Bi-Level Optimal Scheduling Strategy of Integrated Energy System Considering Adiabatic Compressed Air Energy Storage and Integrated Demand Response

Aiming at the energy consumption and economic operation of the integrated energy system (IES), this paper proposes an IES operation strategy that combines the adiabatic compressed air energy storage (A-CAES) device and the integrated demand response (IDR) theory with the two-layer optimization model...

Full description

Saved in:
Bibliographic Details
Published inJournal of electrical engineering & technology Vol. 19; no. 1; pp. 97 - 111
Main Author Men, Jiakai
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.01.2024
Springer Nature B.V
대한전기학회
Subjects
Online AccessGet full text
ISSN1975-0102
2093-7423
DOI10.1007/s42835-023-01529-5

Cover

Abstract Aiming at the energy consumption and economic operation of the integrated energy system (IES), this paper proposes an IES operation strategy that combines the adiabatic compressed air energy storage (A-CAES) device and the integrated demand response (IDR) theory with the two-layer optimization model, and comprehensively considers the interaction between the planning and operation of two different time scales. The improved two-level optimal scheduling method in this paper takes IES operators and users as different subjects, and coordinates the output of multiple energy sources on the basis of meeting IES constraints to minimize the cost. The upper layer is the energy network system. The introduced IDR theory participates in the upper layer planning to improve the operation reliability and economy of IES and reduce the total network cost under the IES configuration. The lower layer is the energy hub system. The added A-CAES device is used to improve the imbalance of energy supply and demand of IES and reduce the operation cost of the lower layer power grid. First of all, under the IES framework with electricity, gas and heat as the main demand, preliminary investigation and statistics are conducted on the energy demand of various loads. Secondly, the IES two-layer scheduling model is established. The objective function of economic dispatch is to minimize the operation cost. The CPLEX tool kit of GAMS software is used to solve the problem. Finally, a simulation example shows that the improved two-level optimal scheduling model can effectively restrain the frequent adjustment of unit output caused by load fluctuation. IES operation cost can be effectively reduced by 5.3%. This two-layer optimization model can improve energy utilization, reduce operation cost, improve the accuracy of scheduling plan, and achieve low-carbon economic operation.
AbstractList Aiming at the energy consumption and economic operation of the integrated energy system (IES), this paper proposes an IES operation strategy that combines the adiabatic compressed air energy storage (A-CAES) device and the integrated demand response (IDR) theory with the two-layer optimization model, and comprehensively considers the interaction between the planning and operation of two different time scales. The improved two-level optimal scheduling method in this paper takes IES operators and users as different subjects, and coordinates the output of multiple energy sources on the basis of meeting IES constraints to minimize the cost. The upper layer is the energy network system. The introduced IDR theory participates in the upper layer planning to improve the operation reliability and economy of IES and reduce the total network cost under the IES configuration. The lower layer is the energy hub system. The added A-CAES device is used to improve the imbalance of energy supply and demand of IES and reduce the operation cost of the lower layer power grid. First of all, under the IES framework with electricity, gas and heat as the main demand, preliminary investigation and statistics are conducted on the energy demand of various loads. Secondly, the IES two-layer scheduling model is established. The objective function of economic dispatch is to minimize the operation cost. The CPLEX tool kit of GAMS software is used to solve the problem. Finally, a simulation example shows that the improved two-level optimal scheduling model can effectively restrain the frequent adjustment of unit output caused by load fluctuation. IES operation cost can be effectively reduced by 5.3%. This two-layer optimization model can improve energy utilization, reduce operation cost, improve the accuracy of scheduling plan, and achieve low-carbon economic operation.
Aiming at the energy consumption and economic operation of the integrated energy system (IES), this paper proposes an IES operation strategy that combines the adiabatic compressed air energy storage (A-CAES) device and the integrated demand response (IDR) theory with the two-layer optimization model, and comprehensively considers the interaction between the planning and operation of two diferent time scales. The improved two-level optimal scheduling method in this paper takes IES operators and users as diferent subjects, and coordinates the output of multiple energy sources on the basis of meeting IES constraints to minimize the cost. The upper layer is the energy network system. The introduced IDR theory participates in the upper layer planning to improve the operation reliability and economy of IES and reduce the total network cost under the IES confguration. The lower layer is the energy hub system. The added A-CAES device is used to improve the imbalance of energy supply and demand of IES and reduce the operation cost of the lower layer power grid. First of all, under the IES framework with electricity, gas and heat as the main demand, preliminary investigation and statistics are conducted on the energy demand of various loads. Secondly, the IES two-layer scheduling model is established. The objective function of economic dispatch is to minimize the operation cost. The CPLEX tool kit of GAMS software is used to solve the problem. Finally, a simulation example shows that the improved two-level optimal scheduling model can efectively restrain the frequent adjustment of unit output caused by load fuctuation. IES operation cost can be efectively reduced by 5.3%. This two-layer optimization model can improve energy utilization, reduce operation cost, improve the accuracy of scheduling plan, and achieve low-carbon economic operation. KCI Citation Count: 8
Author Men, Jiakai
Author_xml – sequence: 1
  givenname: Jiakai
  surname: Men
  fullname: Men, Jiakai
  email: jiakai1011men@163.com
  organization: School of Automation and Electrical Engineering, Linyi University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003038541$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kc9O3DAQxq0KpC7QF-gpUm9Iaf1nJ3GOy5a2K62ExMLZcpLJ1pC1U9uLtM_BC9chCBAHTmPP_L5Po_lOyJF1Fgn5yuh3Rmn5I8y5FJBTLnLKgFc5fCIzTiuRl3MujsiMVWUaM8o_k5MQ7igtGAUxI48XJl_jA_bZ1RDNTvfZpvmL7b43dpttotcRt4fMddnKptf4bbNLiz41N4cQcZctnQ2mRT8KFq3RtY6mSd3d4DGEhC-Mf5FE5_UWM23bt4Y_cTd2rjEMyQzPyHGn-4Bfnuspuf11ebP8k6-vfq-Wi3XeCJjHHBAk01VLpdBCF5LVcwFdIRtage60LDnr2ropqC5rLhmrKqjqQuq6S6BkVJyS88nX-k7dN0Y5bZ7q1ql7rxbXNyuVMBAgiwR_m-DBu397DFHdub23aT8lOACHsgSRKDlRjXcheOxUY2I6iLPplKZPdmrMS015qZSXespLQZLyd9LBp0D84WORmERhGANA_7rVB6r_iI-qnw
CitedBy_id crossref_primary_10_1016_j_ecmx_2024_100838
crossref_primary_10_1093_ce_zkae045
crossref_primary_10_1007_s42835_024_01888_7
crossref_primary_10_3390_en17092187
crossref_primary_10_3390_su16188008
Cites_doi 10.1016/j.enconman.2019.112410
10.1016/j.energy.2022.123914
10.1016/j.scs.2022.104019
10.1016/j.energy.2021.122317
10.1016/j.enconman.2021.113932
10.1007/s11356-022-21036-w
10.1016/j.apenergy.2021.117587
10.1016/j.energy.2020.119311
10.1016/j.est.2022.104126
10.3389/fenrg.2022.901529
10.1016/j.est.2021.102992
10.1016/j.energy.2021.122544
10.1016/j.est.2021.102942
10.1016/j.apenergy.2019.114448
10.1016/j.est.2021.103395
10.1109/TSG.2019.2935736
10.1016/j.apenergy.2020.116163
10.1016/j.ijhydene.2021.01.127
10.1016/j.est.2021.103062
10.3389/fenrg.2022.858119
10.1016/j.renene.2019.07.099
10.1109/TSTE.2019.2931670
10.1016/j.energy.2020.117962
10.1016/j.jclepro.2020.123446
10.1016/j.apenergy.2020.116097
10.3389/fenrg.2022.817503
10.1016/j.energy.2020.118618
10.1016/j.apenergy.2021.117899
10.1016/j.renene.2019.11.121
10.1016/j.est.2022.103984
10.1016/j.energy.2021.120469
10.1016/j.est.2022.104816
10.1016/j.solener.2022.01.059
10.1016/j.est.2022.104207
10.1016/j.apenergy.2020.114769
10.1186/s41601-020-00173-9
ContentType Journal Article
Copyright The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023.
Copyright_xml – notice: The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s) under exclusive licence to The Korean Institute of Electrical Engineers 2023.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
ACYCR
DOI 10.1007/s42835-023-01529-5
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database (Proquest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Korean Citation Index
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Engineering Collection
DatabaseTitleList Advanced Technologies & Aerospace Collection


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-7423
EndPage 111
ExternalDocumentID oai_kci_go_kr_ARTI_10353586
10_1007_s42835_023_01529_5
GroupedDBID -~X
.UV
0R~
2WC
406
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
AAYYP
ABAKF
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AXYYD
BGNMA
CSCUP
DBRKI
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
FRJ
GGCAI
GW5
IKXTQ
IWAJR
JDI
JZLTJ
KOV
KVFHK
LLZTM
M4Y
NPVJJ
NQJWS
NU0
OK1
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
TDB
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
ACYCR
ID FETCH-LOGICAL-c354t-5e581a9d083a3a681b435f68c095afa8721fdbc60a7b28119959b68abfb438103
IEDL.DBID BENPR
ISSN 1975-0102
IngestDate Fri Sep 19 03:10:32 EDT 2025
Thu Oct 02 16:24:50 EDT 2025
Thu Apr 24 22:55:21 EDT 2025
Wed Oct 01 01:13:15 EDT 2025
Fri Feb 21 02:40:33 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Integrated energy system
Economic operation
Integrated demand response
Bi-level optimal
Adiabatic compressed air energy storage
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-5e581a9d083a3a681b435f68c095afa8721fdbc60a7b28119959b68abfb438103
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3255257753
PQPubID 7435074
PageCount 15
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10353586
proquest_journals_3255257753
crossref_citationtrail_10_1007_s42835_023_01529_5
crossref_primary_10_1007_s42835_023_01529_5
springer_journals_10_1007_s42835_023_01529_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240100
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 1
  year: 2024
  text: 20240100
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Seoul
PublicationTitle Journal of electrical engineering & technology
PublicationTitleAbbrev J. Electr. Eng. Technol
PublicationYear 2024
Publisher Springer Nature Singapore
Springer Nature B.V
대한전기학회
Publisher_xml – name: Springer Nature Singapore
– name: Springer Nature B.V
– name: 대한전기학회
References Liu, Zhang, Wu (CR2) 2020; 205
Chang, Yang, Zhang, Zheng, Cui (CR28) 2021; 10
Yunqi, Jing, Yuechuan (CR37) 2022; 239
Weishang, Pingkuo, Xiaole (CR35) 2021; 279
Yaowang, Shihong, Xing (CR39) 2020; 261
Calise, Cappiello, d’Accadia, Vicidomini (CR6) 2021; 234
Junhong, Xing, Shunjiang (CR18) 2022; 10
Panda, Mishra, Aviso (CR25) 2020; 205
Yaohua, Ning, Baosen (CR10) 2020; 11
Mehdi, Abouzar (CR38) 2021; 282
Wei, Mark, Marcus (CR29) 2021; 282
Pérez-Iribarren, González-Pino, Azkorra-Larrinaga (CR5) 2020; 265
Zhu Mengting, Chengsi (CR12) 2021; 6
Akbari-Dibavar, Tabar, Zadeh, Nourollahi (CR7) 2021; 46
Akbari-Dibavar, Tabar, Zadeh, Nourollahi (CR8) 2018; 42
Liu, Tang, Zhang (CR19) 2020; 211
Tostado-Véliz, Kamel, Hasanien, Turky, Jurado (CR4) 2022; 84
Jian, Xinyue, Rui (CR21) 2022; 53
Bennett, Simpson, Qin, Fittro, Koenig, Clarens, Loth (CR26) 2021; 303
Janusz, Wojciech (CR15) 2021; 227
Azizivahed, Razavi, Arefi, Ghadi, Li, Zhang, Shafie-khah, Catalão (CR27) 2020; 11
Guo, Xiang (CR9) 2022; 10
Sharma, Kolhe, Sharma (CR23) 2020; 145
Narula, de Oliveira, Villasmil, Patel (CR24) 2020; 151
Wang, Zhao, Su, Siqin, Zhao, Wang (CR30) 2022; 29
Jiayu, Wei, Laijun (CR33) 2022; 50
Xi, Hossein, Zihang (CR13) 2022; 50
Minglei, Qian, Hongjian (CR22) 2022; 305
Xiao, Sun, Sun (CR14) 2021; 44
Jiacheng, Zhijian, Ying (CR20) 2022; 182
Farzam, Hossein, Nicu (CR16) 2022; 48
Huang, Jing, Shan (CR31) 2021; 42
Liu, Guo, Li, Wu, Zhang, Yang, Ge, Cai (CR3) 2021; 41
Cesena, Loukarakis, Good, Mancarella (CR11) 2020; 108
Germán, Rafael, Jos (CR34) 2022; 242
Wu, Han, Liu, Li, Ma, Zhang, Yin, Yang (CR1) 2020; 217
Kumar, Maharjan, Srinivasan (CR17) 2022; 234
Han, Ma, Wu, Zhang, Dong, Li, Xiao (CR32) 2021; 41
Zhu, Yuanzhang, Jun, Zhenlan (CR36) 2022; 251
DS Kumar (1529_CR17) 2022; 234
Z Xi (1529_CR13) 2022; 50
A Panda (1529_CR25) 2020; 205
Y Minglei (1529_CR22) 2022; 305
B Jiayu (1529_CR33) 2022; 50
N Mehdi (1529_CR38) 2021; 282
Xu Zhu (1529_CR36) 2022; 251
X Wang (1529_CR30) 2022; 29
Yu Huang (1529_CR31) 2021; 42
M Tostado-Véliz (1529_CR4) 2022; 84
JA Bennett (1529_CR26) 2021; 303
A Azizivahed (1529_CR27) 2020; 11
K Janusz (1529_CR15) 2021; 227
E Pérez-Iribarren (1529_CR5) 2020; 265
L Jian (1529_CR21) 2022; 53
K Narula (1529_CR24) 2020; 151
W Yunqi (1529_CR37) 2022; 239
Xu Zhu Mengting (1529_CR12) 2021; 6
G Weishang (1529_CR35) 2021; 279
J Chang (1529_CR28) 2021; 10
T Liu (1529_CR2) 2020; 205
J Liu (1529_CR19) 2020; 211
Li Yaowang (1529_CR39) 2020; 261
P Sharma (1529_CR23) 2020; 145
EA Cesena (1529_CR11) 2020; 108
M Farzam (1529_CR16) 2022; 48
Y Xiao (1529_CR14) 2021; 44
He Wei (1529_CR29) 2021; 282
A Akbari-Dibavar (1529_CR7) 2021; 46
G Jiacheng (1529_CR20) 2022; 182
F Calise (1529_CR6) 2021; 234
D Wu (1529_CR1) 2020; 217
Z Liu (1529_CR3) 2021; 41
Y Guo (1529_CR9) 2022; 10
Z Han (1529_CR32) 2021; 41
A Akbari-Dibavar (1529_CR8) 2018; 42
C Yaohua (1529_CR10) 2020; 11
H Junhong (1529_CR18) 2022; 10
M-E Germán (1529_CR34) 2022; 242
References_xml – volume: 205
  start-page: 112410
  year: 2020
  ident: CR2
  article-title: Standardised modelling and optimisation of a system of interconnected energy hubs considering multiple energies—electricity, gas, heating, and cooling
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.112410
– volume: 251
  year: 2022
  ident: CR36
  article-title: Day-ahead energy pricing and management method for regional integrated energy systems considering multi-energy demand responses
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123914
– volume: 84
  start-page: 104019
  year: 2022
  ident: CR4
  article-title: Optimal energy management of cooperative energy communities considering flexible demand, storage and vehicle-to-grid under uncertainties
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2022.104019
– volume: 239
  year: 2022
  ident: CR37
  article-title: Robust energy systems scheduling considering uncertainties and demand side emission impacts
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122317
– volume: 6
  start-page: 1
  issue: 1
  year: 2021
  end-page: 12
  ident: CR12
  article-title: An integrated multi-energy flow calculation method for electricity-gas-thermal integrated energy systems
  publication-title: Protect Control Modern Power Syst
– volume: 234
  start-page: 113932
  year: 2021
  ident: CR6
  article-title: Smart grid energy district based on the integration of electric vehicles and combined heat and power generation
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.113932
– volume: 29
  start-page: 73577
  year: 2022
  end-page: 73598
  ident: CR30
  article-title: Value quantification of multiple energy storage to low-carbon combined heat and power system
  publication-title: Environ Sci Pollut Res Int
  doi: 10.1007/s11356-022-21036-w
– volume: 303
  start-page: 117587
  year: 2021
  ident: CR26
  article-title: Techno-economic analysis of offshore isothermal compressed air energy storage in saline aquifers co-located with wind power
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117587
– volume: 217
  start-page: 119311
  year: 2020
  ident: CR1
  article-title: Comparative study of optimization method and optimal operation strategy for multi-scenario integrated energy system
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119311
– volume: 50
  year: 2022
  ident: CR13
  article-title: Values of latent heat and thermochemical energy storage technologies in low-carbon energy systems: Whole system approach
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104126
– volume: 10
  start-page: 901529
  year: 2021
  ident: CR28
  article-title: Multi-Objective Optimal Source-Load Interaction Scheduling of Combined Heat and Power Microgrid Considering Stable Supply and Demand
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2022.901529
– volume: 42
  start-page: 128
  issue: 4
  year: 2018
  end-page: 134
  ident: CR8
  article-title: Optimization strategy of AC/DC hybrid power supply in multi energy system considering environmental factors
  publication-title: Autom Electr Power Syst
– volume: 41
  start-page: 102992
  year: 2021
  ident: CR3
  article-title: Multi-scenario analysis and collaborative optimization of a novel distributed energy system coupled with hybrid energy storage for a nearly zero-energy community
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102992
– volume: 242
  year: 2022
  ident: CR34
  article-title: Classifying and modelling demand response in power systems
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122544
– volume: 41
  start-page: 102942
  year: 2021
  ident: CR32
  article-title: Collaborative optimization method and operation performances for a novel integrated energy system containing adiabatic compressed air energy storage and organic Rankine cycle
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102942
– volume: 261
  year: 2020
  ident: CR39
  article-title: Dynamic modelling and techno-economic analysis of adiabatic compressed air energy storage for emergency back-up power in supporting microgrid
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114448
– volume: 44
  start-page: 103395
  year: 2021
  ident: CR14
  article-title: Dynamic programming based economic day-ahead scheduling of integrated tri-generation energy system with hybrid energy storage
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.103395
– volume: 11
  start-page: 1307
  issue: 2
  year: 2020
  end-page: 1318
  ident: CR10
  article-title: Low-carbon operation of multiple energy systems based on energy-carbon integrated prices
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2935736
– volume: 282
  year: 2021
  ident: CR38
  article-title: Integration of designing price-based demand response models into a stochastic bi-level scheduling of multiple energy carrier microgrids considering energy storage systems
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116163
– volume: 46
  start-page: 12701
  issue: 24
  year: 2021
  end-page: 12714
  ident: CR7
  article-title: Two-stage robust energy management of a hybrid charging station integrated with the photovoltaic system
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2021.01.127
– volume: 42
  year: 2021
  ident: CR31
  article-title: Incomplete information oriented optimal scheduling of multi-energy hub systems with thermal energy storage
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.103062
– volume: 10
  year: 2022
  ident: CR9
  article-title: Low-Carbon Strategic planning of integrated energy systems
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2022.858119
– volume: 145
  start-page: 1901
  year: 2020
  end-page: 1909
  ident: CR23
  article-title: Economic performance assessment of building integrated photovoltaic system with battery energy storage under grid constraints
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.07.099
– volume: 11
  start-page: 1569
  issue: 3
  year: 2020
  end-page: 1578
  ident: CR27
  article-title: Risk-oriented multi-area economic dispatch solution with high penetration of wind power generation and compressed air energy storage system
