonia can be successfully used in dual-fuel mode with diesel. On the contrary, an increase in NOx and the unburned NH
3
at the exhaust require the installation of apposite aftertreatment systems. Therefore, the use of ammonia seems to be more practicable for marine or stationary engine application where space constraints are not a problem. In conclusion, this review points out that ammonia has excellent potential to play a significant role as a sustainable fuel for the future in both retrofitted and new engines. However, significant further research and development activities are required before being able to consider large-scale industrial production of green ammonia. Moreover, uncertainties remain about ammonia safe and effective use and some technical issues need to be addressed to overcome poor combustion properties for utilization as a direct substitute for standard fuels. |
|---|---|
| AbstractList | Ammonia (NH3) is among the largest-volume chemicals produced and distributed in the world and is mainly known for its use as a fertilizer in the agricultural sector. In recent years, it has sparked interest in the possibility of working as a high-quality energy carrier and as a carbon-free fuel in internal combustion engines (ICEs). This review aimed to provide an overview of the research on the use of green ammonia as an alternative fuel for ICEs with a look to the future on possible applications and practical solutions to related problems. First of all, the ammonia production process is discussed. Present ammonia production is not a “green” process; the synthesis occurs starting from gaseous hydrogen currently produced from hydrocarbons. Some ways to produce green ammonia are reviewed and discussed. Then, the chemical and physical properties of ammonia as a fuel are described and explained in order to identify the main pros and cons of its use in combustion systems. Then, the most viable solutions for fueling internal combustion engines with ammonia are discussed. When using pure ammonia, high boost pressure and compression ratio are required to compensate for the low ammonia flame speed. In spark-ignition engines, adding hydrogen to ammonia helps in speeding up the flame front propagation and stabilizing the combustion. In compression-ignition engines, ammonia can be successfully used in dual-fuel mode with diesel. On the contrary, an increase in NOx and the unburned NH3 at the exhaust require the installation of apposite aftertreatment systems. Therefore, the use of ammonia seems to be more practicable for marine or stationary engine application where space constraints are not a problem. In conclusion, this review points out that ammonia has excellent potential to play a significant role as a sustainable fuel for the future in both retrofitted and new engines. However, significant further research and development activities are required before being able to consider large-scale industrial production of green ammonia. Moreover, uncertainties remain about ammonia safe and effective use and some technical issues need to be addressed to overcome poor combustion properties for utilization as a direct substitute for standard fuels. Ammonia (NH 3 ) is among the largest-volume chemicals produced and distributed in the world and is mainly known for its use as a fertilizer in the agricultural sector. In recent years, it has sparked interest in the possibility of working as a high-quality energy carrier and as a carbon-free fuel in internal combustion engines (ICEs). This review aimed to provide an overview of the research on the use of green ammonia as an alternative fuel for ICEs with a look to the future on possible applications and practical solutions to related problems. First of all, the ammonia production process is discussed. Present ammonia production is not a “green” process; the synthesis occurs starting from gaseous hydrogen currently produced from hydrocarbons. Some ways to produce green ammonia are reviewed and discussed. Then, the chemical and physical properties of ammonia as a fuel are described and explained in order to identify the main pros and cons of its use in combustion systems. Then, the most viable solutions for fueling internal combustion engines with ammonia are discussed. When using pure ammonia, high boost pressure and compression ratio are required to compensate for the low ammonia flame speed. In spark-ignition engines, adding hydrogen to ammonia helps in speeding up the flame front propagation and stabilizing the combustion. In compression-ignition engines, ammonia can be successfully used in dual-fuel mode with diesel. On the contrary, an increase in NOx and the unburned NH 3 at the exhaust require the installation of apposite aftertreatment systems. Therefore, the use of ammonia seems to be more practicable for marine or stationary engine application where space constraints are not a problem. In conclusion, this review points out that ammonia has excellent potential to play a significant role as a sustainable fuel for the future in both retrofitted and new engines. However, significant further research and development activities are required before being able to consider large-scale industrial production of green ammonia. Moreover, uncertainties remain about ammonia safe and effective use and some technical issues need to be addressed to overcome poor combustion properties for utilization as a direct substitute for standard fuels. |
| Author | Sabia, Pino De Joannon, Mara Marchitto, Luca Tornatore, Cinzia |
| Author_xml | – sequence: 1 givenname: Cinzia surname: Tornatore fullname: Tornatore, Cinzia – sequence: 2 givenname: Luca surname: Marchitto fullname: Marchitto, Luca – sequence: 3 givenname: Pino surname: Sabia fullname: Sabia, Pino – sequence: 4 givenname: Mara surname: De Joannon fullname: De Joannon, Mara |
| BookMark | eNqNkF9rFDEUR4NUaG37AfqWLzBr_s0k49uytHWhoKB9NdxNbtqUmWRJskq_vdOuiPggPt0fF855OO_IScoJCbnibCWlGd-HGd3jSjAhVqNSgvE35EyIUXeS6fHkj31KLmt9Yoxxo81o-Bn5tp7nnCJQqPS2ICZ6c8CJxkS3qWFJMNFNnneH2mJO9Do9xIT1A_3SoGGXQ9cesVuXRiH5hWyHgvQzlrpH1-J3rBfkbYCp4uWve07ub66_bj52d59ut5v1Xedkr1o3KL8zo-rBqVEKp4NQgmOPAY1XqMZB7rQcdpr3HjhX0gVjvO6lkmboAwZ5TrZHr8_wZPclzlCebYZoXx-5PFgoLboJrV8CDcwz0E4pv5h0QNSOO-gDd8wsLnF0HdIenn_ANP0WcmZfgtvX4PYluD0GXyB-hFzJtRYM_8XovxgXl65L6FYgTv8gfwILM5i- |
| CitedBy_id | crossref_primary_10_1016_j_fuel_2024_133420 crossref_primary_10_1016_j_ijhydene_2024_07_163 crossref_primary_10_1016_j_enconman_2024_118698 crossref_primary_10_3389_fchem_2024_1532018 crossref_primary_10_1016_j_ijhydene_2024_07_047 crossref_primary_10_5916_jamet_2023_47_3_143 crossref_primary_10_3390_en16062543 crossref_primary_10_1021_acs_energyfuels_5c00214 crossref_primary_10_1016_j_corsci_2024_112491 crossref_primary_10_1016_j_cej_2024_158863 crossref_primary_10_1016_j_joei_2024_101711 crossref_primary_10_1016_j_ijhydene_2024_04_151 crossref_primary_10_1016_j_ijhydene_2024_08_210 crossref_primary_10_3390_en17174304 crossref_primary_10_47512_meujmaf_1589195 crossref_primary_10_1016_j_ijhydene_2024_05_248 crossref_primary_10_1039_D4RA06251E crossref_primary_10_1615_InterJEnerCleanEnv_2024051495 crossref_primary_10_1016_j_ijhydene_2024_05_166 crossref_primary_10_1007_s40996_024_01439_0 crossref_primary_10_1021_acs_energyfuels_4c02830 crossref_primary_10_1016_j_fuel_2024_131808 crossref_primary_10_3390_en17071525 crossref_primary_10_1016_j_ijhydene_2023_09_158 crossref_primary_10_1016_j_applthermaleng_2024_124189 crossref_primary_10_1016_j_fuel_2023_128507 crossref_primary_10_3390_en17164141 crossref_primary_10_3390_en17225782 crossref_primary_10_1016_j_fuel_2023_130740 crossref_primary_10_53502_RAIL_202183 crossref_primary_10_1016_j_segy_2024_100161 crossref_primary_10_7467_KSAE_2024_32_11_875 crossref_primary_10_1016_j_jece_2023_111541 crossref_primary_10_1016_j_nxsust_2025_100116 crossref_primary_10_1109_TPS_2023_3298934 crossref_primary_10_1016_j_jaecs_2024_100251 crossref_primary_10_1080_20464177_2024_2448057 crossref_primary_10_23919_CHAIN_2024_000005 crossref_primary_10_1177_17515831241301166 crossref_primary_10_3390_en18010029 crossref_primary_10_1016_j_ijhydene_2024_05_128 crossref_primary_10_3390_en16134898 crossref_primary_10_19206_CE_200289 crossref_primary_10_3390_en17051231 crossref_primary_10_1021_acscatal_3c02410 crossref_primary_10_1109_TPS_2023_3343389 crossref_primary_10_1016_j_enconman_2024_118764 crossref_primary_10_1016_j_proci_2024_105485 crossref_primary_10_1016_j_adapen_2024_100178 crossref_primary_10_1016_j_fuel_2024_132601 crossref_primary_10_1016_j_jclepro_2023_136150 crossref_primary_10_1016_j_jaecs_2023_100242 crossref_primary_10_3390_atmos14030584 crossref_primary_10_1073_pnas_2311728120 crossref_primary_10_1002_ese3_2008 crossref_primary_10_1002_kin_21779 crossref_primary_10_3389_fmech_2025_1478081 crossref_primary_10_1016_j_joei_2024_101606 crossref_primary_10_1115_1_4068030 crossref_primary_10_3390_en17092155 crossref_primary_10_1016_j_jfueco_2024_100110 crossref_primary_10_1016_j_fuel_2023_130201 crossref_primary_10_1016_j_molliq_2023_123808 crossref_primary_10_1016_j_ijhydene_2024_03_189 crossref_primary_10_3390_en17174516 crossref_primary_10_1016_j_fuproc_2025_108205 crossref_primary_10_1016_j_psep_2024_06_012 crossref_primary_10_1016_j_cattod_2024_114892 |
| Cites_doi | 10.1021/acs.iecr.8b01476 10.1016/j.combustflame.2021.111957 10.1016/j.isci.2021.103105 10.1016/j.pecs.2007.02.004 10.1016/j.jaecs.2021.100038 10.1016/j.joule.2020.04.004 10.1016/j.joei.2022.04.009 10.1016/j.proci.2016.06.153 10.1021/acs.energyfuels.6b00421 10.1016/j.ijhydene.2019.12.209 10.1016/j.fuel.2021.120845 10.3390/en15041453 10.1016/j.fuel.2016.04.100 10.4271/2019-24-0137 10.1016/j.combustflame.2003.12.008 10.1016/j.fuel.2015.06.070 10.1016/j.combustflame.2008.01.012 10.1016/j.chempr.2018.10.010 10.1007/978-3-030-35106-9 10.1016/j.combustflame.2022.112071 10.1038/s41929-019-0408-2 10.1016/j.enconman.2021.114990 10.1016/j.enconman.2021.114898 10.1016/j.ijhydene.2012.10.114 10.1080/00102200008952125 10.1016/j.combustflame.2020.04.020 10.1002/cjce.22126 10.1002/er.5460 10.1016/j.ijhydene.2015.06.080 10.1021/acs.energyfuels.0c03424 10.1016/B978-0-323-85387-3.00012-4 10.1016/j.ijhydene.2022.03.254 10.1016/j.combustflame.2012.06.003 10.1021/acssuschemeng.7b01638 10.1002/er.3141 10.1016/j.jclepro.2022.131082 10.1016/B978-0-12-820560-0.00004-7 10.1016/s0010-2180(00)00152-8 10.1016/j.rser.2021.111254 10.4271/2019-24-0237 10.1016/j.energy.2022.123642 10.1016/B978-0-08-101971-9.00003-X 10.1016/j.combustflame.2020.08.004 10.1016/j.checat.2021.09.015 10.1007/bf00786097 10.1016/0010-2180(86)90018-0 10.1016/j.combustflame.2019.05.003 10.1016/j.proci.2008.06.171 10.1016/0950-4214(91)80012-t 10.1016/j.fuel.2019.116653 10.1002/er.v44.910.1002/er.5355 10.1080/00102200108907830 10.1016/j.combustflame.2020.03.019 10.1016/j.proci.2018.09.029 10.1016/j.combustflame.2014.08.022 10.1016/j.combustflame.2019.08.033 10.1016/j.proci.2020.06.337 10.1016/1010-6030(94)03994-6 10.1021/jp020229w 10.1016/j.jhazmat.2007.11.089 10.1016/j.mset.2019.03.002 10.1016/j.fuel.2019.116720 10.1016/j.ijhydene.2012.07.071 10.1002/anie.202002337 10.1016/j.ijhydene.2019.02.041 10.1007/978-3-658-34362-0_13 10.1016/0360-1285(89)90017-8 10.1016/0010-2180(85)90139-7 10.1016/j.fuel.2020.117448 10.1016/j.ijhydene.2017.12.066 10.1021/acs.jpca.0c11011 10.1016/j.ijhydene.2013.11.098 10.1016/j.fuel.2021.122723 10.1016/j.proci.2020.07.061 10.1115/imece2014-38026 10.1016/j.fuel.2020.120095 10.1080/00102209108924092 10.1021/acs.energyfuels.8b01056 10.1016/j.scitotenv.2010.06.001 10.1039/c9re00429g 10.1016/j.rser.2021.111180 10.1016/j.spc.2018.08.001 10.1016/j.proci.2020.06.291 10.1021/ef800140f 10.1016/j.combustflame.2019.04.050 10.1016/j.combustflame.2010.12.013 10.1016/j.combustflame.2017.09.002 10.1016/j.ijhydene.2020.08.218 10.1016/j.combustflame.2009.03.005 10.1016/j.ijhydene.2011.12.137 10.1080/00102202.2020.1748018 10.1016/j.chempr.2021.01.009 10.1016/j.combustflame.2017.03.019 10.1016/s0010-2180(01)00250-4 10.1016/j.pecs.2018.07.001 10.1016/j.fuel.2020.119563 10.1016/j.fuel.2020.118761 10.1016/j.proci.2020.08.058 10.1016/j.apenergy.2013.07.065 10.1002/(sici)1097-4601(1999)31:11<757::aid-jck1>3.0.co;2-v 10.1016/j.apenergy.2013.11.067 10.1016/j.egypro.2017.03.1002 10.1016/j.combustflame.2021.02.038 10.1016/j.combustflame.2021.02.016 10.1007/978-981-16-8717-4_10 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.3389/fmech.2022.944201 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2297-3079 |
| ExternalDocumentID | oai_doaj_org_article_d42060d0a7c44dcf87fee7c1ca5f1c08 10.3389/fmech.2022.944201 10_3389_fmech_2022_944201 |
| GroupedDBID | 5VS 9T4 AAFWJ AAYXX ACGFS ADBBV ADMLS AFPKN ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION GROUPED_DOAJ KQ8 M~E OK1 ADTOC ARCSS IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c354t-64db8945ac4932c7f2421e5efe8d4e4963b736b715da1143cf88d75343865fef3 |
| IEDL.DBID | DOA |
| ISSN | 2297-3079 |
| IngestDate | Fri Oct 03 12:44:43 EDT 2025 Tue Aug 19 21:12:02 EDT 2025 Wed Oct 01 02:48:42 EDT 2025 Thu Apr 24 23:08:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c354t-64db8945ac4932c7f2421e5efe8d4e4963b736b715da1143cf88d75343865fef3 |
| OpenAccessLink | https://doaj.org/article/d42060d0a7c44dcf87fee7c1ca5f1c08 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d42060d0a7c44dcf87fee7c1ca5f1c08 unpaywall_primary_10_3389_fmech_2022_944201 crossref_primary_10_3389_fmech_2022_944201 crossref_citationtrail_10_3389_fmech_2022_944201 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-22 |
| PublicationDateYYYYMMDD | 2022-07-22 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | Frontiers in mechanical engineering |
| PublicationYear | 2022 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Han (B33) 2022 Ashik (B5) 2018 Lhuillier (B53); 263 Song (B98) 2016; 181 B23 Comotti (B16) 2015; 40 Mathieu (B65) 2015; 162 Zakaznov (B116) 1978; 14 Ronney (B83) 1985; 62 Chen (B13) 2020; 3 Kovács (B46) 2020; 264 Ariemma (B3) 2022; 241 Reiter (B81) 2008; 22 Dai (B19) 2020; 218 Agrawal (B1) 1991; 5 Cornelius (B17) 1966; 74 Nakamura (B71) 2017; 36 Yousefi (B113) 2022; 314 Issayev (B39) 2021; 38 Ghassan (B28) 2020; 44 B38 Gardiner (B27) 2009 Yue (B115) 2021; 146 Pfahl (B78) 2000; 123 Otomo (B76) 2018; 43 B7 He (B37) 2019; 206 Tock (B105) 2015; 93 Mallouppas (B60) 2022; 15 Mashruk (B63) 2022 Boucher (B8) 1995; 88 Gray (B32) 1967; 75 Xiao (B112) 2020; 44 Sánchez (B90) 2018; 16 Klippenstein (B41) 2011; 158 Martín (B62) 2019; 5 Pearsall (B77) 1968; 76 Choe (B15) 2021; 228 Lhuillier (B51); 269 Tian (B104) 2009; 156 Mei (B66) 2019; 210 Hayakawa (B36) 2015; 159 Takizawa (B101) 2008; 155 Tay (B102) 2017; 105 Wang (B109) 2020; 221 Haputhanthri (B35) 2014; 46514 Garabedian (B26) 1966; 41 Chen (B14) 2021; 287 Han (B34) 2019; 206 Stagni (B99) 2020; 5 B106 B103 Miller (B70) 1999; 31 Michael (B68) 2002; 106 Konnov (B43) 2001; 125 Okafor (B74) 2021; 7 Rocha (B82) 2021; 193 Shrestha (B93) 2018; 32 Mathieu (B64) 2012; 37 Oh (B73) 2021; 290 Drake (B21) 1991; 75 Valera-Medina (B107) 2019; 44 Skreiberg (B96) 2004; 136 Smith (B97) 2021; 1 Wang (B110) 2021; 229 Li (B55) 2022; 102 Rouwenhorst (B85) 2021 Ahmed (B2) 2016; 30 Lhuillier (B52) Miller (B69) 1989; 15 Duynslaegher (B22) 2012; 159 Yu (B114) 2020; 217 Feng (B24) 2020; 281 B72 Shu (B94) 2021; 38 Rasmussen (B80) 2008; 154 Piazzi (B79) 2022; 249 Ryu (B88); 39 Shen (B91) 2021; 7 Lhuillier (B50) 2021; 38 Frigo (B25) 2013; 38 Ryu (B87); 113 Konnov (B45) 2000; 152 Arunthanayothin (B4) 2021; 38 Lubrano Lavadera (B57) 2020; 35 Sabia (B89) 2020; 45 Inamuddin (B84) 2020 Skalska (B95) 2010; 408 Glarborg (B31) 1986; 65 Zhang (B117) 2022; 346 Zhang (B118) 2017; 182 Starkman (B100) 1967; 75 Lhuillier (B49) Manna (B61) 2022 Konnov (B44) 2001; 168 Ryu (B86); 116 Capurso (B10) 2022; 251 Kobayashi (B42) 2019; 37 Kurien (B47) 2022; 251 Glarborg (B30) 2021; 125 MacFarlane (B58) 2020; 4 Long (B56) 2020; 59 Mallick (B59) 2022 Willmann (B111) 2021 Shiva Kumar (B92) 2019; 2 Li (B54) 2014; 38 Chai (B11) 2021; 147 Mével (B67) 2009; 32 Chehade (B12) 2021; 299 Dimitriou (B20) 2020; 45 Gill (B29) 2012; 37 Valera-Medina (B108) 2018; 69 Lamb (B48) 2018; 57 Bicer (B6) 2017; 5 Dagaut (B18) 2008; 34 Okafor (B75) 2018; 187 Cai (B9) 2021; 24 Jabbour (B40) 2004; 110 |
| References_xml | – volume: 57 start-page: 7811 year: 2018 ident: B48 article-title: High-Purity H2 Produced from NH3 via a Ruthenium-Based Decomposition Catalyst and Vanadium-Based Membrane publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b01476 – start-page: 111957 year: 2022 ident: B61 article-title: New Insight into NH-H2 Mutual Inhibiting Effects and Dynamic Regimes at Low-Intermediate Temperatures publication-title: Combust. Flame doi: 10.1016/j.combustflame.2021.111957 – volume: 74 start-page: 300 year: 1966 ident: B17 article-title: Ammonia as an Engine Fuel publication-title: SAE Trans. – ident: B7 – volume: 24 start-page: 103105 year: 2021 ident: B9 article-title: Lithium-mediated Electrochemical Nitrogen Reduction: Mechanistic Insights to Enhance Performance publication-title: iScience doi: 10.1016/j.isci.2021.103105 – volume: 34 start-page: 1 year: 2008 ident: B18 article-title: The Oxidation of Hydrogen Cyanide and Related Chemistry publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2007.02.004 – ident: B106 – volume: 7 start-page: 100038 year: 2021 ident: B74 article-title: Liquid Ammonia Spray Combustion in Two-Stage Micro Gas Turbine Combustors at 0.25 MPa; Relevance of Combustion Enhancement to Flame Stability and NOx Control publication-title: Appl. Energy Combust. Sci. doi: 10.1016/j.jaecs.2021.100038 – volume: 4 start-page: 1186 year: 2020 ident: B58 article-title: A Roadmap to the Ammonia Economy publication-title: Joule doi: 10.1016/j.joule.2020.04.004 – volume: 102 start-page: 362 year: 2022 ident: B55 article-title: A Comparison between Low- and High-Pressure Injection Dual-Fuel Modes of Diesel-Pilot-Ignition Ammonia Combustion Engines publication-title: J. Energy Inst. doi: 10.1016/j.joei.2022.04.009 – volume: 36 start-page: 4217 year: 2017 ident: B71 article-title: Combustion and Ignition Characteristics of Ammonia/air Mixtures in a Micro Flow Reactor with a Controlled Temperature Profile publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2016.06.153 – volume: 30 start-page: 7691 year: 2016 ident: B2 article-title: Computational Study of NOx Formation at Conditions Relevant to Gas Turbine Operation, Part 2: NOx in High Hydrogen Content Fuel Combustion at Elevated Pressure publication-title: Energy fuels. doi: 10.1021/acs.energyfuels.6b00421 – volume: 45 start-page: 7098 year: 2020 ident: B20 article-title: A Review of Ammonia as a Compression Ignition Engine Fuel publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.12.209 – volume: 299 start-page: 120845 year: 2021 ident: B12 article-title: Progress in Green Ammonia Production as Potential Carbon-free Fuel publication-title: Fuel doi: 10.1016/j.fuel.2021.120845 – volume: 15 start-page: 1453 year: 2022 ident: B60 article-title: A Review of the Latest Trends in the Use of Green Ammonia as an Energy Carrier in Maritime Industry publication-title: Energies doi: 10.3390/en15041453 – volume: 181 start-page: 358 year: 2016 ident: B98 article-title: Ammonia Oxidation at High Pressure and Intermediate Temperatures publication-title: Fuel doi: 10.1016/j.fuel.2016.04.100 – ident: B52 article-title: Performance and Emissions of an Ammonia-Fueled SI Engine with Hydrogen Enrichment doi: 10.4271/2019-24-0137 – volume: 75 start-page: 785 year: 1967 ident: B32 article-title: Ammonia Fuel—Engine Compatibility and Combustion publication-title: SAE Trans. – volume: 136 start-page: 501 year: 2004 ident: B96 article-title: Ammonia Chemistry below 1400 K under Fuel-Rich Conditions in a Flow Reactor publication-title: Combust. Flame doi: 10.1016/j.combustflame.2003.12.008 – ident: B38 – volume: 159 start-page: 98 year: 2015 ident: B36 article-title: Laminar Burning Velocity and Markstein Length of Ammonia/air Premixed Flames at Various Pressures publication-title: Fuel doi: 10.1016/j.fuel.2015.06.070 – volume: 76 start-page: 3213 year: 1968 ident: B77 article-title: Combustion of Anhydrous Ammonia in Diesel Engines publication-title: SAE Trans. – volume: 154 start-page: 529 year: 2008 ident: B80 article-title: Sensitizing Effects of NOx on CH4 Oxidation at High Pressure publication-title: Combust. Flame doi: 10.1016/j.combustflame.2008.01.012 – volume: 5 start-page: 263 year: 2019 ident: B62 article-title: Electrocatalytic Reduction of Nitrogen: from Haber-Bosch to Ammonia Artificial Leaf publication-title: Chem doi: 10.1016/j.chempr.2018.10.010 – start-page: 17 volume-title: Sustainable Ammonia Production. Green Energy and Technology year: 2020 ident: B84 article-title: Reactor Design, Modelling and Process Intensification for Ammonia Synthesis doi: 10.1007/978-3-030-35106-9 – volume: 241 start-page: 112071 year: 2022 ident: B3 article-title: Ammonia/Methane Combustion: Stability and NOx Emissions publication-title: Combust. Flame doi: 10.1016/j.combustflame.2022.112071 – volume: 3 start-page: 225 year: 2020 ident: B13 article-title: The Progress and Outlook of Bioelectrocatalysis for the Production of Chemicals, Fuels and Materials publication-title: Nat. Catal. doi: 10.1038/s41929-019-0408-2 – volume: 251 start-page: 114990 year: 2022 ident: B47 article-title: Review on the Production and Utilization of Green Ammonia as an Alternate Fuel in Dual-Fuel Compression Ignition Engines publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114990 – volume: 251 start-page: 114898 year: 2022 ident: B10 article-title: Perspective of the Role of Hydrogen in the 21st Century Energy Transition publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114898 – volume: 38 start-page: 1607 year: 2013 ident: B25 article-title: Analysis of the Behaviour of a 4-stroke Si Engine Fuelled with Ammonia and Hydrogen publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.10.114 – ident: B23 – volume: 152 start-page: 23 year: 2000 ident: B45 article-title: Kinetic Modeling of the Thermal Decomposition of Ammonia publication-title: Combust. Sci. Technol. doi: 10.1080/00102200008952125 – volume: 110 start-page: 522 year: 2004 ident: B40 article-title: Burning Velocity and Refrigerant Flammability Classification/DISCUSSION publication-title: ASHRAE Trans. – volume: 218 start-page: 19 year: 2020 ident: B19 article-title: Autoignition Studies of NH3/CH4 Mixtures at High Pressure publication-title: Combust. Flame doi: 10.1016/j.combustflame.2020.04.020 – volume: 93 start-page: 356 year: 2015 ident: B105 article-title: Thermo-environomic Evaluation of the Ammonia Production publication-title: Can. J. Chem. Eng. doi: 10.1002/cjce.22126 – volume: 44 start-page: 6939 year: 2020 ident: B112 article-title: Experimental and Modeling Study on Ignition Delay of Ammonia/methane Fuels publication-title: Int. J. Energy Res. doi: 10.1002/er.5460 – volume: 40 start-page: 10673 year: 2015 ident: B16 article-title: Hydrogen Generation System for Ammonia-Hydrogen Fuelled Internal Combustion Engines publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2015.06.080 – volume: 35 start-page: 7156 year: 2020 ident: B57 article-title: Comparative Effect of Ammonia Addition on the Laminar Burning Velocities of Methane, N-Heptane, and Iso-Octane publication-title: Energy fuels. doi: 10.1021/acs.energyfuels.0c03424 – start-page: 105 volume-title: Waste-to-Energy Approaches towards Zero Waste year: 2022 ident: B59 article-title: Emerging Commercial Opportunities for Conversion of Waste to Energy: Aspect of Gasification Technology doi: 10.1016/B978-0-323-85387-3.00012-4 – year: 2022 ident: B63 article-title: Combustion Features of CH4/NH3/H2 Ternary Blends publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2022.03.254 – volume: 159 start-page: 2799 year: 2012 ident: B22 article-title: Modeling of Ammonia Combustion at Low Pressure publication-title: Combust. Flame doi: 10.1016/j.combustflame.2012.06.003 – volume: 5 start-page: 8035 year: 2017 ident: B6 article-title: Assessment of a Sustainable Electrochemical Ammonia Production System Using Photoelectrochemically Produced Hydrogen under Concentrated Sunlight publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.7b01638 – volume: 38 start-page: 1214 year: 2014 ident: B54 article-title: Study on Using Hydrogen and Ammonia as Fuels: Combustion Characteristics and NOxformation publication-title: Int. J. Energy Res. doi: 10.1002/er.3141 – volume: 346 start-page: 131082 year: 2022 ident: B117 article-title: The Role of Hydrogen in Decarbonizing a Coupled Energy System publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2022.131082 – start-page: 41 volume-title: Techno-Economic Challenges of Green Ammonia as an Energy Vector year: 2021 ident: B85 article-title: Ammonia Production Technologies doi: 10.1016/B978-0-12-820560-0.00004-7 – volume: 123 start-page: 140 year: 2000 ident: B78 article-title: Flammability Limits, Ignition Energy, and Flame Speeds in H2–CH4–NH3–N2O–O2–N2 Mixtures publication-title: Combust. flame doi: 10.1016/s0010-2180(00)00152-8 – volume: 147 start-page: 111254 year: 2021 ident: B11 article-title: A Review on Ammonia, Ammonia-Hydrogen and Ammonia-Methane Fuels publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111254 – ident: B49 article-title: Combustion Characteristics of Ammonia in a Modern Spark-Ignition Engine doi: 10.4271/2019-24-0237 – volume: 249 start-page: 123642 year: 2022 ident: B79 article-title: Energy and Exergy Analysis of Different Biomass Gasification Coupled to Fischer-Tropsch Synthesis Configurations publication-title: Energy doi: 10.1016/j.energy.2022.123642 – start-page: 45 volume-title: Micro and Nano Technologies, Applications of Nanomaterials year: 2018 ident: B5 article-title: Nanomaterials as Catalysts doi: 10.1016/B978-0-08-101971-9.00003-X – volume: 221 start-page: 270 year: 2020 ident: B109 article-title: Experimental Study and Kinetic Analysis of the Laminar Burning Velocity of NH3/syngas/air, NH3/CO/air and NH3/H2/air Premixed Flames at Elevated Pressures publication-title: Combust. Flame doi: 10.1016/j.combustflame.2020.08.004 – volume: 1 start-page: 1163 year: 2021 ident: B97 article-title: Guidance for Targeted Development of Ammonia Synthesis Catalysts from a Holistic Process Approach publication-title: Chem. Catal. doi: 10.1016/j.checat.2021.09.015 – volume: 14 start-page: 710 year: 1978 ident: B116 article-title: Determination of Normal Flame Velocity and Critical Diameter of Flame Extinction in Ammonia-Air Mixture publication-title: Combust. Explos. Shock Waves doi: 10.1007/bf00786097 – volume: 65 start-page: 177 year: 1986 ident: B31 article-title: Kinetic Modeling and Sensitivity Analysis of Nitrogen Oxide Formation in Well-Stirred Reactors publication-title: Combust. flame doi: 10.1016/0010-2180(86)90018-0 – volume: 206 start-page: 214 year: 2019 ident: B34 article-title: Experimental and Kinetic Modeling Study of Laminar Burning Velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air Premixed Flames publication-title: Combust. Flame doi: 10.1016/j.combustflame.2019.05.003 – volume: 32 start-page: 359 year: 2009 ident: B67 article-title: Hydrogen–nitrous Oxide Delay Times: Shock Tube Experimental Study and Kinetic Modelling publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2008.06.171 – volume: 5 start-page: 139 year: 1991 ident: B1 article-title: Efficient Cryogenic Nitrogen Generators: An Exergy Analysis publication-title: Gas Sep. Purif. doi: 10.1016/0950-4214(91)80012-t – volume: 263 start-page: 116653 ident: B53 article-title: Experimental Investigation on Laminar Burning Velocities of Ammonia/hydrogen/air Mixtures at Elevated Temperatures publication-title: Fuel doi: 10.1016/j.fuel.2019.116653 – volume: 44 start-page: 7183 year: 2020 ident: B28 article-title: A Novel Method for a New Electromagnetic-Induced Ammonia Synthesizer publication-title: Int. J. Energy Res. doi: 10.1002/er.v44.910.1002/er.5355 – volume: 168 start-page: 1 year: 2001 ident: B44 article-title: A Possible New Route for No Formation Vian2h3 publication-title: Combust. Sci. Technol. doi: 10.1080/00102200108907830 – volume: 217 start-page: 4 year: 2020 ident: B114 article-title: The Effect of Ammonia Addition on the Low-Temperature Autoignition of N-Heptane: An Experimental and Modeling Study publication-title: Combust. Flame doi: 10.1016/j.combustflame.2020.03.019 – volume: 37 start-page: 109 year: 2019 ident: B42 article-title: Science and Technology of Ammonia Combustion publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2018.09.029 – volume: 162 start-page: 554 year: 2015 ident: B65 article-title: Experimental and Modeling Study on the High-Temperature Oxidation of Ammonia and Related NOx Chemistry publication-title: Combust. Flame doi: 10.1016/j.combustflame.2014.08.022 – volume: 210 start-page: 236 year: 2019 ident: B66 article-title: Experimental and Kinetic Modeling Investigation on the Laminar Flame Propagation of Ammonia under Oxygen Enrichment and Elevated Pressure Conditions publication-title: Combust. Flame doi: 10.1016/j.combustflame.2019.08.033 – volume: 75 start-page: 765 year: 1967 ident: B100 article-title: Ammonia as a Spark Ignition Engine Fuel: Theory and Application publication-title: Sae Trans. – volume: 38 start-page: 499 year: 2021 ident: B39 article-title: Combustion Behavior of Ammonia Blended with Diethyl Ether publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2020.06.337 – volume: 88 start-page: 53 year: 1995 ident: B8 article-title: An Investigation of the Putative Photosynthesis of Ammonia on Iron-Doped Titania and Other Metal Oxides publication-title: J. Photochem. Photobiol. A Chem. doi: 10.1016/1010-6030(94)03994-6 – volume: 106 start-page: 5297 year: 2002 ident: B68 article-title: Rate Constants for H + O2 + M → HO2 + M in Seven Bath Gases publication-title: J. Phys. Chem. A doi: 10.1021/jp020229w – volume: 155 start-page: 144 year: 2008 ident: B101 article-title: Burning Velocity Measurements of Nitrogen-Containing Compounds publication-title: J. Hazard Mater doi: 10.1016/j.jhazmat.2007.11.089 – volume: 2 start-page: 442 year: 2019 ident: B92 article-title: Hydrogen Production by PEM Water Electrolysis - A Review publication-title: Mater. Sci. Energy Technol. doi: 10.1016/j.mset.2019.03.002 – volume: 264 start-page: 116720 year: 2020 ident: B46 article-title: Determination of Rate Parameters of Key N/H/O Elementary Reactions Based on H2/O2/NOx Combustion Experiments publication-title: Fuel doi: 10.1016/j.fuel.2019.116720 – volume: 37 start-page: 15393 year: 2012 ident: B64 article-title: Effects of N2O Addition on the Ignition of H2-O2 Mixtures: Experimental and Detailed Kinetic Modeling Study publication-title: Int. J. hydrogen energy doi: 10.1016/j.ijhydene.2012.07.071 – volume: 59 start-page: 9711 year: 2020 ident: B56 article-title: Direct Electrochemical Ammonia Synthesis from Nitric Oxide publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202002337 – volume: 44 start-page: 8615 year: 2019 ident: B107 article-title: Premixed Ammonia/hydrogen Swirl Combustion under Rich Fuel Conditions for Gas Turbines Operation publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2019.02.041 – start-page: 223 volume-title: Heavy-Duty-, On- und Off-Highway-Motoren 2020 year: 2021 ident: B111 article-title: Woodward L'Orange's New Injector Generation - an Ideal Platform for the Combustion of E-Fuels in Large Engines doi: 10.1007/978-3-658-34362-0_13 – volume: 15 start-page: 287 year: 1989 ident: B69 article-title: Mechanism and Modeling of Nitrogen Chemistry in Combustion publication-title: Prog. energy Combust. Sci. doi: 10.1016/0360-1285(89)90017-8 – volume: 62 start-page: 107 year: 1985 ident: B83 article-title: Effect of Gravity on Laminar Premixed Gas Combustion I: Flammability Limits and Burning Velocities publication-title: Combust. Flame doi: 10.1016/0010-2180(85)90139-7 – volume: 269 start-page: 117448 ident: B51 article-title: Experimental Study on Ammonia/hydrogen/air Combustion in Spark Ignition Engine Conditions publication-title: Fuel doi: 10.1016/j.fuel.2020.117448 – volume: 43 start-page: 3004 year: 2018 ident: B76 article-title: Chemical Kinetic Modeling of Ammonia Oxidation with Improved Reaction Mechanism for Ammonia/air and Ammonia/hydrogen/air Combustion publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.12.066 – volume: 125 start-page: 1505 year: 2021 ident: B30 article-title: On the Rate Constant for NH2+HO2 and Third-Body Collision Efficiencies for NH2+H(+M) and NH2+NH2(+M) publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.0c11011 – volume: 39 start-page: 2390 ident: B88 article-title: Performance Enhancement of Ammonia-Fueled Engine by Using Dissociation Catalyst for Hydrogen Generation publication-title: Int. J. hydrogen energy doi: 10.1016/j.ijhydene.2013.11.098 – volume: 314 start-page: 122723 year: 2022 ident: B113 article-title: Effects of Ammonia Energy Fraction and Diesel Injection Timing on Combustion and Emissions of an Ammonia/diesel Dual-Fuel Engine publication-title: Fuel doi: 10.1016/j.fuel.2021.122723 – volume: 38 start-page: 345 year: 2021 ident: B4 article-title: Ammonia-methane Interaction in Jet-Stirred and Flow Reactors: An Experimental and Kinetic Modeling Study publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2020.07.061 – volume: 46514 start-page: V06AT07A071 year: 2014 ident: B35 article-title: Ammonia Gasoline-Ethanol/methanol Tertiary Fuel Blends as an Alternate Automotive Fuel publication-title: ASME Int. Mech. Eng. Congr. Expo. doi: 10.1115/imece2014-38026 – volume: 290 start-page: 120095 year: 2021 ident: B73 article-title: Natural Gas-Ammonia Dual-Fuel Combustion in Spark-Ignited Engine with Various Air-Fuel Ratios and Split Ratios of Ammonia under Part Load Condition publication-title: Fuel doi: 10.1016/j.fuel.2020.120095 – volume: 75 start-page: 261 year: 1991 ident: B21 article-title: Calculations of NOx Formation Pathways in Propagating Laminar, High Pressure Premixed CH4/air Flames publication-title: Combust. Sci. Technol. doi: 10.1080/00102209108924092 – ident: B72 – volume: 41 year: 1966 ident: B26 article-title: The Theory of Operation of an Ammonia-Burning Internal Combustion Engine publication-title: USCFSTI, AD Rep. (United States) – volume: 32 start-page: 10202 year: 2018 ident: B93 article-title: Detailed Kinetic Mechanism for the Oxidation of Ammonia Including the Formation and Reduction of Nitrogen Oxides publication-title: Energy fuels. doi: 10.1021/acs.energyfuels.8b01056 – volume: 408 start-page: 3976 year: 2010 ident: B95 article-title: Trends in NO Abatement: A Review publication-title: Sci. total Environ. doi: 10.1016/j.scitotenv.2010.06.001 – volume: 5 start-page: 696 year: 2020 ident: B99 article-title: An Experimental, Theoretical and Kinetic-Modeling Study of the Gas-phase Oxidation of Ammonia publication-title: React. Chem. Eng. doi: 10.1039/c9re00429g – volume: 146 start-page: 111180 year: 2021 ident: B115 article-title: Hydrogen Energy Systems: A Critical Review of Technologies, Applications, Trends and Challenges publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2021.111180 – year: 2009 ident: B27 article-title: Energy Requirements for Hydrogen Gas Compression and Liquefaction as Related to Vehicle Storage Needs DOE Hydrogen and Fuel Cells Program Record – volume: 16 start-page: 176 year: 2018 ident: B90 article-title: Scale up and Scale Down Issues of Renewable Ammonia Plants: Towards Modular Design publication-title: Sustain. Prod. Consum. doi: 10.1016/j.spc.2018.08.001 – volume: 38 start-page: 261 year: 2021 ident: B94 article-title: Experimental and Modeling Study on the Auto-Ignition Properties of Ammonia/methane Mixtures at Elevated Pressures publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2020.06.291 – volume: 22 start-page: 2963 year: 2008 ident: B81 article-title: Demonstration of Compression-Ignition Engine Combustion Using Ammonia in Reducing Greenhouse Gas Emissions publication-title: Energy fuels. doi: 10.1021/ef800140f – volume: 206 start-page: 189 year: 2019 ident: B37 article-title: Auto-ignition Kinetics of Ammonia and Ammonia/hydrogen Mixtures at Intermediate Temperatures and High Pressures publication-title: Combust. Flame doi: 10.1016/j.combustflame.2019.04.050 – volume: 158 start-page: 774 year: 2011 ident: B41 article-title: The Role of NNH in NO Formation and Control publication-title: Combust. Flame doi: 10.1016/j.combustflame.2010.12.013 – volume: 187 start-page: 185 year: 2018 ident: B75 article-title: Experimental and Numerical Study of the Laminar Burning Velocity of CH4-NH3-air Premixed Flames publication-title: Combust. flame doi: 10.1016/j.combustflame.2017.09.002 – volume: 45 start-page: 32113 year: 2020 ident: B89 article-title: Mutual Inhibition Effect of Hydrogen and Ammonia in Oxidation Processes and the Role of Ammonia as "strong" Collider in Third-Molecular Reactions publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.08.218 – volume: 156 start-page: 1413 year: 2009 ident: B104 article-title: An Experimental and Kinetic Modeling Study of Premixed NH3/CH4/O2/Ar Flames at Low Pressure publication-title: Combust. Flame doi: 10.1016/j.combustflame.2009.03.005 – volume: 37 start-page: 6074 year: 2012 ident: B29 article-title: Assessing the Effects of Partially Decarbonising a Diesel Engine by Co-fuelling with Dissociated Ammonia publication-title: Int. J. hydrogen energy doi: 10.1016/j.ijhydene.2011.12.137 – volume: 193 start-page: 2514 year: 2021 ident: B82 article-title: Combustion and Emission Characteristics of Ammonia under Conditions Relevant to Modern Gas Turbines publication-title: Combust. Sci. Technol. doi: 10.1080/00102202.2020.1748018 – volume: 7 start-page: 1708 year: 2021 ident: B91 article-title: Electrochemical Ammonia Synthesis: Mechanistic Understanding and Catalyst Design publication-title: Chem doi: 10.1016/j.chempr.2021.01.009 – volume: 182 start-page: 122 year: 2017 ident: B118 article-title: Assessing the Predictions of a NO X Kinetic Mechanism on Recent Hydrogen and Syngas Experimental Data publication-title: Combust. Flame doi: 10.1016/j.combustflame.2017.03.019 – volume: 125 start-page: 1258 year: 2001 ident: B43 article-title: Temperature-dependent Rate Constant for the Reaction NNH + O → NH + NO publication-title: Combust. Flame doi: 10.1016/s0010-2180(01)00250-4 – volume: 69 start-page: 63 year: 2018 ident: B108 article-title: Ammonia for Power publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2018.07.001 – volume: 287 start-page: 119563 year: 2021 ident: B14 article-title: Effect of Hydrogen Blending on the High Temperature Auto-Ignition of Ammonia at Elevated Pressure publication-title: Fuel doi: 10.1016/j.fuel.2020.119563 – volume: 281 start-page: 118761 year: 2020 ident: B24 article-title: Low-temperature Auto-Ignition Characteristics of NH3/diesel Binary Fuel: Ignition Delay Time Measurement and Kinetic Analysis publication-title: Fuel doi: 10.1016/j.fuel.2020.118761 – volume: 38 start-page: 5859 year: 2021 ident: B50 article-title: Experimental Investigation on Ammonia Combustion Behavior in a Spark-Ignition Engine by Means of Laminar and Turbulent Expanding Flames publication-title: Proc. Combust. Inst. doi: 10.1016/j.proci.2020.08.058 – volume: 113 start-page: 488 ident: B87 article-title: Performance Characteristics of Compression-Ignition Engine Using High Concentration of Ammonia Mixed with Dimethyl Ether publication-title: Appl. energy doi: 10.1016/j.apenergy.2013.07.065 – volume: 31 start-page: 757 year: 1999 ident: B70 article-title: Modeling the Thermal De-NOx Process: Closing in on a Final Solution publication-title: Int. J. Chem. Kinet. doi: 10.1002/(sici)1097-4601(1999)31:11<757::aid-jck1>3.0.co;2-v – volume: 116 start-page: 206 ident: B86 article-title: Effects of Gaseous Ammonia Direct Injection on Performance Characteristics of a Spark-Ignition Engine publication-title: Appl. energy doi: 10.1016/j.apenergy.2013.11.067 – ident: B103 – volume: 105 start-page: 4621 year: 2017 ident: B102 article-title: Effects of Injection Timing and Pilot Fuel on the Combustion of a Kerosene-Diesel/ammonia Dual Fuel Engine: A Numerical Study publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.1002 – volume: 229 start-page: 111392 year: 2021 ident: B110 article-title: Experimental and Kinetic Study on the Laminar Burning Velocities of NH3 Mixing with CH3OH and C2H5OH in Premixed Flames publication-title: Combust. Flame doi: 10.1016/j.combustflame.2021.02.038 – volume: 228 start-page: 430 year: 2021 ident: B15 article-title: Plasma Assisted Ammonia Combustion: Simultaneous NOx Reduction and Flame Enhancement publication-title: Combust. Flame doi: 10.1016/j.combustflame.2021.02.016 – start-page: 233 volume-title: Engines and Fuels for Future Transport. Energy, Environment, and Sustainability. year: 2022 ident: B33 article-title: The Use of Ammonia as a Fuel for Combustion Engines doi: 10.1007/978-981-16-8717-4_10 |
| SSID | ssj0001878981 |
| Score | 2.5006053 |
| SecondaryResourceType | review_article |
| Snippet | Ammonia (NH
3
) is among the largest-volume chemicals produced and distributed in the world and is mainly known for its use as a fertilizer in the agricultural... Ammonia (NH3) is among the largest-volume chemicals produced and distributed in the world and is mainly known for its use as a fertilizer in the agricultural... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| SubjectTerms | ammonia combustion decarbonization green fuel internal combustion engine |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9BeYA-MBigFTbkhz0xpeTDjh3eCqJCPCAeVom9LHL8IVVEabW2Quyv310SSjchENpbEt058fkc3_nOvwP4qiwqiXUuUBGVMBMZXjnpA2szdAZsImNbo33epFcjfn0n7lbOwlBapaej-1QIelw1SMFtihjNcPSoMhS5qwMJcdzHFnEJO51avw4bqUB7vAMbo5vbwQ-qKhdnkjZXsiac-TLvXwtSjdvfhc1FNdWPD7osVxab4QcwT5_Z5Jjc9xfzom9-_4Pg-H_92IHt1hZlg4ZhF9Zc9RG6KwiFe_BzQHo61kzPWJ2iw4YLV7JxxdqtxJLhH6WgkmCTijWsszNWm7DBxAdoXgbYPtOVRU6KVrDb5-Ods30YDS-_X1wFbUmGwCSCz4OU20JlXGjD0fAz0lNE2QnnnbLccZzNhUzSQkbCavS0EuOVsugRcSot6p1PDqBTTSr3CRj6NcokUVw4LbiViSrSCJUmQ44w0qnoQfg0Lrlp8cqpbEaZo99C4str8eUkvrwRXw9OlizTBqzjNeJzGuwlIeFs1w9wqPJ2qHKLlGloQy0N5xZ7I71z0kRGCx-ZUPXg21JV3n7l4buoj2CL7mgjOY4_Q2f-a-G-oAU0L45bFf8D8d8DPQ priority: 102 providerName: Unpaywall |
| Title | Ammonia as Green Fuel in Internal Combustion Engines: State-of-the-Art and Future Perspectives |
| URI | https://www.frontiersin.org/articles/10.3389/fmech.2022.944201/pdf https://doaj.org/article/d42060d0a7c44dcf87fee7c1ca5f1c08 |
| UnpaywallVersion | publishedVersion |
| Volume | 8 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2297-3079 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001878981 issn: 2297-3079 databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2297-3079 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001878981 issn: 2297-3079 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2297-3079 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001878981 issn: 2297-3079 databaseCode: ADMLS dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2297-3079 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001878981 issn: 2297-3079 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5SD9qD-MT6KDl4Ulb3kWyy3tZHKaKloIV6ccnmAYVlW2yL-O-dZLe1J3vxtrtksuGbCZnJJN8gdMEVGInS2uOBLWFGE3jSzHhKJRAMqIiFyrF99uLugDwN6XCl1Jc9E1bRA1fA3SgS-rGvfMEkIUoazozWTAZSUBPI6pqvz5OVYMrtrnDGEx5UaUyIwhJQk3bJhzC8hlGEdRGYxULk-PqbaGteTsT3lyiKlUWms4t2au8Qp9Wo9tCGLvdRc4Uz8AB9pNZyRgKLKXaHZnBnrgs8KnG9uVdgmOO5LdI1LnElOr3Fzqn0xsYDh8-D_rEoFUja_AHu_164nB6iQefx7b7r1UUSPBlRMvNionKeECokAVdMMmNzvJpqo7kimsD8ylkU5yygSkDsEwGCXEGMQmyxT6NNdIQa5bjUxwhDpMFlFIS5FpQoFvE8DkCNCUj4gYhpC_kLxDJZM4jbQhZFBpGEBTlzIGcW5KwCuYUulyKTij7jr8Z3Vg3Lhpb52n0Ae8hqe8jW2UMLXS2VuP6XJ__xy1O0bbu0O75heIYas8-5PgdXZZa30Wb68PL82nbWCW-DXj99_wF72-nD |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9BeYA-MBigFTbkhz0xpeTDjh3eCqJCPCAeVom9LHL8IVVEabW2Quyv310SSjchENpbEt058fkc3_nOvwP4qiwqiXUuUBGVMBMZXjnpA2szdAZsImNbo33epFcjfn0n7lbOwlBapaej-1QIelw1SMFtihjNcPSoMhS5qwMJcdzHFnEJO51avw4bqUB7vAMbo5vbwQ-qKhdnkjZXsiac-TLvXwtSjdvfhc1FNdWPD7osVxab4QcwT5_Z5Jjc9xfzom9-_4Pg-H_92IHt1hZlg4ZhF9Zc9RG6KwiFe_BzQHo61kzPWJ2iw4YLV7JxxdqtxJLhH6WgkmCTijWsszNWm7DBxAdoXgbYPtOVRU6KVrDb5-Ods30YDS-_X1wFbUmGwCSCz4OU20JlXGjD0fAz0lNE2QnnnbLccZzNhUzSQkbCavS0EuOVsugRcSot6p1PDqBTTSr3CRj6NcokUVw4LbiViSrSCJUmQ44w0qnoQfg0Lrlp8cqpbEaZo99C4str8eUkvrwRXw9OlizTBqzjNeJzGuwlIeFs1w9wqPJ2qHKLlGloQy0N5xZ7I71z0kRGCx-ZUPXg21JV3n7l4buoj2CL7mgjOY4_Q2f-a-G-oAU0L45bFf8D8d8DPQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ammonia+as+Green+Fuel+in+Internal+Combustion+Engines%3A+State-of-the-Art+and+Future+Perspectives&rft.jtitle=Frontiers+in+mechanical+engineering&rft.au=Cinzia+Tornatore&rft.au=Luca+Marchitto&rft.au=Pino+Sabia&rft.au=Mara+De+Joannon&rft.date=2022-07-22&rft.pub=Frontiers+Media+S.A&rft.eissn=2297-3079&rft.volume=8&rft_id=info:doi/10.3389%2Ffmech.2022.944201&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d42060d0a7c44dcf87fee7c1ca5f1c08 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2297-3079&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2297-3079&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2297-3079&client=summon |