Radar Target Profiling and Recognition Based on TSI-Optimized Compressive Sensing Kernel
The design of wideband radar systems is often limited by existing analog-to-digital (A/D) converter technology. State-of-the-art A/D rates and high effective number of bits result in rapidly increasing cost and power consumption for the radar system. Therefore, it is useful to consider compressive s...
Saved in:
| Published in | IEEE transactions on signal processing Vol. 62; no. 12; pp. 3194 - 3207 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
15.06.2014
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-587X 1941-0476 |
| DOI | 10.1109/TSP.2014.2323022 |
Cover
| Abstract | The design of wideband radar systems is often limited by existing analog-to-digital (A/D) converter technology. State-of-the-art A/D rates and high effective number of bits result in rapidly increasing cost and power consumption for the radar system. Therefore, it is useful to consider compressive sensing methods that enable reduced sampling rate, and in many applications, prior knowledge of signals of interest can be learned from training data and used to design better compressive measurement kernels. In this paper, we use a task-specific information-based approach to optimizing sensing kernels for high-resolution radar range profiling of man-made targets. We employ a Gaussian mixture (GM) model for the targets and use a Taylor series expansion of the logarithm of the GM probability distribution to enable a closed-form gradient of information with respect to the sensing kernel. The GM model admits nuisance parameters such as target pose angle and range translation. The gradient is then used in a gradient-based approach to search for the optimal sensing kernel. In numerical simulations, we compare the performance of the proposed sensing kernel design to random projections and to lower-bandwidth waveforms that can be sampled at the Nyquist rate. Simulation results demonstrate that the proposed technique for sensing kernel design can significantly improve performance. |
|---|---|
| AbstractList | The design of wideband radar systems is often limited by existing analog-to-digital (A/D) converter technology. State-of-the-art A/D rates and high effective number of bits result in rapidly increasing cost and power consumption for the radar system. Therefore, it is useful to consider compressive sensing methods that enable reduced sampling rate, and in many applications, prior knowledge of signals of interest can be learned from training data and used to design better compressive measurement kernels. In this paper, we use a task-specific information-based approach to optimizing sensing kernels for high-resolution radar range profiling of man-made targets. We employ a Gaussian mixture (GM) model for the targets and use a Taylor series expansion of the logarithm of the GM probability distribution to enable a closed-form gradient of information with respect to the sensing kernel. The GM model admits nuisance parameters such as target pose angle and range translation. The gradient is then used in a gradient-based approach to search for the optimal sensing kernel. In numerical simulations, we compare the performance of the proposed sensing kernel design to random projections and to lower-bandwidth waveforms that can be sampled at the Nyquist rate. Simulation results demonstrate that the proposed technique for sensing kernel design can significantly improve performance. The design of wideband radar systems is often limited by existing analog-to-digital (A/D) converter technology. State-of-the-art A/D rates and high effective number of bits result in rapidly increasing cost and power consumption for the radar system. Therefore, it is useful to consider compressive sensing methods that enable reduced sampling rate, and in many applications, prior knowledge of signals of interest can be learned from training data and used to design