Road Damage Detection and Classification Using Deep Neural Networks with Smartphone Images

Research on damage detection of road surfaces using image processing techniques has been actively conducted. This study makes three contributions to address road damage detection issues. First, to the best of our knowledge, for the first time, a large‐scale road damage data set is prepared, comprisi...

Full description

Saved in:
Bibliographic Details
Published inComputer-aided civil and infrastructure engineering Vol. 33; no. 12; pp. 1127 - 1141
Main Authors Maeda, Hiroya, Sekimoto, Yoshihide, Seto, Toshikazu, Kashiyama, Takehiro, Omata, Hiroshi
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc 01.12.2018
Subjects
Online AccessGet full text
ISSN1093-9687
1467-8667
DOI10.1111/mice.12387

Cover

Abstract Research on damage detection of road surfaces using image processing techniques has been actively conducted. This study makes three contributions to address road damage detection issues. First, to the best of our knowledge, for the first time, a large‐scale road damage data set is prepared, comprising 9,053 road damage images captured using a smartphone installed on a car, with 15,435 instances of road surface damage included in these road images. Next, we used state‐of‐the‐art object detection methods using convolutional neural networks to train the damage detection model with our data set, and compared the accuracy and runtime speed on both, using a GPU server and a smartphone. Finally, we demonstrate that the type of damage can be classified into eight types with high accuracy by applying the proposed object detection method. The road damage data set, our experimental results, and the developed smartphone application used in this study are publicly available (https://github.com/sekilab/RoadDamageDetector/).
AbstractList Research on damage detection of road surfaces using image processing techniques has been actively conducted. This study makes three contributions to address road damage detection issues. First, to the best of our knowledge, for the first time, a large‐scale road damage data set is prepared, comprising 9,053 road damage images captured using a smartphone installed on a car, with 15,435 instances of road surface damage included in these road images. Next, we used state‐of‐the‐art object detection methods using convolutional neural networks to train the damage detection model with our data set, and compared the accuracy and runtime speed on both, using a GPU server and a smartphone. Finally, we demonstrate that the type of damage can be classified into eight types with high accuracy by applying the proposed object detection method. The road damage data set, our experimental results, and the developed smartphone application used in this study are publicly available (https://github.com/sekilab/RoadDamageDetector/).
Research on damage detection of road surfaces using image processing techniques has been actively conducted. This study makes three contributions to address road damage detection issues. First, to the best of our knowledge, for the first time, a large‐scale road damage data set is prepared, comprising 9,053 road damage images captured using a smartphone installed on a car, with 15,435 instances of road surface damage included in these road images. Next, we used state‐of‐the‐art object detection methods using convolutional neural networks to train the damage detection model with our data set, and compared the accuracy and runtime speed on both, using a GPU server and a smartphone. Finally, we demonstrate that the type of damage can be classified into eight types with high accuracy by applying the proposed object detection method. The road damage data set, our experimental results, and the developed smartphone application used in this study are publicly available ( https://github.com/sekilab/RoadDamageDetector/ ).
Author Seto, Toshikazu
Omata, Hiroshi
Kashiyama, Takehiro
Sekimoto, Yoshihide
Maeda, Hiroya
Author_xml – sequence: 1
  givenname: Hiroya
  surname: Maeda
  fullname: Maeda, Hiroya
  organization: The University of Tokyo
– sequence: 2
  givenname: Yoshihide
  surname: Sekimoto
  fullname: Sekimoto, Yoshihide
  email: sekimoto@iis.u-tokyo.ac.jp
  organization: The University of Tokyo
– sequence: 3
  givenname: Toshikazu
  surname: Seto
  fullname: Seto, Toshikazu
  organization: The University of Tokyo
– sequence: 4
  givenname: Takehiro
  surname: Kashiyama
  fullname: Kashiyama, Takehiro
  organization: The University of Tokyo
– sequence: 5
  givenname: Hiroshi
  surname: Omata
  fullname: Omata, Hiroshi
  organization: The University of Tokyo
BookMark eNp9kMFLwzAUxoNMcE4v_gUBb0Jn06RNe5Ru6mAqqLt4CWn6umV27Uwyxv57s9aTiO_yHo_f973Hd44GTdsAQlckHBNftxutYEwimvITNCQs4UGaJHzg5zCjQZak_AydW7sOfTFGh-jjtZUlnsiNXAKegAPldNtg2ZQ4r6W1utJKdquF1c3SI7DFz7AzsvbN7VvzafFeuxV-20jjtiv_D54d3ewFOq1kbeHyp4_Q4n76nj8G85eHWX43DxSNGQ84D9MokxQqlUYVBRLFhNBM0SyGMGZlpZIiIUmRRqVkkhaMlTFJMwpM8rigjI7Qde-7Ne3XDqwT63ZnGn9SRIR6NGIdddNTyrTWGqjE1mj_8kGQUByzE8fsRJedh8NfsNKui8EZqeu_JaSX7HUNh3_MxdMsn_aab7jKgqc
CitedBy_id crossref_primary_10_1109_TITS_2024_3360725
crossref_primary_10_3390_app14114424
crossref_primary_10_1016_j_aei_2023_101940
crossref_primary_10_1109_TIV_2022_3204583
crossref_primary_10_3390_drones8110692
crossref_primary_10_1109_JSEN_2021_3135388
crossref_primary_10_1016_j_aej_2024_11_081
crossref_primary_10_1016_j_autcon_2021_103634
crossref_primary_10_3390_s20195564
crossref_primary_10_1109_TITS_2022_3208188
crossref_primary_10_3390_buildings12081225
crossref_primary_10_1007_s13349_022_00643_8
crossref_primary_10_3390_s22228878
crossref_primary_10_1007_s42947_020_0098_9
crossref_primary_10_1016_j_autcon_2021_103991
crossref_primary_10_1109_ACCESS_2024_3481649
crossref_primary_10_1098_rsta_2022_0172
crossref_primary_10_1016_j_ymssp_2021_108377
crossref_primary_10_1111_exsy_13784
crossref_primary_10_3390_app13031999
crossref_primary_10_1016_j_engfailanal_2023_107237
crossref_primary_10_1117_1_JEI_31_4_043011
crossref_primary_10_3390_ma13132960
crossref_primary_10_1016_j_engfracmech_2022_108467
crossref_primary_10_3390_s23010053
crossref_primary_10_1016_j_autcon_2024_105682
crossref_primary_10_2166_hydro_2022_132
crossref_primary_10_1016_j_aei_2024_103036
crossref_primary_10_1155_2021_3511375
crossref_primary_10_1109_ACCESS_2020_2998427
crossref_primary_10_1080_10298436_2023_2183401
crossref_primary_10_1109_ACCESS_2025_3532832
crossref_primary_10_1016_j_engappai_2023_106359
crossref_primary_10_1109_TITS_2023_3327494
crossref_primary_10_3390_su16052207
crossref_primary_10_1007_s44150_022_00060_x
crossref_primary_10_3390_app12115320
crossref_primary_10_1016_j_autcon_2021_103973
crossref_primary_10_3934_math_2019_5_1320
crossref_primary_10_1007_s10514_020_09964_3
crossref_primary_10_4018_IJCINI_356363
crossref_primary_10_1016_j_autcon_2021_103606
crossref_primary_10_1016_j_conbuildmat_2024_139026
crossref_primary_10_3390_su15086610
crossref_primary_10_1061__ASCE_CP_1943_5487_0000883
crossref_primary_10_1051_matecconf_202439302005
crossref_primary_10_1016_j_autcon_2023_105186
crossref_primary_10_1109_TITS_2024_3382837
crossref_primary_10_1016_j_jobe_2023_107961
crossref_primary_10_1016_j_autcon_2023_105062
crossref_primary_10_1111_exsy_12647
crossref_primary_10_1007_s11803_022_2074_7
crossref_primary_10_1111_mice_13128
crossref_primary_10_1007_s42421_022_00056_5
crossref_primary_10_1038_s41598_023_50671_7
crossref_primary_10_3390_s20102778
crossref_primary_10_1007_s11668_022_01430_9
crossref_primary_10_3390_s24051467
crossref_primary_10_1016_j_aei_2020_101182
crossref_primary_10_3390_buildings12112019
crossref_primary_10_3390_su142316189
crossref_primary_10_1155_2021_6654723
crossref_primary_10_2139_ssrn_4353622
crossref_primary_10_1109_ACCESS_2020_2991968
crossref_primary_10_1111_mice_13132
crossref_primary_10_1111_mice_13010
crossref_primary_10_58922_transportes_v32i2_2796
crossref_primary_10_1007_s12145_022_00871_y
crossref_primary_10_1016_j_engappai_2023_106575
crossref_primary_10_1088_1742_6596_1903_1_012008
crossref_primary_10_32604_cmc_2022_029544
crossref_primary_10_1093_comjnl_bxac029
crossref_primary_10_1109_JPROC_2022_3153408
crossref_primary_10_1016_j_conbuildmat_2023_134212
crossref_primary_10_3390_s22093537
crossref_primary_10_1016_j_autcon_2024_105481
crossref_primary_10_1002_gdj3_260
crossref_primary_10_1061_JPCFEV_CFENG_4671
crossref_primary_10_1111_mice_13224
crossref_primary_10_1016_j_autcon_2020_103336
crossref_primary_10_1061_JPEODX_PVENG_1194
crossref_primary_10_1016_j_conbuildmat_2023_133593
crossref_primary_10_1007_s42452_024_06129_0
crossref_primary_10_1007_s13349_020_00386_4
crossref_primary_10_1016_j_autcon_2024_105375
crossref_primary_10_1111_mice_13233
crossref_primary_10_18287_2412_6179_CO_844
crossref_primary_10_3390_eng5040177
crossref_primary_10_3390_s21030689
crossref_primary_10_1007_s11042_025_20729_x
crossref_primary_10_1177_03611981211012001
crossref_primary_10_1016_j_autcon_2021_103892
crossref_primary_10_1177_1475921719896813
crossref_primary_10_1016_j_autcon_2020_103230
crossref_primary_10_1111_mice_13358
crossref_primary_10_1016_j_autcon_2020_103477
crossref_primary_10_1080_10298436_2023_2247135
crossref_primary_10_3390_s20247071
crossref_primary_10_1515_jisys_2023_0147
crossref_primary_10_1016_j_prostr_2024_09_025
crossref_primary_10_1016_j_conbuildmat_2022_127968
crossref_primary_10_1002_tee_23672
crossref_primary_10_1109_ACCESS_2024_3517632
crossref_primary_10_3390_app14114705
crossref_primary_10_12815_kits_2020_19_2_89
crossref_primary_10_3390_su15086438
crossref_primary_10_1139_cjce_2021_0116
crossref_primary_10_1061__ASCE_CP_1943_5487_0000918
crossref_primary_10_1109_ACCESS_2021_3074019
crossref_primary_10_1007_s13369_024_09388_6
crossref_primary_10_1080_1206212X_2020_1758877
crossref_primary_10_1109_ACCESS_2024_3451708
crossref_primary_10_26634_jip_8_3_18451
crossref_primary_10_3390_app12073337
crossref_primary_10_1016_j_jmapro_2022_05_038
crossref_primary_10_1111_mice_12909
crossref_primary_10_1016_j_talanta_2022_123862
crossref_primary_10_18359_rcin_4385
crossref_primary_10_1002_stc_2766
crossref_primary_10_1061__ASCE_ST_1943_541X_0003140
crossref_primary_10_3390_app11020813
crossref_primary_10_1016_j_measurement_2023_113269
crossref_primary_10_1080_14942119_2024_2373009
crossref_primary_10_1002_stc_2764
crossref_primary_10_3390_asi7010011
crossref_primary_10_1016_j_engfailanal_2022_106714
crossref_primary_10_1109_TITS_2023_3287349
crossref_primary_10_1177_03611981211004973
crossref_primary_10_1016_j_measurement_2021_110641
crossref_primary_10_1109_TIE_2019_2945265
crossref_primary_10_3390_app112311193
crossref_primary_10_1016_j_conbuildmat_2025_140247
crossref_primary_10_1016_j_measurement_2024_115393
crossref_primary_10_1007_s10530_020_02434_y
crossref_primary_10_3390_app122211529
crossref_primary_10_1155_2022_4684669
crossref_primary_10_1002_stc_2751
crossref_primary_10_14710_teknik_v44i1_51908
crossref_primary_10_1016_j_future_2019_05_028
crossref_primary_10_1061_JPEODX_0000373
crossref_primary_10_3390_bdcc8100136
crossref_primary_10_1016_j_eswa_2025_126581
crossref_primary_10_3233_JIFS_239289
crossref_primary_10_1016_j_jtte_2021_04_008
crossref_primary_10_11648_j_eas_20240904_13
crossref_primary_10_1016_j_autcon_2024_105297
crossref_primary_10_3390_s23198241
crossref_primary_10_1002_stc_2742
crossref_primary_10_3390_a16090452
crossref_primary_10_3390_app11073152
crossref_primary_10_1177_14759217221147015
crossref_primary_10_2208_jscejpe_77_1_28
crossref_primary_10_3389_fbuil_2022_1007886
crossref_primary_10_1016_j_engappai_2023_106880
crossref_primary_10_1016_j_conbuildmat_2020_119397
crossref_primary_10_3390_asi4040094
crossref_primary_10_1177_09544097231159707
crossref_primary_10_1016_j_measurement_2024_115119
crossref_primary_10_1155_2021_5589688
crossref_primary_10_1109_JIOT_2024_3385994
crossref_primary_10_7409_rabdim_023_017
crossref_primary_10_1109_ACCESS_2022_3196660
crossref_primary_10_1016_j_jweia_2020_104138
crossref_primary_10_1007_s42452_024_06207_3
crossref_primary_10_3390_infrastructures9100186
crossref_primary_10_1155_2022_4489770
crossref_primary_10_1016_j_measurement_2024_116453
crossref_primary_10_3390_rs14164037
crossref_primary_10_1061__ASCE_MT_1943_5533_0004605
crossref_primary_10_2174_1872212114999200914113515
crossref_primary_10_1016_j_jtte_2021_10_001
crossref_primary_10_1111_mice_13097
crossref_primary_10_3390_s24237724
crossref_primary_10_1016_j_autcon_2020_103176
crossref_primary_10_1111_exsy_12494
crossref_primary_10_3390_vehicles5030051
crossref_primary_10_1016_j_autcon_2022_104544
crossref_primary_10_3390_s21248406
crossref_primary_10_1016_j_autcon_2022_104664
crossref_primary_10_1142_S179396232150046X
crossref_primary_10_1016_j_aei_2019_100937
crossref_primary_10_1109_ACCESS_2019_2961375
crossref_primary_10_3390_ijgi9030161
crossref_primary_10_1111_mice_13186
crossref_primary_10_1061_JPEODX_PVENG_1359
crossref_primary_10_26599_JIC_2023_9180032
crossref_primary_10_1177_1475921720985437
crossref_primary_10_1016_j_autcon_2020_103185
crossref_primary_10_1177_14759217221078766
crossref_primary_10_3389_fmats_2022_1058407
crossref_primary_10_1016_j_jtte_2021_03_005
crossref_primary_10_1016_j_autcon_2023_104945
crossref_primary_10_1088_1361_6501_ac8e22
crossref_primary_10_1134_S1064226920120049
crossref_primary_10_1007_s11554_024_01545_2
crossref_primary_10_1109_TITS_2023_3266776
crossref_primary_10_1109_TIV_2022_3182218
crossref_primary_10_3390_s21082595
crossref_primary_10_1016_j_dib_2024_110131
crossref_primary_10_1007_s00521_021_06279_x
crossref_primary_10_1016_j_eswa_2024_123940
crossref_primary_10_1080_14942119_2023_2290795
crossref_primary_10_3390_s20226425
crossref_primary_10_3390_s22093471
crossref_primary_10_32604_cmc_2021_014170
crossref_primary_10_1016_j_jtte_2022_11_003
crossref_primary_10_1177_1475921720938486
crossref_primary_10_1142_S0129065720500409
crossref_primary_10_1177_03611981241239958
crossref_primary_10_1111_mice_13071
crossref_primary_10_1520_JTE20220298
crossref_primary_10_1109_JLT_2022_3209499
crossref_primary_10_1111_mice_13070
crossref_primary_10_3390_su15031866
crossref_primary_10_1007_s11042_024_19175_y
crossref_primary_10_1016_j_physa_2019_123510
crossref_primary_10_2139_ssrn_4105324
crossref_primary_10_1016_j_conbuildmat_2022_129226
crossref_primary_10_1016_j_autcon_2022_104332
crossref_primary_10_1080_01431161_2024_2365813
crossref_primary_10_1016_j_ymssp_2024_111813
crossref_primary_10_1007_s00500_023_09103_x
crossref_primary_10_1111_mice_12626
crossref_primary_10_1061_JPEODX_0000317
crossref_primary_10_1007_s13042_022_01555_1
crossref_primary_10_1177_0361198120965170
crossref_primary_10_1007_s41315_020_00141_4
crossref_primary_10_1016_j_autcon_2022_104344
crossref_primary_10_1177_03611981211057532
crossref_primary_10_1111_mice_12640
crossref_primary_10_1080_10298436_2023_2268796
crossref_primary_10_1109_ACCESS_2020_2981561
crossref_primary_10_3313_jls_56_255
crossref_primary_10_1139_cjce_2020_0246
crossref_primary_10_1016_j_tust_2020_103677
crossref_primary_10_1111_mice_12519
crossref_primary_10_1109_TITS_2023_3267433
crossref_primary_10_1016_j_rineng_2025_104546
crossref_primary_10_1016_j_mlwa_2024_100547
crossref_primary_10_1007_s41062_023_01308_1
crossref_primary_10_1109_TIV_2023_3326136
crossref_primary_10_1111_mice_12967
crossref_primary_10_1016_j_compbiomed_2020_103980
crossref_primary_10_1109_ACCESS_2022_3190014
crossref_primary_10_1177_1748006X20965111
crossref_primary_10_3390_jsan11010015
crossref_primary_10_1016_j_culher_2024_01_005
crossref_primary_10_1111_mice_12503
crossref_primary_10_1080_02827581_2022_2147213
crossref_primary_10_1111_mice_12741
crossref_primary_10_1111_mice_12500
crossref_primary_10_1007_s11042_023_15850_8
crossref_primary_10_1109_TNNLS_2021_3062070
crossref_primary_10_1016_j_future_2021_06_035
crossref_primary_10_2514_1_I011051
crossref_primary_10_1016_j_cmpb_2021_106086
crossref_primary_10_1038_s41597_024_03952_3
crossref_primary_10_1177_14759217211053776
crossref_primary_10_3390_infrastructures7110152
crossref_primary_10_3390_s24175652
crossref_primary_10_1177_03611981211007481
crossref_primary_10_3390_sym14010152
crossref_primary_10_1109_TITS_2022_3204334
crossref_primary_10_3390_buildings12040432
crossref_primary_10_1117_1_JEI_33_6_063027
crossref_primary_10_1111_mice_12954
crossref_primary_10_1111_mice_12710
crossref_primary_10_1016_j_autcon_2022_104139
crossref_primary_10_1038_s41597_024_03263_7
crossref_primary_10_1111_mice_12826
crossref_primary_10_1111_mice_12947
crossref_primary_10_2208_jscejpe_76_2_I_11
crossref_primary_10_3390_s25051449
crossref_primary_10_1109_TITS_2024_3373394
crossref_primary_10_62520_fujece_1421398
crossref_primary_10_1016_j_jreng_2024_04_003
crossref_primary_10_1049_itr2_12369
crossref_primary_10_1007_s10044_024_01314_8
crossref_primary_10_1111_mice_12962
crossref_primary_10_3390_su12030830
crossref_primary_10_1109_JSEN_2022_3181003
crossref_primary_10_3390_s23031657
crossref_primary_10_1007_s41062_023_01250_2
crossref_primary_10_1016_j_dib_2021_107133
crossref_primary_10_1109_ACCESS_2019_2956191
crossref_primary_10_1080_10298436_2023_2180641
crossref_primary_10_1155_2021_3137083
crossref_primary_10_1016_j_tust_2023_105310
crossref_primary_10_3846_jcem_2023_19031
crossref_primary_10_1587_transfun_2022IML0003
crossref_primary_10_3390_s24217076
crossref_primary_10_4236_jtts_2025_151001
crossref_primary_10_1111_mice_12928
crossref_primary_10_1016_j_ijdrr_2024_105091
crossref_primary_10_3390_a16120568
crossref_primary_10_61186_jiaeee_21_3_139
crossref_primary_10_3390_app10010319
crossref_primary_10_1016_j_conbuildmat_2022_129238
crossref_primary_10_1155_2022_3712289
crossref_primary_10_1007_s10921_022_00907_9
crossref_primary_10_3390_buildings14061546
crossref_primary_10_1016_j_autcon_2022_104481
crossref_primary_10_1111_mice_12701
crossref_primary_10_1007_s11760_022_02393_y
crossref_primary_10_1080_23789689_2023_2287857
crossref_primary_10_1016_j_aei_2023_102007
crossref_primary_10_3390_math11153277
crossref_primary_10_1111_mice_12815
crossref_primary_10_1080_10298436_2020_1765241
crossref_primary_10_1080_10298436_2023_2219366
crossref_primary_10_3390_s22083044
crossref_primary_10_46632_cset_2_3_5
crossref_primary_10_3390_infrastructures9060090
crossref_primary_10_1061__ASCE_CP_1943_5487_0001013
crossref_primary_10_1111_mice_13200
crossref_primary_10_1155_2024_8846470
crossref_primary_10_1016_j_autcon_2021_103910
crossref_primary_10_1177_1475921720940068
crossref_primary_10_1007_s40996_021_00671_2
crossref_primary_10_1016_j_trgeo_2024_101304
crossref_primary_10_1088_1757_899X_1019_1_012036
crossref_primary_10_3390_app12031374
crossref_primary_10_1155_2023_3555133
crossref_primary_10_1111_mice_12485
crossref_primary_10_3389_fmolb_2023_1147514
crossref_primary_10_1109_TIV_2022_3210299
crossref_primary_10_3390_s20143954
crossref_primary_10_7855_IJHE_2024_26_6_147
crossref_primary_10_3390_su132212682
crossref_primary_10_1109_TITS_2024_3391751
crossref_primary_10_1016_j_autcon_2024_105828
crossref_primary_10_1080_10298436_2022_2057978
crossref_primary_10_1109_JIOT_2020_3024885
crossref_primary_10_48175_IJARSCT_3526
crossref_primary_10_3390_s24134124
crossref_primary_10_1007_s11042_020_10040_2
crossref_primary_10_3390_app10196662
crossref_primary_10_1111_mice_12451
crossref_primary_10_3390_buildings12081081
crossref_primary_10_1155_2022_8392918
crossref_primary_10_35234_fumbd_1003341
crossref_primary_10_1109_ACCESS_2021_3125703
crossref_primary_10_3390_su16219168
crossref_primary_10_1002_2475_8876_12362
crossref_primary_10_1016_j_conbuildmat_2023_132731
crossref_primary_10_1111_mice_12458
crossref_primary_10_1016_j_measurement_2023_113716
crossref_primary_10_1007_s11760_025_03913_2
crossref_primary_10_3390_ijgi12090382
crossref_primary_10_3169_itej_76_78
crossref_primary_10_1016_j_prostr_2023_01_259
crossref_primary_10_3390_s22239366
crossref_primary_10_1016_j_aej_2024_09_097
crossref_primary_10_1016_j_iintel_2022_100004
crossref_primary_10_1109_TMC_2022_3198089
crossref_primary_10_2208_jscejj_24_21019
crossref_primary_10_1088_1742_6596_2115_1_012019
crossref_primary_10_1007_s42107_023_00748_5
crossref_primary_10_1109_TITS_2022_3192916
crossref_primary_10_1007_s13042_020_01078_7
crossref_primary_10_1109_OJITS_2023_3237480
crossref_primary_10_1111_mice_12550
crossref_primary_10_1111_mice_12793
crossref_primary_10_1109_ACCESS_2024_3512783
crossref_primary_10_1016_j_engstruct_2020_111347
crossref_primary_10_3389_fmats_2023_1239263
crossref_primary_10_1016_j_dib_2023_109692
crossref_primary_10_1016_j_asoc_2023_111174
crossref_primary_10_1061_JCCEE5_CPENG_5512
crossref_primary_10_1111_mice_12674
crossref_primary_10_1016_j_autcon_2021_103833
crossref_primary_10_3390_app13095810
crossref_primary_10_1080_10589759_2024_2440816
crossref_primary_10_1016_j_conbuildmat_2023_132684
crossref_primary_10_3390_s24020446
crossref_primary_10_1177_03611981211005450
crossref_primary_10_1080_10298436_2021_1932881
crossref_primary_10_1587_transinf_2019EDP7264
crossref_primary_10_1111_mice_12561
crossref_primary_10_1109_TITS_2022_3221067
crossref_primary_10_1111_mice_12448
crossref_primary_10_1111_mice_12565
crossref_primary_10_1155_2023_9940881
crossref_primary_10_1061_JCCEE5_CPENG_5500
crossref_primary_10_1016_j_heliyon_2024_e24142
crossref_primary_10_3390_s22229019
crossref_primary_10_1016_j_neucom_2025_129661
crossref_primary_10_1155_2021_5395494
crossref_primary_10_1016_j_autcon_2022_104190
crossref_primary_10_1007_s11554_024_01451_7
crossref_primary_10_1016_j_autcon_2024_105405
crossref_primary_10_1111_mice_12536
crossref_primary_10_1016_j_autcon_2024_105643
crossref_primary_10_1111_mice_12532
crossref_primary_10_35414_akufemubid_1328778
crossref_primary_10_1016_j_dsp_2024_104661
crossref_primary_10_3390_s23063268
crossref_primary_10_1111_mice_12530
crossref_primary_10_1016_j_aei_2020_101205
crossref_primary_10_1007_s10462_023_10475_7
crossref_primary_10_1016_j_aei_2024_102378
crossref_primary_10_1061__ASCE_CF_1943_5509_0001606
crossref_primary_10_1016_j_autcon_2021_103935
crossref_primary_10_3390_app142411974
crossref_primary_10_1016_j_jobe_2023_106688
crossref_primary_10_1049_ipr2_12940
crossref_primary_10_1016_j_autcon_2024_105772
crossref_primary_10_1016_j_jag_2023_103335
crossref_primary_10_1177_14759217221084878
crossref_primary_10_3390_app121910089
crossref_primary_10_1109_TITS_2024_3416508
crossref_primary_10_3846_jcem_2024_20401
crossref_primary_10_1111_mice_12546
crossref_primary_10_1111_mice_12667
crossref_primary_10_1111_mice_12541
crossref_primary_10_1016_j_aei_2024_102388
crossref_primary_10_1155_2021_5586615
crossref_primary_10_3390_app14072909
crossref_primary_10_1109_TITS_2024_3474704
crossref_primary_10_1007_s00371_024_03743_2
crossref_primary_10_3390_rs13050943
Cites_doi 10.1007/s11263-009-0275-4
10.1109/CVPR.2016.90
10.1007/s11263-013-0620-5
10.15446/dyna.v83n195.44919
10.1145/3004725.3004729
10.1109/CVPR.2014.414
10.1111/mice.12042
10.1109/CVPR.2014.81
10.1109/CVPR.2017.351
10.1177/0278364913491297
10.1061/(ASCE)CP.1943-5487.0000736
10.2208/jscejpe.70.I_1
10.1109/TPAMI.2009.167
10.1111/mice.12313
10.1109/BigData.2017.8258427
10.1109/IJCNN.2017.7966101
10.14359/51689560
10.1002/tal.1400
10.1109/CVPR.2009.5206848
10.1109/ICIP.2016.7533052
10.1111/mice.12256
10.1111/mice.12263
10.1016/j.engstruct.2017.10.070
10.1111/mice.12297
10.1109/ICCV.2015.169
10.18100/ijamec.270546
10.1007/s11263-014-0733-5
10.2208/jscejcei.69.I_54
10.1109/CVPR.2016.308
10.1016/j.aej.2017.01.020
10.3390/s151129316
10.1007/978-3-319-10602-1_48
10.1109/CVPR.2017.690
10.1111/0885-9507.00219
10.1109/CVPR.2016.91
10.1007/978-3-319-46448-0_2
10.1111/j.1467-8667.2011.00716.x
10.1111/mice.12098
ContentType Journal Article
Copyright 2018
2018 Computer‐Aided Civil and Infrastructure Engineering
Copyright_xml – notice: 2018
– notice: 2018 Computer‐Aided Civil and Infrastructure Engineering
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1111/mice.12387
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1467-8667
EndPage 1141
ExternalDocumentID 10_1111_mice_12387
MICE12387
Genre article
GrantInformation_xml – fundername: National Institute of Information and Communications Technology (NICT)
GroupedDBID ..I
.3N
.4S
.DC
.GA
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABFSI
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
E.L
EAD
EAP
EBS
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RJQFR
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3547-770829a3efc82f3e1251139c395e054dfc6b616b82da4a3b44d51893e4a75b343
IEDL.DBID DR2
ISSN 1093-9687
IngestDate Fri Jul 25 02:27:00 EDT 2025
Wed Oct 01 04:15:57 EDT 2025
Thu Apr 24 23:08:09 EDT 2025
Wed Jan 22 16:34:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3547-770829a3efc82f3e1251139c395e054dfc6b616b82da4a3b44d51893e4a75b343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2131892434
PQPubID 2045171
PageCount 15
ParticipantIDs proquest_journals_2131892434
crossref_primary_10_1111_mice_12387
crossref_citationtrail_10_1111_mice_12387
wiley_primary_10_1111_mice_12387_MICE12387
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2018
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: December 2018
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 32
2015; 15
2013; 69
2017; 26
2015; 70
2013; 104
2009
2008
2014; 29
2017; 114
2016; 4
2010; 88
2013; 32
2015; 111
2017; 32
2018; 156
2018
2017
2016; 83
2016
2001; 16
2015
2014
2012; 27
2013
2018; 32
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_10_1
Dai J. (e_1_2_9_11_1) 2016
e_1_2_9_35_1
e_1_2_9_12_1
e_1_2_9_54_1
AASHTO (e_1_2_9_2_1) 2008
Mertz C. (e_1_2_9_33_1) 2014
Sermanet P. (e_1_2_9_46_1) 2013
e_1_2_9_14_1
e_1_2_9_18_1
Howard A. G. (e_1_2_9_22_1) 2017
Buttlar W. G. (e_1_2_9_5_1) 2014
e_1_2_9_41_1
e_1_2_9_20_1
e_1_2_9_43_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
JRA (e_1_2_9_27_1) 2013
Ioffe S. (e_1_2_9_25_1) 2015
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_30_1
Ren S. (e_1_2_9_45_1) 2015
e_1_2_9_53_1
e_1_2_9_51_1
e_1_2_9_34_1
e_1_2_9_13_1
e_1_2_9_32_1
Radford A. (e_1_2_9_39_1) 2015
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_7_1
Obara M. (e_1_2_9_37_1) 2017
e_1_2_9_3_1
Simonyan K. (e_1_2_9_47_1) 2014
Huval B. (e_1_2_9_24_1) 2015
e_1_2_9_9_1
Fan Z. (e_1_2_9_16_1) 2018
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – start-page: 448
  year: 2015
  end-page: 56
– start-page: 21
  year: 2016
  end-page: 37
– volume: 32
  start-page: 361
  issue: 5
  year: 2017
  end-page: 78
  article-title: Deep learning‐based crack damage detection using convolutional neural networks
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 69
  start-page: I‐54
  issue: 2
  year: 2013
  end-page: I‐62
  article-title: An effective surface inspection method of urban roads according to the pavement management situation of local governments
  publication-title: Journal of Japan Society of Civil Engineers, Ser. F3 (Civil Engineering Informatics)
– volume: 15
  start-page: 29316
  issue: 11
  year: 2015
  end-page: 31
  article-title: Pothole detection system using a black‐box camera
  publication-title: Sensors
– volume: 111
  start-page: 98
  issue: 1
  year: 2015
  end-page: 136
  article-title: The Pascal visual object classes challenge: a retrospective
  publication-title: International Journal of Computer Vision
– start-page: 2818
  year: 2016
  end-page: 26
– volume: 32
  start-page: 1627
  issue: 9
  year: 2010
  end-page: 45
  article-title: Object detection with discriminatively trained part‐based models
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 156
  start-page: 598
  year: 2018
  end-page: 607
  article-title: A novel unsupervised deep learning model for global and local health condition assessment of structures
  publication-title: Engineering Structures
– year: 2014
– volume: 32
  start-page: 805
  issue: 10
  year: 2017
  end-page: 19
  article-title: Automated pixel‐level pavement crack detection on 3D asphalt surfaces using a deep‐learning network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 580
  year: 2014
  end-page: 87
– start-page: 770
  year: 2016
  end-page: 78
– volume: 104
  start-page: 154
  issue: 2
  year: 2013
  end-page: 71
  article-title: Selective search for object recognition
  publication-title: International Journal of Computer Vision
– start-page: 37
  year: 2016
  end-page: 45
– volume: 26
  issue: 18
  year: 2017
  article-title: A novel machine learning‐based algorithm to detect damage in high‐rise building structures
  publication-title: The Structural Design of Tall and Special Buildings
– volume: 29
  start-page: 342
  issue: 5
  year: 2014
  end-page: 58
  article-title: Road crack detection using visual features extracted by Gabor filters
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2008
– start-page: 4092
  year: 2017
  end-page: 97
– start-page: 91
  year: 2015
  end-page: 99
– start-page: 1440
  year: 2015
  end-page: 48
– volume: 32
  start-page: 1025
  issue: 12
  year: 2017
  end-page: 46
  article-title: Structural damage detection with automatic feature‐extraction through deep learning
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2013
  article-title: OverFeat: integrated recognition, localization and detection using convolutional networks
  publication-title: Computer Vision and Pattern Recognition
– volume: 32
  start-page: 271
  issue: 4
  year: 2017
  end-page: 87
  article-title: A texture‐based video processing methodology using Bayesian data fusion for autonomous crack detection on metallic surfaces
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 32
  start-page: 1231
  issue: 11
  year: 2013
  end-page: 37
  article-title: Vision meets robotics: the KITTI dataset
  publication-title: The International Journal of Robotics Research
– year: 2015
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: Computer Vision and Pattern Recognition
– volume: 29
  start-page: 644
  issue: 9
  year: 2014
  end-page: 58
  article-title: Regionally enhanced multiphase segmentation technique for damaged surfaces
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 88
  start-page: 303
  issue: 2
  year: 2010
  end-page: 38
  article-title: The Pascal visual object classes (VOC) challenge
  publication-title: International Journal of Computer Vision
– year: 2014
  article-title: Very deep convolutional networks for large‐scale image recognition
  publication-title: Computer Vision and Pattern Recognition
– start-page: 3286
  year: 2014
  end-page: 93
– year: 2017
  article-title: Crack detection using image processing: a critical review and analysis
  publication-title: Alexandria Engineering Journal
– year: 2016
– start-page: 379
  year: 2016
  end-page: 87
– start-page: 2039
  year: 2017
  end-page: 47
– volume: 83
  start-page: 156
  issue: 195
  year: 2016
  end-page: 62
  article-title: Detection and localization of potholes in roadways using smartphones
  publication-title: Dyna
– year: 2015
  article-title: An empirical evaluation of deep learning on highway driving
  publication-title: Computer Vision and Pattern Recognition
– volume: 114
  start-page: 237
  issue: 2
  year: 2017
  end-page: 44
  article-title: Supervised deep restricted Boltzmann machine for estimation of concrete
  publication-title: ACI Materials Journal
– start-page: 248
  year: 2009
  end-page: 55
– volume: 32
  start-page: 1
  issue: 2
  year: 2018
  end-page: 12
  article-title: Unified approach to pavement crack and sealed crack detection using preclassification based on transfer learning
  publication-title: Journal of Computing in Civil Engineering
– volume: 16
  start-page: 126
  issue: 2
  year: 2001
  end-page: 42
  article-title: Neural networks in civil engineering: 1989–2000
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 27
  start-page: 29
  issue: 1
  year: 2012
  end-page: 47
  article-title: Concrete crack detection by multiple sequential image filtering
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 740
  year: 2014
  end-page: 55
– start-page: 3708
  year: 2016
  end-page: 12
– year: 2017
– start-page: 1
  year: 2014
  end-page: 9
– year: 2017
  article-title: MobileNets: efficient convolutional neural networks for mobile vision applications
  publication-title: Computer Vision and Pattern Recognition
– start-page: 779
  year: 2016
  end-page: 88
– volume: 70
  start-page: 1
  issue: 3
  year: 2015
  end-page: 8
  article-title: Asphalt pavement crack detection using image processing and naïve Bayes based machine learning approach
  publication-title: Journal of Japan Society of Civil Engineers, Ser. E1 (Pavement Engineering)
– volume: 4
  start-page: 290
  issue: Special Issue‐1
  year: 2016
  end-page: 95
  article-title: A fast and adaptive road defect detection approach using computer vision with real time implementation
  publication-title: International Journal of Applied Mathematics, Electronics and Computers
– year: 2018
  article-title: Automatic pavement crack detection based on structured prediction with the convolutional neural network
  publication-title: Computer Vision and Pattern Recognition
– year: 2013
