Theoretical analysis of the optical rotational Doppler effect under atmospheric turbulence by mode decomposition

The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection. In this paper, we investigate the influence of atmospheric turbulence on the rotational Doppler effect. First, we deduce the generalized formula of the rotational Do...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 32; no. 10; pp. 104208 - 524
Main Authors Ma, Sheng-Jie, Xu, Shi-Long, Dong, Xiao, Zhang, Xin-Yuan, Chen, You-Long, Hu, Yi-Hua
Format Journal Article
LanguageEnglish
Published Chinese Physical Society and IOP Publishing Ltd 01.10.2023
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/acc1d0

Cover

Abstract The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection. In this paper, we investigate the influence of atmospheric turbulence on the rotational Doppler effect. First, we deduce the generalized formula of the rotational Doppler shift in atmospheric turbulence by mode decomposition. It is found that the rotational Doppler signal frequency spectrum will be broadened, and the bandwidth is related to the turbulence intensity. In addition, as the propagation distance increases, the bandwidth also increases. And when C n 2 ≤ 5 × 10 − 15 m −2/3 and 2 z ≤ 2 km, the rotational Doppler signal frequency spectrum width d and the spiral spectrum width d 0 satisfy the relationship d = 2 d 0 –1. Finally, we analyze the influence of mode crosstalk on the rotational Doppler effect, and the results show that it destroys the symmetrical distribution of the rotational Doppler spectrum about 2 l ⋅ Ω /2 π . This theoretical model enables us to better understand the generation of the rotational Doppler frequency and may help us better analyze the influence of the complex atmospheric environment on the rotational Doppler frequency.
AbstractList The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection.In this paper,we investigate the influence of atmospheric turbulence on the rotational Doppler effect.First,we deduce the generalized formula of the rotational Doppler shift in atmospheric turbulence by mode decomposition.It is found that the rotational Doppler signal frequency spectrum will be broadened,and the bandwidth is related to the turbulence intensity.In addition,as the propagation distance increases,the bandwidth also increases.And when C2n≤5 × 10-15 m-2/3 and 2z ≤ 2 km,the rotational Doppler signal frequency spectrum width d and the spiral spectrum width d0 satisfy the relationship d=2d0-1.Finally,we analyze the influence of mode crosstalk on the rotational Doppler effect,and the results show that it destroys the symmetrical distribution of the rotational Doppler spectrum about 2l·Ω/2π.This theoretical model enables us to better understand the generation of the rotational Doppler frequency and may help us better analyze the influence of the complex atmospheric environment on the rotational Doppler frequency.
The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection. In this paper, we investigate the influence of atmospheric turbulence on the rotational Doppler effect. First, we deduce the generalized formula of the rotational Doppler shift in atmospheric turbulence by mode decomposition. It is found that the rotational Doppler signal frequency spectrum will be broadened, and the bandwidth is related to the turbulence intensity. In addition, as the propagation distance increases, the bandwidth also increases. And when C n 2 ≤ 5 × 10 − 15 m −2/3 and 2 z ≤ 2 km, the rotational Doppler signal frequency spectrum width d and the spiral spectrum width d 0 satisfy the relationship d = 2 d 0 –1. Finally, we analyze the influence of mode crosstalk on the rotational Doppler effect, and the results show that it destroys the symmetrical distribution of the rotational Doppler spectrum about 2 l ⋅ Ω /2 π . This theoretical model enables us to better understand the generation of the rotational Doppler frequency and may help us better analyze the influence of the complex atmospheric environment on the rotational Doppler frequency.
Author Ma, Sheng-Jie
Zhang, Xin-Yuan
Dong, Xiao
Chen, You-Long
Xu, Shi-Long
Hu, Yi-Hua
Author_xml – sequence: 1
  givenname: Sheng-Jie
  surname: Ma
  fullname: Ma, Sheng-Jie
  organization: Key Laboratory of Electronic Restriction of Anhui Province, National University of Defense Technology , China
– sequence: 2
  givenname: Shi-Long
  surname: Xu
  fullname: Xu, Shi-Long
  organization: Key Laboratory of Electronic Restriction of Anhui Province, National University of Defense Technology , China
– sequence: 3
  givenname: Xiao
  surname: Dong
  fullname: Dong, Xiao
  organization: Key Laboratory of Electronic Restriction of Anhui Province, National University of Defense Technology , China
– sequence: 4
  givenname: Xin-Yuan
  surname: Zhang
  fullname: Zhang, Xin-Yuan
  organization: Key Laboratory of Electronic Restriction of Anhui Province, National University of Defense Technology , China
– sequence: 5
  givenname: You-Long
  surname: Chen
  fullname: Chen, You-Long
  organization: Key Laboratory of Electronic Restriction of Anhui Province, National University of Defense Technology , China
– sequence: 6
  givenname: Yi-Hua
  surname: Hu
  fullname: Hu, Yi-Hua
  organization: Key Laboratory of Electronic Restriction of Anhui Province, National University of Defense Technology , China
BookMark eNp9UE1LAzEQDVLB-nH3mJsX106ym-x6lPoJBS_1HJLsbJuy3SxJitRf75YVBUEvM8zMe49575RMOt8hIZcMbhhU1YzJssgYCDnT1rIajsiUg6iyvMqLCZl-n0_IaYwbAMmA51PSL9foAyZndUt1p9t9dJH6hqY1Ut-P--CTTs4PV3rv-77FQLFp0Ca66-ph0GnrY7_G4CxNu2B2LXYWqdnTra-R1mj9tvfRHTTOyXGj24gXX_2MvD0-LOfP2eL16WV-t8hsLoqUccFvK8aMlZzbRhTyVgtphyJMWeUGC2FMyXNprWwMNwBga9AcGNRYigryM3I16r7rrtHdSm38LgwOovpYvbcK-WCfAYhyQMoRaYOPMWCjrBv9pqBdqxioQ8LqEKE6RKjGhAci_CL2wW112P9HuR4pzvc_H_0J_wQp75Cd
CitedBy_id crossref_primary_10_1364_PRJ_525368
crossref_primary_10_1109_TIM_2024_3480191
Cites_doi 10.35848/1882-0786/ab6e0c
10.1364/AO.58.002650
10.1103/PhysRevApplied.10.044014
10.1038/nature01935
10.1364/AO.23.000067
10.1364/OE.421705
10.1016/j.optcom.2017.09.034
10.1016/j.infrared.2019.103181
10.1364/AO.451170
10.1364/OE.27.015518
10.1103/PhysRevA.45.8185
10.1364/OE.27.024781
10.1126/science.1239936
10.1364/OL.39.000197
10.1126/science.1089342
10.1038/srep15446
10.1364/OE.424943
10.1364/OE.380324
10.1016/j.optcom.2021.126900
10.1002/lpor.201700183
10.1364/OE.24.010050
10.1088/2040-8986/ab9799
10.1364/OL.44.005181
10.1038/s41598-018-19559-9
10.1364/OPTICA.1.000001
10.1364/OE.27.025342
10.1103/PhysRevLett.94.153901
10.1364/OL.41.000622
10.1364/OE.26.028879
10.1364/OE.25.020098
ContentType Journal Article
Copyright 2023 Chinese Physical Society and IOP Publishing Ltd
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: 2023 Chinese Physical Society and IOP Publishing Ltd
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1088/1674-1056/acc1d0
DatabaseName CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2058-3834
EndPage 524
ExternalDocumentID zgwl_e202310057
10_1088_1674_1056_acc1d0
cpb_32_10_104208
GroupedDBID -SA
-S~
1JI
29B
4.4
5B3
5GY
5VR
5VS
5ZH
6J9
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
AAXDM
ABHWH
ABJNI
ABQJV
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CAJEA
CCEZO
CCVFK
CEBXE
CHBEP
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
FA0
HAK
IJHAN
IOP
IZVLO
KOT
N5L
PJBAE
Q--
RIN
RNS
ROL
RPA
SY9
TCJ
TGP
U1G
U5K
UCJ
W28
AAYXX
ADEQX
CITATION
02O
1WK
2B.
4A8
92I
93N
AALHV
ACARI
AERVB
AFUIB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
PSX
Q02
ID FETCH-LOGICAL-c354t-2529811bc622cf5469a56c9a55b783be45bb7236cc6fb2b000cd0a2010de75803
IEDL.DBID IOP
ISSN 1674-1056
IngestDate Thu May 29 04:07:18 EDT 2025
Tue Jul 01 02:13:09 EDT 2025
Thu Apr 24 23:05:25 EDT 2025
Wed Aug 21 03:40:40 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords vortex beam
mode decomposition
optical rotational Doppler effect
mode crosstalk
atmospheric turbulence
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c354t-2529811bc622cf5469a56c9a55b783be45bb7236cc6fb2b000cd0a2010de75803
OpenAccessLink https://doi.org/10.1088/1674-1056/acc1d0
PageCount 9
ParticipantIDs wanfang_journals_zgwl_e202310057
iop_journals_10_1088_1674_1056_acc1d0
crossref_primary_10_1088_1674_1056_acc1d0
crossref_citationtrail_10_1088_1674_1056_acc1d0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Chinese physics B
PublicationTitleAlternate Chin. Phys. B
PublicationTitle_FL Chinese Physics B
PublicationYear 2023
Publisher Chinese Physical Society and IOP Publishing Ltd
Publisher_xml – name: Chinese Physical Society and IOP Publishing Ltd
References Qiu (cpb_32_10_104208bib17) 2019; 58
Ren (cpb_32_10_104208bib10) 2016; 41
Lavery (cpb_32_10_104208bib27) 2014; 1
Ding (cpb_32_10_104208bib7) 2021; 29
Zhang (cpb_32_10_104208bib18) 2020; 28
Ding (cpb_32_10_104208bib3) 2021; 29
Zhai (cpb_32_10_104208bib14) 2019; 27
Zhai (cpb_32_10_104208bib6) 2020; 13
Zeng (cpb_32_10_104208bib29) 2019; 27
Li (cpb_32_10_104208bib21) 2018; 408
Zhang (cpb_32_10_104208bib13) 2015; 5
Huang (cpb_32_10_104208bib9) 2014; 39
Zhang (cpb_32_10_104208bib19) 2018; 10
Zhang (cpb_32_10_104208bib30) 2020; 22
Qiu (cpb_32_10_104208bib16) 2019; 27
Allen (cpb_32_10_104208bib8) 1992; 45
Lv (cpb_32_10_104208bib31) 2020; 105
Ding (cpb_32_10_104208bib15) 2022; 61
Li (cpb_32_10_104208bib11) 2019; 44
Paterson (cpb_32_10_104208bib20) 2005; 94
Fu (cpb_32_10_104208bib25) 2017; 25
Wang (cpb_32_10_104208bib23) 2018; 8
Seddon (cpb_32_10_104208bib2) 2003; 302
Grier (cpb_32_10_104208bib12) 2003; 424
Fang (cpb_32_10_104208bib26) 2017; 11
Qiu (cpb_32_10_104208bib5) 2021; 29
Zheng (cpb_32_10_104208bib22) 2018; 26
Qiu (cpb_32_10_104208bib24) 2021; 490
Zhou (cpb_32_10_104208bib28) 2016; 24
Lavery (cpb_32_10_104208bib4) 2013; 341
Truax (cpb_32_10_104208bib1) 1984; 23
References_xml – volume: 13
  year: 2020
  ident: cpb_32_10_104208bib6
  publication-title: Appl. Phys. Express
  doi: 10.35848/1882-0786/ab6e0c
– volume: 58
  start-page: 2650
  year: 2019
  ident: cpb_32_10_104208bib17
  publication-title: Appl. Opt.
  doi: 10.1364/AO.58.002650
– volume: 10
  year: 2018
  ident: cpb_32_10_104208bib19
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.10.044014
– volume: 424
  start-page: 810
  year: 2003
  ident: cpb_32_10_104208bib12
  publication-title: Nature
  doi: 10.1038/nature01935
– volume: 23
  start-page: 67
  year: 1984
  ident: cpb_32_10_104208bib1
  publication-title: Appl. Opt.
  doi: 10.1364/AO.23.000067
– volume: 29
  year: 2021
  ident: cpb_32_10_104208bib5
  publication-title: Opt. Express
  doi: 10.1364/OE.421705
– volume: 408
  start-page: 68
  year: 2018
  ident: cpb_32_10_104208bib21
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2017.09.034
– volume: 105
  year: 2020
  ident: cpb_32_10_104208bib31
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2019.103181
– volume: 61
  start-page: 3919
  year: 2022
  ident: cpb_32_10_104208bib15
  publication-title: Appl. Opt.
  doi: 10.1364/AO.451170
– volume: 27
  year: 2019
  ident: cpb_32_10_104208bib14
  publication-title: Opt. Express
  doi: 10.1364/OE.27.015518
– volume: 45
  start-page: 8185
  year: 1992
  ident: cpb_32_10_104208bib8
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.45.8185
– volume: 27
  year: 2019
  ident: cpb_32_10_104208bib16
  publication-title: Opt. Express
  doi: 10.1364/OE.27.024781
– volume: 341
  start-page: 537
  year: 2013
  ident: cpb_32_10_104208bib4
  publication-title: Science
  doi: 10.1126/science.1239936
– volume: 39
  start-page: 197
  year: 2014
  ident: cpb_32_10_104208bib9
  publication-title: Opt. Lett.
  doi: 10.1364/OL.39.000197
– volume: 302
  start-page: 1537
  year: 2003
  ident: cpb_32_10_104208bib2
  publication-title: Science
  doi: 10.1126/science.1089342
– volume: 5
  year: 2015
  ident: cpb_32_10_104208bib13
  publication-title: Sci. Rep.
  doi: 10.1038/srep15446
– volume: 29
  year: 2021
  ident: cpb_32_10_104208bib7
  publication-title: Opt. Express
  doi: 10.1364/OE.424943
– volume: 28
  start-page: 6859
  year: 2020
  ident: cpb_32_10_104208bib18
  publication-title: Opt. Express
  doi: 10.1364/OE.380324
– volume: 29
  year: 2021
  ident: cpb_32_10_104208bib3
  publication-title: Opt. Express
  doi: 10.1364/OE.424943
– volume: 490
  year: 2021
  ident: cpb_32_10_104208bib24
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2021.126900
– volume: 11
  year: 2017
  ident: cpb_32_10_104208bib26
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201700183
– volume: 24
  year: 2016
  ident: cpb_32_10_104208bib28
  publication-title: Opt. Express
  doi: 10.1364/OE.24.010050
– volume: 22
  year: 2020
  ident: cpb_32_10_104208bib30
  publication-title: Journal of Optics
  doi: 10.1088/2040-8986/ab9799
– volume: 44
  start-page: 5181
  year: 2019
  ident: cpb_32_10_104208bib11
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.005181
– volume: 8
  start-page: 1124
  year: 2018
  ident: cpb_32_10_104208bib23
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-19559-9
– volume: 1
  start-page: 1
  year: 2014
  ident: cpb_32_10_104208bib27
  publication-title: Optica
  doi: 10.1364/OPTICA.1.000001
– volume: 27
  year: 2019
  ident: cpb_32_10_104208bib29
  publication-title: Opt. Express
  doi: 10.1364/OE.27.025342
– volume: 94
  year: 2005
  ident: cpb_32_10_104208bib20
  publication-title: Phy. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.153901
– volume: 41
  start-page: 622
  year: 2016
  ident: cpb_32_10_104208bib10
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.000622
– volume: 26
  year: 2018
  ident: cpb_32_10_104208bib22
  publication-title: Opt. Express
  doi: 10.1364/OE.26.028879
– volume: 25
  year: 2017
  ident: cpb_32_10_104208bib25
  publication-title: Opt. Express
  doi: 10.1364/OE.25.020098
SSID ssj0061023
Score 2.328449
Snippet The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection. In this paper, we...
The optical rotational Doppler effect associated with orbital angular momentum provides a new means for rotational velocity detection.In this paper,we...
SourceID wanfang
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 104208
SubjectTerms atmospheric turbulence
mode crosstalk
mode decomposition
optical rotational Doppler effect
vortex beam
Title Theoretical analysis of the optical rotational Doppler effect under atmospheric turbulence by mode decomposition
URI https://iopscience.iop.org/article/10.1088/1674-1056/acc1d0
https://d.wanfangdata.com.cn/periodical/zgwl-e202310057
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Electronic Journals
  customDbUrl:
  eissn: 2058-3834
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061023
  issn: 1674-1056
  databaseCode: IOP
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7riuDFt_gmBz146D7SJu3iSdRFBB8HhT0IJZkmImq77HYR99ebabKuioh4KaVM0naSNjOZ75shZD8yMZhWBkGkhHVQOpwF1mo1QcKMCjPIlKxCMZdX4vwuuujxXo0cfXBhir7_9TfsqUsU7FToAXFJE3HzARaMb0qAdmb99dkwsX4Fsveubya_YYE5CdDbmkj7GOVPPXxZk2bsfSsGT25k_vBpsekukvvJYzqMyVNjVKoGjL9lcPzneyyRBW-E0mMnukxqOl8hcxUYFIarpH87ZTdS6bOW0MJQayzSou-uD4rS7yPS08KasnpAHTaEIi1tQGX5UgwxZ8EjULusqVHFbqLqjWLxHZppBLN7xNgaueue3Z6cB74yQwAhj8qAcdZJ2m0FgjEw3LrYkguwB67iJFQ64krFLBQAwiiGhgZkLYmB90xbB6UVrpN6XuR6g1BTbUvz0BgQkRRKxh2QindUlmhm4niTNCdjk4JPW47VM57TKnyeJCnqMUU9pk6Pm-Two0Xfpez4RfbADk_qv9vhL3LUT4ip7Pjh9TnVWH6-jZTerT92tU3msY0DBO6QejkY6V1r2JRqr5rA70jM8oM
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELf2IdBexgZM6wbDD_DAQ_rhxE76OFGqbWyjD620t2Cf7QnRJVGbamJ_Pb7YpQOhCmkvURSdneTsxHe-392PkPeJTcF2NUSJEs5B6XMWOavVRhmzKtaglWxCMVfX4mySXNzwm8Bz2uTClFX49bfdqS8U7FUYAHFZB3HzERLGdyRAT3c7lbabZJvHPEXuhvOvo-WvWGBdAvS4li1CnPJfvfyxLm26ezdZPIWVxe2jBWf4gnxbPqrHmfxoL2rVhoe_qjg-4V32yG4wRumpF98nG6Z4SZ41oFCYvyLVeJXlSGWoXkJLS53RSMvKX5-VddhPpIPSmbRmRj1GhGJ62ozK-q6cY-2C70Dd8qYWTZYTVT8pkvBQbRDUHpBjr8lk-Hn86SwKDA0RxDypI8ZZP-v1FAjGwHLnaksuwB24SrNYmYQrlbJYAAirGBocoLsSA_DaOEelGx-QraIszCGhttme5rG1IBIplEz7IBXvK50ZZtO0RTrL8ckhlC9HFo1p3oTRsyxHXeaoy9zrskU-_m5R-dIda2Q_uCHKw_c7XyNHw6RYyT7c3k9zgzT0PUztPfrPrt6R56PBML88v_5yTHawuccIviFb9Wxh3jpbp1YnzXz-BbOA9-0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Theoretical+analysis+of+the+optical+rotational+Doppler+effect+under+atmospheric+turbulence+by+mode+decomposition&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=Sheng-Jie+Ma&rft.au=Shi-Long+Xu&rft.au=Xiao+Dong&rft.au=Xin-Yuan+Zhang&rft.date=2023-10-01&rft.issn=1674-1056&rft.volume=32&rft.issue=10&rft.spage=516&rft.epage=524&rft_id=info:doi/10.1088%2F1674-1056%2Facc1d0&rft.externalDocID=zgwl_e202310057
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgwl-e%2Fzgwl-e.jpg