better compressive measurement kernels. In this paper, we use a task-specific information-based approach to optimizing sensing kernels for highresolution radar range profiling of man-made targets. We employ a Gaussian mixture (GM) model for the targets and use a Taylor series expansion of the logarithm of the GM probability distribution to enable a closed-form gradient of information with respect to the sensing kernel. The GM model admits nuisance parameters such as target pose angle and range translation. The gradient is then used in a gradient-based approach to search for the optimal sensing kernel. In numerical simulations, we compare the performance of the proposed sensing kernel design to random projections and to lower-bandwidth waveforms that can be sampled at the Nyquist rate. Simulation results demonstrate that the proposed technique for sensing kernel design can significantly improve performance. |
| Author | Ashok, Amit Gu, Yujie Goodman, Nathan A. |
| Author_xml | – sequence: 1 givenname: Yujie surname: Gu fullname: Gu, Yujie email: guyujie@hotmail.com organization: School of Electrical and Computer Engineering, Advanced Radar Research Center, The University of Oklahoma, Norman, OK, USA – sequence: 2 givenname: Nathan A. surname: Goodman fullname: Goodman, Nathan A. email: goodman@ou.edu organization: Advanced Radar Research Center, The University of Oklahoma, Norman, OK, USA – sequence: 3 givenname: Amit surname: Ashok fullname: Ashok, Amit email: ashoka@optics.arizona.edu organization: College of Optical Science, The University of Arizona, Tucson, AZ, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28604182$$DView record in Pascal Francis |
| BookMark | eNp9kU1rGzEQhkVJoLHTe6GXhVDoZR19r_bYmqY1CTjELuQmxruzRmYtudI60P76yNjJIYec9CKeZxjmHZEzHzwS8pnRCWO0vl4u7iecMjnhggvK-QdywWrJSiorfZYzVaJUpnr8SEYpbWgmZa0vyOMDtBCLJcQ1DsV9DJ3rnV8X4NviAZuw9m5wwRc_IGFb5LBczMr5bnBb9z9_TMN2FzEl94TFAn06qLcYPfaX5LyDPuGn0zsmf25-Lqe_y7v5r9n0-13ZCCWHUqIQhnKFignWGboSJqduVZuWd7rVTEvTVbRtaSOE4BRAStnqVWVAIQgQY_LtOHcXw989psFuXWqw78Fj2CfLtK6NqaVQGb16g27CPvq8nWVKKyXyVXSmvp4oSA30XQTfuGR30W0h_rPcaCqZ4ZnTR66JIaWInW3cAIdjDRFcbxm1h2JsLsYeirGnYrJI34gvs99RvhwVh4ivuDasNpUUz7qgmHo |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1109_TSP_2017_2706187 crossref_primary_10_3390_s17081779 crossref_primary_10_1016_j_dsp_2019_06_010 crossref_primary_10_1002_stc_2979 crossref_primary_10_1109_TSP_2019_2904018 crossref_primary_10_1109_LSP_2019_2897458 crossref_primary_10_1109_TCI_2018_2884291 crossref_primary_10_12720_jcm_11_4_402_410 crossref_primary_10_1016_j_dsp_2019_05_009 crossref_primary_10_1049_ell2_12701 crossref_primary_10_1016_j_dsp_2019_05_012 crossref_primary_10_3390_s21072538 crossref_primary_10_1049_el_2018_6280 crossref_primary_10_1109_TGRS_2022_3144286 crossref_primary_10_1049_iet_rsn_2019_0276 crossref_primary_10_1109_TRS_2025_3529760 crossref_primary_10_1109_TWC_2021_3071719 crossref_primary_10_1364_AO_54_0000C1 crossref_primary_10_1007_s11760_017_1177_5 crossref_primary_10_1109_JSEN_2015_2508059 crossref_primary_10_1007_s00034_018_0892_7 crossref_primary_10_1109_JSEN_2020_3045468 crossref_primary_10_1109_LSP_2019_2931460 crossref_primary_10_1016_j_sigpro_2024_109846 crossref_primary_10_1109_TSP_2016_2597122 crossref_primary_10_1049_iet_com_2015_0882 crossref_primary_10_1109_TSP_2022_3181459 crossref_primary_10_1016_j_aeue_2024_155308 crossref_primary_10_1016_j_dsp_2016_08_005 crossref_primary_10_1109_TAES_2018_2881365 crossref_primary_10_3390_e25010011 crossref_primary_10_1016_j_sigpro_2017_07_004 crossref_primary_10_3390_rs16244787 crossref_primary_10_1049_iet_com_2016_1048 crossref_primary_10_3390_s17092149 crossref_primary_10_3390_s19214706 crossref_primary_10_1016_j_sigpro_2019_04_019 |
| Cites_doi | 10.1109/SAM.2012.6250506 10.1017/CBO9780511804441 10.1364/JOSAA.24.000B25 10.1364/JOSAA.26.001055 10.1109/MSP.2007.914730 10.1109/7.845214 10.1109/TIT.2005.844072 10.1117/12.919442 10.1109/TSP.2012.2192112 10.1109/TSP.2009.2027773 10.1109/TSP.2012.2225054 10.1007/BF02289451 10.1109/ICASSP.2011.5947161 10.1109/TIT.2010.2040894 10.1109/TIT.2009.2030471 10.1109/78.668544 10.1109/RADAR.2013.6586139 10.1109/LSP.2011.2159837 10.1109/TIT.2006.871582 10.1109/TIP.2011.2176743 10.1109/TIT.2006.885507 10.1109/TIP.2011.2150231 10.1109/7.489504 |
| ContentType | Journal Article |
| Copyright | 2015 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014 |
| Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2014 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 H8D |
| DOI | 10.1109/TSP.2014.2323022 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Aerospace Database Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Aerospace Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1941-0476 |
| EndPage | 3207 |
| ExternalDocumentID | 3443544331 28604182 10_1109_TSP_2014_2323022 6819874 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Defense Advanced Research Projects Agency; Defense Advanced Research Projects Agency grantid: #N66001-10-1-4079 funderid: 10.13039/100000185 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AGSQL AHBIQ AJQPL AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 3EH 53G 5VS AAYXX ABFSI ACKIV AETIX AI. AIBXA AKJIK ALLEH CITATION E.L H~9 ICLAB IFJZH VH1 AAYOK IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 H8D |
| ID | FETCH-LOGICAL-c354t-4e338025e5131f80b38513fb98d2f6d61648f70dd0c33320aa444d6b78a5ea3a3 |
| IEDL.DBID | RIE |
| ISSN | 1053-587X |
| IngestDate | Sun Sep 28 08:10:36 EDT 2025 Mon Jun 30 10:16:09 EDT 2025 Wed Apr 02 07:26:28 EDT 2025 Thu Apr 24 23:09:55 EDT 2025 Wed Oct 01 03:34:15 EDT 2025 Wed Aug 27 08:33:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | State of the art Nuisance parameter Compressive sensing (CS) Mixture theory Gaussian mixture (GM) Probability distribution Optimization Learning AD converter Wide band Radar Electric power consumption Series expansion radar profiling optimal sensing matrix Target detection Probabilistic approach Logarithmic function Taylor series Pattern recognition Object recognition Kernel method Radar target Gaussian process Sampling rate Object detection Signal processing task-specific information (TSI) Compressed sensing |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c354t-4e338025e5131f80b38513fb98d2f6d61648f70dd0c33320aa444d6b78a5ea3a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1565530016 |
| PQPubID | 85478 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_TSP_2014_2323022 proquest_miscellaneous_1669889435 pascalfrancis_primary_28604182 ieee_primary_6819874 proquest_journals_1565530016 crossref_primary_10_1109_TSP_2014_2323022 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-06-15 |
| PublicationDateYYYYMMDD | 2014-06-15 |
| PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2014 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 oppenheim (ref17) 1996 ref10 ref2 ref1 ref16 ref19 petersen (ref26) 2012 kay (ref24) 1993 yu (ref9) 2012; 21 ref23 ref25 ref20 ref22 ref21 ref28 ref27 ref8 (ref29) 0 ref7 ref4 ref3 cover (ref6) 2006 ref5 baraniuk (ref18) 2007 |
| References_xml | – year: 1996 ident: ref17 publication-title: Signals and Systems – ident: ref25 doi: 10.1109/SAM.2012.6250506 – ident: ref22 doi: 10.1017/CBO9780511804441 – ident: ref3 doi: 10.1364/JOSAA.24.000B25 – year: 2012 ident: ref26 publication-title: The Matrix Cookbook – ident: ref4 doi: 10.1364/JOSAA.26.001055 – ident: ref21 doi: 10.1109/MSP.2007.914730 – ident: ref16 doi: 10.1109/7.845214 – ident: ref5 doi: 10.1109/TIT.2005.844072 – year: 1993 ident: ref24 publication-title: Fundamentals of Statistical Signal Processing Estimation Theory – ident: ref19 doi: 10.1117/12.919442 – ident: ref23 doi: 10.1109/TSP.2012.2192112 – year: 2006 ident: ref6 publication-title: Elements of Information Theory – ident: ref7 doi: 10.1109/TSP.2009.2027773 – ident: ref11 doi: 10.1109/TSP.2012.2225054 – ident: ref28 doi: 10.1007/BF02289451 – ident: ref8 doi: 10.1109/ICASSP.2011.5947161 – ident: ref12 doi: 10.1109/TIT.2010.2040894 – ident: ref14 doi: 10.1109/TIT.2009.2030471 – ident: ref13 doi: 10.1109/78.668544 – ident: ref27 doi: 10.1109/RADAR.2013.6586139 – ident: ref20 doi: 10.1109/LSP.2011.2159837 – ident: ref1 doi: 10.1109/TIT.2006.871582 – volume: 21 start-page: 2481 year: 2012 ident: ref9 article-title: Solving inverse problems with piecewise linear estimators: From Gaussian mixture models to structured sparsity publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2011.2176743 – start-page: 128 year: 2007 ident: ref18 article-title: Compressive radar imaging publication-title: Proc IEEE Radar Conf – year: 0 ident: ref29 – ident: ref2 doi: 10.1109/TIT.2006.885507 – ident: ref10 doi: 10.1109/TIP.2011.2150231 – ident: ref15 doi: 10.1109/7.489504 |
| SSID | ssj0014496 |
| Score | 2.347957 |
| Snippet | The design of wideband radar systems is often limited by existing analog-to-digital (A/D) converter technology. State-of-the-art A/D rates and high effective... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 3194 |
| SubjectTerms | Applied sciences Compressive sensing (CS) Computer simulation Design engineering Detection Detection, estimation, filtering, equalization, prediction Economic models Entropy Exact sciences and technology Gaussian mixture (GM) Information, signal and communications theory Kernel Kernels Mathematical models Measurement Noise optimal sensing matrix Optimization Pattern recognition Profiling Radar radar profiling Radar systems Sampling, quantization Sensors Signal and communications theory Signal processing Signal, noise task-specific information (TSI) Telecommunications and information theory |
| Title | Radar Target Profiling and Recognition Based on TSI-Optimized Compressive Sensing Kernel |
| URI | https://ieeexplore.ieee.org/document/6819874 https://www.proquest.com/docview/1565530016 https://www.proquest.com/docview/1669889435 |
| Volume | 62 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBAgWRUiojcUHCu974EecIiKqAClV3K-0tcuyJhChZtN3l0F_P2HmIAkLckthWHI8f38Sf5wN4IYKsa2OQW1dorgLm3LlGclHnaK0uUdt4dvjskzm9VB-WerkDr8azMIiYyGc4iZdpLz-s_Db-KpsaG11ktQu7hTXdWa1xx0CppMVFcEFybYvlsCUpyulifh45XGpC6EGKPL-1BCVNlciIdNfUKE2nZvHHxJxWm5N9OBvq2ZFMvk62m3rib34L4fi_H3If7vWwk73u-skD2MH2Idz9JRjhASwvXHBrtkjUcHaetLwpgbk2sIuBZrRq2Rta9wKji8X8Pf9MM863Lzf0IE4siVP7A9k8suKp6Edct3j1CC5P3i3envJed4F7qdWGKyS_lbAQ6pmcNVbUkmCZbOrShrwxwZCHZZtChCC8lDIXzimlgqkL6zQ66eRj2GtXLT4B5ggeFrNQRnFRVRhd-tzTvZdIUMerJoPpYIrK90HJozbGVZWcE1FWZLwqGq_qjZfBy7HE9y4gxz_yHsS2H_P1zZ7B8S1rj-m5NUKRw5XB0WD-qh_S1xU5ulFiiSByBs_HZBqMcYfFtbjaUh5jShsj2uvDv7_6KdyJFYxcs5k-gr3NeovPCNVs6uPUnX8CoBbyPQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvEpFoBQjcUEiu974EecIiGpLu6XqptLeIieeSIg2W213OfTXM3YeooAQtyS2Fcfjxzfx5_kA3nInylJrjI1NVSwdJrG1tYh5maAxKkNl_Nnh2YmenssvC7XYgvfDWRhEDOQzHPnLsJfvltXG_yoba-NdZHkH7ioppWpPaw17BlIGNS4CDCJWJl30m5I8G-fzU8_ikiPCD4Inya1FKKiqeE6kvaZmqVs9iz-m5rDeHDyCWV_TlmbyfbRZl6Pq5rcgjv_7KY_hYQc82Ye2pzyBLWyewoNfwhHuwOLMOrtieSCHs9Og5k0JzDaOnfVEo2XDPtLK5xhd5PPD-CvNOZffbuiBn1oCq_YHsrnnxVPRI1w1ePEMzg8-55-mcae8EFdCyXUskTxXQkOoJmJSG14KAmaiLjPjklo7TT6WqVPuHK-EEAm3luzhdJkaq9AKK3Zhu1k2-ByYJYCYTlzm5UVlqlVWJRXdVwIJ7FSyjmDcm6KourDkXh3jogjuCc8KMl7hjVd0xovg3VDiqg3J8Y-8O77th3xds0ewf8vaQ3piNJfkckWw15u_6Ab1dUGurhdZIpAcwZshmYaj32OxDS43lEfrzPiY9urF31_9Gu5N89lxcXx4cvQS7vvKeubZRO3B9nq1wVeEcdblfujaPwF0B_WK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radar+Target+Profiling+and+Recognition+Based+on+TSI-Optimized+Compressive+Sensing+Kernel&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Gu%2C+Yujie&rft.au=Goodman%2C+Nathan+A.&rft.au=Ashok%2C+Amit&rft.date=2014-06-15&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=62&rft.issue=12&rft.spage=3194&rft.epage=3207&rft_id=info:doi/10.1109%2FTSP.2014.2323022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2014_2323022 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |