Acidic Media Regulated Hierarchical Cobalt Compounds with Phosphorous Doping as Water Splitting Electrocatalysts
Facile synthesis of elaborate nanostructured transition metal compounds with tunable components remains challenging because multiple synthetic procedures or complex manipulation are normally involved. Herein, an acid‐etching strategy is applied to Co, in which the composition and morphology of the r...
Saved in:
Published in | Advanced energy materials Vol. 11; no. 22 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
Wiley Subscription Services, Inc
01.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1614-6832 1614-6840 |
DOI | 10.1002/aenm.202100358 |
Cover
Abstract | Facile synthesis of elaborate nanostructured transition metal compounds with tunable components remains challenging because multiple synthetic procedures or complex manipulation are normally involved. Herein, an acid‐etching strategy is applied to Co, in which the composition and morphology of the resultant materials are tunable. Specifically, a novel two‐tiered Co(CO3)0.5(OH)·0.11H2O nanosheet is formed, part of which decomposes to produce hierarchical Co(CO3)0.5(OH)·0.11H2O/Co3O4 nanocomposite by tuning the etching condition. The composite shows bifunctional electrocatalytic capability towards the oxygen evolution and hydrogen evolution reactions (OER and HER). Moreover, the phosphorous dopant is introduced to boost the catalytic activity, especially in the HER. Density functional theory calculations reveal that the phosphorous dopant can dramatically push the binding energy to the ideal value, thus improving the HER performance. Computed results indicate that partial orbitals of the P atom are above the Fermi level and the P atom enhances the charge density of the neighboring Co atom, which optimizes the H* binding. In addition, an efficient overall water splitting configuration is performed with the integration of the P‐doped Co compound catalysts. The acid‐etching methodology inspires more novel nanostructured and multicomponent metal compounds for prominent electrocatalysis.
A morphology‐ and component‐tunable synthesis is applied to the acid‐etching of Co. The resultant hierarchical multicomponent nanocomposite exhibits bifunctional electrocatalytic activity for water electrolysis, which can be further improved by the implementation of phosphorous doping. An efficient full water splitting configuration is performed with the P‐doped Co species as the bifunctional electrocatalyst. |
---|---|
AbstractList | Facile synthesis of elaborate nanostructured transition metal compounds with tunable components remains challenging because multiple synthetic procedures or complex manipulation are normally involved. Herein, an acid‐etching strategy is applied to Co, in which the composition and morphology of the resultant materials are tunable. Specifically, a novel two‐tiered Co(CO
3
)
0.5
(OH)·0.11H
2
O nanosheet is formed, part of which decomposes to produce hierarchical Co(CO
3
)
0.5
(OH)·0.11H
2
O/Co
3
O
4
nanocomposite by tuning the etching condition. The composite shows bifunctional electrocatalytic capability towards the oxygen evolution and hydrogen evolution reactions (OER and HER). Moreover, the phosphorous dopant is introduced to boost the catalytic activity, especially in the HER. Density functional theory calculations reveal that the phosphorous dopant can dramatically push the binding energy to the ideal value, thus improving the HER performance. Computed results indicate that partial orbitals of the P atom are above the Fermi level and the P atom enhances the charge density of the neighboring Co atom, which optimizes the H* binding. In addition, an efficient overall water splitting configuration is performed with the integration of the P‐doped Co compound catalysts. The acid‐etching methodology inspires more novel nanostructured and multicomponent metal compounds for prominent electrocatalysis. Facile synthesis of elaborate nanostructured transition metal compounds with tunable components remains challenging because multiple synthetic procedures or complex manipulation are normally involved. Herein, an acid‐etching strategy is applied to Co, in which the composition and morphology of the resultant materials are tunable. Specifically, a novel two‐tiered Co(CO3)0.5(OH)·0.11H2O nanosheet is formed, part of which decomposes to produce hierarchical Co(CO3)0.5(OH)·0.11H2O/Co3O4 nanocomposite by tuning the etching condition. The composite shows bifunctional electrocatalytic capability towards the oxygen evolution and hydrogen evolution reactions (OER and HER). Moreover, the phosphorous dopant is introduced to boost the catalytic activity, especially in the HER. Density functional theory calculations reveal that the phosphorous dopant can dramatically push the binding energy to the ideal value, thus improving the HER performance. Computed results indicate that partial orbitals of the P atom are above the Fermi level and the P atom enhances the charge density of the neighboring Co atom, which optimizes the H* binding. In addition, an efficient overall water splitting configuration is performed with the integration of the P‐doped Co compound catalysts. The acid‐etching methodology inspires more novel nanostructured and multicomponent metal compounds for prominent electrocatalysis. Facile synthesis of elaborate nanostructured transition metal compounds with tunable components remains challenging because multiple synthetic procedures or complex manipulation are normally involved. Herein, an acid‐etching strategy is applied to Co, in which the composition and morphology of the resultant materials are tunable. Specifically, a novel two‐tiered Co(CO3)0.5(OH)·0.11H2O nanosheet is formed, part of which decomposes to produce hierarchical Co(CO3)0.5(OH)·0.11H2O/Co3O4 nanocomposite by tuning the etching condition. The composite shows bifunctional electrocatalytic capability towards the oxygen evolution and hydrogen evolution reactions (OER and HER). Moreover, the phosphorous dopant is introduced to boost the catalytic activity, especially in the HER. Density functional theory calculations reveal that the phosphorous dopant can dramatically push the binding energy to the ideal value, thus improving the HER performance. Computed results indicate that partial orbitals of the P atom are above the Fermi level and the P atom enhances the charge density of the neighboring Co atom, which optimizes the H* binding. In addition, an efficient overall water splitting configuration is performed with the integration of the P‐doped Co compound catalysts. The acid‐etching methodology inspires more novel nanostructured and multicomponent metal compounds for prominent electrocatalysis. A morphology‐ and component‐tunable synthesis is applied to the acid‐etching of Co. The resultant hierarchical multicomponent nanocomposite exhibits bifunctional electrocatalytic activity for water electrolysis, which can be further improved by the implementation of phosphorous doping. An efficient full water splitting configuration is performed with the P‐doped Co species as the bifunctional electrocatalyst. |
Author | Song, Danna Wu, Hao Sun, Lanju Zhai, Shengliang Deng, Wei‐Qiao Sun, Jikai Ho, Ghim Wei |
Author_xml | – sequence: 1 givenname: Danna surname: Song fullname: Song, Danna organization: Shandong University – sequence: 2 givenname: Jikai surname: Sun fullname: Sun, Jikai organization: Shandong University – sequence: 3 givenname: Lanju surname: Sun fullname: Sun, Lanju organization: Shandong University – sequence: 4 givenname: Shengliang surname: Zhai fullname: Zhai, Shengliang organization: Shandong University – sequence: 5 givenname: Ghim Wei surname: Ho fullname: Ho, Ghim Wei email: elehgw@nus.edu.sg organization: ASTAR (Agency for Science, Technology and Research) – sequence: 6 givenname: Hao orcidid: 0000-0002-9464-2033 surname: Wu fullname: Wu, Hao email: haowu2020@sdu.edu.cn organization: Shandong University – sequence: 7 givenname: Wei‐Qiao surname: Deng fullname: Deng, Wei‐Qiao organization: Shandong University |
BookMark | eNqFkMtLAzEQxoMoWKtXzwHPrXntujmWWq1QH_jA4zKbpDYl3axJltL_3q0VBUGcyzczfL8Z-I7Qfu1rg9ApJUNKCDsHU6-GjLBu4Fmxh3o0p2KQF4Lsf_ecHaKTGJekKyEp4byHmpGy2ip8a7QF_GjeWgfJaDy1JkBQC6vA4bGvwKVOVo1vax3x2qYFflj42Cx88G3El76x9RuGiF87POCnxtmUtquJMyoFryCB28QUj9HBHFw0J1_aRy9Xk-fxdDC7v74Zj2YDxTNRDHJZVTxThWRSy0oDVzkBYFKABJ7lF5pWwBkp5gSoUZVkGjLBqJREC0oY4310trvbBP_empjKpW9D3b0sWcalEJ8J9JHYuVTwMQYzL5VNkKyvUwDrSkrKbbzlNt7yO94OG_7CmmBXEDZ_A3IHrK0zm3_c5Whyd_vDfgDd65BU |
CitedBy_id | crossref_primary_10_1002_smll_202304260 crossref_primary_10_1016_j_jcis_2022_08_056 crossref_primary_10_1021_acsomega_3c07911 crossref_primary_10_1002_anie_202112447 crossref_primary_10_1002_aenm_202102573 crossref_primary_10_1016_j_electacta_2022_141269 crossref_primary_10_1016_j_mtcomm_2024_110708 crossref_primary_10_1039_D2QM01370C crossref_primary_10_1016_j_inoche_2023_110872 crossref_primary_10_1002_cey2_554 crossref_primary_10_1039_D2DT00641C crossref_primary_10_1007_s40843_023_2632_y crossref_primary_10_1002_smll_202302683 crossref_primary_10_1016_j_cej_2024_149500 crossref_primary_10_1016_j_jallcom_2023_173282 crossref_primary_10_1016_j_jpowsour_2022_232519 crossref_primary_10_1016_j_electacta_2022_139895 crossref_primary_10_1021_acssuschemeng_2c03609 crossref_primary_10_1007_s11581_021_04392_4 crossref_primary_10_1007_s12221_023_00461_9 crossref_primary_10_1002_smll_202103866 crossref_primary_10_1016_j_jallcom_2021_162533 crossref_primary_10_1016_j_jallcom_2023_168878 crossref_primary_10_1039_D3CP01077E crossref_primary_10_1016_j_ceramint_2024_02_336 crossref_primary_10_1039_D1SE01886H crossref_primary_10_1016_j_jallcom_2024_175895 crossref_primary_10_1021_acscatal_2c02672 crossref_primary_10_1039_D2DT01077A crossref_primary_10_3390_catal13010198 crossref_primary_10_1002_ange_202400323 crossref_primary_10_1002_marc_202100915 crossref_primary_10_1002_adfm_202308345 crossref_primary_10_1002_smll_202500419 crossref_primary_10_1039_D2TA06240B crossref_primary_10_1002_smll_202403596 crossref_primary_10_1002_cssc_202300214 crossref_primary_10_1016_j_jcis_2023_04_143 crossref_primary_10_1016_j_cej_2022_134950 crossref_primary_10_1039_D4CS01031K crossref_primary_10_1002_ange_202112447 crossref_primary_10_1002_adma_202110172 crossref_primary_10_1016_j_est_2023_109127 crossref_primary_10_1016_j_jpowsour_2021_230635 crossref_primary_10_1021_acs_energyfuels_2c03942 crossref_primary_10_1016_j_jcrysgro_2023_127430 crossref_primary_10_1039_D2QI00753C crossref_primary_10_1002_adma_202303107 crossref_primary_10_1016_j_xcrp_2022_100804 crossref_primary_10_1016_j_microc_2024_112359 crossref_primary_10_1002_anie_202400323 crossref_primary_10_1039_D3CC01879B crossref_primary_10_1016_j_ijhydene_2022_12_040 crossref_primary_10_1039_D1CC06906C crossref_primary_10_1002_smll_202302055 crossref_primary_10_1021_acsami_2c16419 crossref_primary_10_1039_D2QI01764D crossref_primary_10_3390_molecules29133082 |
Cites_doi | 10.1039/C7TA11364A 10.1021/acsami.6b14127 10.1021/acsnano.7b05020 10.1039/C7TA08826D 10.1039/C7CE01130J 10.1002/smll.201704233 10.1002/adma.201602441 10.1002/anie.201814262 10.1002/adfm.201706008 10.1002/aenm.201702774 10.1002/anie.202000690 10.1021/acscatal.7b03594 10.1021/nn9012675 10.1039/C5CS00434A 10.1021/acscatal.7b02617 10.1002/adma.201804341 10.1002/aenm.201703290 10.1002/aenm.201601285 10.1002/admi.201500454 10.1002/anie.202004533 10.1002/anie.201404161 10.1002/adfm.201601420 10.1002/aenm.201701694 10.1002/anie.201810056 10.1021/acsenergylett.8b00066 10.1021/acs.chemmater.0c03543 10.1002/anie.201701477 10.1002/aenm.201703585 10.1021/acscatal.7b00587 10.1002/anie.201800883 10.1002/adma.201602270 10.1002/aenm.201702965 10.1039/C6TA09323J 10.1002/anie.201501616 10.1021/jacs.5b07728 10.1002/aenm.201500091 10.1002/aenm.201702704 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH |
DBID | AAYXX CITATION 7SP 7TB 8FD F28 FR3 H8D L7M |
DOI | 10.1002/aenm.202100358 |
DatabaseName | CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1614-6840 |
EndPage | n/a |
ExternalDocumentID | 10_1002_aenm_202100358 AENM202100358 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21525315 – fundername: Program of Qilu Young Scholars of Shandong University funderid: 62460082063152 – fundername: National Key Research and Development Program of China funderid: 2017YFA0204800 |
GroupedDBID | 05W 0R~ 1OC 33P 4.4 50Y 5VS 8-0 8-1 A00 AAESR AAHHS AAHQN AAIHA AAMNL AANLZ AAXRX AAYCA AAZKR ABCUV ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADKYN ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUYR AFBPY AFFPM AFWVQ AFZJQ AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB AZVAB BDRZF BFHJK BMXJE BRXPI D-A DCZOG EBS G-S HGLYW HZ~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MY. MY~ O9- P2W P4E RNS ROL RX1 SUPJJ WBKPD WOHZO WXSBR WYJ ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADMLS ADNMO AEYWJ AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE GODZA HVGLF 7SP 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY F28 FR3 H8D L7M |
ID | FETCH-LOGICAL-c3548-69bb35c8929d9bda3c60aa294a9a3567d1ba3208f0a1ecb92da5421990d410223 |
ISSN | 1614-6832 |
IngestDate | Fri Jul 25 10:01:12 EDT 2025 Tue Jul 01 01:43:39 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Wed Jan 22 16:28:51 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3548-69bb35c8929d9bda3c60aa294a9a3567d1ba3208f0a1ecb92da5421990d410223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9464-2033 |
PQID | 2539444910 |
PQPubID | 886389 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2539444910 crossref_citationtrail_10_1002_aenm_202100358 crossref_primary_10_1002_aenm_202100358 wiley_primary_10_1002_aenm_202100358_AENM202100358 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Advanced energy materials |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2017; 5 2017; 7 2018; 28 2017; 8 2015; 5 2015; 54 2019; 58 2020; 59 2017; 29 2020; 33 2017; 9 2018; 6 2018; 8 2018; 3 2016; 3 2015; 137 2017; 11 2017; 56 2018; 30 2017; 19 2016; 28 2016; 26 2010; 4 2016; 45 2018; 14 2018; 57 2014; 53 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_1_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Tsai C. (e_1_2_8_27_1) 2017; 8 e_1_2_8_30_1 |
References_xml | – volume: 5 start-page: 919 year: 2017 publication-title: J. Mater. Chem. A – volume: 6 start-page: 7420 year: 2018 publication-title: J. Mater. Chem. A – volume: 28 start-page: 9266 year: 2016 publication-title: Adv. Mater. – volume: 5 year: 2017 publication-title: J. Mater. Chem. A – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 58 start-page: 4923 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 4 start-page: 1425 year: 2010 publication-title: ACS Nano – volume: 14 year: 2018 publication-title: Small – volume: 45 start-page: 1529 year: 2016 publication-title: Chem. Soc. Rev. – volume: 8 start-page: 2236 year: 2018 publication-title: ACS Catal. – volume: 137 year: 2015 publication-title: J. Am. Chem. Soc. – volume: 59 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 59 start-page: 6492 year: 2020 publication-title: Angew. Chem., Int. Ed. – volume: 19 start-page: 5780 year: 2017 publication-title: CrystEngComm – volume: 58 start-page: 1329 year: 2019 publication-title: Angew. Chem., Int. Ed. – volume: 8 year: 2017 publication-title: Nat. Commun. – volume: 11 year: 2017 publication-title: ACS Nano – volume: 8 year: 2018 publication-title: Adv. Energy Mater. – volume: 30 year: 2018 publication-title: Adv. Mater. – volume: 7 year: 2017 publication-title: Adv. Energy Mater. – volume: 3 year: 2016 publication-title: Adv. Mater. Interfaces – volume: 5 year: 2015 publication-title: Adv. Energy Mater. – volume: 57 start-page: 4020 year: 2018 publication-title: Angew. Chem., Int. Ed. – volume: 54 start-page: 6251 year: 2015 publication-title: Angew. Chem., Int. Ed. – volume: 33 start-page: 234 year: 2020 publication-title: Chem. Mater. – volume: 28 year: 2018 publication-title: Adv. Funct. Mater. – volume: 7 start-page: 3824 year: 2017 publication-title: ACS Catal. – volume: 3 start-page: 779 year: 2018 publication-title: ACS Energy Lett. – volume: 8 start-page: 987 year: 2018 publication-title: ACS Catal. – volume: 53 start-page: 6710 year: 2014 publication-title: Angew. Chem., Int. Ed. – volume: 56 start-page: 5867 year: 2017 publication-title: Angew. Chem., Int. Ed. – volume: 9 start-page: 5982 year: 2017 publication-title: ACS Appl. Mater. Interfaces – volume: 26 start-page: 6785 year: 2016 publication-title: Adv. Funct. Mater. – ident: e_1_2_8_15_1 doi: 10.1039/C7TA11364A – ident: e_1_2_8_17_1 doi: 10.1021/acsami.6b14127 – ident: e_1_2_8_26_1 doi: 10.1021/acsnano.7b05020 – ident: e_1_2_8_33_1 doi: 10.1039/C7TA08826D – ident: e_1_2_8_36_1 doi: 10.1039/C7CE01130J – ident: e_1_2_8_29_1 doi: 10.1002/smll.201704233 – ident: e_1_2_8_8_1 doi: 10.1002/adma.201602441 – ident: e_1_2_8_14_1 doi: 10.1002/anie.201814262 – ident: e_1_2_8_20_1 doi: 10.1002/adfm.201706008 – ident: e_1_2_8_30_1 doi: 10.1002/aenm.201702774 – ident: e_1_2_8_12_1 doi: 10.1002/anie.202000690 – ident: e_1_2_8_4_1 doi: 10.1021/acscatal.7b03594 – ident: e_1_2_8_35_1 doi: 10.1021/nn9012675 – ident: e_1_2_8_7_1 doi: 10.1039/C5CS00434A – ident: e_1_2_8_5_1 doi: 10.1021/acscatal.7b02617 – ident: e_1_2_8_34_1 doi: 10.1002/adma.201804341 – ident: e_1_2_8_37_1 doi: 10.1002/aenm.201703290 – ident: e_1_2_8_22_1 doi: 10.1002/aenm.201601285 – ident: e_1_2_8_9_1 doi: 10.1002/admi.201500454 – ident: e_1_2_8_11_1 doi: 10.1002/anie.202004533 – ident: e_1_2_8_38_1 doi: 10.1002/anie.201404161 – ident: e_1_2_8_23_1 doi: 10.1002/adfm.201601420 – ident: e_1_2_8_24_1 doi: 10.1002/aenm.201701694 – ident: e_1_2_8_13_1 doi: 10.1002/anie.201810056 – ident: e_1_2_8_3_1 doi: 10.1021/acsenergylett.8b00066 – ident: e_1_2_8_19_1 doi: 10.1021/acs.chemmater.0c03543 – ident: e_1_2_8_25_1 doi: 10.1002/anie.201701477 – ident: e_1_2_8_18_1 doi: 10.1002/aenm.201703585 – ident: e_1_2_8_1_1 doi: 10.1021/acscatal.7b00587 – ident: e_1_2_8_31_1 doi: 10.1002/anie.201800883 – ident: e_1_2_8_6_1 doi: 10.1002/adma.201602270 – ident: e_1_2_8_16_1 doi: 10.1002/aenm.201702965 – ident: e_1_2_8_21_1 doi: 10.1039/C6TA09323J – ident: e_1_2_8_2_1 doi: 10.1002/anie.201501616 – ident: e_1_2_8_10_1 doi: 10.1021/jacs.5b07728 – volume: 8 start-page: 151131 year: 2017 ident: e_1_2_8_27_1 publication-title: Nat. Commun. – ident: e_1_2_8_28_1 doi: 10.1002/aenm.201500091 – ident: e_1_2_8_32_1 doi: 10.1002/aenm.201702704 |
SSID | ssj0000491033 |
Score | 2.5639298 |
Snippet | Facile synthesis of elaborate nanostructured transition metal compounds with tunable components remains challenging because multiple synthetic procedures or... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | acid‐etching Catalytic activity Charge density Chemical evolution Cobalt compounds Cobalt oxides Configuration management Density functional theory DFT calculations Dopants Electrocatalysts Etching Hydrogen evolution reactions Metal compounds Morphology Nanocomposites Nanostructure Transition metal compounds Water splitting |
Title | Acidic Media Regulated Hierarchical Cobalt Compounds with Phosphorous Doping as Water Splitting Electrocatalysts |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Faenm.202100358 https://www.proquest.com/docview/2539444910 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nj9MwELVK9wIHxKcouyAfkDigQBInaX2s2K4q1BaktqK3aOwkapYlrTbtYbnyxxnbidddvhYuUWulTut5tsfTeW8IedWHpEiEL3AiichDhEQecBl5xcCXfsG5kLrYxHSWjJfRh1W86nS-O1lL-514K7_9klfyP1bFNrSrYsn-g2Vtp9iAr9G-eEUL4_VWNh7KMiul_rMFcKB0VXl0IMelYhXrIicqMiDgYqfnvaqg1LDZPq039Xa9uVQJsKeGMwX1m8-gJBPn6JeabOiRqZGjQzxXtdF8spK1bfJAbtiDX9Vn1U-2MZsm2RdxVdm1f743XJDyC5Q32iZQne-dOLZOM5ivc8UzhmZ_bcIToZNGdctF0Fl80VXwkkET78zdNiPpZFfswEGmoTX_tBMYZVnIKyU3gOdanxmJ-EPJ7dnH9Gw5maSL0WpxhxyFfXTAuuRoeDqdzG2oDg9Rgc80VaP9hq38px--O3zEoXtzfWZxTz7adVk8IPebMwcdGgA9JJ28ekTuOUqUj8nWQIlqKFELJepCiRooUQslqqBEHShRAyUKNdVQohZK9CaUnpDl2Wjxfuw1xTg8yfBU6yVcCBbLAbrTGRcZMJn4ACGPgAOLk34WCGChPyh8CHIpeJhBHOF2yP0sUlEF9pR0q02VPyM0KiTjcaaU_3mkAwwBCAbAikLyQgQ94rVjmMpGqV4VTLlIjcZ2mKoxT-2Y98hre__WaLT89s6T1iRpM4_rNIwVOVzZuEdCbaa_9JIOR7Opfff8z30ek7vX0-KEdHeX-_wF-rE78bLB2Q_TYqAG |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acidic+Media+Regulated+Hierarchical+Cobalt+Compounds+with+Phosphorous+Doping+as+Water+Splitting+Electrocatalysts&rft.jtitle=Advanced+energy+materials&rft.au=Song%2C+Danna&rft.au=Sun%2C+Jikai&rft.au=Sun%2C+Lanju&rft.au=Zhai%2C+Shengliang&rft.date=2021-06-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1614-6832&rft.eissn=1614-6840&rft.volume=11&rft.issue=22&rft_id=info:doi/10.1002%2Faenm.202100358&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-6832&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-6832&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-6832&client=summon |