Radar Target Profiling and Recognition Based on TSI-Optimized Compressive Sensing Kernel

The design of wideband radar systems is often limited by existing analog-to-digital (A/D) converter technology. State-of-the-art A/D rates and high effective number of bits result in rapidly increasing cost and power consumption for the radar system. Therefore, it is useful to consider compressive s...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 62; no. 12; pp. 3194 - 3207
Main Authors Gu, Yujie, Goodman, Nathan A., Ashok, Amit
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 15.06.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2014.2323022

Cover

Abstract The design of wideband radar systems is often limited by existing analog-to-digital (A/D) converter technology. State-of-the-art A/D rates and high effective number of bits result in rapidly increasing cost and power consumption for the radar system. Therefore, it is useful to consider compressive sensing methods that enable reduced sampling rate, and in many applications, prior knowledge of signals of interest can be learned from training data and used to design better compressive measurement kernels. In this paper, we use a task-specific information-based approach to optimizing sensing kernels for high-resolution radar range profiling of man-made targets. We employ a Gaussian mixture (GM) model for the targets and use a Taylor series expansion of the logarithm of the GM probability distribution to enable a closed-form gradient of information with respect to the sensing kernel. The GM model admits nuisance parameters such as target pose angle and range translation. The gradient is then used in a gradient-based approach to search for the optimal sensing kernel. In numerical simulations, we compare the performance of the proposed sensing kernel design to random projections and to lower-bandwidth waveforms that can be sampled at the Nyquist rate. Simulation results demonstrate that the proposed technique for sensing kernel design can significantly improve performance.
AbstractList The design of wideband radar systems is often limited by existing analog-to-digital (A/D) converter technology. State-of-the-art A/D rates and high effective number of bits result in rapidly increasing cost and power consumption for the radar system. Therefore, it is useful to consider compressive sensing methods that enable reduced sampling rate, and in many applications, prior knowledge of signals of interest can be learned from training data and used to design better compressive measurement kernels. In this paper, we use a task-specific information-based approach to optimizing sensing kernels for high-resolution radar range profiling of man-made targets. We employ a Gaussian mixture (GM) model for the targets and use a Taylor series expansion of the logarithm of the GM probability distribution to enable a closed-form gradient of information with respect to the sensing kernel. The GM model admits nuisance parameters such as target pose angle and range translation. The gradient is then used in a gradient-based approach to search for the optimal sensing kernel. In numerical simulations, we compare the performance of the proposed sensing kernel design to random projections and to lower-bandwidth waveforms that can be sampled at the Nyquist rate. Simulation results demonstrate that the proposed technique for sensing kernel design can significantly improve performance.
The design of wideband radar systems is often limited by existing analog-to-digital (A/D) converter technology. State-of-the-art A/D rates and high effective number of bits result in rapidly increasing cost and power consumption for the radar system. Therefore, it is useful to consider compressive sensing methods that enable reduced sampling rate, and in many applications, prior knowledge of signals of interest can be learned from training data and used to design better compressive measurement kernels. In this paper, we use a task-specific information-based approach to optimizing sensing kernels for highresolution radar range profiling of man-made targets. We employ a Gaussian mixture (GM) model for the targets and use a Taylor series expansion of the logarithm of the GM probability distribution to enable a closed-form gradient of information with respect to the sensing kernel. The GM model admits nuisance parameters such as target pose angle and range translation. The gradient is then used in a gradient-based approach to search for the optimal sensing kernel. In numerical simulations, we compare the performance of the proposed sensing kernel design to random projections and to lower-bandwidth waveforms that can be sampled at the Nyquist rate. Simulation results demonstrate that the proposed technique for sensing kernel design can significantly improve performance.
Author Ashok, Amit
Gu, Yujie
Goodman, Nathan A.
Author_xml – sequence: 1
  givenname: Yujie
  surname: Gu
  fullname: Gu, Yujie
  email: guyujie@hotmail.com
  organization: School of Electrical and Computer Engineering, Advanced Radar Research Center, The University of Oklahoma, Norman, OK, USA
– sequence: 2
  givenname: Nathan A.
  surname: Goodman
  fullname: Goodman, Nathan A.
  email: goodman@ou.edu
  organization: Advanced Radar Research Center, The University of Oklahoma, Norman, OK, USA
– sequence: 3
  givenname: Amit
  surname: Ashok
  fullname: Ashok, Amit
  email: ashoka@optics.arizona.edu
  organization: College of Optical Science, The University of Arizona, Tucson, AZ, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28604182$$DView record in Pascal Francis
BookMark eNp9kU1rGzEQhkVJoLHTe6GXhVDoZR19r_bYmqY1CTjELuQmxruzRmYtudI60P76yNjJIYec9CKeZxjmHZEzHzwS8pnRCWO0vl4u7iecMjnhggvK-QdywWrJSiorfZYzVaJUpnr8SEYpbWgmZa0vyOMDtBCLJcQ1DsV9DJ3rnV8X4NviAZuw9m5wwRc_IGFb5LBczMr5bnBb9z9_TMN2FzEl94TFAn06qLcYPfaX5LyDPuGn0zsmf25-Lqe_y7v5r9n0-13ZCCWHUqIQhnKFignWGboSJqduVZuWd7rVTEvTVbRtaSOE4BRAStnqVWVAIQgQY_LtOHcXw989psFuXWqw78Fj2CfLtK6NqaVQGb16g27CPvq8nWVKKyXyVXSmvp4oSA30XQTfuGR30W0h_rPcaCqZ4ZnTR66JIaWInW3cAIdjDRFcbxm1h2JsLsYeirGnYrJI34gvs99RvhwVh4ivuDasNpUUz7qgmHo
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TSP_2017_2706187
crossref_primary_10_3390_s17081779
crossref_primary_10_1016_j_dsp_2019_06_010
crossref_primary_10_1002_stc_2979
crossref_primary_10_1109_TSP_2019_2904018
crossref_primary_10_1109_LSP_2019_2897458
crossref_primary_10_1109_TCI_2018_2884291
crossref_primary_10_12720_jcm_11_4_402_410
crossref_primary_10_1016_j_dsp_2019_05_009
crossref_primary_10_1049_ell2_12701
crossref_primary_10_1016_j_dsp_2019_05_012
crossref_primary_10_3390_s21072538
crossref_primary_10_1049_el_2018_6280
crossref_primary_10_1109_TGRS_2022_3144286
crossref_primary_10_1049_iet_rsn_2019_0276
crossref_primary_10_1109_TRS_2025_3529760
crossref_primary_10_1109_TWC_2021_3071719
crossref_primary_10_1364_AO_54_0000C1
crossref_primary_10_1007_s11760_017_1177_5
crossref_primary_10_1109_JSEN_2015_2508059
crossref_primary_10_1007_s00034_018_0892_7
crossref_primary_10_1109_JSEN_2020_3045468
crossref_primary_10_1109_LSP_2019_2931460
crossref_primary_10_1016_j_sigpro_2024_109846
crossref_primary_10_1109_TSP_2016_2597122
crossref_primary_10_1049_iet_com_2015_0882
crossref_primary_10_1109_TSP_2022_3181459
crossref_primary_10_1016_j_aeue_2024_155308
crossref_primary_10_1016_j_dsp_2016_08_005
crossref_primary_10_1109_TAES_2018_2881365
crossref_primary_10_3390_e25010011
crossref_primary_10_1016_j_sigpro_2017_07_004
crossref_primary_10_3390_rs16244787
crossref_primary_10_1049_iet_com_2016_1048
crossref_primary_10_3390_s17092149
crossref_primary_10_3390_s19214706
crossref_primary_10_1016_j_sigpro_2019_04_019
Cites_doi 10.1109/SAM.2012.6250506
10.1017/CBO9780511804441
10.1364/JOSAA.24.000B25
10.1364/JOSAA.26.001055
10.1109/MSP.2007.914730
10.1109/7.845214
10.1109/TIT.2005.844072
10.1117/12.919442
10.1109/TSP.2012.2192112
10.1109/TSP.2009.2027773
10.1109/TSP.2012.2225054
10.1007/BF02289451
10.1109/ICASSP.2011.5947161
10.1109/TIT.2010.2040894
10.1109/TIT.2009.2030471
10.1109/78.668544
10.1109/RADAR.2013.6586139
10.1109/LSP.2011.2159837
10.1109/TIT.2006.871582
10.1109/TIP.2011.2176743
10.1109/TIT.2006.885507
10.1109/TIP.2011.2150231
10.1109/7.489504
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
H8D
DOI 10.1109/TSP.2014.2323022
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Aerospace Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 3207
ExternalDocumentID 3443544331
28604182
10_1109_TSP_2014_2323022
6819874
Genre orig-research
GrantInformation_xml – fundername: Defense Advanced Research Projects Agency; Defense Advanced Research Projects Agency
  grantid: #N66001-10-1-4079
  funderid: 10.13039/100000185
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AGSQL
AHBIQ
AJQPL
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
3EH
53G
5VS
AAYXX
ABFSI
ACKIV
AETIX
AI.
AIBXA
AKJIK
ALLEH
CITATION
E.L
H~9
ICLAB
IFJZH
VH1
AAYOK
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
H8D
ID FETCH-LOGICAL-c354t-4e338025e5131f80b38513fb98d2f6d61648f70dd0c33320aa444d6b78a5ea3a3
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Sun Sep 28 08:10:36 EDT 2025
Mon Jun 30 10:16:09 EDT 2025
Wed Apr 02 07:26:28 EDT 2025
Thu Apr 24 23:09:55 EDT 2025
Wed Oct 01 03:34:15 EDT 2025
Wed Aug 27 08:33:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords State of the art
Nuisance parameter
Compressive sensing (CS)
Mixture theory
Gaussian mixture (GM)
Probability distribution
Optimization
Learning
AD converter
Wide band
Radar
Electric power consumption
Series expansion
radar profiling
optimal sensing matrix
Target detection
Probabilistic approach
Logarithmic function
Taylor series
Pattern recognition
Object recognition
Kernel method
Radar target
Gaussian process
Sampling rate
Object detection
Signal processing
task-specific information (TSI)
Compressed sensing
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-4e338025e5131f80b38513fb98d2f6d61648f70dd0c33320aa444d6b78a5ea3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1565530016
PQPubID 85478
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TSP_2014_2323022
proquest_miscellaneous_1669889435
pascalfrancis_primary_28604182
ieee_primary_6819874
proquest_journals_1565530016
crossref_primary_10_1109_TSP_2014_2323022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-15
PublicationDateYYYYMMDD 2014-06-15
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-15
  day: 15
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2014
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
oppenheim (ref17) 1996
ref10
ref2
ref1
ref16
ref19
petersen (ref26) 2012
kay (ref24) 1993
yu (ref9) 2012; 21
ref23
ref25
ref20
ref22
ref21
ref28
ref27
ref8
(ref29) 0
ref7
ref4
ref3
cover (ref6) 2006
ref5
baraniuk (ref18) 2007
References_xml – year: 1996
  ident: ref17
  publication-title: Signals and Systems
– ident: ref25
  doi: 10.1109/SAM.2012.6250506
– ident: ref22
  doi: 10.1017/CBO9780511804441
– ident: ref3
  doi: 10.1364/JOSAA.24.000B25
– year: 2012
  ident: ref26
  publication-title: The Matrix Cookbook
– ident: ref4
  doi: 10.1364/JOSAA.26.001055
– ident: ref21
  doi: 10.1109/MSP.2007.914730
– ident: ref16
  doi: 10.1109/7.845214
– ident: ref5
  doi: 10.1109/TIT.2005.844072
– year: 1993
  ident: ref24
  publication-title: Fundamentals of Statistical Signal Processing Estimation Theory
– ident: ref19
  doi: 10.1117/12.919442
– ident: ref23
  doi: 10.1109/TSP.2012.2192112
– year: 2006
  ident: ref6
  publication-title: Elements of Information Theory
– ident: ref7
  doi: 10.1109/TSP.2009.2027773
– ident: ref11
  doi: 10.1109/TSP.2012.2225054
– ident: ref28
  doi: 10.1007/BF02289451
– ident: ref8
  doi: 10.1109/ICASSP.2011.5947161
– ident: ref12
  doi: 10.1109/TIT.2010.2040894
– ident: ref14
  doi: 10.1109/TIT.2009.2030471
– ident: ref13
  doi: 10.1109/78.668544
– ident: ref27
  doi: 10.1109/RADAR.2013.6586139
– ident: ref20
  doi: 10.1109/LSP.2011.2159837
– ident: ref1
  doi: 10.1109/TIT.2006.871582
– volume: 21
  start-page: 2481
  year: 2012
  ident: ref9
  article-title: Solving inverse problems with piecewise linear estimators: From Gaussian mixture models to structured sparsity
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2011.2176743
– start-page: 128
  year: 2007
  ident: ref18
  article-title: Compressive radar imaging
  publication-title: Proc IEEE Radar Conf
– year: 0
  ident: ref29
– ident: ref2
  doi: 10.1109/TIT.2006.885507
– ident: ref10
  doi: 10.1109/TIP.2011.2150231
– ident: ref15
  doi: 10.1109/7.489504
SSID ssj0014496
Score 2.347957
Snippet The design of wideband radar systems is often limited by existing analog-to-digital (A/D) converter technology. State-of-the-art A/D rates and high effective...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3194
SubjectTerms Applied sciences
Compressive sensing (CS)
Computer simulation
Design engineering
Detection
Detection, estimation, filtering, equalization, prediction
Economic models
Entropy
Exact sciences and technology
Gaussian mixture (GM)
Information, signal and communications theory
Kernel
Kernels
Mathematical models
Measurement
Noise
optimal sensing matrix
Optimization
Pattern recognition
Profiling
Radar
radar profiling
Radar systems
Sampling, quantization
Sensors
Signal and communications theory
Signal processing
Signal, noise
task-specific information (TSI)
Telecommunications and information theory
Title Radar Target Profiling and Recognition Based on TSI-Optimized Compressive Sensing Kernel
URI https://ieeexplore.ieee.org/document/6819874
https://www.proquest.com/docview/1565530016
https://www.proquest.com/docview/1669889435
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBAgWRUiojcUHCu974EecIiKqAClV3K-0tcuyJhChZtN3l0F_P2HmIAkLckthWHI8f38Sf5wN4IYKsa2OQW1dorgLm3LlGclHnaK0uUdt4dvjskzm9VB-WerkDr8azMIiYyGc4iZdpLz-s_Db-KpsaG11ktQu7hTXdWa1xx0CppMVFcEFybYvlsCUpyulifh45XGpC6EGKPL-1BCVNlciIdNfUKE2nZvHHxJxWm5N9OBvq2ZFMvk62m3rib34L4fi_H3If7vWwk73u-skD2MH2Idz9JRjhASwvXHBrtkjUcHaetLwpgbk2sIuBZrRq2Rta9wKji8X8Pf9MM863Lzf0IE4siVP7A9k8suKp6Edct3j1CC5P3i3envJed4F7qdWGKyS_lbAQ6pmcNVbUkmCZbOrShrwxwZCHZZtChCC8lDIXzimlgqkL6zQ66eRj2GtXLT4B5ggeFrNQRnFRVRhd-tzTvZdIUMerJoPpYIrK90HJozbGVZWcE1FWZLwqGq_qjZfBy7HE9y4gxz_yHsS2H_P1zZ7B8S1rj-m5NUKRw5XB0WD-qh_S1xU5ulFiiSByBs_HZBqMcYfFtbjaUh5jShsj2uvDv7_6KdyJFYxcs5k-gr3NeovPCNVs6uPUnX8CoBbyPQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvEpFoBQjcUEiu974EecIiGpLu6XqptLeIieeSIg2W213OfTXM3YeooAQtyS2Fcfjxzfx5_kA3nInylJrjI1NVSwdJrG1tYh5maAxKkNl_Nnh2YmenssvC7XYgvfDWRhEDOQzHPnLsJfvltXG_yoba-NdZHkH7ioppWpPaw17BlIGNS4CDCJWJl30m5I8G-fzU8_ikiPCD4Inya1FKKiqeE6kvaZmqVs9iz-m5rDeHDyCWV_TlmbyfbRZl6Pq5rcgjv_7KY_hYQc82Ye2pzyBLWyewoNfwhHuwOLMOrtieSCHs9Og5k0JzDaOnfVEo2XDPtLK5xhd5PPD-CvNOZffbuiBn1oCq_YHsrnnxVPRI1w1ePEMzg8-55-mcae8EFdCyXUskTxXQkOoJmJSG14KAmaiLjPjklo7TT6WqVPuHK-EEAm3luzhdJkaq9AKK3Zhu1k2-ByYJYCYTlzm5UVlqlVWJRXdVwIJ7FSyjmDcm6KourDkXh3jogjuCc8KMl7hjVd0xovg3VDiqg3J8Y-8O77th3xds0ewf8vaQ3piNJfkckWw15u_6Ab1dUGurhdZIpAcwZshmYaj32OxDS43lEfrzPiY9urF31_9Gu5N89lxcXx4cvQS7vvKeubZRO3B9nq1wVeEcdblfujaPwF0B_WK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radar+Target+Profiling+and+Recognition+Based+on+TSI-Optimized+Compressive+Sensing+Kernel&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Gu%2C+Yujie&rft.au=Goodman%2C+Nathan+A.&rft.au=Ashok%2C+Amit&rft.date=2014-06-15&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=62&rft.issue=12&rft.spage=3194&rft.epage=3207&rft_id=info:doi/10.1109%2FTSP.2014.2323022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2014_2323022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon