A sequence of positive solutions for sixth-order ordinary nonlinear differential problems
Infinitely many solutions for a nonlinear sixth-order differential equation are obtained. The variational methods are adopted and an oscillating behaviour on the nonlinear term is required, avoiding any symmetry assumption.
Saved in:
Published in | Electronic journal of qualitative theory of differential equations Vol. 2021; no. 20; pp. 1 - 17 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
University of Szeged
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1417-3875 1417-3875 |
DOI | 10.14232/ejqtde.2021.1.20 |
Cover
Abstract | Infinitely many solutions for a nonlinear sixth-order differential equation are obtained. The variational methods are adopted and an oscillating behaviour on the nonlinear term is required, avoiding any symmetry assumption. |
---|---|
AbstractList | Infinitely many solutions for a nonlinear sixth-order differential equation are obtained. The variational methods are adopted and an oscillating behaviour on the nonlinear term is required, avoiding any symmetry assumption. |
Author | Bonanno, Gabriele Livrea, Roberto |
Author_xml | – sequence: 1 givenname: Gabriele orcidid: 0000-0003-4115-7963 surname: Bonanno fullname: Bonanno, Gabriele organization: University of Messina – sequence: 2 givenname: Roberto orcidid: 0000-0003-2971-2127 surname: Livrea fullname: Livrea, Roberto organization: University of Palermo |
BookMark | eNp1kEtLAzEUhYNU0FZ_gLv8gal5zUxmWcRHoeBGF65CHjeaMk7aJBX9906tgghu7rkcOIfDN0WTIQ6A0AUlcyoYZ5ew3hYHc0YYndNRjtApFbStuGzrya__BE1zXhPCWFM3p-hpgTNsdzBYwNHjTcyhhDfAOfa7EuKQsY8J5_BeXqqYHCQ83jDo9IHHBX0YQCfsgveQYChB93iTounhNZ-hY6_7DOffOkOPN9cPV3fV6v52ebVYVZbXolSi6yR4LRpnnTRU1rZpRGsEpS1wUmvXGSNda7ltm44YS73lxnMupHak9ZLP0PLQ66Jeq00Kr-M4FXVQX0ZMz0qnEmwPinbEGeeEFDUT1HApG2tAUmEYACP7rvbQZVPMOYFXNhS951CSDr2iRH3RVgfaak9b0VHGJP2T_Fnyf-YTOqmIww |
CitedBy_id | crossref_primary_10_14232_ejqtde_2022_1_53 crossref_primary_10_1007_s41808_023_00217_9 crossref_primary_10_1007_s12215_023_00901_8 crossref_primary_10_14232_ejqtde_2024_1_57 crossref_primary_10_1002_mma_10492 crossref_primary_10_3390_math9161852 |
Cites_doi | 10.14232/ejqtde.2009.4.29 10.1016/j.na.2008.12.047 10.1017/S0017089511000590 10.1103/PhysRevB.34.4940 10.1016/0022-247X(90)90312-4 10.1155/2010/878131 10.1186/1687-2770-2012-22 10.1512/iumj.1990.39.39054 10.1006/jmaa.2001.7470 10.1007/s00030-011-0099-0 10.1016/j.jmaa.2005.08.007 10.1016/S0022-247X(02)00153-1 10.1007/978-1-4612-5282-5 10.1137/S0036141095283820 10.1016/j.na.2011.12.003 10.1017/S0308210506001041 10.3934/cpaa.2010.9.563 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.14232/ejqtde.2021.1.20 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1417-3875 |
EndPage | 17 |
ExternalDocumentID | oai_doaj_org_article_190dbdd4845241b3886cbe814b2ee208 10_14232_ejqtde_2021_1_20 |
GroupedDBID | -~9 29G 2WC 5GY 5VS AAYXX ABDBF ACGFO ACIPV ACUHS ADBBV AEGXH AENEX AIAGR ALMA_UNASSIGNED_HOLDINGS AMVHM B0M BCNDV C1A CITATION E3Z EAP EBS EJD EMK EN8 EOJEC EPL EST ESX FRJ FRP GROUPED_DOAJ J9A KQ8 LO0 OBODZ OK1 OVT P2P REM RNS TR2 TUS XSB ~8M |
ID | FETCH-LOGICAL-c354t-4998efa46dcd8b185c6647b4117e305ad9bb8d7c3c7690bc1fc3bf3348ad07f83 |
IEDL.DBID | DOA |
ISSN | 1417-3875 |
IngestDate | Wed Aug 27 00:59:17 EDT 2025 Tue Jul 01 03:20:14 EDT 2025 Thu Apr 24 22:56:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-4998efa46dcd8b185c6647b4117e305ad9bb8d7c3c7690bc1fc3bf3348ad07f83 |
ORCID | 0000-0003-2971-2127 0000-0003-4115-7963 |
OpenAccessLink | https://doaj.org/article/190dbdd4845241b3886cbe814b2ee208 |
PageCount | 17 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_190dbdd4845241b3886cbe814b2ee208 crossref_citationtrail_10_14232_ejqtde_2021_1_20 crossref_primary_10_14232_ejqtde_2021_1_20 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Electronic journal of qualitative theory of differential equations |
PublicationYear | 2021 |
Publisher | University of Szeged |
Publisher_xml | – name: University of Szeged |
References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref13 – ident: ref17 doi: 10.14232/ejqtde.2009.4.29 – ident: ref4 – ident: ref8 doi: 10.1016/j.na.2008.12.047 – ident: ref6 – ident: ref20 doi: 10.1017/S0017089511000590 – ident: ref5 doi: 10.1103/PhysRevB.34.4940 – ident: ref12 doi: 10.1016/0022-247X(90)90312-4 – ident: ref21 doi: 10.1155/2010/878131 – ident: ref11 doi: 10.1186/1687-2770-2012-22 – ident: ref7 doi: 10.1512/iumj.1990.39.39054 – ident: ref15 doi: 10.1006/jmaa.2001.7470 – ident: ref3 doi: 10.1007/s00030-011-0099-0 – ident: ref9 doi: 10.1016/j.jmaa.2005.08.007 – ident: ref16 doi: 10.1016/S0022-247X(02)00153-1 – ident: ref14 doi: 10.1007/978-1-4612-5282-5 – ident: ref1 doi: 10.1137/S0036141095283820 – ident: ref2 doi: 10.1016/j.na.2011.12.003 – ident: ref19 doi: 10.1017/S0308210506001041 – ident: ref10 – ident: ref18 doi: 10.3934/cpaa.2010.9.563 |
SSID | ssj0022656 |
Score | 2.245418 |
Snippet | Infinitely many solutions for a nonlinear sixth-order differential equation are obtained. The variational methods are adopted and an oscillating behaviour on... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 1 |
SubjectTerms | critical points infinitely many solutions sixth-order equations |
Title | A sequence of positive solutions for sixth-order ordinary nonlinear differential problems |
URI | https://doaj.org/article/190dbdd4845241b3886cbe814b2ee208 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQWWBAPEV5VB6YkEyT2ImdsQWqCqlMVCpTFNsXAaoKtAHx8znHSVQWWFgSKXIc687Od2fffUfIBec2By0sS0QITGhQTBcyYYD4akGnuamolCb3yXgq7mbxbK3Ul4sJ8_TAXnB9BCyrrRVKxAg2miuVGOwxFDoCiHyab5AGjTNVu1oRmin1GaY7iezDy3tpHStmFF45r_AHCq2R9VeoMtolO7U5SAd-GHtkAxb7ZHvScqmuDsjjgDbxzvS1oD7K6hNoO2ko2p109fxVPrGKSJPitcqypQvPg5EvaVMHBdfznNZFZFaHZDq6fbges7ogAjM8FiVD70RBkYvEGqs0Iq1JEiG1CEMJuG5zm2qtrDTcSHR6tQkLw3Xhcm1zG8hC8SPSwS_DMaGiYkoLeSFBiFTnKuFBEcUQ4O8uFiC7JGgElJmaLdwVrZhnzmtwMs28TDMn0yzEW5dctq-8eaqM3xoPndTbho7lunqAus9q3Wd_6f7kPzo5JVtuVH5b5Yx0yuUHnKOhUeoe2RwMb4ajXjW3vgG9X9Tj |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+sequence+of+positive+solutions+for+sixth-order+ordinary+nonlinear+differential+problems&rft.jtitle=Electronic+journal+of+qualitative+theory+of+differential+equations&rft.au=Gabriele+Bonanno&rft.au=Roberto+Livrea&rft.date=2021-01-01&rft.pub=University+of+Szeged&rft.eissn=1417-3875&rft.volume=2021&rft.issue=20&rft.spage=1&rft.epage=17&rft_id=info:doi/10.14232%2Fejqtde.2021.1.20&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_190dbdd4845241b3886cbe814b2ee208 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1417-3875&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1417-3875&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1417-3875&client=summon |