Ensemble flow reconstruction in the atmospheric boundary layer from spatially limited measurements through latent diffusion models
Due to costs and practical constraints, field campaigns in the atmospheric boundary layer typically only measure a fraction of the atmospheric volume of interest. Machine learning techniques have previously successfully reconstructed unobserved regions of flow in canonical fluid mechanics problems a...
Saved in:
Published in | Physics of fluids (1994) Vol. 35; no. 12 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.12.2023
American Institute of Physics (AIP) |
Subjects | |
Online Access | Get full text |
ISSN | 1070-6631 1089-7666 |
DOI | 10.1063/5.0172559 |
Cover
Abstract | Due to costs and practical constraints, field campaigns in the atmospheric boundary layer typically only measure a fraction of the atmospheric volume of interest. Machine learning techniques have previously successfully reconstructed unobserved regions of flow in canonical fluid mechanics problems and two-dimensional geophysical flows, but these techniques have not yet been demonstrated in the three-dimensional atmospheric boundary layer. Here, we conduct a numerical analogue of a field campaign with spatially limited measurements using large-eddy simulation. We pose flow reconstruction as an inpainting problem, and reconstruct realistic samples of turbulent, three-dimensional flow with the use of a latent diffusion model. The diffusion model generates physically plausible turbulent structures on larger spatial scales, even when input observations cover less than 1% of the volume. Through a combination of qualitative visualization and quantitative assessment, we demonstrate that the diffusion model generates meaningfully diverse samples when conditioned on just one observation. These samples successfully serve as initial conditions for a large-eddy simulation code. We find that diffusion models show promise and potential for other applications for other turbulent flow reconstruction problems. |
---|---|
AbstractList | Due to costs and practical constraints, field campaigns in the atmospheric boundary layer typically only measure a fraction of the atmospheric volume of interest. Machine learning techniques have previously successfully reconstructed unobserved regions of flow in canonical fluid mechanics problems and two-dimensional geophysical flows, but these techniques have not yet been demonstrated in the three-dimensional atmospheric boundary layer. Here, we conduct a numerical analogue of a field campaign with spatially limited measurements using large-eddy simulation. We pose flow reconstruction as an inpainting problem, and reconstruct realistic samples of turbulent, three-dimensional flow with the use of a latent diffusion model. The diffusion model generates physically plausible turbulent structures on larger spatial scales, even when input observations cover less than 1% of the volume. Through a combination of qualitative visualization and quantitative assessment, we demonstrate that the diffusion model generates meaningfully diverse samples when conditioned on just one observation. These samples successfully serve as initial conditions for a large-eddy simulation code. We find that diffusion models show promise and potential for other applications for other turbulent flow reconstruction problems. Due to costs and practical constraints, field campaigns in the atmospheric boundary layer typically only measure a fraction of the atmospheric volume of interest. Machine learning techniques have previously successfully reconstructed unobserved regions of flow in canonical fluid mechanics problems and two-dimensional geophysical flows, but these techniques have not yet been demonstrated in the three-dimensional atmospheric boundary layer. Here, we conduct a numerical analogue of a field campaign with spatially limited measurements using large-eddy simulation. We pose flow reconstruction as an inpainting problem, and reconstruct realistic samples of turbulent, three-dimensional flow with the use of a latent diffusion model. The diffusion model generates physically plausible turbulent structures on larger spatial scales, even when input observations cover less than 1% of the volume. Through a combination of qualitative visualization and quantitative assessment, we demonstrate that the diffusion model generates meaningfully diverse samples when conditioned on just one observation. These samples successfully serve as initial conditions for a large-eddy simulation code. Importantly, we find that diffusion models show promise and potential for other applications for other turbulent flow reconstruction problems. |
Author | Hamilton, Nicholas Doubrawa, Paula Fulton, Mitchell J. Hassanaly, Malik Rybchuk, Alex Martínez-Tossas, Luis A. |
Author_xml | – sequence: 1 givenname: Alex surname: Rybchuk fullname: Rybchuk, Alex organization: National Wind Technology Center, National Renewable Energy Laboratory – sequence: 2 givenname: Malik surname: Hassanaly fullname: Hassanaly, Malik organization: National Wind Technology Center, National Renewable Energy Laboratory – sequence: 3 givenname: Nicholas surname: Hamilton fullname: Hamilton, Nicholas organization: National Wind Technology Center, National Renewable Energy Laboratory – sequence: 4 givenname: Paula surname: Doubrawa fullname: Doubrawa, Paula organization: National Wind Technology Center, National Renewable Energy Laboratory – sequence: 5 givenname: Mitchell J. surname: Fulton fullname: Fulton, Mitchell J. organization: Department of Mechanical Engineering, University of Colorado Boulder – sequence: 6 givenname: Luis A. surname: Martínez-Tossas fullname: Martínez-Tossas, Luis A. organization: National Wind Technology Center, National Renewable Energy Laboratory |
BackLink | https://www.osti.gov/servlets/purl/2274773$$D View this record in Osti.gov |
BookMark | eNp9kU1rFTEUhoO0YFtd-A-CrhSmzcckmVlKqVUouLHrkMmceFNmkmtOBunWX95cbrsRcZUPnvfhfJyTk5QTEPKOs0vOtLxSl4wbodT4ipxxNoyd0VqfHO6GdVpL_pqcIz4wxuQo9Bn5c5MQ1mkBGpb8mxbwOWEtm68xJxoTrTugrq4Z9zso0dMpb2l25ZEu7hEKDSWvFPeuRrcs7TOuscJMV3C4FVghVWyKkrefu5ao7U3nGMKGB_2aZ1jwDTkNbkF4-3xekPsvNz-uv3Z332-_XX--67xUfe0km4wMRjlQMAk-GN2D0cEFxUcduFfeg5z5FBj3YXJSDfMwTiCVGjTTTMgL8v7ozVijRd8K9bvWbgJfrRCmN0Y26MMR2pf8awOs9iFvJbW6rBgZ64XUom_U1ZHyJSMWCLbZ3GFktbi4WM7sYRtW2edttMTHvxL7Etc2x3-yn44svlj_Az8BJOSb1w |
CODEN | PHFLE6 |
CitedBy_id | crossref_primary_10_1016_j_est_2024_113104 crossref_primary_10_1016_j_oceaneng_2024_119386 crossref_primary_10_5194_wes_9_1791_2024 crossref_primary_10_1016_j_apenergy_2024_125059 crossref_primary_10_1063_5_0225657 crossref_primary_10_1063_5_0191629 crossref_primary_10_1146_annurev_conmatphys_043024_114758 crossref_primary_10_1029_2023MS004033 crossref_primary_10_1063_5_0215252 crossref_primary_10_1063_5_0216945 |
Cites_doi | 10.1103/PhysRevFluids.6.100501 10.1007/978-3-030-01261-8_1 10.21947/RAAW/1984650 10.1016/j.ijheatfluidflow.2022.109073 10.1063/5.0066077 10.1103/PhysRevX.10.011023 10.1017/jfm.2022.133 10.1038/s42256-021-00402-2 10.1029/2022JD037758 10.1145/3197517.3201304 10.1017/S0022112095000462 10.1145/3528233.3530757 10.2172/890732 10.1109/CVPR52729.2023.01374 10.1038/s41586-021-03854-z 10.1002/qj.49712051912 10.1109/CVPR.2017.632 10.1029/94JC00572 10.1017/jfm.2019.238 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 10.1103/PhysRevFluids.6.104607 10.1017/jfm.2021.268 10.1002/wcc.535 10.1016/j.oceaneng.2023.113693 10.1007/978-3-031-18576-2_12 10.1016/j.jcp.2017.06.042 10.1016/j.jcp.2021.110853 10.1063/5.0078644 10.1007/s00348-023-03629-4 10.1038/s41598-023-29525-9 10.1007/s00162-023-00663-0 10.1063/5.0025779 10.1016/j.jcp.2022.111793 10.1007/978-3-319-24574-4_28 10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2 10.2172/1659798 10.1016/j.jcp.2020.109446 10.1017/jfm.2021.135 10.1006/jcph.1998.5890 10.1103/PhysRevFluids.6.050503 10.1145/3648506 10.5194/egusphere-egu23-9531 10.1109/CVPR.2018.00068 10.1016/j.jcp.2018.10.045 10.5334/jors.148 10.1063/1.5140772 10.1175/MWR-D-12-00281.1 10.1209/0295-5075/acc88c 10.1017/jfm.2020.948 10.1038/s41586-020-2649-2 10.1109/CVPR52688.2022.01042 10.1073/pnas.1918964117 10.1109/MCSE.2007.55 10.1063/1.5127031 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
CorporateAuthor | National Renewable Energy Laboratory (NREL), Golden, CO (United States) |
CorporateAuthor_xml | – sequence: 0 name: National Renewable Energy Laboratory (NREL), Golden, CO (United States) |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M OIOZB OTOTI |
DOI | 10.1063/5.0172559 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | 2274773 10_1063_5_0172559 |
GrantInformation_xml | – fundername: U.S. Department of Energy grantid: DE-AC36-08GO28308 funderid: 10.13039/100000015 |
GroupedDBID | -~X 0ZJ 1UP 2-P 29O 2WC 4.4 5VS 6TJ AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJDQP AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS SC5 TN5 UCJ UQL WH7 XJT ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M OIOZB OTOTI |
ID | FETCH-LOGICAL-c354t-30b73f75ae5eb218764e76faf5196f1c5cce3d1bf01cfba358d89be3558606023 |
IEDL.DBID | AJDQP |
ISSN | 1070-6631 |
IngestDate | Thu Dec 05 06:35:19 EST 2024 Mon Jun 30 07:12:24 EDT 2025 Tue Jul 01 04:55:32 EDT 2025 Thu Apr 24 23:12:37 EDT 2025 Fri Jun 21 00:17:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Published open access through an agreement withNational Renewable Energy Laboratory53405 All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-30b73f75ae5eb218764e76faf5196f1c5cce3d1bf01cfba358d89be3558606023 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Wind Energy Technologies Office AC36-08GO28308 NREL/JA-5000-84761 |
ORCID | 0000-0003-2191-2845 0000-0003-4433-3993 0000-0003-2353-4999 0000-0002-0425-9090 0000-0002-0660-7212 0000-0003-3462-341X 0000000206607212 0000000323534999 0000000344333993 000000033462341X 0000000321912845 0000000204259090 |
OpenAccessLink | http://dx.doi.org/10.1063/5.0172559 |
PQID | 2900423624 |
PQPubID | 2050667 |
PageCount | 17 |
ParticipantIDs | osti_scitechconnect_2274773 proquest_journals_2900423624 scitation_primary_10_1063_5_0172559 crossref_citationtrail_10_1063_5_0172559 crossref_primary_10_1063_5_0172559 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville – name: United States |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2023 |
Publisher | American Institute of Physics American Institute of Physics (AIP) |
Publisher_xml | – sequence: 0 name: American Institute of Physics (AIP) – name: American Institute of Physics |
References | Kelley, Doubrawa, Naughton (c2) 2023 Yu, Bi, Fan (c7) 2023 Almgren, Bell, Colella, Howell, Welcome (c46) 1998 Warneke, Schwarz, Dibb, Kalashnikova, Frost, Al-Saad, Brown, Brewer, Soja, Seidel, Washenfelder, Wiggins, Moore, Anderson, Jordan, Yacovitch, Herndon, Liu, Kuwayama, Jaffe, Johnston, Selimovic, Yokelson, Giles, Holben, Goloub, Popovici, Trainer, Kumar, Pierce, Fahey, Roberts, Gargulinski, Peterson, Ye, Thapa, Saide, Fite, Holmes, Wang, Coggon, Decker, Stockwell, Xu, Gkatzelis, Aikin, Lefer, Kaspari, Griffin, Zeng, Weber, Hastings, Chai, Wolfe, Hanisco, Liao, Jost, Guo, Jimenez, Crawford (c5) 2023 Courtier, Thépaut, Hollingsworth (c43) 1994 Jeong, Hussain (c70) 1995 Smagorinsky (c47) 1963 Hunter (c69) 2007 Di Leoni, Mazzino, Biferale (c13) 2020 Di Leoni, Lu, Meneveau, Karniadakis, Zaki (c31) 2023 Zauner, Mons, Marquet, Leclaire (c14) 2022 Buzzicotti, Bonaccorso, Di Leoni, Biferale (c25) 2021 Zaki, Wang (c12) 2021 Di Leoni, Agarwal, Zaki, Meneveau, Katz (c29) 2023 Ravuri, Lenc, Willson, Kangin, Lam, Mirowski, Fitzsimons, Athanassiadou, Kashem, Madge, Prudden, Mandhane, Clark, Brock, Simonyan, Hadsell, Robinson, Clancy, Arribas, Mohamed (c64) 2021 Mons, Du, Zaki (c10) 2021 Fukami, Fukagata, Taira (c16) 2019 Liu, Tang, Huang, Lu (c17) 2020 Hassanaly, Glaws, Stengel, King (c23) 2022 Buzzicotti (c6) 2023 Xie, Franz, Chu, Thuerey (c19) 2018 Hoyer, Hamman (c68) 2017 Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, del Río, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (c67) 2020 Yousif, Yu, Lim (c22) 2021 Chandramouli, Memin, Heitz (c9) 2020 Fukami, Maulik, Ramachandra, Fukagata, Taira (c26) 2021 Raissi, Perdikaris, Karniadakis (c65) 2019 Wang, Zaki (c11) 2021 Evensen (c44) 1994 Deng, He, Liu, Kim (c20) 2019 Stengel, Glaws, Hettinger, King (c21) 2020 Gundersen, Oleynik, Blaser, Alendal (c27) 2021 Yousif, Yu, Hoyas, Vinuesa, Lim (c32) 2023 Wang, Li, Liu, Wu, Hao, Zhang, He (c24) 2022 Meldi, Poux (c8) 2017 Hamill (c62) 2001 Carrassi, Bocquet, Bertino, Evensen (c57) 2018 Fukami, Fukagata, Taira (c18) 2021 Monache, Eckel, Rife, Nagarajan, Searight (c63) 2013 Fukami, Fukagata, Taira (c15) 2023 Cai, Wang, Fuest, Jeon, Gray, Karniadakis (c28) 2021 (2023121111265820500_c16) 2019; 870 2023121111265820500_c52 2023121111265820500_c51 2023121111265820500_c54 2023121111265820500_c53 2023121111265820500_c56 2023121111265820500_c55 (2023121111265820500_c17) 2020; 32 (2023121111265820500_c24) 2022; 34 (2023121111265820500_c43) 1994; 120 2023121111265820500_c59 (2023121111265820500_c26) 2021; 3 (2023121111265820500_c36) 2015 (2023121111265820500_c47) 1963; 91 (2023121111265820500_c71) 2002 (2023121111265820500_c31) 2023; 474 (2023121111265820500_c68) 2017; 5 2023121111265820500_c50 (2023121111265820500_c70) 1995; 285 (2023121111265820500_c2) 2023 (2023121111265820500_c67) 2020; 585 2023121111265820500_c66 (2023121111265820500_c7) 2023; 271 (2023121111265820500_c57) 2018; 9 2023121111265820500_c1 (2023121111265820500_c38) 2021 (2023121111265820500_c19) 2018; 37 (2023121111265820500_c32) 2023; 13 (2023121111265820500_c72) 2017 (2023121111265820500_c22) 2021; 33 (2023121111265820500_c63) 2013; 141 (2023121111265820500_c46) 1998; 142 (2023121111265820500_c8) 2017; 347 (2023121111265820500_c10) 2021; 6 (2023121111265820500_c28) 2021; 915 (2023121111265820500_c29) 2023; 64 (2023121111265820500_c65) 2019; 378 (2023121111265820500_c69) 2007; 9 (2023121111265820500_c11) 2021; 917 (2023121111265820500_c15) 2023; 37 2023121111265820500_c60 (2023121111265820500_c20) 2019; 31 2023121111265820500_c30 (2023121111265820500_c61) 2019 2023121111265820500_c33 (2023121111265820500_c21) 2020; 117 2023121111265820500_c37 2023121111265820500_c39 (2023121111265820500_c62) 2001; 129 (2023121111265820500_c3) 1958 (2023121111265820500_c5) 2023; 128 (2023121111265820500_c9) 2020; 412 2023121111265820500_c4 (2023121111265820500_c35) 2016 (2023121111265820500_c18) 2021; 909 (2023121111265820500_c25) 2021; 6 (2023121111265820500_c41) 2022 (2023121111265820500_c58) 2016 2023121111265820500_c40 2023121111265820500_c42 (2023121111265820500_c6) 2023; 142 2023121111265820500_c45 (2023121111265820500_c27) 2021; 33 (2023121111265820500_c12) 2021; 6 (2023121111265820500_c23) 2022; 450 2023121111265820500_c49 2023121111265820500_c48 (2023121111265820500_c13) 2020; 10 (2023121111265820500_c64) 2021; 597 (2023121111265820500_c14) 2022; 937 (2023121111265820500_c44) 1994; 99 (2023121111265820500_c34) 2019 |
References_xml | – start-page: 111793 year: 2023 ident: c31 article-title: Neural operator prediction of linear instability waves in high-speed boundary layers publication-title: J. Comput. Phys. – start-page: 686 year: 2019 ident: c65 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – start-page: 109446 year: 2020 ident: c9 article-title: 4D large scale variational data assimilation of a turbulent flow with a dynamics error model publication-title: J. Comput. Phys. – year: 2023 ident: c2 article-title: Rotor, Aeroelastics, Aerodynamics, and Wake (RAAW) Project publication-title: U.S. Department of Energy. – start-page: 69 year: 1995 ident: c70 article-title: On the identification of a vortex publication-title: J. Fluid Mech. – start-page: 011023 year: 2020 ident: c13 article-title: Synchronization to big data: Nudging the Navier–Stokes equations for data assimilation of turbulent flows publication-title: Phys. Rev. X – start-page: 1 year: 2018 ident: c19 article-title: tempoGAN: A temporally coherent, volumetric GAN for super-resolution fluid flow publication-title: ACM Trans. Graphics – start-page: 945 year: 2021 ident: c26 article-title: Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning publication-title: Nat. Mach. Intell. – start-page: 025105 year: 2020 ident: c17 article-title: Deep learning methods for super-resolution reconstruction of turbulent flows publication-title: Phys. Fluids – start-page: A102 year: 2021 ident: c28 article-title: Flow over an espresso cup: Inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks publication-title: J. Fluid Mech. – start-page: 1 year: 1998 ident: c46 article-title: A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations publication-title: J. Comput. Phys. – start-page: e535 year: 2018 ident: c57 article-title: Data assimilation in the geosciences: An overview of methods, issues, and perspectives publication-title: WIREs Clim. Change – start-page: 125119 year: 2021 ident: c22 article-title: High-fidelity reconstruction of turbulent flow from spatially limited data using enhanced super-resolution generative adversarial network publication-title: Phys. Fluids – start-page: 125111 year: 2019 ident: c20 article-title: Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework publication-title: Phys. Fluids – start-page: 99 year: 1963 ident: c47 article-title: General circulation experiments with the primitive equations: I. The basic experiment publication-title: Mon. Weather Rev. – start-page: 95 year: 2023 ident: c29 article-title: Reconstructing turbulent velocity and pressure fields from under-resolved noisy particle tracks using physics-informed neural networks publication-title: Exp. Fluids – start-page: 2529 year: 2023 ident: c32 article-title: A deep-learning approach for reconstructing 3D turbulent flows from 2D observation data publication-title: Sci. Rep. – start-page: 672 year: 2021 ident: c64 article-title: Skilful precipitation nowcasting using deep generative models of radar publication-title: Nature – start-page: 037107 year: 2022 ident: c24 article-title: Deep-learning-based super-resolution reconstruction of high-speed imaging in fluids publication-title: Phys. Fluids – start-page: 357 year: 2020 ident: c67 article-title: Array programming with NumPy publication-title: Nature – start-page: 050503 year: 2021 ident: c25 article-title: Reconstruction of turbulent data with deep generative models for semantic inpainting from TURB-Rot database publication-title: Phys. Rev. Fluids – start-page: 110853 year: 2022 ident: c23 article-title: Adversarial sampling of unknown and high-dimensional conditional distributions publication-title: J. Comput. Phys. – start-page: 207 year: 2017 ident: c8 article-title: A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows publication-title: J. Comput. Phys. – start-page: 017119 year: 2021 ident: c27 article-title: Semi-conditional variational auto-encoder for flow reconstruction and uncertainty quantification from limited observations publication-title: Phys. Fluids – start-page: 1367 year: 1994 ident: c43 article-title: A strategy for operational implementation of 4D-Var, using an incremental approach publication-title: Q. J. R. Meteorol. Soc. – start-page: 100501 year: 2021 ident: c12 article-title: From limited observations to the state of turbulence: Fundamental difficulties of flow reconstruction publication-title: Phys. Rev. Fluids – start-page: A9 year: 2021 ident: c18 article-title: Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows publication-title: J. Fluid Mech. – start-page: 16805 year: 2020 ident: c21 article-title: Adversarial super-resolution of climatological wind and solar data publication-title: Proc. Natl. Acad. Sci. U. S. A. – start-page: 10143 year: 1994 ident: c44 article-title: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics publication-title: J. Geophys. Res.: Oceans – start-page: e2022JD037758 year: 2023 ident: c5 article-title: Fire influence on regional to global environments and air quality (FIREX-AQ) publication-title: J. Geophys. Res.: Atmos. – start-page: 106 year: 2019 ident: c16 article-title: Super-resolution reconstruction of turbulent flows with machine learning publication-title: J. Fluid Mech. – start-page: 550 year: 2001 ident: c62 article-title: Interpretation of rank histograms for verifying ensemble forecasts publication-title: Mon. Weather Rev. – start-page: 90 year: 2007 ident: c69 article-title: Matplotlib: A 2D graphics environment publication-title: Comput. Sci. Eng. – start-page: 3498 year: 2013 ident: c63 article-title: Probabilistic weather prediction with an analog ensemble publication-title: Mon. Weather Rev. – start-page: 104607 year: 2021 ident: c10 article-title: Ensemble-variational assimilation of statistical data in large-eddy simulation publication-title: Phys. Rev. Fluids – start-page: 421 year: 2023 ident: c15 article-title: Super-resolution analysis via machine learning: A survey for fluid flows publication-title: Theor. Comput. Fluid Dyn. – start-page: 23001 year: 2023 ident: c6 article-title: Data reconstruction for complex flows using AI: Recent progress, obstacles, and perspectives publication-title: Europhys. Lett. – start-page: 10 year: 2017 ident: c68 article-title: Xarray: N-D labeled arrays and datasets in Python publication-title: J. Open Res. Software – start-page: A38 year: 2022 ident: c14 article-title: Nudging-based data assimilation of the turbulent flow around a square cylinder publication-title: J. Fluid Mech. – start-page: 113693 year: 2023 ident: c7 article-title: Deep learning for fluid velocity field estimation: A review publication-title: Ocean Eng. – start-page: A9 year: 2021 ident: c11 article-title: State estimation in turbulent channel flow from limited observations publication-title: J. Fluid Mech. – volume: 6 start-page: 100501 year: 2021 ident: 2023121111265820500_c12 article-title: From limited observations to the state of turbulence: Fundamental difficulties of flow reconstruction publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.6.100501 – ident: 2023121111265820500_c55 doi: 10.1007/978-3-030-01261-8_1 – year: 2023 ident: 2023121111265820500_c2 article-title: Rotor, Aeroelastics, Aerodynamics, and Wake (RAAW) Project publication-title: U.S. Department of Energy. doi: 10.21947/RAAW/1984650 – ident: 2023121111265820500_c30 doi: 10.1016/j.ijheatfluidflow.2022.109073 – volume: 33 start-page: 125119 year: 2021 ident: 2023121111265820500_c22 article-title: High-fidelity reconstruction of turbulent flow from spatially limited data using enhanced super-resolution generative adversarial network publication-title: Phys. Fluids doi: 10.1063/5.0066077 – volume: 10 start-page: 011023 year: 2020 ident: 2023121111265820500_c13 article-title: Synchronization to big data: Nudging the Navier–Stokes equations for data assimilation of turbulent flows publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.10.011023 – ident: 2023121111265820500_c56 – volume: 937 start-page: A38 year: 2022 ident: 2023121111265820500_c14 article-title: Nudging-based data assimilation of the turbulent flow around a square cylinder publication-title: J. Fluid Mech. doi: 10.1017/jfm.2022.133 – volume: 3 start-page: 945 year: 2021 ident: 2023121111265820500_c26 article-title: Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-021-00402-2 – volume: 128 start-page: e2022JD037758 year: 2023 ident: 2023121111265820500_c5 article-title: Fire influence on regional to global environments and air quality (FIREX-AQ) publication-title: J. Geophys. Res.: Atmos. doi: 10.1029/2022JD037758 – volume: 37 start-page: 1 year: 2018 ident: 2023121111265820500_c19 article-title: tempoGAN: A temporally coherent, volumetric GAN for super-resolution fluid flow publication-title: ACM Trans. Graphics doi: 10.1145/3197517.3201304 – ident: 2023121111265820500_c49 – start-page: 2256 year: 2015 ident: 2023121111265820500_c36 article-title: Deep unsupervised learning using nonequilibrium thermodynamics – volume: 285 start-page: 69 year: 1995 ident: 2023121111265820500_c70 article-title: On the identification of a vortex publication-title: J. Fluid Mech. doi: 10.1017/S0022112095000462 – ident: 2023121111265820500_c42 doi: 10.1145/3528233.3530757 – ident: 2023121111265820500_c4 doi: 10.2172/890732 – ident: 2023121111265820500_c66 doi: 10.1109/CVPR52729.2023.01374 – volume: 597 start-page: 672 year: 2021 ident: 2023121111265820500_c64 article-title: Skilful precipitation nowcasting using deep generative models of radar publication-title: Nature doi: 10.1038/s41586-021-03854-z – volume: 120 start-page: 1367 year: 1994 ident: 2023121111265820500_c43 article-title: A strategy for operational implementation of 4D-Var, using an incremental approach publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.49712051912 – ident: 2023121111265820500_c45 – ident: 2023121111265820500_c53 doi: 10.1109/CVPR.2017.632 – volume: 99 start-page: 10143 year: 1994 ident: 2023121111265820500_c44 article-title: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics publication-title: J. Geophys. Res.: Oceans doi: 10.1029/94JC00572 – ident: 2023121111265820500_c37 – volume: 870 start-page: 106 year: 2019 ident: 2023121111265820500_c16 article-title: Super-resolution reconstruction of turbulent flows with machine learning publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.238 – volume: 91 start-page: 99 year: 1963 ident: 2023121111265820500_c47 article-title: General circulation experiments with the primitive equations: I. The basic experiment publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 – volume: 6 start-page: 104607 year: 2021 ident: 2023121111265820500_c10 article-title: Ensemble-variational assimilation of statistical data in large-eddy simulation publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.6.104607 – volume: 917 start-page: A9 year: 2021 ident: 2023121111265820500_c11 article-title: State estimation in turbulent channel flow from limited observations publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.268 – volume: 9 start-page: e535 year: 2018 ident: 2023121111265820500_c57 article-title: Data assimilation in the geosciences: An overview of methods, issues, and perspectives publication-title: WIREs Clim. Change doi: 10.1002/wcc.535 – volume-title: Project Prairie Grass, A Field Program in Diffusion: Volume 1 year: 1958 ident: 2023121111265820500_c3 – ident: 2023121111265820500_c51 – volume: 271 start-page: 113693 year: 2023 ident: 2023121111265820500_c7 article-title: Deep learning for fluid velocity field estimation: A review publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.113693 – ident: 2023121111265820500_c40 doi: 10.1007/978-3-031-18576-2_12 – ident: 2023121111265820500_c48 – volume-title: Advances in Neural Information Processing Systems year: 2016 ident: 2023121111265820500_c35 article-title: Improved techniques for training GANs – volume: 347 start-page: 207 year: 2017 ident: 2023121111265820500_c8 article-title: A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.06.042 – volume: 450 start-page: 110853 year: 2022 ident: 2023121111265820500_c23 article-title: Adversarial sampling of unknown and high-dimensional conditional distributions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110853 – volume: 34 start-page: 037107 year: 2022 ident: 2023121111265820500_c24 article-title: Deep-learning-based super-resolution reconstruction of high-speed imaging in fluids publication-title: Phys. Fluids doi: 10.1063/5.0078644 – volume: 64 start-page: 95 year: 2023 ident: 2023121111265820500_c29 article-title: Reconstructing turbulent velocity and pressure fields from under-resolved noisy particle tracks using physics-informed neural networks publication-title: Exp. Fluids doi: 10.1007/s00348-023-03629-4 – volume: 13 start-page: 2529 year: 2023 ident: 2023121111265820500_c32 article-title: A deep-learning approach for reconstructing 3D turbulent flows from 2D observation data publication-title: Sci. Rep. doi: 10.1038/s41598-023-29525-9 – volume: 37 start-page: 421 year: 2023 ident: 2023121111265820500_c15 article-title: Super-resolution analysis via machine learning: A survey for fluid flows publication-title: Theor. Comput. Fluid Dyn. doi: 10.1007/s00162-023-00663-0 – volume: 33 start-page: 017119 year: 2021 ident: 2023121111265820500_c27 article-title: Semi-conditional variational auto-encoder for flow reconstruction and uncertainty quantification from limited observations publication-title: Phys. Fluids doi: 10.1063/5.0025779 – volume: 474 start-page: 111793 year: 2023 ident: 2023121111265820500_c31 article-title: Neural operator prediction of linear instability waves in high-speed boundary layers publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2022.111793 – ident: 2023121111265820500_c54 – ident: 2023121111265820500_c59 doi: 10.1007/978-3-319-24574-4_28 – volume: 129 start-page: 550 year: 2001 ident: 2023121111265820500_c62 article-title: Interpretation of rank histograms for verifying ensemble forecasts publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2 – ident: 2023121111265820500_c1 doi: 10.2172/1659798 – volume: 412 start-page: 109446 year: 2020 ident: 2023121111265820500_c9 article-title: 4D large scale variational data assimilation of a turbulent flow with a dynamics error model publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.109446 – volume-title: Probability, Random Variables and Stochastic Processes year: 2002 ident: 2023121111265820500_c71 – volume: 915 start-page: A102 year: 2021 ident: 2023121111265820500_c28 article-title: Flow over an espresso cup: Inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.135 – volume: 142 start-page: 1 year: 1998 ident: 2023121111265820500_c46 article-title: A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations publication-title: J. Comput. Phys. doi: 10.1006/jcph.1998.5890 – ident: 2023121111265820500_c50 – volume: 6 start-page: 050503 year: 2021 ident: 2023121111265820500_c25 article-title: Reconstruction of turbulent data with deep generative models for semantic inpainting from TURB-Rot database publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.6.050503 – ident: 2023121111265820500_c33 doi: 10.1145/3648506 – ident: 2023121111265820500_c60 doi: 10.5194/egusphere-egu23-9531 – ident: 2023121111265820500_c52 doi: 10.1109/CVPR.2018.00068 – volume: 378 start-page: 686 year: 2019 ident: 2023121111265820500_c65 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 5 start-page: 10 year: 2017 ident: 2023121111265820500_c68 article-title: Xarray: N-D labeled arrays and datasets in Python publication-title: J. Open Res. Software doi: 10.5334/jors.148 – volume: 32 start-page: 025105 year: 2020 ident: 2023121111265820500_c17 article-title: Deep learning methods for super-resolution reconstruction of turbulent flows publication-title: Phys. Fluids doi: 10.1063/1.5140772 – volume: 141 start-page: 3498 year: 2013 ident: 2023121111265820500_c63 article-title: Probabilistic weather prediction with an analog ensemble publication-title: Mon. Weather Rev. doi: 10.1175/MWR-D-12-00281.1 – volume: 142 start-page: 23001 year: 2023 ident: 2023121111265820500_c6 article-title: Data reconstruction for complex flows using AI: Recent progress, obstacles, and perspectives publication-title: Europhys. Lett. doi: 10.1209/0295-5075/acc88c – volume: 909 start-page: A9 year: 2021 ident: 2023121111265820500_c18 article-title: Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.948 – volume: 585 start-page: 357 year: 2020 ident: 2023121111265820500_c67 article-title: Array programming with NumPy publication-title: Nature doi: 10.1038/s41586-020-2649-2 – start-page: i volume-title: Statistical Methods in the Atmospheric Sciences year: 2019 ident: 2023121111265820500_c34 article-title: Statistical methods in the atmospheric sciences – start-page: 8780 volume-title: Advances in Neural Information Processing Systems year: 2021 ident: 2023121111265820500_c38 article-title: Diffusion models beat GANs on image synthesis – ident: 2023121111265820500_c39 doi: 10.1109/CVPR52688.2022.01042 – start-page: 11461 year: 2022 ident: 2023121111265820500_c41 article-title: RePaint: Inpainting using denoising diffusion probabilistic models – volume: 117 start-page: 16805 year: 2020 ident: 2023121111265820500_c21 article-title: Adversarial super-resolution of climatological wind and solar data publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1918964117 – start-page: 5301 year: 2019 ident: 2023121111265820500_c61 article-title: On the spectral bias of neural networks – volume: 9 start-page: 90 year: 2007 ident: 2023121111265820500_c69 article-title: Matplotlib: A 2D graphics environment publication-title: Comput. Sci. Eng. doi: 10.1109/MCSE.2007.55 – start-page: 4681 year: 2017 ident: 2023121111265820500_c72 article-title: Photo-realistic single image super-resolution using a generative adversarial network – volume: 31 start-page: 125111 year: 2019 ident: 2023121111265820500_c20 article-title: Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework publication-title: Phys. Fluids doi: 10.1063/1.5127031 – start-page: 770 year: 2016 ident: 2023121111265820500_c58 article-title: Deep residual learning for image recognition |
SSID | ssj0003926 |
Score | 2.506222 |
Snippet | Due to costs and practical constraints, field campaigns in the atmospheric boundary layer typically only measure a fraction of the atmospheric volume of... |
SourceID | osti proquest crossref scitation |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | artificial neural networks Atmospheric boundary layer atmospheric dynamics Atmospheric models data visualization Diffusion layers Fluid dynamics Fluid flow Fluid mechanics Initial conditions Large eddy simulation light detection and ranging Machine learning MATHEMATICS AND COMPUTING probability theory Reconstruction Three dimensional boundary layer Three dimensional flow turbulence simulations Turbulent flow turbulent flows Two dimensional flow Vortices WIND ENERGY |
Title | Ensemble flow reconstruction in the atmospheric boundary layer from spatially limited measurements through latent diffusion models |
URI | http://dx.doi.org/10.1063/5.0172559 https://www.proquest.com/docview/2900423624 https://www.osti.gov/servlets/purl/2274773 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7WXUQvvsX1sQT14KWYbpqkexQfiLiiqOCtJGmCQrcrtiJe_eVO2u6qoOC1TChkMplvksn3AeyHJh2IOPYCxNQEkU5NoHwLlJE0RYSqB7TiKRheifP76OKBP7Rg748bfMEOPa2m9MB3Bjp9DF1cup2ji5Ob6-mGiyle1K2FWAkJFk4IhL4P_pF22mMMnx-Qcg7zTX31_S27nC3BQgMLyVHtx2Vo2XwFFhuISJoALFZgturYNMUqfJzmhR3pzBKXjd9IVdhOyWDJU04Q2RFVjsaFJw54MkRXAkov7yRTCLOJf1dCCt9PrbIMP9YPncjo68ywII2ID45AZF0SL6by6k_XSKWfU6zB_dnp3fF50AgqBIbxqAwY1ZI5yZXlWFCHuBFGVgqnHMI44ULDjbEsDbWjoXFaMR6n8UBbz8COdQ5m93Vo5-PcbgCx3BkpuVOpshGCCE1xII0jzSkzXNIuHEzmO5lMrRe9yJLq1luwhCeNa7qwOzV9rik2fjPa8k5LvJ-seTS-C8iUSd8X1ZJ1YXviy6SJwSLpD6qmH9GPurA39e_fv9j8l9UWzHvF-bqjZRva6Fi7g7ik1D1clyfDy9tesz4_AUXM4AU |
linkProvider | American Institute of Physics |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+flow+reconstruction+in+the+atmospheric+boundary+layer+from+spatially+limited+measurements+through+latent+diffusion+models&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Rybchuk%2C+Alex&rft.au=Hassanaly%2C+Malik&rft.au=Hamilton%2C+Nicholas&rft.au=Doubrawa%2C+Paula&rft.date=2023-12-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=35&rft.issue=12&rft_id=info:doi/10.1063%2F5.0172559&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0172559 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |