Ensemble flow reconstruction in the atmospheric boundary layer from spatially limited measurements through latent diffusion models

Due to costs and practical constraints, field campaigns in the atmospheric boundary layer typically only measure a fraction of the atmospheric volume of interest. Machine learning techniques have previously successfully reconstructed unobserved regions of flow in canonical fluid mechanics problems a...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 35; no. 12
Main Authors Rybchuk, Alex, Hassanaly, Malik, Hamilton, Nicholas, Doubrawa, Paula, Fulton, Mitchell J., Martínez-Tossas, Luis A.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.12.2023
American Institute of Physics (AIP)
Subjects
Online AccessGet full text
ISSN1070-6631
1089-7666
DOI10.1063/5.0172559

Cover

Abstract Due to costs and practical constraints, field campaigns in the atmospheric boundary layer typically only measure a fraction of the atmospheric volume of interest. Machine learning techniques have previously successfully reconstructed unobserved regions of flow in canonical fluid mechanics problems and two-dimensional geophysical flows, but these techniques have not yet been demonstrated in the three-dimensional atmospheric boundary layer. Here, we conduct a numerical analogue of a field campaign with spatially limited measurements using large-eddy simulation. We pose flow reconstruction as an inpainting problem, and reconstruct realistic samples of turbulent, three-dimensional flow with the use of a latent diffusion model. The diffusion model generates physically plausible turbulent structures on larger spatial scales, even when input observations cover less than 1% of the volume. Through a combination of qualitative visualization and quantitative assessment, we demonstrate that the diffusion model generates meaningfully diverse samples when conditioned on just one observation. These samples successfully serve as initial conditions for a large-eddy simulation code. We find that diffusion models show promise and potential for other applications for other turbulent flow reconstruction problems.
AbstractList Due to costs and practical constraints, field campaigns in the atmospheric boundary layer typically only measure a fraction of the atmospheric volume of interest. Machine learning techniques have previously successfully reconstructed unobserved regions of flow in canonical fluid mechanics problems and two-dimensional geophysical flows, but these techniques have not yet been demonstrated in the three-dimensional atmospheric boundary layer. Here, we conduct a numerical analogue of a field campaign with spatially limited measurements using large-eddy simulation. We pose flow reconstruction as an inpainting problem, and reconstruct realistic samples of turbulent, three-dimensional flow with the use of a latent diffusion model. The diffusion model generates physically plausible turbulent structures on larger spatial scales, even when input observations cover less than 1% of the volume. Through a combination of qualitative visualization and quantitative assessment, we demonstrate that the diffusion model generates meaningfully diverse samples when conditioned on just one observation. These samples successfully serve as initial conditions for a large-eddy simulation code. We find that diffusion models show promise and potential for other applications for other turbulent flow reconstruction problems.
Due to costs and practical constraints, field campaigns in the atmospheric boundary layer typically only measure a fraction of the atmospheric volume of interest. Machine learning techniques have previously successfully reconstructed unobserved regions of flow in canonical fluid mechanics problems and two-dimensional geophysical flows, but these techniques have not yet been demonstrated in the three-dimensional atmospheric boundary layer. Here, we conduct a numerical analogue of a field campaign with spatially limited measurements using large-eddy simulation. We pose flow reconstruction as an inpainting problem, and reconstruct realistic samples of turbulent, three-dimensional flow with the use of a latent diffusion model. The diffusion model generates physically plausible turbulent structures on larger spatial scales, even when input observations cover less than 1% of the volume. Through a combination of qualitative visualization and quantitative assessment, we demonstrate that the diffusion model generates meaningfully diverse samples when conditioned on just one observation. These samples successfully serve as initial conditions for a large-eddy simulation code. Importantly, we find that diffusion models show promise and potential for other applications for other turbulent flow reconstruction problems.
Author Hamilton, Nicholas
Doubrawa, Paula
Fulton, Mitchell J.
Hassanaly, Malik
Rybchuk, Alex
Martínez-Tossas, Luis A.
Author_xml – sequence: 1
  givenname: Alex
  surname: Rybchuk
  fullname: Rybchuk, Alex
  organization: National Wind Technology Center, National Renewable Energy Laboratory
– sequence: 2
  givenname: Malik
  surname: Hassanaly
  fullname: Hassanaly, Malik
  organization: National Wind Technology Center, National Renewable Energy Laboratory
– sequence: 3
  givenname: Nicholas
  surname: Hamilton
  fullname: Hamilton, Nicholas
  organization: National Wind Technology Center, National Renewable Energy Laboratory
– sequence: 4
  givenname: Paula
  surname: Doubrawa
  fullname: Doubrawa, Paula
  organization: National Wind Technology Center, National Renewable Energy Laboratory
– sequence: 5
  givenname: Mitchell J.
  surname: Fulton
  fullname: Fulton, Mitchell J.
  organization: Department of Mechanical Engineering, University of Colorado Boulder
– sequence: 6
  givenname: Luis A.
  surname: Martínez-Tossas
  fullname: Martínez-Tossas, Luis A.
  organization: National Wind Technology Center, National Renewable Energy Laboratory
BackLink https://www.osti.gov/servlets/purl/2274773$$D View this record in Osti.gov
BookMark eNp9kU1rFTEUhoO0YFtd-A-CrhSmzcckmVlKqVUouLHrkMmceFNmkmtOBunWX95cbrsRcZUPnvfhfJyTk5QTEPKOs0vOtLxSl4wbodT4ipxxNoyd0VqfHO6GdVpL_pqcIz4wxuQo9Bn5c5MQ1mkBGpb8mxbwOWEtm68xJxoTrTugrq4Z9zso0dMpb2l25ZEu7hEKDSWvFPeuRrcs7TOuscJMV3C4FVghVWyKkrefu5ao7U3nGMKGB_2aZ1jwDTkNbkF4-3xekPsvNz-uv3Z332-_XX--67xUfe0km4wMRjlQMAk-GN2D0cEFxUcduFfeg5z5FBj3YXJSDfMwTiCVGjTTTMgL8v7ozVijRd8K9bvWbgJfrRCmN0Y26MMR2pf8awOs9iFvJbW6rBgZ64XUom_U1ZHyJSMWCLbZ3GFktbi4WM7sYRtW2edttMTHvxL7Etc2x3-yn44svlj_Az8BJOSb1w
CODEN PHFLE6
CitedBy_id crossref_primary_10_1016_j_est_2024_113104
crossref_primary_10_1016_j_oceaneng_2024_119386
crossref_primary_10_5194_wes_9_1791_2024
crossref_primary_10_1016_j_apenergy_2024_125059
crossref_primary_10_1063_5_0225657
crossref_primary_10_1063_5_0191629
crossref_primary_10_1146_annurev_conmatphys_043024_114758
crossref_primary_10_1029_2023MS004033
crossref_primary_10_1063_5_0215252
crossref_primary_10_1063_5_0216945
Cites_doi 10.1103/PhysRevFluids.6.100501
10.1007/978-3-030-01261-8_1
10.21947/RAAW/1984650
10.1016/j.ijheatfluidflow.2022.109073
10.1063/5.0066077
10.1103/PhysRevX.10.011023
10.1017/jfm.2022.133
10.1038/s42256-021-00402-2
10.1029/2022JD037758
10.1145/3197517.3201304
10.1017/S0022112095000462
10.1145/3528233.3530757
10.2172/890732
10.1109/CVPR52729.2023.01374
10.1038/s41586-021-03854-z
10.1002/qj.49712051912
10.1109/CVPR.2017.632
10.1029/94JC00572
10.1017/jfm.2019.238
10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
10.1103/PhysRevFluids.6.104607
10.1017/jfm.2021.268
10.1002/wcc.535
10.1016/j.oceaneng.2023.113693
10.1007/978-3-031-18576-2_12
10.1016/j.jcp.2017.06.042
10.1016/j.jcp.2021.110853
10.1063/5.0078644
10.1007/s00348-023-03629-4
10.1038/s41598-023-29525-9
10.1007/s00162-023-00663-0
10.1063/5.0025779
10.1016/j.jcp.2022.111793
10.1007/978-3-319-24574-4_28
10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
10.2172/1659798
10.1016/j.jcp.2020.109446
10.1017/jfm.2021.135
10.1006/jcph.1998.5890
10.1103/PhysRevFluids.6.050503
10.1145/3648506
10.5194/egusphere-egu23-9531
10.1109/CVPR.2018.00068
10.1016/j.jcp.2018.10.045
10.5334/jors.148
10.1063/1.5140772
10.1175/MWR-D-12-00281.1
10.1209/0295-5075/acc88c
10.1017/jfm.2020.948
10.1038/s41586-020-2649-2
10.1109/CVPR52688.2022.01042
10.1073/pnas.1918964117
10.1109/MCSE.2007.55
10.1063/1.5127031
ContentType Journal Article
Copyright Author(s)
2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
CorporateAuthor National Renewable Energy Laboratory (NREL), Golden, CO (United States)
CorporateAuthor_xml – sequence: 0
  name: National Renewable Energy Laboratory (NREL), Golden, CO (United States)
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
OIOZB
OTOTI
DOI 10.1063/5.0172559
DatabaseName AIP Open Access Journals
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef


Technology Research Database
Database_xml – sequence: 1
  dbid: AJDQP
  name: AIP Open Access Journals
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 2274773
10_1063_5_0172559
GrantInformation_xml – fundername: U.S. Department of Energy
  grantid: DE-AC36-08GO28308
  funderid: 10.13039/100000015
GroupedDBID -~X
0ZJ
1UP
2-P
29O
2WC
4.4
5VS
6TJ
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJDQP
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
SC5
TN5
UCJ
UQL
WH7
XJT
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
OIOZB
OTOTI
ID FETCH-LOGICAL-c354t-30b73f75ae5eb218764e76faf5196f1c5cce3d1bf01cfba358d89be3558606023
IEDL.DBID AJDQP
ISSN 1070-6631
IngestDate Thu Dec 05 06:35:19 EST 2024
Mon Jun 30 07:12:24 EDT 2025
Tue Jul 01 04:55:32 EDT 2025
Thu Apr 24 23:12:37 EDT 2025
Fri Jun 21 00:17:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Published open access through an agreement withNational Renewable Energy Laboratory53405
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-30b73f75ae5eb218764e76faf5196f1c5cce3d1bf01cfba358d89be3558606023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Wind Energy Technologies Office
AC36-08GO28308
NREL/JA-5000-84761
ORCID 0000-0003-2191-2845
0000-0003-4433-3993
0000-0003-2353-4999
0000-0002-0425-9090
0000-0002-0660-7212
0000-0003-3462-341X
0000000206607212
0000000323534999
0000000344333993
000000033462341X
0000000321912845
0000000204259090
OpenAccessLink http://dx.doi.org/10.1063/5.0172559
PQID 2900423624
PQPubID 2050667
PageCount 17
ParticipantIDs osti_scitechconnect_2274773
proquest_journals_2900423624
scitation_primary_10_1063_5_0172559
crossref_citationtrail_10_1063_5_0172559
crossref_primary_10_1063_5_0172559
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
– name: United States
PublicationTitle Physics of fluids (1994)
PublicationYear 2023
Publisher American Institute of Physics
American Institute of Physics (AIP)
Publisher_xml – sequence: 0
  name: American Institute of Physics (AIP)
– name: American Institute of Physics
References Kelley, Doubrawa, Naughton (c2) 2023
Yu, Bi, Fan (c7) 2023
Almgren, Bell, Colella, Howell, Welcome (c46) 1998
Warneke, Schwarz, Dibb, Kalashnikova, Frost, Al-Saad, Brown, Brewer, Soja, Seidel, Washenfelder, Wiggins, Moore, Anderson, Jordan, Yacovitch, Herndon, Liu, Kuwayama, Jaffe, Johnston, Selimovic, Yokelson, Giles, Holben, Goloub, Popovici, Trainer, Kumar, Pierce, Fahey, Roberts, Gargulinski, Peterson, Ye, Thapa, Saide, Fite, Holmes, Wang, Coggon, Decker, Stockwell, Xu, Gkatzelis, Aikin, Lefer, Kaspari, Griffin, Zeng, Weber, Hastings, Chai, Wolfe, Hanisco, Liao, Jost, Guo, Jimenez, Crawford (c5) 2023
Courtier, Thépaut, Hollingsworth (c43) 1994
Jeong, Hussain (c70) 1995
Smagorinsky (c47) 1963
Hunter (c69) 2007
Di Leoni, Mazzino, Biferale (c13) 2020
Di Leoni, Lu, Meneveau, Karniadakis, Zaki (c31) 2023
Zauner, Mons, Marquet, Leclaire (c14) 2022
Buzzicotti, Bonaccorso, Di Leoni, Biferale (c25) 2021
Zaki, Wang (c12) 2021
Di Leoni, Agarwal, Zaki, Meneveau, Katz (c29) 2023
Ravuri, Lenc, Willson, Kangin, Lam, Mirowski, Fitzsimons, Athanassiadou, Kashem, Madge, Prudden, Mandhane, Clark, Brock, Simonyan, Hadsell, Robinson, Clancy, Arribas, Mohamed (c64) 2021
Mons, Du, Zaki (c10) 2021
Fukami, Fukagata, Taira (c16) 2019
Liu, Tang, Huang, Lu (c17) 2020
Hassanaly, Glaws, Stengel, King (c23) 2022
Buzzicotti (c6) 2023
Xie, Franz, Chu, Thuerey (c19) 2018
Hoyer, Hamman (c68) 2017
Harris, Millman, van der Walt, Gommers, Virtanen, Cournapeau, Wieser, Taylor, Berg, Smith, Kern, Picus, Hoyer, van Kerkwijk, Brett, Haldane, del Río, Wiebe, Peterson, Gérard-Marchant, Sheppard, Reddy, Weckesser, Abbasi, Gohlke, Oliphant (c67) 2020
Yousif, Yu, Lim (c22) 2021
Chandramouli, Memin, Heitz (c9) 2020
Fukami, Maulik, Ramachandra, Fukagata, Taira (c26) 2021
Raissi, Perdikaris, Karniadakis (c65) 2019
Wang, Zaki (c11) 2021
Evensen (c44) 1994
Deng, He, Liu, Kim (c20) 2019
Stengel, Glaws, Hettinger, King (c21) 2020
Gundersen, Oleynik, Blaser, Alendal (c27) 2021
Yousif, Yu, Hoyas, Vinuesa, Lim (c32) 2023
Wang, Li, Liu, Wu, Hao, Zhang, He (c24) 2022
Meldi, Poux (c8) 2017
Hamill (c62) 2001
Carrassi, Bocquet, Bertino, Evensen (c57) 2018
Fukami, Fukagata, Taira (c18) 2021
Monache, Eckel, Rife, Nagarajan, Searight (c63) 2013
Fukami, Fukagata, Taira (c15) 2023
Cai, Wang, Fuest, Jeon, Gray, Karniadakis (c28) 2021
(2023121111265820500_c16) 2019; 870
2023121111265820500_c52
2023121111265820500_c51
2023121111265820500_c54
2023121111265820500_c53
2023121111265820500_c56
2023121111265820500_c55
(2023121111265820500_c17) 2020; 32
(2023121111265820500_c24) 2022; 34
(2023121111265820500_c43) 1994; 120
2023121111265820500_c59
(2023121111265820500_c26) 2021; 3
(2023121111265820500_c36) 2015
(2023121111265820500_c47) 1963; 91
(2023121111265820500_c71) 2002
(2023121111265820500_c31) 2023; 474
(2023121111265820500_c68) 2017; 5
2023121111265820500_c50
(2023121111265820500_c70) 1995; 285
(2023121111265820500_c2) 2023
(2023121111265820500_c67) 2020; 585
2023121111265820500_c66
(2023121111265820500_c7) 2023; 271
(2023121111265820500_c57) 2018; 9
2023121111265820500_c1
(2023121111265820500_c38) 2021
(2023121111265820500_c19) 2018; 37
(2023121111265820500_c32) 2023; 13
(2023121111265820500_c72) 2017
(2023121111265820500_c22) 2021; 33
(2023121111265820500_c63) 2013; 141
(2023121111265820500_c46) 1998; 142
(2023121111265820500_c8) 2017; 347
(2023121111265820500_c10) 2021; 6
(2023121111265820500_c28) 2021; 915
(2023121111265820500_c29) 2023; 64
(2023121111265820500_c65) 2019; 378
(2023121111265820500_c69) 2007; 9
(2023121111265820500_c11) 2021; 917
(2023121111265820500_c15) 2023; 37
2023121111265820500_c60
(2023121111265820500_c20) 2019; 31
2023121111265820500_c30
(2023121111265820500_c61) 2019
2023121111265820500_c33
(2023121111265820500_c21) 2020; 117
2023121111265820500_c37
2023121111265820500_c39
(2023121111265820500_c62) 2001; 129
(2023121111265820500_c3) 1958
(2023121111265820500_c5) 2023; 128
(2023121111265820500_c9) 2020; 412
2023121111265820500_c4
(2023121111265820500_c35) 2016
(2023121111265820500_c18) 2021; 909
(2023121111265820500_c25) 2021; 6
(2023121111265820500_c41) 2022
(2023121111265820500_c58) 2016
2023121111265820500_c40
2023121111265820500_c42
(2023121111265820500_c6) 2023; 142
2023121111265820500_c45
(2023121111265820500_c27) 2021; 33
(2023121111265820500_c12) 2021; 6
(2023121111265820500_c23) 2022; 450
2023121111265820500_c49
2023121111265820500_c48
(2023121111265820500_c13) 2020; 10
(2023121111265820500_c64) 2021; 597
(2023121111265820500_c14) 2022; 937
(2023121111265820500_c44) 1994; 99
(2023121111265820500_c34) 2019
References_xml – start-page: 111793
  year: 2023
  ident: c31
  article-title: Neural operator prediction of linear instability waves in high-speed boundary layers
  publication-title: J. Comput. Phys.
– start-page: 686
  year: 2019
  ident: c65
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– start-page: 109446
  year: 2020
  ident: c9
  article-title: 4D large scale variational data assimilation of a turbulent flow with a dynamics error model
  publication-title: J. Comput. Phys.
– year: 2023
  ident: c2
  article-title: Rotor, Aeroelastics, Aerodynamics, and Wake (RAAW) Project
  publication-title: U.S. Department of Energy.
– start-page: 69
  year: 1995
  ident: c70
  article-title: On the identification of a vortex
  publication-title: J. Fluid Mech.
– start-page: 011023
  year: 2020
  ident: c13
  article-title: Synchronization to big data: Nudging the Navier–Stokes equations for data assimilation of turbulent flows
  publication-title: Phys. Rev. X
– start-page: 1
  year: 2018
  ident: c19
  article-title: tempoGAN: A temporally coherent, volumetric GAN for super-resolution fluid flow
  publication-title: ACM Trans. Graphics
– start-page: 945
  year: 2021
  ident: c26
  article-title: Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning
  publication-title: Nat. Mach. Intell.
– start-page: 025105
  year: 2020
  ident: c17
  article-title: Deep learning methods for super-resolution reconstruction of turbulent flows
  publication-title: Phys. Fluids
– start-page: A102
  year: 2021
  ident: c28
  article-title: Flow over an espresso cup: Inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks
  publication-title: J. Fluid Mech.
– start-page: 1
  year: 1998
  ident: c46
  article-title: A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
– start-page: e535
  year: 2018
  ident: c57
  article-title: Data assimilation in the geosciences: An overview of methods, issues, and perspectives
  publication-title: WIREs Clim. Change
– start-page: 125119
  year: 2021
  ident: c22
  article-title: High-fidelity reconstruction of turbulent flow from spatially limited data using enhanced super-resolution generative adversarial network
  publication-title: Phys. Fluids
– start-page: 125111
  year: 2019
  ident: c20
  article-title: Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework
  publication-title: Phys. Fluids
– start-page: 99
  year: 1963
  ident: c47
  article-title: General circulation experiments with the primitive equations: I. The basic experiment
  publication-title: Mon. Weather Rev.
– start-page: 95
  year: 2023
  ident: c29
  article-title: Reconstructing turbulent velocity and pressure fields from under-resolved noisy particle tracks using physics-informed neural networks
  publication-title: Exp. Fluids
– start-page: 2529
  year: 2023
  ident: c32
  article-title: A deep-learning approach for reconstructing 3D turbulent flows from 2D observation data
  publication-title: Sci. Rep.
– start-page: 672
  year: 2021
  ident: c64
  article-title: Skilful precipitation nowcasting using deep generative models of radar
  publication-title: Nature
– start-page: 037107
  year: 2022
  ident: c24
  article-title: Deep-learning-based super-resolution reconstruction of high-speed imaging in fluids
  publication-title: Phys. Fluids
– start-page: 357
  year: 2020
  ident: c67
  article-title: Array programming with NumPy
  publication-title: Nature
– start-page: 050503
  year: 2021
  ident: c25
  article-title: Reconstruction of turbulent data with deep generative models for semantic inpainting from TURB-Rot database
  publication-title: Phys. Rev. Fluids
– start-page: 110853
  year: 2022
  ident: c23
  article-title: Adversarial sampling of unknown and high-dimensional conditional distributions
  publication-title: J. Comput. Phys.
– start-page: 207
  year: 2017
  ident: c8
  article-title: A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows
  publication-title: J. Comput. Phys.
– start-page: 017119
  year: 2021
  ident: c27
  article-title: Semi-conditional variational auto-encoder for flow reconstruction and uncertainty quantification from limited observations
  publication-title: Phys. Fluids
– start-page: 1367
  year: 1994
  ident: c43
  article-title: A strategy for operational implementation of 4D-Var, using an incremental approach
  publication-title: Q. J. R. Meteorol. Soc.
– start-page: 100501
  year: 2021
  ident: c12
  article-title: From limited observations to the state of turbulence: Fundamental difficulties of flow reconstruction
  publication-title: Phys. Rev. Fluids
– start-page: A9
  year: 2021
  ident: c18
  article-title: Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows
  publication-title: J. Fluid Mech.
– start-page: 16805
  year: 2020
  ident: c21
  article-title: Adversarial super-resolution of climatological wind and solar data
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– start-page: 10143
  year: 1994
  ident: c44
  article-title: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
  publication-title: J. Geophys. Res.: Oceans
– start-page: e2022JD037758
  year: 2023
  ident: c5
  article-title: Fire influence on regional to global environments and air quality (FIREX-AQ)
  publication-title: J. Geophys. Res.: Atmos.
– start-page: 106
  year: 2019
  ident: c16
  article-title: Super-resolution reconstruction of turbulent flows with machine learning
  publication-title: J. Fluid Mech.
– start-page: 550
  year: 2001
  ident: c62
  article-title: Interpretation of rank histograms for verifying ensemble forecasts
  publication-title: Mon. Weather Rev.
– start-page: 90
  year: 2007
  ident: c69
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Comput. Sci. Eng.
– start-page: 3498
  year: 2013
  ident: c63
  article-title: Probabilistic weather prediction with an analog ensemble
  publication-title: Mon. Weather Rev.
– start-page: 104607
  year: 2021
  ident: c10
  article-title: Ensemble-variational assimilation of statistical data in large-eddy simulation
  publication-title: Phys. Rev. Fluids
– start-page: 421
  year: 2023
  ident: c15
  article-title: Super-resolution analysis via machine learning: A survey for fluid flows
  publication-title: Theor. Comput. Fluid Dyn.
– start-page: 23001
  year: 2023
  ident: c6
  article-title: Data reconstruction for complex flows using AI: Recent progress, obstacles, and perspectives
  publication-title: Europhys. Lett.
– start-page: 10
  year: 2017
  ident: c68
  article-title: Xarray: N-D labeled arrays and datasets in Python
  publication-title: J. Open Res. Software
– start-page: A38
  year: 2022
  ident: c14
  article-title: Nudging-based data assimilation of the turbulent flow around a square cylinder
  publication-title: J. Fluid Mech.
– start-page: 113693
  year: 2023
  ident: c7
  article-title: Deep learning for fluid velocity field estimation: A review
  publication-title: Ocean Eng.
– start-page: A9
  year: 2021
  ident: c11
  article-title: State estimation in turbulent channel flow from limited observations
  publication-title: J. Fluid Mech.
– volume: 6
  start-page: 100501
  year: 2021
  ident: 2023121111265820500_c12
  article-title: From limited observations to the state of turbulence: Fundamental difficulties of flow reconstruction
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.6.100501
– ident: 2023121111265820500_c55
  doi: 10.1007/978-3-030-01261-8_1
– year: 2023
  ident: 2023121111265820500_c2
  article-title: Rotor, Aeroelastics, Aerodynamics, and Wake (RAAW) Project
  publication-title: U.S. Department of Energy.
  doi: 10.21947/RAAW/1984650
– ident: 2023121111265820500_c30
  doi: 10.1016/j.ijheatfluidflow.2022.109073
– volume: 33
  start-page: 125119
  year: 2021
  ident: 2023121111265820500_c22
  article-title: High-fidelity reconstruction of turbulent flow from spatially limited data using enhanced super-resolution generative adversarial network
  publication-title: Phys. Fluids
  doi: 10.1063/5.0066077
– volume: 10
  start-page: 011023
  year: 2020
  ident: 2023121111265820500_c13
  article-title: Synchronization to big data: Nudging the Navier–Stokes equations for data assimilation of turbulent flows
  publication-title: Phys. Rev. X
  doi: 10.1103/PhysRevX.10.011023
– ident: 2023121111265820500_c56
– volume: 937
  start-page: A38
  year: 2022
  ident: 2023121111265820500_c14
  article-title: Nudging-based data assimilation of the turbulent flow around a square cylinder
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2022.133
– volume: 3
  start-page: 945
  year: 2021
  ident: 2023121111265820500_c26
  article-title: Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-021-00402-2
– volume: 128
  start-page: e2022JD037758
  year: 2023
  ident: 2023121111265820500_c5
  article-title: Fire influence on regional to global environments and air quality (FIREX-AQ)
  publication-title: J. Geophys. Res.: Atmos.
  doi: 10.1029/2022JD037758
– volume: 37
  start-page: 1
  year: 2018
  ident: 2023121111265820500_c19
  article-title: tempoGAN: A temporally coherent, volumetric GAN for super-resolution fluid flow
  publication-title: ACM Trans. Graphics
  doi: 10.1145/3197517.3201304
– ident: 2023121111265820500_c49
– start-page: 2256
  year: 2015
  ident: 2023121111265820500_c36
  article-title: Deep unsupervised learning using nonequilibrium thermodynamics
– volume: 285
  start-page: 69
  year: 1995
  ident: 2023121111265820500_c70
  article-title: On the identification of a vortex
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112095000462
– ident: 2023121111265820500_c42
  doi: 10.1145/3528233.3530757
– ident: 2023121111265820500_c4
  doi: 10.2172/890732
– ident: 2023121111265820500_c66
  doi: 10.1109/CVPR52729.2023.01374
– volume: 597
  start-page: 672
  year: 2021
  ident: 2023121111265820500_c64
  article-title: Skilful precipitation nowcasting using deep generative models of radar
  publication-title: Nature
  doi: 10.1038/s41586-021-03854-z
– volume: 120
  start-page: 1367
  year: 1994
  ident: 2023121111265820500_c43
  article-title: A strategy for operational implementation of 4D-Var, using an incremental approach
  publication-title: Q. J. R. Meteorol. Soc.
  doi: 10.1002/qj.49712051912
– ident: 2023121111265820500_c45
– ident: 2023121111265820500_c53
  doi: 10.1109/CVPR.2017.632
– volume: 99
  start-page: 10143
  year: 1994
  ident: 2023121111265820500_c44
  article-title: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
  publication-title: J. Geophys. Res.: Oceans
  doi: 10.1029/94JC00572
– ident: 2023121111265820500_c37
– volume: 870
  start-page: 106
  year: 2019
  ident: 2023121111265820500_c16
  article-title: Super-resolution reconstruction of turbulent flows with machine learning
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.238
– volume: 91
  start-page: 99
  year: 1963
  ident: 2023121111265820500_c47
  article-title: General circulation experiments with the primitive equations: I. The basic experiment
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
– volume: 6
  start-page: 104607
  year: 2021
  ident: 2023121111265820500_c10
  article-title: Ensemble-variational assimilation of statistical data in large-eddy simulation
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.6.104607
– volume: 917
  start-page: A9
  year: 2021
  ident: 2023121111265820500_c11
  article-title: State estimation in turbulent channel flow from limited observations
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.268
– volume: 9
  start-page: e535
  year: 2018
  ident: 2023121111265820500_c57
  article-title: Data assimilation in the geosciences: An overview of methods, issues, and perspectives
  publication-title: WIREs Clim. Change
  doi: 10.1002/wcc.535
– volume-title: Project Prairie Grass, A Field Program in Diffusion: Volume 1
  year: 1958
  ident: 2023121111265820500_c3
– ident: 2023121111265820500_c51
– volume: 271
  start-page: 113693
  year: 2023
  ident: 2023121111265820500_c7
  article-title: Deep learning for fluid velocity field estimation: A review
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.113693
– ident: 2023121111265820500_c40
  doi: 10.1007/978-3-031-18576-2_12
– ident: 2023121111265820500_c48
– volume-title: Advances in Neural Information Processing Systems
  year: 2016
  ident: 2023121111265820500_c35
  article-title: Improved techniques for training GANs
– volume: 347
  start-page: 207
  year: 2017
  ident: 2023121111265820500_c8
  article-title: A reduced order model based on Kalman filtering for sequential data assimilation of turbulent flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.06.042
– volume: 450
  start-page: 110853
  year: 2022
  ident: 2023121111265820500_c23
  article-title: Adversarial sampling of unknown and high-dimensional conditional distributions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110853
– volume: 34
  start-page: 037107
  year: 2022
  ident: 2023121111265820500_c24
  article-title: Deep-learning-based super-resolution reconstruction of high-speed imaging in fluids
  publication-title: Phys. Fluids
  doi: 10.1063/5.0078644
– volume: 64
  start-page: 95
  year: 2023
  ident: 2023121111265820500_c29
  article-title: Reconstructing turbulent velocity and pressure fields from under-resolved noisy particle tracks using physics-informed neural networks
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-023-03629-4
– volume: 13
  start-page: 2529
  year: 2023
  ident: 2023121111265820500_c32
  article-title: A deep-learning approach for reconstructing 3D turbulent flows from 2D observation data
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-29525-9
– volume: 37
  start-page: 421
  year: 2023
  ident: 2023121111265820500_c15
  article-title: Super-resolution analysis via machine learning: A survey for fluid flows
  publication-title: Theor. Comput. Fluid Dyn.
  doi: 10.1007/s00162-023-00663-0
– volume: 33
  start-page: 017119
  year: 2021
  ident: 2023121111265820500_c27
  article-title: Semi-conditional variational auto-encoder for flow reconstruction and uncertainty quantification from limited observations
  publication-title: Phys. Fluids
  doi: 10.1063/5.0025779
– volume: 474
  start-page: 111793
  year: 2023
  ident: 2023121111265820500_c31
  article-title: Neural operator prediction of linear instability waves in high-speed boundary layers
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2022.111793
– ident: 2023121111265820500_c54
– ident: 2023121111265820500_c59
  doi: 10.1007/978-3-319-24574-4_28
– volume: 129
  start-page: 550
  year: 2001
  ident: 2023121111265820500_c62
  article-title: Interpretation of rank histograms for verifying ensemble forecasts
  publication-title: Mon. Weather Rev.
  doi: 10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2
– ident: 2023121111265820500_c1
  doi: 10.2172/1659798
– volume: 412
  start-page: 109446
  year: 2020
  ident: 2023121111265820500_c9
  article-title: 4D large scale variational data assimilation of a turbulent flow with a dynamics error model
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.109446
– volume-title: Probability, Random Variables and Stochastic Processes
  year: 2002
  ident: 2023121111265820500_c71
– volume: 915
  start-page: A102
  year: 2021
  ident: 2023121111265820500_c28
  article-title: Flow over an espresso cup: Inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2021.135
– volume: 142
  start-page: 1
  year: 1998
  ident: 2023121111265820500_c46
  article-title: A conservative adaptive projection method for the variable density incompressible Navier–Stokes equations
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1998.5890
– ident: 2023121111265820500_c50
– volume: 6
  start-page: 050503
  year: 2021
  ident: 2023121111265820500_c25
  article-title: Reconstruction of turbulent data with deep generative models for semantic inpainting from TURB-Rot database
  publication-title: Phys. Rev. Fluids
  doi: 10.1103/PhysRevFluids.6.050503
– ident: 2023121111265820500_c33
  doi: 10.1145/3648506
– ident: 2023121111265820500_c60
  doi: 10.5194/egusphere-egu23-9531
– ident: 2023121111265820500_c52
  doi: 10.1109/CVPR.2018.00068
– volume: 378
  start-page: 686
  year: 2019
  ident: 2023121111265820500_c65
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 5
  start-page: 10
  year: 2017
  ident: 2023121111265820500_c68
  article-title: Xarray: N-D labeled arrays and datasets in Python
  publication-title: J. Open Res. Software
  doi: 10.5334/jors.148
– volume: 32
  start-page: 025105
  year: 2020
  ident: 2023121111265820500_c17
  article-title: Deep learning methods for super-resolution reconstruction of turbulent flows
  publication-title: Phys. Fluids
  doi: 10.1063/1.5140772
– volume: 141
  start-page: 3498
  year: 2013
  ident: 2023121111265820500_c63
  article-title: Probabilistic weather prediction with an analog ensemble
  publication-title: Mon. Weather Rev.
  doi: 10.1175/MWR-D-12-00281.1
– volume: 142
  start-page: 23001
  year: 2023
  ident: 2023121111265820500_c6
  article-title: Data reconstruction for complex flows using AI: Recent progress, obstacles, and perspectives
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/acc88c
– volume: 909
  start-page: A9
  year: 2021
  ident: 2023121111265820500_c18
  article-title: Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2020.948
– volume: 585
  start-page: 357
  year: 2020
  ident: 2023121111265820500_c67
  article-title: Array programming with NumPy
  publication-title: Nature
  doi: 10.1038/s41586-020-2649-2
– start-page: i
  volume-title: Statistical Methods in the Atmospheric Sciences
  year: 2019
  ident: 2023121111265820500_c34
  article-title: Statistical methods in the atmospheric sciences
– start-page: 8780
  volume-title: Advances in Neural Information Processing Systems
  year: 2021
  ident: 2023121111265820500_c38
  article-title: Diffusion models beat GANs on image synthesis
– ident: 2023121111265820500_c39
  doi: 10.1109/CVPR52688.2022.01042
– start-page: 11461
  year: 2022
  ident: 2023121111265820500_c41
  article-title: RePaint: Inpainting using denoising diffusion probabilistic models
– volume: 117
  start-page: 16805
  year: 2020
  ident: 2023121111265820500_c21
  article-title: Adversarial super-resolution of climatological wind and solar data
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1918964117
– start-page: 5301
  year: 2019
  ident: 2023121111265820500_c61
  article-title: On the spectral bias of neural networks
– volume: 9
  start-page: 90
  year: 2007
  ident: 2023121111265820500_c69
  article-title: Matplotlib: A 2D graphics environment
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/MCSE.2007.55
– start-page: 4681
  year: 2017
  ident: 2023121111265820500_c72
  article-title: Photo-realistic single image super-resolution using a generative adversarial network
– volume: 31
  start-page: 125111
  year: 2019
  ident: 2023121111265820500_c20
  article-title: Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework
  publication-title: Phys. Fluids
  doi: 10.1063/1.5127031
– start-page: 770
  year: 2016
  ident: 2023121111265820500_c58
  article-title: Deep residual learning for image recognition
SSID ssj0003926
Score 2.506222
Snippet Due to costs and practical constraints, field campaigns in the atmospheric boundary layer typically only measure a fraction of the atmospheric volume of...
SourceID osti
proquest
crossref
scitation
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms artificial neural networks
Atmospheric boundary layer
atmospheric dynamics
Atmospheric models
data visualization
Diffusion layers
Fluid dynamics
Fluid flow
Fluid mechanics
Initial conditions
Large eddy simulation
light detection and ranging
Machine learning
MATHEMATICS AND COMPUTING
probability theory
Reconstruction
Three dimensional boundary layer
Three dimensional flow
turbulence simulations
Turbulent flow
turbulent flows
Two dimensional flow
Vortices
WIND ENERGY
Title Ensemble flow reconstruction in the atmospheric boundary layer from spatially limited measurements through latent diffusion models
URI http://dx.doi.org/10.1063/5.0172559
https://www.proquest.com/docview/2900423624
https://www.osti.gov/servlets/purl/2274773
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7WXUQvvsX1sQT14KWYbpqkexQfiLiiqOCtJGmCQrcrtiJe_eVO2u6qoOC1TChkMplvksn3AeyHJh2IOPYCxNQEkU5NoHwLlJE0RYSqB7TiKRheifP76OKBP7Rg748bfMEOPa2m9MB3Bjp9DF1cup2ji5Ob6-mGiyle1K2FWAkJFk4IhL4P_pF22mMMnx-Qcg7zTX31_S27nC3BQgMLyVHtx2Vo2XwFFhuISJoALFZgturYNMUqfJzmhR3pzBKXjd9IVdhOyWDJU04Q2RFVjsaFJw54MkRXAkov7yRTCLOJf1dCCt9PrbIMP9YPncjo68ywII2ID45AZF0SL6by6k_XSKWfU6zB_dnp3fF50AgqBIbxqAwY1ZI5yZXlWFCHuBFGVgqnHMI44ULDjbEsDbWjoXFaMR6n8UBbz8COdQ5m93Vo5-PcbgCx3BkpuVOpshGCCE1xII0jzSkzXNIuHEzmO5lMrRe9yJLq1luwhCeNa7qwOzV9rik2fjPa8k5LvJ-seTS-C8iUSd8X1ZJ1YXviy6SJwSLpD6qmH9GPurA39e_fv9j8l9UWzHvF-bqjZRva6Fi7g7ik1D1clyfDy9tesz4_AUXM4AU
linkProvider American Institute of Physics
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ensemble+flow+reconstruction+in+the+atmospheric+boundary+layer+from+spatially+limited+measurements+through+latent+diffusion+models&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Rybchuk%2C+Alex&rft.au=Hassanaly%2C+Malik&rft.au=Hamilton%2C+Nicholas&rft.au=Doubrawa%2C+Paula&rft.date=2023-12-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=35&rft.issue=12&rft_id=info:doi/10.1063%2F5.0172559&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0172559
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon