Theoretical analysis of the optical rotational Doppler effect under atmospheric turbulence by mode decomposition
The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection. In this paper, we investigate the influence of atmospheric turbulence on the rotational Doppler effect. First, we deduce the generalized formula of the rotational Do...
Saved in:
Published in | Chinese physics B Vol. 32; no. 10; pp. 104208 - 524 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Chinese Physical Society and IOP Publishing Ltd
01.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/acc1d0 |
Cover
Abstract | The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection. In this paper, we investigate the influence of atmospheric turbulence on the rotational Doppler effect. First, we deduce the generalized formula of the rotational Doppler shift in atmospheric turbulence by mode decomposition. It is found that the rotational Doppler signal frequency spectrum will be broadened, and the bandwidth is related to the turbulence intensity. In addition, as the propagation distance increases, the bandwidth also increases. And when
C
n
2
≤
5
×
10
−
15
m
−2/3
and 2
z
≤ 2 km, the rotational Doppler signal frequency spectrum width
d
and the spiral spectrum width
d
0
satisfy the relationship
d
= 2
d
0
–1. Finally, we analyze the influence of mode crosstalk on the rotational Doppler effect, and the results show that it destroys the symmetrical distribution of the rotational Doppler spectrum about 2
l
⋅
Ω
/2
π
. This theoretical model enables us to better understand the generation of the rotational Doppler frequency and may help us better analyze the influence of the complex atmospheric environment on the rotational Doppler frequency. |
---|---|
AbstractList | The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection.In this paper,we investigate the influence of atmospheric turbulence on the rotational Doppler effect.First,we deduce the generalized formula of the rotational Doppler shift in atmospheric turbulence by mode decomposition.It is found that the rotational Doppler signal frequency spectrum will be broadened,and the bandwidth is related to the turbulence intensity.In addition,as the propagation distance increases,the bandwidth also increases.And when C2n≤5 × 10-15 m-2/3 and 2z ≤ 2 km,the rotational Doppler signal frequency spectrum width d and the spiral spectrum width d0 satisfy the relationship d=2d0-1.Finally,we analyze the influence of mode crosstalk on the rotational Doppler effect,and the results show that it destroys the symmetrical distribution of the rotational Doppler spectrum about 2l·Ω/2π.This theoretical model enables us to better understand the generation of the rotational Doppler frequency and may help us better analyze the influence of the complex atmospheric environment on the rotational Doppler frequency. The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection. In this paper, we investigate the influence of atmospheric turbulence on the rotational Doppler effect. First, we deduce the generalized formula of the rotational Doppler shift in atmospheric turbulence by mode decomposition. It is found that the rotational Doppler signal frequency spectrum will be broadened, and the bandwidth is related to the turbulence intensity. In addition, as the propagation distance increases, the bandwidth also increases. And when C n 2 ≤ 5 × 10 − 15 m −2/3 and 2 z ≤ 2 km, the rotational Doppler signal frequency spectrum width d and the spiral spectrum width d 0 satisfy the relationship d = 2 d 0 –1. Finally, we analyze the influence of mode crosstalk on the rotational Doppler effect, and the results show that it destroys the symmetrical distribution of the rotational Doppler spectrum about 2 l ⋅ Ω /2 π . This theoretical model enables us to better understand the generation of the rotational Doppler frequency and may help us better analyze the influence of the complex atmospheric environment on the rotational Doppler frequency. |
Author | Ma, Sheng-Jie Zhang, Xin-Yuan Dong, Xiao Chen, You-Long Xu, Shi-Long Hu, Yi-Hua |
Author_xml | – sequence: 1 givenname: Sheng-Jie surname: Ma fullname: Ma, Sheng-Jie organization: Key Laboratory of Electronic Restriction of Anhui Province, National University of Defense Technology , China – sequence: 2 givenname: Shi-Long surname: Xu fullname: Xu, Shi-Long organization: Key Laboratory of Electronic Restriction of Anhui Province, National University of Defense Technology , China – sequence: 3 givenname: Xiao surname: Dong fullname: Dong, Xiao organization: Key Laboratory of Electronic Restriction of Anhui Province, National University of Defense Technology , China – sequence: 4 givenname: Xin-Yuan surname: Zhang fullname: Zhang, Xin-Yuan organization: Key Laboratory of Electronic Restriction of Anhui Province, National University of Defense Technology , China – sequence: 5 givenname: You-Long surname: Chen fullname: Chen, You-Long organization: Key Laboratory of Electronic Restriction of Anhui Province, National University of Defense Technology , China – sequence: 6 givenname: Yi-Hua surname: Hu fullname: Hu, Yi-Hua organization: Key Laboratory of Electronic Restriction of Anhui Province, National University of Defense Technology , China |
BookMark | eNp9UE1LAzEQDVLB-nH3mJsX106ym-x6lPoJBS_1HJLsbJuy3SxJitRf75YVBUEvM8zMe49575RMOt8hIZcMbhhU1YzJssgYCDnT1rIajsiUg6iyvMqLCZl-n0_IaYwbAMmA51PSL9foAyZndUt1p9t9dJH6hqY1Ut-P--CTTs4PV3rv-77FQLFp0Ca66-ph0GnrY7_G4CxNu2B2LXYWqdnTra-R1mj9tvfRHTTOyXGj24gXX_2MvD0-LOfP2eL16WV-t8hsLoqUccFvK8aMlZzbRhTyVgtphyJMWeUGC2FMyXNprWwMNwBga9AcGNRYigryM3I16r7rrtHdSm38LgwOovpYvbcK-WCfAYhyQMoRaYOPMWCjrBv9pqBdqxioQ8LqEKE6RKjGhAci_CL2wW112P9HuR4pzvc_H_0J_wQp75Cd |
CitedBy_id | crossref_primary_10_1364_PRJ_525368 crossref_primary_10_1109_TIM_2024_3480191 |
Cites_doi | 10.35848/1882-0786/ab6e0c 10.1364/AO.58.002650 10.1103/PhysRevApplied.10.044014 10.1038/nature01935 10.1364/AO.23.000067 10.1364/OE.421705 10.1016/j.optcom.2017.09.034 10.1016/j.infrared.2019.103181 10.1364/AO.451170 10.1364/OE.27.015518 10.1103/PhysRevA.45.8185 10.1364/OE.27.024781 10.1126/science.1239936 10.1364/OL.39.000197 10.1126/science.1089342 10.1038/srep15446 10.1364/OE.424943 10.1364/OE.380324 10.1016/j.optcom.2021.126900 10.1002/lpor.201700183 10.1364/OE.24.010050 10.1088/2040-8986/ab9799 10.1364/OL.44.005181 10.1038/s41598-018-19559-9 10.1364/OPTICA.1.000001 10.1364/OE.27.025342 10.1103/PhysRevLett.94.153901 10.1364/OL.41.000622 10.1364/OE.26.028879 10.1364/OE.25.020098 |
ContentType | Journal Article |
Copyright | 2023 Chinese Physical Society and IOP Publishing Ltd Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: 2023 Chinese Physical Society and IOP Publishing Ltd – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | AAYXX CITATION 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1088/1674-1056/acc1d0 |
DatabaseName | CrossRef Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2058-3834 |
EndPage | 524 |
ExternalDocumentID | zgwl_e202310057 10_1088_1674_1056_acc1d0 cpb_32_10_104208 |
GroupedDBID | -SA -S~ 1JI 29B 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q AAGCD AAJIO AAJKP AATNI AAXDM ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CAJEA CCEZO CCVFK CEBXE CHBEP CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN FA0 HAK IJHAN IOP IZVLO KOT N5L PJBAE Q-- RIN RNS ROL RPA SY9 TCJ TGP U1G U5K UCJ W28 AAYXX ADEQX CITATION 02O 1WK 2B. 4A8 92I 93N AALHV ACARI AERVB AFUIB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. PSX Q02 |
ID | FETCH-LOGICAL-c354t-2529811bc622cf5469a56c9a55b783be45bb7236cc6fb2b000cd0a2010de75803 |
IEDL.DBID | IOP |
ISSN | 1674-1056 |
IngestDate | Thu May 29 04:07:18 EDT 2025 Tue Jul 01 02:13:09 EDT 2025 Thu Apr 24 23:05:25 EDT 2025 Wed Aug 21 03:40:40 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | vortex beam mode decomposition optical rotational Doppler effect mode crosstalk atmospheric turbulence |
Language | English |
License | This article is available under the terms of the IOP-Standard License. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c354t-2529811bc622cf5469a56c9a55b783be45bb7236cc6fb2b000cd0a2010de75803 |
OpenAccessLink | https://doi.org/10.1088/1674-1056/acc1d0 |
PageCount | 9 |
ParticipantIDs | wanfang_journals_zgwl_e202310057 iop_journals_10_1088_1674_1056_acc1d0 crossref_primary_10_1088_1674_1056_acc1d0 crossref_citationtrail_10_1088_1674_1056_acc1d0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Chinese physics B |
PublicationTitleAlternate | Chin. Phys. B |
PublicationTitle_FL | Chinese Physics B |
PublicationYear | 2023 |
Publisher | Chinese Physical Society and IOP Publishing Ltd |
Publisher_xml | – name: Chinese Physical Society and IOP Publishing Ltd |
References | Qiu (cpb_32_10_104208bib17) 2019; 58 Ren (cpb_32_10_104208bib10) 2016; 41 Lavery (cpb_32_10_104208bib27) 2014; 1 Ding (cpb_32_10_104208bib7) 2021; 29 Zhang (cpb_32_10_104208bib18) 2020; 28 Ding (cpb_32_10_104208bib3) 2021; 29 Zhai (cpb_32_10_104208bib14) 2019; 27 Zhai (cpb_32_10_104208bib6) 2020; 13 Zeng (cpb_32_10_104208bib29) 2019; 27 Li (cpb_32_10_104208bib21) 2018; 408 Zhang (cpb_32_10_104208bib13) 2015; 5 Huang (cpb_32_10_104208bib9) 2014; 39 Zhang (cpb_32_10_104208bib19) 2018; 10 Zhang (cpb_32_10_104208bib30) 2020; 22 Qiu (cpb_32_10_104208bib16) 2019; 27 Allen (cpb_32_10_104208bib8) 1992; 45 Lv (cpb_32_10_104208bib31) 2020; 105 Ding (cpb_32_10_104208bib15) 2022; 61 Li (cpb_32_10_104208bib11) 2019; 44 Paterson (cpb_32_10_104208bib20) 2005; 94 Fu (cpb_32_10_104208bib25) 2017; 25 Wang (cpb_32_10_104208bib23) 2018; 8 Seddon (cpb_32_10_104208bib2) 2003; 302 Grier (cpb_32_10_104208bib12) 2003; 424 Fang (cpb_32_10_104208bib26) 2017; 11 Qiu (cpb_32_10_104208bib5) 2021; 29 Zheng (cpb_32_10_104208bib22) 2018; 26 Qiu (cpb_32_10_104208bib24) 2021; 490 Zhou (cpb_32_10_104208bib28) 2016; 24 Lavery (cpb_32_10_104208bib4) 2013; 341 Truax (cpb_32_10_104208bib1) 1984; 23 |
References_xml | – volume: 13 year: 2020 ident: cpb_32_10_104208bib6 publication-title: Appl. Phys. Express doi: 10.35848/1882-0786/ab6e0c – volume: 58 start-page: 2650 year: 2019 ident: cpb_32_10_104208bib17 publication-title: Appl. Opt. doi: 10.1364/AO.58.002650 – volume: 10 year: 2018 ident: cpb_32_10_104208bib19 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.10.044014 – volume: 424 start-page: 810 year: 2003 ident: cpb_32_10_104208bib12 publication-title: Nature doi: 10.1038/nature01935 – volume: 23 start-page: 67 year: 1984 ident: cpb_32_10_104208bib1 publication-title: Appl. Opt. doi: 10.1364/AO.23.000067 – volume: 29 year: 2021 ident: cpb_32_10_104208bib5 publication-title: Opt. Express doi: 10.1364/OE.421705 – volume: 408 start-page: 68 year: 2018 ident: cpb_32_10_104208bib21 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2017.09.034 – volume: 105 year: 2020 ident: cpb_32_10_104208bib31 publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2019.103181 – volume: 61 start-page: 3919 year: 2022 ident: cpb_32_10_104208bib15 publication-title: Appl. Opt. doi: 10.1364/AO.451170 – volume: 27 year: 2019 ident: cpb_32_10_104208bib14 publication-title: Opt. Express doi: 10.1364/OE.27.015518 – volume: 45 start-page: 8185 year: 1992 ident: cpb_32_10_104208bib8 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.45.8185 – volume: 27 year: 2019 ident: cpb_32_10_104208bib16 publication-title: Opt. Express doi: 10.1364/OE.27.024781 – volume: 341 start-page: 537 year: 2013 ident: cpb_32_10_104208bib4 publication-title: Science doi: 10.1126/science.1239936 – volume: 39 start-page: 197 year: 2014 ident: cpb_32_10_104208bib9 publication-title: Opt. Lett. doi: 10.1364/OL.39.000197 – volume: 302 start-page: 1537 year: 2003 ident: cpb_32_10_104208bib2 publication-title: Science doi: 10.1126/science.1089342 – volume: 5 year: 2015 ident: cpb_32_10_104208bib13 publication-title: Sci. Rep. doi: 10.1038/srep15446 – volume: 29 year: 2021 ident: cpb_32_10_104208bib7 publication-title: Opt. Express doi: 10.1364/OE.424943 – volume: 28 start-page: 6859 year: 2020 ident: cpb_32_10_104208bib18 publication-title: Opt. Express doi: 10.1364/OE.380324 – volume: 29 year: 2021 ident: cpb_32_10_104208bib3 publication-title: Opt. Express doi: 10.1364/OE.424943 – volume: 490 year: 2021 ident: cpb_32_10_104208bib24 publication-title: Opt. Commun. doi: 10.1016/j.optcom.2021.126900 – volume: 11 year: 2017 ident: cpb_32_10_104208bib26 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201700183 – volume: 24 year: 2016 ident: cpb_32_10_104208bib28 publication-title: Opt. Express doi: 10.1364/OE.24.010050 – volume: 22 year: 2020 ident: cpb_32_10_104208bib30 publication-title: Journal of Optics doi: 10.1088/2040-8986/ab9799 – volume: 44 start-page: 5181 year: 2019 ident: cpb_32_10_104208bib11 publication-title: Opt. Lett. doi: 10.1364/OL.44.005181 – volume: 8 start-page: 1124 year: 2018 ident: cpb_32_10_104208bib23 publication-title: Sci. Rep. doi: 10.1038/s41598-018-19559-9 – volume: 1 start-page: 1 year: 2014 ident: cpb_32_10_104208bib27 publication-title: Optica doi: 10.1364/OPTICA.1.000001 – volume: 27 year: 2019 ident: cpb_32_10_104208bib29 publication-title: Opt. Express doi: 10.1364/OE.27.025342 – volume: 94 year: 2005 ident: cpb_32_10_104208bib20 publication-title: Phy. Rev. Lett. doi: 10.1103/PhysRevLett.94.153901 – volume: 41 start-page: 622 year: 2016 ident: cpb_32_10_104208bib10 publication-title: Opt. Lett. doi: 10.1364/OL.41.000622 – volume: 26 year: 2018 ident: cpb_32_10_104208bib22 publication-title: Opt. Express doi: 10.1364/OE.26.028879 – volume: 25 year: 2017 ident: cpb_32_10_104208bib25 publication-title: Opt. Express doi: 10.1364/OE.25.020098 |
SSID | ssj0061023 |
Score | 2.328449 |
Snippet | The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection. In this paper, we... The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection.In this paper,we... |
SourceID | wanfang crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 104208 |
SubjectTerms | atmospheric turbulence mode crosstalk mode decomposition optical rotational Doppler effect vortex beam |
Title | Theoretical analysis of the optical rotational Doppler effect under atmospheric turbulence by mode decomposition |
URI | https://iopscience.iop.org/article/10.1088/1674-1056/acc1d0 https://d.wanfangdata.com.cn/periodical/zgwl-e202310057 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Electronic Journals customDbUrl: eissn: 2058-3834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061023 issn: 1674-1056 databaseCode: IOP dateStart: 20080101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7riuDFt_gmBz146D7SJu3iSdRFBB8HhT0IJZkmImq77HYR99ebabKuioh4KaVM0naSNjOZ75shZD8yMZhWBkGkhHVQOpwF1mo1QcKMCjPIlKxCMZdX4vwuuujxXo0cfXBhir7_9TfsqUsU7FToAXFJE3HzARaMb0qAdmb99dkwsX4Fsveubya_YYE5CdDbmkj7GOVPPXxZk2bsfSsGT25k_vBpsekukvvJYzqMyVNjVKoGjL9lcPzneyyRBW-E0mMnukxqOl8hcxUYFIarpH87ZTdS6bOW0MJQayzSou-uD4rS7yPS08KasnpAHTaEIi1tQGX5UgwxZ8EjULusqVHFbqLqjWLxHZppBLN7xNgaueue3Z6cB74yQwAhj8qAcdZJ2m0FgjEw3LrYkguwB67iJFQ64krFLBQAwiiGhgZkLYmB90xbB6UVrpN6XuR6g1BTbUvz0BgQkRRKxh2QindUlmhm4niTNCdjk4JPW47VM57TKnyeJCnqMUU9pk6Pm-Two0Xfpez4RfbADk_qv9vhL3LUT4ip7Pjh9TnVWH6-jZTerT92tU3msY0DBO6QejkY6V1r2JRqr5rA70jM8oM |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELf2IdBexgZM6wbDD_DAQ_rhxE76OFGqbWyjD620t2Cf7QnRJVGbamJ_Pb7YpQOhCmkvURSdneTsxHe-392PkPeJTcF2NUSJEs5B6XMWOavVRhmzKtaglWxCMVfX4mySXNzwm8Bz2uTClFX49bfdqS8U7FUYAHFZB3HzERLGdyRAT3c7lbabZJvHPEXuhvOvo-WvWGBdAvS4li1CnPJfvfyxLm26ezdZPIWVxe2jBWf4gnxbPqrHmfxoL2rVhoe_qjg-4V32yG4wRumpF98nG6Z4SZ41oFCYvyLVeJXlSGWoXkJLS53RSMvKX5-VddhPpIPSmbRmRj1GhGJ62ozK-q6cY-2C70Dd8qYWTZYTVT8pkvBQbRDUHpBjr8lk-Hn86SwKDA0RxDypI8ZZP-v1FAjGwHLnaksuwB24SrNYmYQrlbJYAAirGBocoLsSA_DaOEelGx-QraIszCGhttme5rG1IBIplEz7IBXvK50ZZtO0RTrL8ckhlC9HFo1p3oTRsyxHXeaoy9zrskU-_m5R-dIda2Q_uCHKw_c7XyNHw6RYyT7c3k9zgzT0PUztPfrPrt6R56PBML88v_5yTHawuccIviFb9Wxh3jpbp1YnzXz-BbOA9-0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+analysis+of+the+optical+rotational+Doppler+effect+under+atmospheric+turbulence+by+mode+decomposition&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Sheng-Jie+Ma&rft.au=Shi-Long+Xu&rft.au=Xiao+Dong&rft.au=Xin-Yuan+Zhang&rft.date=2023-10-01&rft.issn=1674-1056&rft.volume=32&rft.issue=10&rft.spage=516&rft.epage=524&rft_id=info:doi/10.1088%2F1674-1056%2Facc1d0&rft.externalDocID=zgwl_e202310057 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg |