A sequence of positive solutions for sixth-order ordinary nonlinear differential problems

Infinitely many solutions for a nonlinear sixth-order differential equation are obtained. The variational methods are adopted and an oscillating behaviour on the nonlinear term is required, avoiding any symmetry assumption.

Saved in:
Bibliographic Details
Published inElectronic journal of qualitative theory of differential equations Vol. 2021; no. 20; pp. 1 - 17
Main Authors Bonanno, Gabriele, Livrea, Roberto
Format Journal Article
LanguageEnglish
Published University of Szeged 01.01.2021
Subjects
Online AccessGet full text
ISSN1417-3875
1417-3875
DOI10.14232/ejqtde.2021.1.20

Cover

Abstract Infinitely many solutions for a nonlinear sixth-order differential equation are obtained. The variational methods are adopted and an oscillating behaviour on the nonlinear term is required, avoiding any symmetry assumption.
AbstractList Infinitely many solutions for a nonlinear sixth-order differential equation are obtained. The variational methods are adopted and an oscillating behaviour on the nonlinear term is required, avoiding any symmetry assumption.
Author Bonanno, Gabriele
Livrea, Roberto
Author_xml – sequence: 1
  givenname: Gabriele
  orcidid: 0000-0003-4115-7963
  surname: Bonanno
  fullname: Bonanno, Gabriele
  organization: University of Messina
– sequence: 2
  givenname: Roberto
  orcidid: 0000-0003-2971-2127
  surname: Livrea
  fullname: Livrea, Roberto
  organization: University of Palermo
BookMark eNp1kEtLAzEUhYNU0FZ_gLv8gal5zUxmWcRHoeBGF65CHjeaMk7aJBX9906tgghu7rkcOIfDN0WTIQ6A0AUlcyoYZ5ew3hYHc0YYndNRjtApFbStuGzrya__BE1zXhPCWFM3p-hpgTNsdzBYwNHjTcyhhDfAOfa7EuKQsY8J5_BeXqqYHCQ83jDo9IHHBX0YQCfsgveQYChB93iTounhNZ-hY6_7DOffOkOPN9cPV3fV6v52ebVYVZbXolSi6yR4LRpnnTRU1rZpRGsEpS1wUmvXGSNda7ltm44YS73lxnMupHak9ZLP0PLQ66Jeq00Kr-M4FXVQX0ZMz0qnEmwPinbEGeeEFDUT1HApG2tAUmEYACP7rvbQZVPMOYFXNhS951CSDr2iRH3RVgfaak9b0VHGJP2T_Fnyf-YTOqmIww
CitedBy_id crossref_primary_10_14232_ejqtde_2022_1_53
crossref_primary_10_1007_s41808_023_00217_9
crossref_primary_10_1007_s12215_023_00901_8
crossref_primary_10_14232_ejqtde_2024_1_57
crossref_primary_10_1002_mma_10492
crossref_primary_10_3390_math9161852
Cites_doi 10.14232/ejqtde.2009.4.29
10.1016/j.na.2008.12.047
10.1017/S0017089511000590
10.1103/PhysRevB.34.4940
10.1016/0022-247X(90)90312-4
10.1155/2010/878131
10.1186/1687-2770-2012-22
10.1512/iumj.1990.39.39054
10.1006/jmaa.2001.7470
10.1007/s00030-011-0099-0
10.1016/j.jmaa.2005.08.007
10.1016/S0022-247X(02)00153-1
10.1007/978-1-4612-5282-5
10.1137/S0036141095283820
10.1016/j.na.2011.12.003
10.1017/S0308210506001041
10.3934/cpaa.2010.9.563
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.14232/ejqtde.2021.1.20
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1417-3875
EndPage 17
ExternalDocumentID oai_doaj_org_article_190dbdd4845241b3886cbe814b2ee208
10_14232_ejqtde_2021_1_20
GroupedDBID -~9
29G
2WC
5GY
5VS
AAYXX
ABDBF
ACGFO
ACIPV
ACUHS
ADBBV
AEGXH
AENEX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMVHM
B0M
BCNDV
C1A
CITATION
E3Z
EAP
EBS
EJD
EMK
EN8
EOJEC
EPL
EST
ESX
FRJ
FRP
GROUPED_DOAJ
J9A
KQ8
LO0
OBODZ
OK1
OVT
P2P
REM
RNS
TR2
TUS
XSB
~8M
ID FETCH-LOGICAL-c354t-4998efa46dcd8b185c6647b4117e305ad9bb8d7c3c7690bc1fc3bf3348ad07f83
IEDL.DBID DOA
ISSN 1417-3875
IngestDate Wed Aug 27 00:59:17 EDT 2025
Tue Jul 01 03:20:14 EDT 2025
Thu Apr 24 22:56:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-4998efa46dcd8b185c6647b4117e305ad9bb8d7c3c7690bc1fc3bf3348ad07f83
ORCID 0000-0003-2971-2127
0000-0003-4115-7963
OpenAccessLink https://doaj.org/article/190dbdd4845241b3886cbe814b2ee208
PageCount 17
ParticipantIDs doaj_primary_oai_doaj_org_article_190dbdd4845241b3886cbe814b2ee208
crossref_citationtrail_10_14232_ejqtde_2021_1_20
crossref_primary_10_14232_ejqtde_2021_1_20
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Electronic journal of qualitative theory of differential equations
PublicationYear 2021
Publisher University of Szeged
Publisher_xml – name: University of Szeged
References ref13
ref12
ref15
ref14
ref20
ref11
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref13
– ident: ref17
  doi: 10.14232/ejqtde.2009.4.29
– ident: ref4
– ident: ref8
  doi: 10.1016/j.na.2008.12.047
– ident: ref6
– ident: ref20
  doi: 10.1017/S0017089511000590
– ident: ref5
  doi: 10.1103/PhysRevB.34.4940
– ident: ref12
  doi: 10.1016/0022-247X(90)90312-4
– ident: ref21
  doi: 10.1155/2010/878131
– ident: ref11
  doi: 10.1186/1687-2770-2012-22
– ident: ref7
  doi: 10.1512/iumj.1990.39.39054
– ident: ref15
  doi: 10.1006/jmaa.2001.7470
– ident: ref3
  doi: 10.1007/s00030-011-0099-0
– ident: ref9
  doi: 10.1016/j.jmaa.2005.08.007
– ident: ref16
  doi: 10.1016/S0022-247X(02)00153-1
– ident: ref14
  doi: 10.1007/978-1-4612-5282-5
– ident: ref1
  doi: 10.1137/S0036141095283820
– ident: ref2
  doi: 10.1016/j.na.2011.12.003
– ident: ref19
  doi: 10.1017/S0308210506001041
– ident: ref10
– ident: ref18
  doi: 10.3934/cpaa.2010.9.563
SSID ssj0022656
Score 2.245418
Snippet Infinitely many solutions for a nonlinear sixth-order differential equation are obtained. The variational methods are adopted and an oscillating behaviour on...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 1
SubjectTerms critical points
infinitely many solutions
sixth-order equations
Title A sequence of positive solutions for sixth-order ordinary nonlinear differential problems
URI https://doaj.org/article/190dbdd4845241b3886cbe814b2ee208
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQWWBAPEV5VB6YkEyT2ImdsQWqCqlMVCpTFNsXAaoKtAHx8znHSVQWWFgSKXIc687Od2fffUfIBec2By0sS0QITGhQTBcyYYD4akGnuamolCb3yXgq7mbxbK3Ul4sJ8_TAXnB9BCyrrRVKxAg2miuVGOwxFDoCiHyab5AGjTNVu1oRmin1GaY7iezDy3tpHStmFF45r_AHCq2R9VeoMtolO7U5SAd-GHtkAxb7ZHvScqmuDsjjgDbxzvS1oD7K6hNoO2ko2p109fxVPrGKSJPitcqypQvPg5EvaVMHBdfznNZFZFaHZDq6fbges7ogAjM8FiVD70RBkYvEGqs0Iq1JEiG1CEMJuG5zm2qtrDTcSHR6tQkLw3Xhcm1zG8hC8SPSwS_DMaGiYkoLeSFBiFTnKuFBEcUQ4O8uFiC7JGgElJmaLdwVrZhnzmtwMs28TDMn0yzEW5dctq-8eaqM3xoPndTbho7lunqAus9q3Wd_6f7kPzo5JVtuVH5b5Yx0yuUHnKOhUeoe2RwMb4ajXjW3vgG9X9Tj
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sequence+of+positive+solutions+for+sixth-order+ordinary+nonlinear+differential+problems&rft.jtitle=Electronic+journal+of+qualitative+theory+of+differential+equations&rft.au=Gabriele+Bonanno&rft.au=Roberto+Livrea&rft.date=2021-01-01&rft.pub=University+of+Szeged&rft.eissn=1417-3875&rft.volume=2021&rft.issue=20&rft.spage=1&rft.epage=17&rft_id=info:doi/10.14232%2Fejqtde.2021.1.20&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_190dbdd4845241b3886cbe814b2ee208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1417-3875&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1417-3875&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1417-3875&client=summon