Acidic Media Regulated Hierarchical Cobalt Compounds with Phosphorous Doping as Water Splitting Electrocatalysts

Facile synthesis of elaborate nanostructured transition metal compounds with tunable components remains challenging because multiple synthetic procedures or complex manipulation are normally involved. Herein, an acid‐etching strategy is applied to Co, in which the composition and morphology of the r...

Full description

Saved in:
Bibliographic Details
Published inAdvanced energy materials Vol. 11; no. 22
Main Authors Song, Danna, Sun, Jikai, Sun, Lanju, Zhai, Shengliang, Ho, Ghim Wei, Wu, Hao, Deng, Wei‐Qiao
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.06.2021
Subjects
Online AccessGet full text
ISSN1614-6832
1614-6840
DOI10.1002/aenm.202100358

Cover

Abstract Facile synthesis of elaborate nanostructured transition metal compounds with tunable components remains challenging because multiple synthetic procedures or complex manipulation are normally involved. Herein, an acid‐etching strategy is applied to Co, in which the composition and morphology of the resultant materials are tunable. Specifically, a novel two‐tiered Co(CO3)0.5(OH)·0.11H2O nanosheet is formed, part of which decomposes to produce hierarchical Co(CO3)0.5(OH)·0.11H2O/Co3O4 nanocomposite by tuning the etching condition. The composite shows bifunctional electrocatalytic capability towards the oxygen evolution and hydrogen evolution reactions (OER and HER). Moreover, the phosphorous dopant is introduced to boost the catalytic activity, especially in the HER. Density functional theory calculations reveal that the phosphorous dopant can dramatically push the binding energy to the ideal value, thus improving the HER performance. Computed results indicate that partial orbitals of the P atom are above the Fermi level and the P atom enhances the charge density of the neighboring Co atom, which optimizes the H* binding. In addition, an efficient overall water splitting configuration is performed with the integration of the P‐doped Co compound catalysts. The acid‐etching methodology inspires more novel nanostructured and multicomponent metal compounds for prominent electrocatalysis. A morphology‐ and component‐tunable synthesis is applied to the acid‐etching of Co. The resultant hierarchical multicomponent nanocomposite exhibits bifunctional electrocatalytic activity for water electrolysis, which can be further improved by the implementation of phosphorous doping. An efficient full water splitting configuration is performed with the P‐doped Co species as the bifunctional electrocatalyst.
AbstractList Facile synthesis of elaborate nanostructured transition metal compounds with tunable components remains challenging because multiple synthetic procedures or complex manipulation are normally involved. Herein, an acid‐etching strategy is applied to Co, in which the composition and morphology of the resultant materials are tunable. Specifically, a novel two‐tiered Co(CO 3 ) 0.5 (OH)·0.11H 2 O nanosheet is formed, part of which decomposes to produce hierarchical Co(CO 3 ) 0.5 (OH)·0.11H 2 O/Co 3 O 4 nanocomposite by tuning the etching condition. The composite shows bifunctional electrocatalytic capability towards the oxygen evolution and hydrogen evolution reactions (OER and HER). Moreover, the phosphorous dopant is introduced to boost the catalytic activity, especially in the HER. Density functional theory calculations reveal that the phosphorous dopant can dramatically push the binding energy to the ideal value, thus improving the HER performance. Computed results indicate that partial orbitals of the P atom are above the Fermi level and the P atom enhances the charge density of the neighboring Co atom, which optimizes the H* binding. In addition, an efficient overall water splitting configuration is performed with the integration of the P‐doped Co compound catalysts. The acid‐etching methodology inspires more novel nanostructured and multicomponent metal compounds for prominent electrocatalysis.
Facile synthesis of elaborate nanostructured transition metal compounds with tunable components remains challenging because multiple synthetic procedures or complex manipulation are normally involved. Herein, an acid‐etching strategy is applied to Co, in which the composition and morphology of the resultant materials are tunable. Specifically, a novel two‐tiered Co(CO3)0.5(OH)·0.11H2O nanosheet is formed, part of which decomposes to produce hierarchical Co(CO3)0.5(OH)·0.11H2O/Co3O4 nanocomposite by tuning the etching condition. The composite shows bifunctional electrocatalytic capability towards the oxygen evolution and hydrogen evolution reactions (OER and HER). Moreover, the phosphorous dopant is introduced to boost the catalytic activity, especially in the HER. Density functional theory calculations reveal that the phosphorous dopant can dramatically push the binding energy to the ideal value, thus improving the HER performance. Computed results indicate that partial orbitals of the P atom are above the Fermi level and the P atom enhances the charge density of the neighboring Co atom, which optimizes the H* binding. In addition, an efficient overall water splitting configuration is performed with the integration of the P‐doped Co compound catalysts. The acid‐etching methodology inspires more novel nanostructured and multicomponent metal compounds for prominent electrocatalysis.
Facile synthesis of elaborate nanostructured transition metal compounds with tunable components remains challenging because multiple synthetic procedures or complex manipulation are normally involved. Herein, an acid‐etching strategy is applied to Co, in which the composition and morphology of the resultant materials are tunable. Specifically, a novel two‐tiered Co(CO3)0.5(OH)·0.11H2O nanosheet is formed, part of which decomposes to produce hierarchical Co(CO3)0.5(OH)·0.11H2O/Co3O4 nanocomposite by tuning the etching condition. The composite shows bifunctional electrocatalytic capability towards the oxygen evolution and hydrogen evolution reactions (OER and HER). Moreover, the phosphorous dopant is introduced to boost the catalytic activity, especially in the HER. Density functional theory calculations reveal that the phosphorous dopant can dramatically push the binding energy to the ideal value, thus improving the HER performance. Computed results indicate that partial orbitals of the P atom are above the Fermi level and the P atom enhances the charge density of the neighboring Co atom, which optimizes the H* binding. In addition, an efficient overall water splitting configuration is performed with the integration of the P‐doped Co compound catalysts. The acid‐etching methodology inspires more novel nanostructured and multicomponent metal compounds for prominent electrocatalysis. A morphology‐ and component‐tunable synthesis is applied to the acid‐etching of Co. The resultant hierarchical multicomponent nanocomposite exhibits bifunctional electrocatalytic activity for water electrolysis, which can be further improved by the implementation of phosphorous doping. An efficient full water splitting configuration is performed with the P‐doped Co species as the bifunctional electrocatalyst.
Author Song, Danna
Wu, Hao
Sun, Lanju
Zhai, Shengliang
Deng, Wei‐Qiao
Sun, Jikai
Ho, Ghim Wei
Author_xml – sequence: 1
  givenname: Danna
  surname: Song
  fullname: Song, Danna
  organization: Shandong University
– sequence: 2
  givenname: Jikai
  surname: Sun
  fullname: Sun, Jikai
  organization: Shandong University
– sequence: 3
  givenname: Lanju
  surname: Sun
  fullname: Sun, Lanju
  organization: Shandong University
– sequence: 4
  givenname: Shengliang
  surname: Zhai
  fullname: Zhai, Shengliang
  organization: Shandong University
– sequence: 5
  givenname: Ghim Wei
  surname: Ho
  fullname: Ho, Ghim Wei
  email: elehgw@nus.edu.sg
  organization: ASTAR (Agency for Science, Technology and Research)
– sequence: 6
  givenname: Hao
  orcidid: 0000-0002-9464-2033
  surname: Wu
  fullname: Wu, Hao
  email: haowu2020@sdu.edu.cn
  organization: Shandong University
– sequence: 7
  givenname: Wei‐Qiao
  surname: Deng
  fullname: Deng, Wei‐Qiao
  organization: Shandong University
BookMark eNqFkMtLAzEQxoMoWKtXzwHPrXntujmWWq1QH_jA4zKbpDYl3axJltL_3q0VBUGcyzczfL8Z-I7Qfu1rg9ApJUNKCDsHU6-GjLBu4Fmxh3o0p2KQF4Lsf_ecHaKTGJekKyEp4byHmpGy2ip8a7QF_GjeWgfJaDy1JkBQC6vA4bGvwKVOVo1vax3x2qYFflj42Cx88G3El76x9RuGiF87POCnxtmUtquJMyoFryCB28QUj9HBHFw0J1_aRy9Xk-fxdDC7v74Zj2YDxTNRDHJZVTxThWRSy0oDVzkBYFKABJ7lF5pWwBkp5gSoUZVkGjLBqJREC0oY4310trvbBP_empjKpW9D3b0sWcalEJ8J9JHYuVTwMQYzL5VNkKyvUwDrSkrKbbzlNt7yO94OG_7CmmBXEDZ_A3IHrK0zm3_c5Whyd_vDfgDd65BU
CitedBy_id crossref_primary_10_1002_smll_202304260
crossref_primary_10_1016_j_jcis_2022_08_056
crossref_primary_10_1021_acsomega_3c07911
crossref_primary_10_1002_anie_202112447
crossref_primary_10_1002_aenm_202102573
crossref_primary_10_1016_j_electacta_2022_141269
crossref_primary_10_1016_j_mtcomm_2024_110708
crossref_primary_10_1039_D2QM01370C
crossref_primary_10_1016_j_inoche_2023_110872
crossref_primary_10_1002_cey2_554
crossref_primary_10_1039_D2DT00641C
crossref_primary_10_1007_s40843_023_2632_y
crossref_primary_10_1002_smll_202302683
crossref_primary_10_1016_j_cej_2024_149500
crossref_primary_10_1016_j_jallcom_2023_173282
crossref_primary_10_1016_j_jpowsour_2022_232519
crossref_primary_10_1016_j_electacta_2022_139895
crossref_primary_10_1021_acssuschemeng_2c03609
crossref_primary_10_1007_s11581_021_04392_4
crossref_primary_10_1007_s12221_023_00461_9
crossref_primary_10_1002_smll_202103866
crossref_primary_10_1016_j_jallcom_2021_162533
crossref_primary_10_1016_j_jallcom_2023_168878
crossref_primary_10_1039_D3CP01077E
crossref_primary_10_1016_j_ceramint_2024_02_336
crossref_primary_10_1039_D1SE01886H
crossref_primary_10_1016_j_jallcom_2024_175895
crossref_primary_10_1021_acscatal_2c02672
crossref_primary_10_1039_D2DT01077A
crossref_primary_10_3390_catal13010198
crossref_primary_10_1002_ange_202400323
crossref_primary_10_1002_marc_202100915
crossref_primary_10_1002_adfm_202308345
crossref_primary_10_1002_smll_202500419
crossref_primary_10_1039_D2TA06240B
crossref_primary_10_1002_smll_202403596
crossref_primary_10_1002_cssc_202300214
crossref_primary_10_1016_j_jcis_2023_04_143
crossref_primary_10_1016_j_cej_2022_134950
crossref_primary_10_1039_D4CS01031K
crossref_primary_10_1002_ange_202112447
crossref_primary_10_1002_adma_202110172
crossref_primary_10_1016_j_est_2023_109127
crossref_primary_10_1016_j_jpowsour_2021_230635
crossref_primary_10_1021_acs_energyfuels_2c03942
crossref_primary_10_1016_j_jcrysgro_2023_127430
crossref_primary_10_1039_D2QI00753C
crossref_primary_10_1002_adma_202303107
crossref_primary_10_1016_j_xcrp_2022_100804
crossref_primary_10_1016_j_microc_2024_112359
crossref_primary_10_1002_anie_202400323
crossref_primary_10_1039_D3CC01879B
crossref_primary_10_1016_j_ijhydene_2022_12_040
crossref_primary_10_1039_D1CC06906C
crossref_primary_10_1002_smll_202302055
crossref_primary_10_1021_acsami_2c16419
crossref_primary_10_1039_D2QI01764D
crossref_primary_10_3390_molecules29133082
Cites_doi 10.1039/C7TA11364A
10.1021/acsami.6b14127
10.1021/acsnano.7b05020
10.1039/C7TA08826D
10.1039/C7CE01130J
10.1002/smll.201704233
10.1002/adma.201602441
10.1002/anie.201814262
10.1002/adfm.201706008
10.1002/aenm.201702774
10.1002/anie.202000690
10.1021/acscatal.7b03594
10.1021/nn9012675
10.1039/C5CS00434A
10.1021/acscatal.7b02617
10.1002/adma.201804341
10.1002/aenm.201703290
10.1002/aenm.201601285
10.1002/admi.201500454
10.1002/anie.202004533
10.1002/anie.201404161
10.1002/adfm.201601420
10.1002/aenm.201701694
10.1002/anie.201810056
10.1021/acsenergylett.8b00066
10.1021/acs.chemmater.0c03543
10.1002/anie.201701477
10.1002/aenm.201703585
10.1021/acscatal.7b00587
10.1002/anie.201800883
10.1002/adma.201602270
10.1002/aenm.201702965
10.1039/C6TA09323J
10.1002/anie.201501616
10.1021/jacs.5b07728
10.1002/aenm.201500091
10.1002/aenm.201702704
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
DBID AAYXX
CITATION
7SP
7TB
8FD
F28
FR3
H8D
L7M
DOI 10.1002/aenm.202100358
DatabaseName CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1614-6840
EndPage n/a
ExternalDocumentID 10_1002_aenm_202100358
AENM202100358
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 21525315
– fundername: Program of Qilu Young Scholars of Shandong University
  funderid: 62460082063152
– fundername: National Key Research and Development Program of China
  funderid: 2017YFA0204800
GroupedDBID 05W
0R~
1OC
33P
4.4
50Y
5VS
8-0
8-1
A00
AAESR
AAHHS
AAHQN
AAIHA
AAMNL
AANLZ
AAXRX
AAYCA
AAZKR
ABCUV
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADKYN
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUYR
AFBPY
AFFPM
AFWVQ
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
AZVAB
BDRZF
BFHJK
BMXJE
BRXPI
D-A
DCZOG
EBS
G-S
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MY.
MY~
O9-
P2W
P4E
RNS
ROL
RX1
SUPJJ
WBKPD
WOHZO
WXSBR
WYJ
ZZTAW
~S-
31~
AANHP
AASGY
AAYXX
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
AEYWJ
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
GODZA
HVGLF
7SP
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
F28
FR3
H8D
L7M
ID FETCH-LOGICAL-c3548-69bb35c8929d9bda3c60aa294a9a3567d1ba3208f0a1ecb92da5421990d410223
ISSN 1614-6832
IngestDate Fri Jul 25 10:01:12 EDT 2025
Tue Jul 01 01:43:39 EDT 2025
Thu Apr 24 23:09:24 EDT 2025
Wed Jan 22 16:28:51 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3548-69bb35c8929d9bda3c60aa294a9a3567d1ba3208f0a1ecb92da5421990d410223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9464-2033
PQID 2539444910
PQPubID 886389
PageCount 7
ParticipantIDs proquest_journals_2539444910
crossref_citationtrail_10_1002_aenm_202100358
crossref_primary_10_1002_aenm_202100358
wiley_primary_10_1002_aenm_202100358_AENM202100358
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Advanced energy materials
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2017; 7
2018; 28
2017; 8
2015; 5
2015; 54
2019; 58
2020; 59
2017; 29
2020; 33
2017; 9
2018; 6
2018; 8
2018; 3
2016; 3
2015; 137
2017; 11
2017; 56
2018; 30
2017; 19
2016; 28
2016; 26
2010; 4
2016; 45
2018; 14
2018; 57
2014; 53
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_1_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Tsai C. (e_1_2_8_27_1) 2017; 8
e_1_2_8_30_1
References_xml – volume: 5
  start-page: 919
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 6
  start-page: 7420
  year: 2018
  publication-title: J. Mater. Chem. A
– volume: 28
  start-page: 9266
  year: 2016
  publication-title: Adv. Mater.
– volume: 5
  year: 2017
  publication-title: J. Mater. Chem. A
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 58
  start-page: 4923
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 4
  start-page: 1425
  year: 2010
  publication-title: ACS Nano
– volume: 14
  year: 2018
  publication-title: Small
– volume: 45
  start-page: 1529
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 8
  start-page: 2236
  year: 2018
  publication-title: ACS Catal.
– volume: 137
  year: 2015
  publication-title: J. Am. Chem. Soc.
– volume: 59
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 59
  start-page: 6492
  year: 2020
  publication-title: Angew. Chem., Int. Ed.
– volume: 19
  start-page: 5780
  year: 2017
  publication-title: CrystEngComm
– volume: 58
  start-page: 1329
  year: 2019
  publication-title: Angew. Chem., Int. Ed.
– volume: 8
  year: 2017
  publication-title: Nat. Commun.
– volume: 11
  year: 2017
  publication-title: ACS Nano
– volume: 8
  year: 2018
  publication-title: Adv. Energy Mater.
– volume: 30
  year: 2018
  publication-title: Adv. Mater.
– volume: 7
  year: 2017
  publication-title: Adv. Energy Mater.
– volume: 3
  year: 2016
  publication-title: Adv. Mater. Interfaces
– volume: 5
  year: 2015
  publication-title: Adv. Energy Mater.
– volume: 57
  start-page: 4020
  year: 2018
  publication-title: Angew. Chem., Int. Ed.
– volume: 54
  start-page: 6251
  year: 2015
  publication-title: Angew. Chem., Int. Ed.
– volume: 33
  start-page: 234
  year: 2020
  publication-title: Chem. Mater.
– volume: 28
  year: 2018
  publication-title: Adv. Funct. Mater.
– volume: 7
  start-page: 3824
  year: 2017
  publication-title: ACS Catal.
– volume: 3
  start-page: 779
  year: 2018
  publication-title: ACS Energy Lett.
– volume: 8
  start-page: 987
  year: 2018
  publication-title: ACS Catal.
– volume: 53
  start-page: 6710
  year: 2014
  publication-title: Angew. Chem., Int. Ed.
– volume: 56
  start-page: 5867
  year: 2017
  publication-title: Angew. Chem., Int. Ed.
– volume: 9
  start-page: 5982
  year: 2017
  publication-title: ACS Appl. Mater. Interfaces
– volume: 26
  start-page: 6785
  year: 2016
  publication-title: Adv. Funct. Mater.
– ident: e_1_2_8_15_1
  doi: 10.1039/C7TA11364A
– ident: e_1_2_8_17_1
  doi: 10.1021/acsami.6b14127
– ident: e_1_2_8_26_1
  doi: 10.1021/acsnano.7b05020
– ident: e_1_2_8_33_1
  doi: 10.1039/C7TA08826D
– ident: e_1_2_8_36_1
  doi: 10.1039/C7CE01130J
– ident: e_1_2_8_29_1
  doi: 10.1002/smll.201704233
– ident: e_1_2_8_8_1
  doi: 10.1002/adma.201602441
– ident: e_1_2_8_14_1
  doi: 10.1002/anie.201814262
– ident: e_1_2_8_20_1
  doi: 10.1002/adfm.201706008
– ident: e_1_2_8_30_1
  doi: 10.1002/aenm.201702774
– ident: e_1_2_8_12_1
  doi: 10.1002/anie.202000690
– ident: e_1_2_8_4_1
  doi: 10.1021/acscatal.7b03594
– ident: e_1_2_8_35_1
  doi: 10.1021/nn9012675
– ident: e_1_2_8_7_1
  doi: 10.1039/C5CS00434A
– ident: e_1_2_8_5_1
  doi: 10.1021/acscatal.7b02617
– ident: e_1_2_8_34_1
  doi: 10.1002/adma.201804341
– ident: e_1_2_8_37_1
  doi: 10.1002/aenm.201703290
– ident: e_1_2_8_22_1
  doi: 10.1002/aenm.201601285
– ident: e_1_2_8_9_1
  doi: 10.1002/admi.201500454
– ident: e_1_2_8_11_1
  doi: 10.1002/anie.202004533
– ident: e_1_2_8_38_1
  doi: 10.1002/anie.201404161
– ident: e_1_2_8_23_1
  doi: 10.1002/adfm.201601420
– ident: e_1_2_8_24_1
  doi: 10.1002/aenm.201701694
– ident: e_1_2_8_13_1
  doi: 10.1002/anie.201810056
– ident: e_1_2_8_3_1
  doi: 10.1021/acsenergylett.8b00066
– ident: e_1_2_8_19_1
  doi: 10.1021/acs.chemmater.0c03543
– ident: e_1_2_8_25_1
  doi: 10.1002/anie.201701477
– ident: e_1_2_8_18_1
  doi: 10.1002/aenm.201703585
– ident: e_1_2_8_1_1
  doi: 10.1021/acscatal.7b00587
– ident: e_1_2_8_31_1
  doi: 10.1002/anie.201800883
– ident: e_1_2_8_6_1
  doi: 10.1002/adma.201602270
– ident: e_1_2_8_16_1
  doi: 10.1002/aenm.201702965
– ident: e_1_2_8_21_1
  doi: 10.1039/C6TA09323J
– ident: e_1_2_8_2_1
  doi: 10.1002/anie.201501616
– ident: e_1_2_8_10_1
  doi: 10.1021/jacs.5b07728
– volume: 8
  start-page: 151131
  year: 2017
  ident: e_1_2_8_27_1
  publication-title: Nat. Commun.
– ident: e_1_2_8_28_1
  doi: 10.1002/aenm.201500091
– ident: e_1_2_8_32_1
  doi: 10.1002/aenm.201702704
SSID ssj0000491033
Score 2.5639298
Snippet Facile synthesis of elaborate nanostructured transition metal compounds with tunable components remains challenging because multiple synthetic procedures or...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms acid‐etching
Catalytic activity
Charge density
Chemical evolution
Cobalt compounds
Cobalt oxides
Configuration management
Density functional theory
DFT calculations
Dopants
Electrocatalysts
Etching
Hydrogen evolution reactions
Metal compounds
Morphology
Nanocomposites
Nanostructure
Transition metal compounds
Water splitting
Title Acidic Media Regulated Hierarchical Cobalt Compounds with Phosphorous Doping as Water Splitting Electrocatalysts
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202100358
https://www.proquest.com/docview/2539444910
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVK9wIHxKcouyAfkDigQBInaX2s2K4q1BaktqK3aOwkapYlrTbtYbnyxxnbidddvhYuUWulTut5tsfTeW8IedWHpEiEL3AiichDhEQecBl5xcCXfsG5kLrYxHSWjJfRh1W86nS-O1lL-514K7_9klfyP1bFNrSrYsn-g2Vtp9iAr9G-eEUL4_VWNh7KMiul_rMFcKB0VXl0IMelYhXrIicqMiDgYqfnvaqg1LDZPq039Xa9uVQJsKeGMwX1m8-gJBPn6JeabOiRqZGjQzxXtdF8spK1bfJAbtiDX9Vn1U-2MZsm2RdxVdm1f743XJDyC5Q32iZQne-dOLZOM5ivc8UzhmZ_bcIToZNGdctF0Fl80VXwkkET78zdNiPpZFfswEGmoTX_tBMYZVnIKyU3gOdanxmJ-EPJ7dnH9Gw5maSL0WpxhxyFfXTAuuRoeDqdzG2oDg9Rgc80VaP9hq38px--O3zEoXtzfWZxTz7adVk8IPebMwcdGgA9JJ28ekTuOUqUj8nWQIlqKFELJepCiRooUQslqqBEHShRAyUKNdVQohZK9CaUnpDl2Wjxfuw1xTg8yfBU6yVcCBbLAbrTGRcZMJn4ACGPgAOLk34WCGChPyh8CHIpeJhBHOF2yP0sUlEF9pR0q02VPyM0KiTjcaaU_3mkAwwBCAbAikLyQgQ94rVjmMpGqV4VTLlIjcZ2mKoxT-2Y98hre__WaLT89s6T1iRpM4_rNIwVOVzZuEdCbaa_9JIOR7Opfff8z30ek7vX0-KEdHeX-_wF-rE78bLB2Q_TYqAG
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acidic+Media+Regulated+Hierarchical+Cobalt+Compounds+with+Phosphorous+Doping+as+Water+Splitting+Electrocatalysts&rft.jtitle=Advanced+energy+materials&rft.au=Song%2C+Danna&rft.au=Sun%2C+Jikai&rft.au=Sun%2C+Lanju&rft.au=Zhai%2C+Shengliang&rft.date=2021-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=11&rft.issue=22&rft_id=info:doi/10.1002%2Faenm.202100358&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon