Bi-Level Optimal Scheduling Strategy of Integrated Energy System Considering Adiabatic Compressed Air Energy Storage and Integrated Demand Response
Aiming at the energy consumption and economic operation of the integrated energy system (IES), this paper proposes an IES operation strategy that combines the adiabatic compressed air energy storage (A-CAES) device and the integrated demand response (IDR) theory with the two-layer optimization model...
        Saved in:
      
    
          | Published in | Journal of electrical engineering & technology Vol. 19; no. 1; pp. 97 - 111 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Singapore
          Springer Nature Singapore
    
        01.01.2024
     Springer Nature B.V 대한전기학회  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1975-0102 2093-7423  | 
| DOI | 10.1007/s42835-023-01529-5 | 
Cover
| Abstract | Aiming at the energy consumption and economic operation of the integrated energy system (IES), this paper proposes an IES operation strategy that combines the adiabatic compressed air energy storage (A-CAES) device and the integrated demand response (IDR) theory with the two-layer optimization model, and comprehensively considers the interaction between the planning and operation of two different time scales. The improved two-level optimal scheduling method in this paper takes IES operators and users as different subjects, and coordinates the output of multiple energy sources on the basis of meeting IES constraints to minimize the cost. The upper layer is the energy network system. The introduced IDR theory participates in the upper layer planning to improve the operation reliability and economy of IES and reduce the total network cost under the IES configuration. The lower layer is the energy hub system. The added A-CAES device is used to improve the imbalance of energy supply and demand of IES and reduce the operation cost of the lower layer power grid. First of all, under the IES framework with electricity, gas and heat as the main demand, preliminary investigation and statistics are conducted on the energy demand of various loads. Secondly, the IES two-layer scheduling model is established. The objective function of economic dispatch is to minimize the operation cost. The CPLEX tool kit of GAMS software is used to solve the problem. Finally, a simulation example shows that the improved two-level optimal scheduling model can effectively restrain the frequent adjustment of unit output caused by load fluctuation. IES operation cost can be effectively reduced by 5.3%. This two-layer optimization model can improve energy utilization, reduce operation cost, improve the accuracy of scheduling plan, and achieve low-carbon economic operation. | 
    
|---|---|
| AbstractList | Aiming at the energy consumption and economic operation of the integrated energy system (IES), this paper proposes an IES operation strategy that combines the adiabatic compressed air energy storage (A-CAES) device and the integrated demand response (IDR) theory with the two-layer optimization model, and comprehensively considers the interaction between the planning and operation of two different time scales. The improved two-level optimal scheduling method in this paper takes IES operators and users as different subjects, and coordinates the output of multiple energy sources on the basis of meeting IES constraints to minimize the cost. The upper layer is the energy network system. The introduced IDR theory participates in the upper layer planning to improve the operation reliability and economy of IES and reduce the total network cost under the IES configuration. The lower layer is the energy hub system. The added A-CAES device is used to improve the imbalance of energy supply and demand of IES and reduce the operation cost of the lower layer power grid. First of all, under the IES framework with electricity, gas and heat as the main demand, preliminary investigation and statistics are conducted on the energy demand of various loads. Secondly, the IES two-layer scheduling model is established. The objective function of economic dispatch is to minimize the operation cost. The CPLEX tool kit of GAMS software is used to solve the problem. Finally, a simulation example shows that the improved two-level optimal scheduling model can effectively restrain the frequent adjustment of unit output caused by load fluctuation. IES operation cost can be effectively reduced by 5.3%. This two-layer optimization model can improve energy utilization, reduce operation cost, improve the accuracy of scheduling plan, and achieve low-carbon economic operation. Aiming at the energy consumption and economic operation of the integrated energy system (IES), this paper proposes an IES operation strategy that combines the adiabatic compressed air energy storage (A-CAES) device and the integrated demand response (IDR) theory with the two-layer optimization model, and comprehensively considers the interaction between the planning and operation of two diferent time scales. The improved two-level optimal scheduling method in this paper takes IES operators and users as diferent subjects, and coordinates the output of multiple energy sources on the basis of meeting IES constraints to minimize the cost. The upper layer is the energy network system. The introduced IDR theory participates in the upper layer planning to improve the operation reliability and economy of IES and reduce the total network cost under the IES confguration. The lower layer is the energy hub system. The added A-CAES device is used to improve the imbalance of energy supply and demand of IES and reduce the operation cost of the lower layer power grid. First of all, under the IES framework with electricity, gas and heat as the main demand, preliminary investigation and statistics are conducted on the energy demand of various loads. Secondly, the IES two-layer scheduling model is established. The objective function of economic dispatch is to minimize the operation cost. The CPLEX tool kit of GAMS software is used to solve the problem. Finally, a simulation example shows that the improved two-level optimal scheduling model can efectively restrain the frequent adjustment of unit output caused by load fuctuation. IES operation cost can be efectively reduced by 5.3%. This two-layer optimization model can improve energy utilization, reduce operation cost, improve the accuracy of scheduling plan, and achieve low-carbon economic operation. KCI Citation Count: 8  | 
    
| Author | Men, Jiakai | 
    
| Author_xml | – sequence: 1 givenname: Jiakai surname: Men fullname: Men, Jiakai email: jiakai1011men@163.com organization: School of Automation and Electrical Engineering, Linyi University  | 
    
| BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003038541$$DAccess content in National Research Foundation of Korea (NRF) | 
    
| BookMark | eNp9kc9O3DAQxq0KpC7QF-gpUm9Iaf1nJ3GOy5a2K62ExMLZcpLJ1pC1U9uLtM_BC9chCBAHTmPP_L5Po_lOyJF1Fgn5yuh3Rmn5I8y5FJBTLnLKgFc5fCIzTiuRl3MujsiMVWUaM8o_k5MQ7igtGAUxI48XJl_jA_bZ1RDNTvfZpvmL7b43dpttotcRt4fMddnKptf4bbNLiz41N4cQcZctnQ2mRT8KFq3RtY6mSd3d4DGEhC-Mf5FE5_UWM23bt4Y_cTd2rjEMyQzPyHGn-4Bfnuspuf11ebP8k6-vfq-Wi3XeCJjHHBAk01VLpdBCF5LVcwFdIRtage60LDnr2ropqC5rLhmrKqjqQuq6S6BkVJyS88nX-k7dN0Y5bZ7q1ql7rxbXNyuVMBAgiwR_m-DBu397DFHdub23aT8lOACHsgSRKDlRjXcheOxUY2I6iLPplKZPdmrMS015qZSXespLQZLyd9LBp0D84WORmERhGANA_7rVB6r_iI-qnw | 
    
| CitedBy_id | crossref_primary_10_1016_j_ecmx_2024_100838 crossref_primary_10_1093_ce_zkae045 crossref_primary_10_1007_s42835_024_01888_7 crossref_primary_10_3390_en17092187 crossref_primary_10_3390_su16188008  | 
    
| Cites_doi | 10.1016/j.enconman.2019.112410 10.1016/j.energy.2022.123914 10.1016/j.scs.2022.104019 10.1016/j.energy.2021.122317 10.1016/j.enconman.2021.113932 10.1007/s11356-022-21036-w 10.1016/j.apenergy.2021.117587 10.1016/j.energy.2020.119311 10.1016/j.est.2022.104126 10.3389/fenrg.2022.901529 10.1016/j.est.2021.102992 10.1016/j.energy.2021.122544 10.1016/j.est.2021.102942 10.1016/j.apenergy.2019.114448 10.1016/j.est.2021.103395 10.1109/TSG.2019.2935736 10.1016/j.apenergy.2020.116163 10.1016/j.ijhydene.2021.01.127 10.1016/j.est.2021.103062 10.3389/fenrg.2022.858119 10.1016/j.renene.2019.07.099 10.1109/TSTE.2019.2931670 10.1016/j.energy.2020.117962 10.1016/j.jclepro.2020.123446 10.1016/j.apenergy.2020.116097 10.3389/fenrg.2022.817503 10.1016/j.energy.2020.118618 10.1016/j.apenergy.2021.117899 10.1016/j.renene.2019.11.121 10.1016/j.est.2022.103984 10.1016/j.energy.2021.120469 10.1016/j.est.2022.104816 10.1016/j.solener.2022.01.059 10.1016/j.est.2022.104207 10.1016/j.apenergy.2020.114769 10.1186/s41601-020-00173-9  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023.  | 
    
| Copyright_xml | – notice: The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023.  | 
    
| DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS ACYCR  | 
    
| DOI | 10.1007/s42835-023-01529-5 | 
    
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Engineering Database (Proquest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Korean Citation Index  | 
    
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Engineering Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection ProQuest One Academic UKI Edition ProQuest Central Korea Materials Science & Engineering Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Engineering Collection  | 
    
| DatabaseTitleList | Advanced Technologies & Aerospace Collection | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2093-7423 | 
    
| EndPage | 111 | 
    
| ExternalDocumentID | oai_kci_go_kr_ARTI_10353586 10_1007_s42835_023_01529_5  | 
    
| GroupedDBID | -~X .UV 0R~ 2WC 406 9ZL AACDK AAHNG AAJBT AASML AATNV AAUYE AAYYP ABAKF ABECU ABFTV ABJNI ABKCH ABMQK ABTEG ABTKH ABTMW ACAOD ACDTI ACHSB ACOKC ACPIV ACZOJ ADKNI ADTPH ADURQ ADYFF AEFQL AEMSY AENEX AESKC AFBBN AFQWF AGDGC AGMZJ AGQEE AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AXYYD BGNMA CSCUP DBRKI DPUIP EBLON EBS EJD FIGPU FNLPD FRJ GGCAI GW5 IKXTQ IWAJR JDI JZLTJ KOV KVFHK LLZTM M4Y NPVJJ NQJWS NU0 OK1 PT4 ROL RSV SJYHP SNE SNPRN SOHCF SOJ SRMVM SSLCW TDB UOJIU UTJUX VEKWB VFIZW ZMTXR AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 8FE 8FG ABJCF AEUYN AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO HCIFZ L6V M7S P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS ACYCR  | 
    
| ID | FETCH-LOGICAL-c354t-5e581a9d083a3a681b435f68c095afa8721fdbc60a7b28119959b68abfb438103 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1975-0102 | 
    
| IngestDate | Fri Sep 19 03:10:32 EDT 2025 Thu Oct 02 16:24:50 EDT 2025 Thu Apr 24 22:55:21 EDT 2025 Wed Oct 01 01:13:15 EDT 2025 Fri Feb 21 02:40:33 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Integrated energy system Economic operation Integrated demand response Bi-level optimal Adiabatic compressed air energy storage  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c354t-5e581a9d083a3a681b435f68c095afa8721fdbc60a7b28119959b68abfb438103 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 3255257753 | 
    
| PQPubID | 7435074 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10353586 proquest_journals_3255257753 crossref_citationtrail_10_1007_s42835_023_01529_5 crossref_primary_10_1007_s42835_023_01529_5 springer_journals_10_1007_s42835_023_01529_5  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20240100 | 
    
| PublicationDateYYYYMMDD | 2024-01-01 | 
    
| PublicationDate_xml | – month: 1 year: 2024 text: 20240100  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Singapore | 
    
| PublicationPlace_xml | – name: Singapore – name: Seoul  | 
    
| PublicationTitle | Journal of electrical engineering & technology | 
    
| PublicationTitleAbbrev | J. Electr. Eng. Technol | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer Nature Singapore Springer Nature B.V 대한전기학회  | 
    
| Publisher_xml | – name: Springer Nature Singapore – name: Springer Nature B.V – name: 대한전기학회  | 
    
| References | Liu, Zhang, Wu (CR2) 2020; 205 Chang, Yang, Zhang, Zheng, Cui (CR28) 2021; 10 Yunqi, Jing, Yuechuan (CR37) 2022; 239 Weishang, Pingkuo, Xiaole (CR35) 2021; 279 Yaowang, Shihong, Xing (CR39) 2020; 261 Calise, Cappiello, d’Accadia, Vicidomini (CR6) 2021; 234 Junhong, Xing, Shunjiang (CR18) 2022; 10 Panda, Mishra, Aviso (CR25) 2020; 205 Yaohua, Ning, Baosen (CR10) 2020; 11 Mehdi, Abouzar (CR38) 2021; 282 Wei, Mark, Marcus (CR29) 2021; 282 Pérez-Iribarren, González-Pino, Azkorra-Larrinaga (CR5) 2020; 265 Zhu Mengting, Chengsi (CR12) 2021; 6 Akbari-Dibavar, Tabar, Zadeh, Nourollahi (CR7) 2021; 46 Akbari-Dibavar, Tabar, Zadeh, Nourollahi (CR8) 2018; 42 Liu, Tang, Zhang (CR19) 2020; 211 Tostado-Véliz, Kamel, Hasanien, Turky, Jurado (CR4) 2022; 84 Jian, Xinyue, Rui (CR21) 2022; 53 Bennett, Simpson, Qin, Fittro, Koenig, Clarens, Loth (CR26) 2021; 303 Janusz, Wojciech (CR15) 2021; 227 Azizivahed, Razavi, Arefi, Ghadi, Li, Zhang, Shafie-khah, Catalão (CR27) 2020; 11 Guo, Xiang (CR9) 2022; 10 Sharma, Kolhe, Sharma (CR23) 2020; 145 Narula, de Oliveira, Villasmil, Patel (CR24) 2020; 151 Wang, Zhao, Su, Siqin, Zhao, Wang (CR30) 2022; 29 Jiayu, Wei, Laijun (CR33) 2022; 50 Xi, Hossein, Zihang (CR13) 2022; 50 Minglei, Qian, Hongjian (CR22) 2022; 305 Xiao, Sun, Sun (CR14) 2021; 44 Jiacheng, Zhijian, Ying (CR20) 2022; 182 Farzam, Hossein, Nicu (CR16) 2022; 48 Huang, Jing, Shan (CR31) 2021; 42 Liu, Guo, Li, Wu, Zhang, Yang, Ge, Cai (CR3) 2021; 41 Cesena, Loukarakis, Good, Mancarella (CR11) 2020; 108 Germán, Rafael, Jos (CR34) 2022; 242 Wu, Han, Liu, Li, Ma, Zhang, Yin, Yang (CR1) 2020; 217 Kumar, Maharjan, Srinivasan (CR17) 2022; 234 Han, Ma, Wu, Zhang, Dong, Li, Xiao (CR32) 2021; 41 Zhu, Yuanzhang, Jun, Zhenlan (CR36) 2022; 251 DS Kumar (1529_CR17) 2022; 234 Z Xi (1529_CR13) 2022; 50 A Panda (1529_CR25) 2020; 205 Y Minglei (1529_CR22) 2022; 305 B Jiayu (1529_CR33) 2022; 50 N Mehdi (1529_CR38) 2021; 282 Xu Zhu (1529_CR36) 2022; 251 X Wang (1529_CR30) 2022; 29 Yu Huang (1529_CR31) 2021; 42 M Tostado-Véliz (1529_CR4) 2022; 84 JA Bennett (1529_CR26) 2021; 303 A Azizivahed (1529_CR27) 2020; 11 K Janusz (1529_CR15) 2021; 227 E Pérez-Iribarren (1529_CR5) 2020; 265 L Jian (1529_CR21) 2022; 53 K Narula (1529_CR24) 2020; 151 W Yunqi (1529_CR37) 2022; 239 Xu Zhu Mengting (1529_CR12) 2021; 6 G Weishang (1529_CR35) 2021; 279 J Chang (1529_CR28) 2021; 10 T Liu (1529_CR2) 2020; 205 J Liu (1529_CR19) 2020; 211 Li Yaowang (1529_CR39) 2020; 261 P Sharma (1529_CR23) 2020; 145 EA Cesena (1529_CR11) 2020; 108 M Farzam (1529_CR16) 2022; 48 Y Xiao (1529_CR14) 2021; 44 He Wei (1529_CR29) 2021; 282 A Akbari-Dibavar (1529_CR7) 2021; 46 G Jiacheng (1529_CR20) 2022; 182 F Calise (1529_CR6) 2021; 234 D Wu (1529_CR1) 2020; 217 Z Liu (1529_CR3) 2021; 41 Y Guo (1529_CR9) 2022; 10 Z Han (1529_CR32) 2021; 41 A Akbari-Dibavar (1529_CR8) 2018; 42 C Yaohua (1529_CR10) 2020; 11 H Junhong (1529_CR18) 2022; 10 M-E Germán (1529_CR34) 2022; 242  | 
    
| References_xml | – volume: 205 start-page: 112410 year: 2020 ident: CR2 article-title: Standardised modelling and optimisation of a system of interconnected energy hubs considering multiple energies—electricity, gas, heating, and cooling publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.112410 – volume: 251 year: 2022 ident: CR36 article-title: Day-ahead energy pricing and management method for regional integrated energy systems considering multi-energy demand responses publication-title: Energy doi: 10.1016/j.energy.2022.123914 – volume: 84 start-page: 104019 year: 2022 ident: CR4 article-title: Optimal energy management of cooperative energy communities considering flexible demand, storage and vehicle-to-grid under uncertainties publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2022.104019 – volume: 239 year: 2022 ident: CR37 article-title: Robust energy systems scheduling considering uncertainties and demand side emission impacts publication-title: Energy doi: 10.1016/j.energy.2021.122317 – volume: 6 start-page: 1 issue: 1 year: 2021 end-page: 12 ident: CR12 article-title: An integrated multi-energy flow calculation method for electricity-gas-thermal integrated energy systems publication-title: Protect Control Modern Power Syst – volume: 234 start-page: 113932 year: 2021 ident: CR6 article-title: Smart grid energy district based on the integration of electric vehicles and combined heat and power generation publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.113932 – volume: 29 start-page: 73577 year: 2022 end-page: 73598 ident: CR30 article-title: Value quantification of multiple energy storage to low-carbon combined heat and power system publication-title: Environ Sci Pollut Res Int doi: 10.1007/s11356-022-21036-w – volume: 303 start-page: 117587 year: 2021 ident: CR26 article-title: Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117587 – volume: 217 start-page: 119311 year: 2020 ident: CR1 article-title: Comparative study of optimization method and optimal operation strategy for multi-scenario integrated energy system publication-title: Energy doi: 10.1016/j.energy.2020.119311 – volume: 50 year: 2022 ident: CR13 article-title: Values of latent heat and thermochemical energy storage technologies in low-carbon energy systems: Whole system approach publication-title: J Energy Storage doi: 10.1016/j.est.2022.104126 – volume: 10 start-page: 901529 year: 2021 ident: CR28 article-title: Multi-Objective Optimal Source-Load Interaction Scheduling of Combined Heat and Power Microgrid Considering Stable Supply and Demand publication-title: Front Energy Res doi: 10.3389/fenrg.2022.901529 – volume: 42 start-page: 128 issue: 4 year: 2018 end-page: 134 ident: CR8 article-title: Optimization strategy of AC/DC hybrid power supply in multi energy system considering environmental factors publication-title: Autom Electr Power Syst – volume: 41 start-page: 102992 year: 2021 ident: CR3 article-title: Multi-scenario analysis and collaborative optimization of a novel distributed energy system coupled with hybrid energy storage for a nearly zero-energy community publication-title: J Energy Storage doi: 10.1016/j.est.2021.102992 – volume: 242 year: 2022 ident: CR34 article-title: Classifying and modelling demand response in power systems publication-title: Energy doi: 10.1016/j.energy.2021.122544 – volume: 41 start-page: 102942 year: 2021 ident: CR32 article-title: Collaborative optimization method and operation performances for a novel integrated energy system containing adiabatic compressed air energy storage and organic Rankine cycle publication-title: J Energy Storage doi: 10.1016/j.est.2021.102942 – volume: 261 year: 2020 ident: CR39 article-title: Dynamic modelling and techno-economic analysis of adiabatic compressed air energy storage for emergency back-up power in supporting microgrid publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114448 – volume: 44 start-page: 103395 year: 2021 ident: CR14 article-title: Dynamic programming based economic day-ahead scheduling of integrated tri-generation energy system with hybrid energy storage publication-title: J Energy Storage doi: 10.1016/j.est.2021.103395 – volume: 11 start-page: 1307 issue: 2 year: 2020 end-page: 1318 ident: CR10 article-title: Low-carbon operation of multiple energy systems based on energy-carbon integrated prices publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2019.2935736 – volume: 282 year: 2021 ident: CR38 article-title: Integration of designing price-based demand response models into a stochastic bi-level scheduling of multiple energy carrier microgrids considering energy storage systems publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.116163 – volume: 46 start-page: 12701 issue: 24 year: 2021 end-page: 12714 ident: CR7 article-title: Two-stage robust energy management of a hybrid charging station integrated with the photovoltaic system publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2021.01.127 – volume: 42 year: 2021 ident: CR31 article-title: Incomplete information oriented optimal scheduling of multi-energy hub systems with thermal energy storage publication-title: J Energy Storage doi: 10.1016/j.est.2021.103062 – volume: 10 year: 2022 ident: CR9 article-title: Low-Carbon Strategic planning of integrated energy systems publication-title: Front Energy Res doi: 10.3389/fenrg.2022.858119 – volume: 145 start-page: 1901 year: 2020 end-page: 1909 ident: CR23 article-title: Economic performance assessment of building integrated photovoltaic system with battery energy storage under grid constraints publication-title: Renew Energy doi: 10.1016/j.renene.2019.07.099 – volume: 11 start-page: 1569 issue: 3 year: 2020 end-page: 1578 ident: CR27 article-title: Risk-oriented multi-area economic dispatch solution with high penetration of wind power generation and compressed air energy storage system publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2019.2931670 – volume: 205 start-page: 117962 year: 2020 ident: CR25 article-title: Optimizing hybrid power systems with compressed air energy storage publication-title: Energy doi: 10.1016/j.energy.2020.117962 – volume: 279 year: 2021 ident: CR35 article-title: Optimal dispatching of electric-thermal interconnected virtual power plant considering market trading mechanism publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.123446 – volume: 108 start-page: 2989382 issue: 9 year: 2020 ident: CR11 article-title: Integrated Electricity-heat-gas systems: techno-economic modeling, optimization, and application to multienergy districts publication-title: Proc IEEE – volume: 282 year: 2021 ident: CR29 article-title: Techno-economic analysis of bulk-scale compressed air energy storage in power system decarbonisation publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.116097 – volume: 10 year: 2022 ident: CR18 article-title: Dynamic modeling and flexibility analysis of an integrated electrical and thermal energy system with the heat pump-thermal storage publication-title: Front Energy Res doi: 10.3389/fenrg.2022.817503 – volume: 182 start-page: 11 year: 2022 end-page: 035 ident: CR20 article-title: Thermodynamic performance analyses and optimization design method of a novel distributed energy system coupled with hybrid-energy storage publication-title: Renew Energy – volume: 211 year: 2020 ident: CR19 article-title: Performance evaluation of the hybrid photovoltaic-thermoelectric system with light and heat management publication-title: Energy doi: 10.1016/j.energy.2020.118618 – volume: 305 year: 2022 ident: CR22 article-title: Digital twins based day-ahead integrated energy system scheduling under load and renewable energy uncertainties publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117899 – volume: 151 start-page: 1250 year: 2020 end-page: 1268 ident: CR24 article-title: Simulation method for assessing hourly energy flows in district heating system with seasonal thermal energy storage publication-title: Renew Energy doi: 10.1016/j.renene.2019.11.121 – volume: 48 year: 2022 ident: CR16 article-title: Developing optimal energy management of integrated energy systems in the hybrid electricity and gas networks publication-title: J Energy Storage doi: 10.1016/j.est.2022.103984 – volume: 227 year: 2021 ident: CR15 article-title: Analysis of the integrated energy system in residential scale: photovoltaics, micro-cogeneration and electrical energy storage publication-title: Energy doi: 10.1016/j.energy.2021.120469 – volume: 53 year: 2022 ident: CR21 article-title: Economic dispatch for electricity merchant with energy storage and wind plant: state of charge based decision making considering market impact and uncertainties publication-title: J Energy Storage doi: 10.1016/j.est.2022.104816 – volume: 234 start-page: 377 year: 2022 end-page: 386 ident: CR17 article-title: Ramp-rate limiting strategies to alleviate the impact of PV power ramping on voltage fluctuations using energy storage systems publication-title: Sol Energy doi: 10.1016/j.solener.2022.01.059 – volume: 50 year: 2022 ident: CR33 article-title: Robust online operation of power systems with advanced adiabatic compressed air energy storage and renewable generation publication-title: J Energy Storage doi: 10.1016/j.est.2022.104207 – volume: 265 year: 2020 ident: CR5 article-title: Optimal design and operation of thermal energy storage systems in micro-cogeneration plants publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.114769 – volume: 261 year: 2020 ident: 1529_CR39 publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114448 – volume: 205 start-page: 117962 year: 2020 ident: 1529_CR25 publication-title: Energy doi: 10.1016/j.energy.2020.117962 – volume: 50 year: 2022 ident: 1529_CR33 publication-title: J Energy Storage doi: 10.1016/j.est.2022.104207 – volume: 251 year: 2022 ident: 1529_CR36 publication-title: Energy doi: 10.1016/j.energy.2022.123914 – volume: 10 year: 2022 ident: 1529_CR9 publication-title: Front Energy Res doi: 10.3389/fenrg.2022.858119 – volume: 205 start-page: 112410 year: 2020 ident: 1529_CR2 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2019.112410 – volume: 182 start-page: 11 year: 2022 ident: 1529_CR20 publication-title: Renew Energy – volume: 6 start-page: 1 issue: 1 year: 2021 ident: 1529_CR12 publication-title: Protect Control Modern Power Syst doi: 10.1186/s41601-020-00173-9 – volume: 282 year: 2021 ident: 1529_CR29 publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.116097 – volume: 44 start-page: 103395 year: 2021 ident: 1529_CR14 publication-title: J Energy Storage doi: 10.1016/j.est.2021.103395 – volume: 303 start-page: 117587 year: 2021 ident: 1529_CR26 publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117587 – volume: 239 year: 2022 ident: 1529_CR37 publication-title: Energy doi: 10.1016/j.energy.2021.122317 – volume: 46 start-page: 12701 issue: 24 year: 2021 ident: 1529_CR7 publication-title: Int J Hydrog Energy doi: 10.1016/j.ijhydene.2021.01.127 – volume: 53 year: 2022 ident: 1529_CR21 publication-title: J Energy Storage doi: 10.1016/j.est.2022.104816 – volume: 42 start-page: 128 issue: 4 year: 2018 ident: 1529_CR8 publication-title: Autom Electr Power Syst – volume: 242 year: 2022 ident: 1529_CR34 publication-title: Energy doi: 10.1016/j.energy.2021.122544 – volume: 11 start-page: 1307 issue: 2 year: 2020 ident: 1529_CR10 publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2019.2935736 – volume: 10 start-page: 901529 year: 2021 ident: 1529_CR28 publication-title: Front Energy Res doi: 10.3389/fenrg.2022.901529 – volume: 11 start-page: 1569 issue: 3 year: 2020 ident: 1529_CR27 publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2019.2931670 – volume: 145 start-page: 1901 year: 2020 ident: 1529_CR23 publication-title: Renew Energy doi: 10.1016/j.renene.2019.07.099 – volume: 42 year: 2021 ident: 1529_CR31 publication-title: J Energy Storage doi: 10.1016/j.est.2021.103062 – volume: 84 start-page: 104019 year: 2022 ident: 1529_CR4 publication-title: Sustain Cities Soc doi: 10.1016/j.scs.2022.104019 – volume: 265 year: 2020 ident: 1529_CR5 publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.114769 – volume: 217 start-page: 119311 year: 2020 ident: 1529_CR1 publication-title: Energy doi: 10.1016/j.energy.2020.119311 – volume: 50 year: 2022 ident: 1529_CR13 publication-title: J Energy Storage doi: 10.1016/j.est.2022.104126 – volume: 234 start-page: 377 year: 2022 ident: 1529_CR17 publication-title: Sol Energy doi: 10.1016/j.solener.2022.01.059 – volume: 151 start-page: 1250 year: 2020 ident: 1529_CR24 publication-title: Renew Energy doi: 10.1016/j.renene.2019.11.121 – volume: 279 year: 2021 ident: 1529_CR35 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.123446 – volume: 211 year: 2020 ident: 1529_CR19 publication-title: Energy doi: 10.1016/j.energy.2020.118618 – volume: 10 year: 2022 ident: 1529_CR18 publication-title: Front Energy Res doi: 10.3389/fenrg.2022.817503 – volume: 282 year: 2021 ident: 1529_CR38 publication-title: Appl Energy doi: 10.1016/j.apenergy.2020.116163 – volume: 227 year: 2021 ident: 1529_CR15 publication-title: Energy doi: 10.1016/j.energy.2021.120469 – volume: 305 year: 2022 ident: 1529_CR22 publication-title: Appl Energy doi: 10.1016/j.apenergy.2021.117899 – volume: 108 start-page: 2989382 issue: 9 year: 2020 ident: 1529_CR11 publication-title: Proc IEEE – volume: 41 start-page: 102942 year: 2021 ident: 1529_CR32 publication-title: J Energy Storage doi: 10.1016/j.est.2021.102942 – volume: 41 start-page: 102992 year: 2021 ident: 1529_CR3 publication-title: J Energy Storage doi: 10.1016/j.est.2021.102992 – volume: 29 start-page: 73577 year: 2022 ident: 1529_CR30 publication-title: Environ Sci Pollut Res Int doi: 10.1007/s11356-022-21036-w – volume: 48 year: 2022 ident: 1529_CR16 publication-title: J Energy Storage doi: 10.1016/j.est.2022.103984 – volume: 234 start-page: 113932 year: 2021 ident: 1529_CR6 publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2021.113932  | 
    
| SSID | ssj0061053 | 
    
| Score | 2.3361518 | 
    
| Snippet | Aiming at the energy consumption and economic operation of the integrated energy system (IES), this paper proposes an IES operation strategy that combines the... | 
    
| SourceID | nrf proquest crossref springer  | 
    
| SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 97 | 
    
| SubjectTerms | Electrical Engineering Electrical Machines and Networks Electronics and Microelectronics Engineering Instrumentation Original Article Power Electronics 전기공학  | 
    
| Title | Bi-Level Optimal Scheduling Strategy of Integrated Energy System Considering Adiabatic Compressed Air Energy Storage and Integrated Demand Response | 
    
| URI | https://link.springer.com/article/10.1007/s42835-023-01529-5 https://www.proquest.com/docview/3255257753 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003038541  | 
    
| Volume | 19 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| ispartofPNX | Journal of Electrical Engineering & Technology, 2024, 19(1), , pp.97-111 | 
    
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2093-7423 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061053 issn: 1975-0102 databaseCode: AFBBN dateStart: 20190101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6t7Qs8IMYP0TEqS_AGFk0cu87DNLWsZUNQ0GDS3iw7jqdqLB1dedjfwT_MnZN0GxJ7ipT4HCnnnL87330H8EZbH2QREi6cG_FMacVzj16KDCJ1w1HQLlAc8stcHZ5kn07l6RbM21oYSqtsbWI01H5ZUIz8vUDsi8sL0fX-5S9OXaPodLVtoWGb1gp-L1KMdaCXEjNWF3qT6fzbcWubEStEXsokH1HKGuX27GyK6SL1GMc9DJ_INOfyzlbVqVbhDgr95-A07kezx_CoAZJsXGt-G7bK6gk8vEUv-BT-TBb8MyUFsa9oGC5w9HdUkafc8zPW0NJes2VgRy1nhGfTWAvIaiJz1rbzJIExhWmJ35WRDYmc456NF6uNCHrvaJyYrfztCQ_KC7pzXOfils_gZDb98eGQN00YeCFktuaylDqxuUeoZoVViHIRYAWlC8RmNliNHmTwrlBDO3KpTqjiO3dKWxdcZA8Tz6FbLavyBbDMBzXUWRZ8SDOXDm1eFHnqS4VODaIa0Yek_d6maBjKqVHGT7PhVo46MqgjE3VkZB_ebmQua36Oe0e_RjWa82JhiFabrmdLc74y6DwcoZCQQmrVh91Wzab5o6_Mzfrrw7tW9TeP___OnftnewkPUsRJdVRnF7rr1e_yFeKctRtAR88-DqA3nk0m80GzlP8Ce8n62A | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71cQAOFU-xpYAl4AQWmzj2OocKbelWu3S7oNJKvbl-xKtVabbdLkL9HfwffhtjJ9m2SPTWU6TEdqTMZPzNeOYbgLdSO8-tTygzpkMzIQXNHXop3LPUtDteGh_ikHsj0T_MvhzxoyX409TChLTKxiZGQ-2mNsTIPzLEvqheiK4_nZ3T0DUqnK42LTR03VrBbUaKsbqwY7e4_IUu3MXmYBvl_S5Nd3oHn_u07jJALePZnPKCy0TnDrGIZlogjEME4YW0CD601xJdJO-MFW3dMalMQklzboTUxptIj8Vw3WVYzViWo_O3utUbfdtv9gLEJpEHM8k7IUUu5BKtL4r3ItUZxT0Tn_A0p_zG1rhczvwN1PvPQW3c_3YewloNXEm30rRHsFSUj-HBNTrDJ_B7a0KHIQmJfEVDdIqjv6NKuJDrPiY1De4lmXoyaDgqHOnF2kNSEaeTpn1omNANYeHAJ0uCzYoc5450J7PFlDlq77ggunTXF9wuTsOd_Sr3t3gKh3cijmewUk7L4jmQzHnRllnmnU8zk7Z1bm2eukKgE4UoirUgab63sjUjemjM8UMtuJyjjBTKSEUZKd6C94s5ZxUfyK2j36AY1YmdqEDjHa7jqTqZKXRWBjiJccalaMFGI2ZVW5ALdaXvLfjQiP7q8f_fuX77aq_hXv9gb6iGg9HuC7ifIkarIkobsDKf_SxeIsaam1e1IhM4vut_5y9jpTSJ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi-Level+Optimal+Scheduling+Strategy+of+Integrated+Energy+System+Considering+Adiabatic+Compressed+Air+Energy+Storage+and+Integrated+Demand+Response&rft.jtitle=Journal+of+electrical+engineering+%26+technology&rft.au=Men+Jiakai&rft.date=2024-01-01&rft.pub=%EB%8C%80%ED%95%9C%EC%A0%84%EA%B8%B0%ED%95%99%ED%9A%8C&rft.issn=1975-0102&rft.eissn=2093-7423&rft.spage=97&rft.epage=111&rft_id=info:doi/10.1007%2Fs42835-023-01529-5&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10353586 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1975-0102&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1975-0102&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1975-0102&client=summon |