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2019.2931670
– volume: 205
  start-page: 117962
  year: 2020
  ident: CR25
  article-title: Optimizing hybrid power systems with compressed air energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117962
– volume: 279
  year: 2021
  ident: CR35
  article-title: Optimal dispatching of electric-thermal interconnected virtual power plant considering market trading mechanism
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.123446
– volume: 108
  start-page: 2989382
  issue: 9
  year: 2020
  ident: CR11
  article-title: Integrated Electricity-heat-gas systems: techno-economic modeling, optimization, and application to multienergy districts
  publication-title: Proc IEEE
– volume: 282
  year: 2021
  ident: CR29
  article-title: Techno-economic analysis of bulk-scale compressed air energy storage in power system decarbonisation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116097
– volume: 10
  year: 2022
  ident: CR18
  article-title: Dynamic modeling and flexibility analysis of an integrated electrical and thermal energy system with the heat pump-thermal storage
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2022.817503
– volume: 182
  start-page: 11
  year: 2022
  end-page: 035
  ident: CR20
  article-title: Thermodynamic performance analyses and optimization design method of a novel distributed energy system coupled with hybrid-energy storage
  publication-title: Renew Energy
– volume: 211
  year: 2020
  ident: CR19
  article-title: Performance evaluation of the hybrid photovoltaic-thermoelectric system with light and heat management
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118618
– volume: 305
  year: 2022
  ident: CR22
  article-title: Digital twins based day-ahead integrated energy system scheduling under load and renewable energy uncertainties
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117899
– volume: 151
  start-page: 1250
  year: 2020
  end-page: 1268
  ident: CR24
  article-title: Simulation method for assessing hourly energy flows in district heating system with seasonal thermal energy storage
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.11.121
– volume: 48
  year: 2022
  ident: CR16
  article-title: Developing optimal energy management of integrated energy systems in the hybrid electricity and gas networks
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.103984
– volume: 227
  year: 2021
  ident: CR15
  article-title: Analysis of the integrated energy system in residential scale: photovoltaics, micro-cogeneration and electrical energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120469
– volume: 53
  year: 2022
  ident: CR21
  article-title: Economic dispatch for electricity merchant with energy storage and wind plant: state of charge based decision making considering market impact and uncertainties
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104816
– volume: 234
  start-page: 377
  year: 2022
  end-page: 386
  ident: CR17
  article-title: Ramp-rate limiting strategies to alleviate the impact of PV power ramping on voltage fluctuations using energy storage systems
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2022.01.059
– volume: 50
  year: 2022
  ident: CR33
  article-title: Robust online operation of power systems with advanced adiabatic compressed air energy storage and renewable generation
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104207
– volume: 265
  year: 2020
  ident: CR5
  article-title: Optimal design and operation of thermal energy storage systems in micro-cogeneration plants
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.114769
– volume: 261
  year: 2020
  ident: 1529_CR39
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114448
– volume: 205
  start-page: 117962
  year: 2020
  ident: 1529_CR25
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117962
– volume: 50
  year: 2022
  ident: 1529_CR33
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104207
– volume: 251
  year: 2022
  ident: 1529_CR36
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123914
– volume: 10
  year: 2022
  ident: 1529_CR9
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2022.858119
– volume: 205
  start-page: 112410
  year: 2020
  ident: 1529_CR2
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2019.112410
– volume: 182
  start-page: 11
  year: 2022
  ident: 1529_CR20
  publication-title: Renew Energy
– volume: 6
  start-page: 1
  issue: 1
  year: 2021
  ident: 1529_CR12
  publication-title: Protect Control Modern Power Syst
  doi: 10.1186/s41601-020-00173-9
– volume: 282
  year: 2021
  ident: 1529_CR29
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116097
– volume: 44
  start-page: 103395
  year: 2021
  ident: 1529_CR14
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.103395
– volume: 303
  start-page: 117587
  year: 2021
  ident: 1529_CR26
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117587
– volume: 239
  year: 2022
  ident: 1529_CR37
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122317
– volume: 46
  start-page: 12701
  issue: 24
  year: 2021
  ident: 1529_CR7
  publication-title: Int J Hydrog Energy
  doi: 10.1016/j.ijhydene.2021.01.127
– volume: 53
  year: 2022
  ident: 1529_CR21
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104816
– volume: 42
  start-page: 128
  issue: 4
  year: 2018
  ident: 1529_CR8
  publication-title: Autom Electr Power Syst
– volume: 242
  year: 2022
  ident: 1529_CR34
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122544
– volume: 11
  start-page: 1307
  issue: 2
  year: 2020
  ident: 1529_CR10
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2935736
– volume: 10
  start-page: 901529
  year: 2021
  ident: 1529_CR28
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2022.901529
– volume: 11
  start-page: 1569
  issue: 3
  year: 2020
  ident: 1529_CR27
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2019.2931670
– volume: 145
  start-page: 1901
  year: 2020
  ident: 1529_CR23
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.07.099
– volume: 42
  year: 2021
  ident: 1529_CR31
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.103062
– volume: 84
  start-page: 104019
  year: 2022
  ident: 1529_CR4
  publication-title: Sustain Cities Soc
  doi: 10.1016/j.scs.2022.104019
– volume: 265
  year: 2020
  ident: 1529_CR5
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.114769
– volume: 217
  start-page: 119311
  year: 2020
  ident: 1529_CR1
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119311
– volume: 50
  year: 2022
  ident: 1529_CR13
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104126
– volume: 234
  start-page: 377
  year: 2022
  ident: 1529_CR17
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2022.01.059
– volume: 151
  start-page: 1250
  year: 2020
  ident: 1529_CR24
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2019.11.121
– volume: 279
  year: 2021
  ident: 1529_CR35
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.123446
– volume: 211
  year: 2020
  ident: 1529_CR19
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118618
– volume: 10
  year: 2022
  ident: 1529_CR18
  publication-title: Front Energy Res
  doi: 10.3389/fenrg.2022.817503
– volume: 282
  year: 2021
  ident: 1529_CR38
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.116163
– volume: 227
  year: 2021
  ident: 1529_CR15
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120469
– volume: 305
  year: 2022
  ident: 1529_CR22
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2021.117899
– volume: 108
  start-page: 2989382
  issue: 9
  year: 2020
  ident: 1529_CR11
  publication-title: Proc IEEE
– volume: 41
  start-page: 102942
  year: 2021
  ident: 1529_CR32
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102942
– volume: 41
  start-page: 102992
  year: 2021
  ident: 1529_CR3
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102992
– volume: 29
  start-page: 73577
  year: 2022
  ident: 1529_CR30
  publication-title: Environ Sci Pollut Res Int
  doi: 10.1007/s11356-022-21036-w
– volume: 48
  year: 2022
  ident: 1529_CR16
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.103984
– volume: 234
  start-page: 113932
  year: 2021
  ident: 1529_CR6
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2021.113932
SSID ssj0061053
Score 2.3361518
Snippet Aiming at the energy consumption and economic operation of the integrated energy system (IES), this paper proposes an IES operation strategy that combines the...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 97
SubjectTerms Electrical Engineering
Electrical Machines and Networks
Electronics and Microelectronics
Engineering
Instrumentation
Original Article
Power Electronics
전기공학
Title Bi-Level Optimal Scheduling Strategy of Integrated Energy System Considering Adiabatic Compressed Air Energy Storage and Integrated Demand Response
URI https://link.springer.com/article/10.1007/s42835-023-01529-5
https://www.proquest.com/docview/3255257753
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003038541
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Electrical Engineering & Technology, 2024, 19(1), , pp.97-111
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2093-7423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061053
  issn: 1975-0102
  databaseCode: AFBBN
  dateStart: 20190101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED6t7Qs8IMYP0TEqS_AGFk0cu87DNLWsZUNQ0GDS3iw7jqdqLB1dedjfwT_MnZN0GxJ7ipT4HCnnnL87330H8EZbH2QREi6cG_FMacVzj16KDCJ1w1HQLlAc8stcHZ5kn07l6RbM21oYSqtsbWI01H5ZUIz8vUDsi8sL0fX-5S9OXaPodLVtoWGb1gp-L1KMdaCXEjNWF3qT6fzbcWubEStEXsokH1HKGuX27GyK6SL1GMc9DJ_INOfyzlbVqVbhDgr95-A07kezx_CoAZJsXGt-G7bK6gk8vEUv-BT-TBb8MyUFsa9oGC5w9HdUkafc8zPW0NJes2VgRy1nhGfTWAvIaiJz1rbzJIExhWmJ35WRDYmc456NF6uNCHrvaJyYrfztCQ_KC7pzXOfils_gZDb98eGQN00YeCFktuaylDqxuUeoZoVViHIRYAWlC8RmNliNHmTwrlBDO3KpTqjiO3dKWxdcZA8Tz6FbLavyBbDMBzXUWRZ8SDOXDm1eFHnqS4VODaIa0Yek_d6maBjKqVHGT7PhVo46MqgjE3VkZB_ebmQua36Oe0e_RjWa82JhiFabrmdLc74y6DwcoZCQQmrVh91Wzab5o6_Mzfrrw7tW9TeP___OnftnewkPUsRJdVRnF7rr1e_yFeKctRtAR88-DqA3nk0m80GzlP8Ce8n62A
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB71cQAOFU-xpYAl4AQWmzj2OocKbelWu3S7oNJKvbl-xKtVabbdLkL9HfwffhtjJ9m2SPTWU6TEdqTMZPzNeOYbgLdSO8-tTygzpkMzIQXNHXop3LPUtDteGh_ikHsj0T_MvhzxoyX409TChLTKxiZGQ-2mNsTIPzLEvqheiK4_nZ3T0DUqnK42LTR03VrBbUaKsbqwY7e4_IUu3MXmYBvl_S5Nd3oHn_u07jJALePZnPKCy0TnDrGIZlogjEME4YW0CD601xJdJO-MFW3dMalMQklzboTUxptIj8Vw3WVYzViWo_O3utUbfdtv9gLEJpEHM8k7IUUu5BKtL4r3ItUZxT0Tn_A0p_zG1rhczvwN1PvPQW3c_3YewloNXEm30rRHsFSUj-HBNTrDJ_B7a0KHIQmJfEVDdIqjv6NKuJDrPiY1De4lmXoyaDgqHOnF2kNSEaeTpn1omNANYeHAJ0uCzYoc5450J7PFlDlq77ggunTXF9wuTsOd_Sr3t3gKh3cijmewUk7L4jmQzHnRllnmnU8zk7Z1bm2eukKgE4UoirUgab63sjUjemjM8UMtuJyjjBTKSEUZKd6C94s5ZxUfyK2j36AY1YmdqEDjHa7jqTqZKXRWBjiJccalaMFGI2ZVW5ALdaXvLfjQiP7q8f_fuX77aq_hXv9gb6iGg9HuC7ifIkarIkobsDKf_SxeIsaam1e1IhM4vut_5y9jpTSJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bi-Level+Optimal+Scheduling+Strategy+of+Integrated+Energy+System+Considering+Adiabatic+Compressed+Air+Energy+Storage+and+Integrated+Demand+Response&rft.jtitle=Journal+of+electrical+engineering+%26+technology&rft.au=Men+Jiakai&rft.date=2024-01-01&rft.pub=%EB%8C%80%ED%95%9C%EC%A0%84%EA%B8%B0%ED%95%99%ED%9A%8C&rft.issn=1975-0102&rft.eissn=2093-7423&rft.spage=97&rft.epage=111&rft_id=info:doi/10.1007%2Fs42835-023-01529-5&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_10353586
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1975-0102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1975-0102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1975-0102&client=summon