– ident: e_1_2_9_15_1
  doi: 10.1007/s11263-009-0275-4
– ident: e_1_2_9_21_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_9_50_1
  doi: 10.1007/s11263-013-0620-5
– ident: e_1_2_9_6_1
  doi: 10.15446/dyna.v83n195.44919
– ident: e_1_2_9_32_1
  doi: 10.1145/3004725.3004729
– ident: e_1_2_9_9_1
  doi: 10.1109/CVPR.2014.414
– ident: e_1_2_9_51_1
  doi: 10.1111/mice.12042
– year: 2015
  ident: e_1_2_9_39_1
  article-title: Unsupervised representation learning with deep convolutional generative adversarial networks
  publication-title: Computer Vision and Pattern Recognition
– ident: e_1_2_9_20_1
  doi: 10.1109/CVPR.2014.81
– ident: e_1_2_9_23_1
  doi: 10.1109/CVPR.2017.351
– ident: e_1_2_9_18_1
  doi: 10.1177/0278364913491297
– year: 2014
  ident: e_1_2_9_47_1
  article-title: Very deep convolutional networks for large‐scale image recognition
  publication-title: Computer Vision and Pattern Recognition
– ident: e_1_2_9_53_1
  doi: 10.1061/(ASCE)CP.1943-5487.0000736
– ident: e_1_2_9_10_1
  doi: 10.2208/jscejpe.70.I_1
– start-page: 448
  volume-title: Proceedings of the International Conference on Machine Learning
  year: 2015
  ident: e_1_2_9_25_1
– ident: e_1_2_9_17_1
  doi: 10.1109/TPAMI.2009.167
– ident: e_1_2_9_30_1
  doi: 10.1111/mice.12313
– ident: e_1_2_9_28_1
  doi: 10.1109/BigData.2017.8258427
– ident: e_1_2_9_13_1
  doi: 10.1109/IJCNN.2017.7966101
– volume-title: Maintenance and Repair Guide Book of the Pavement 2013
  year: 2013
  ident: e_1_2_9_27_1
– start-page: 1
  volume-title: Proceedings of ITS World Congress
  year: 2014
  ident: e_1_2_9_33_1
– year: 2017
  ident: e_1_2_9_22_1
  article-title: MobileNets: efficient convolutional neural networks for mobile vision applications
  publication-title: Computer Vision and Pattern Recognition
– ident: e_1_2_9_42_1
  doi: 10.14359/51689560
– ident: e_1_2_9_40_1
  doi: 10.1002/tal.1400
– ident: e_1_2_9_12_1
  doi: 10.1109/CVPR.2009.5206848
– volume-title: Proceedings of The Third International Conference on Smart Portable, Wearable, Implantable and Disability‐Oriented Devices and Systems (SPWID 2017)
  year: 2017
  ident: e_1_2_9_37_1
– ident: e_1_2_9_54_1
  doi: 10.1109/ICIP.2016.7533052
– ident: e_1_2_9_8_1
  doi: 10.1111/mice.12256
– ident: e_1_2_9_7_1
  doi: 10.1111/mice.12263
– ident: e_1_2_9_41_1
  doi: 10.1016/j.engstruct.2017.10.070
– start-page: 379
  volume-title: Proceedings of the Neural Information Processing Systems Conference
  year: 2016
  ident: e_1_2_9_11_1
– ident: e_1_2_9_52_1
  doi: 10.1111/mice.12297
– ident: e_1_2_9_19_1
  doi: 10.1109/ICCV.2015.169
– volume-title: Bridging the Gap–Restoring and Rebuilding the Nation's Bridges
  year: 2008
  ident: e_1_2_9_2_1
– ident: e_1_2_9_4_1
  doi: 10.18100/ijamec.270546
– ident: e_1_2_9_14_1
  doi: 10.1007/s11263-014-0733-5
– ident: e_1_2_9_49_1
  doi: 10.2208/jscejcei.69.I_54
– ident: e_1_2_9_48_1
  doi: 10.1109/CVPR.2016.308
– ident: e_1_2_9_35_1
  doi: 10.1016/j.aej.2017.01.020
– ident: e_1_2_9_26_1
  doi: 10.3390/s151129316
– ident: e_1_2_9_29_1
  doi: 10.1007/978-3-319-10602-1_48
– start-page: 91
  volume-title: Proceedings of the Advances in Neural Information Processing Systems
  year: 2015
  ident: e_1_2_9_45_1
– year: 2018
  ident: e_1_2_9_16_1
  article-title: Automatic pavement crack detection based on structured prediction with the convolutional neural network
  publication-title: Computer Vision and Pattern Recognition
– volume-title: Integration of Smart‐Phone‐Based Pavement Roughness Data Collection Tool with Asset Management System
  year: 2014
  ident: e_1_2_9_5_1
– year: 2015
  ident: e_1_2_9_24_1
  article-title: An empirical evaluation of deep learning on highway driving
  publication-title: Computer Vision and Pattern Recognition
– ident: e_1_2_9_44_1
  doi: 10.1109/CVPR.2017.690
– year: 2013
  ident: e_1_2_9_46_1
  article-title: OverFeat: integrated recognition, localization and detection using convolutional networks
  publication-title: Computer Vision and Pattern Recognition
– ident: e_1_2_9_3_1
  doi: 10.1111/0885-9507.00219
– ident: e_1_2_9_43_1
  doi: 10.1109/CVPR.2016.91
– ident: e_1_2_9_31_1
  doi: 10.1007/978-3-319-46448-0_2
– ident: e_1_2_9_34_1
– ident: e_1_2_9_36_1
  doi: 10.1111/j.1467-8667.2011.00716.x
– ident: e_1_2_9_38_1
  doi: 10.1111/mice.12098
SSID ssj0000443
Score 2.6572983
Snippet Research on damage detection of road surfaces using image processing techniques has been actively conducted. This study makes three contributions to address...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1127
SubjectTerms Artificial neural networks
Damage detection
Datasets
Image classification
Image detection
Image processing
Neural networks
Object recognition
Smartphones
Traffic accidents & safety
Title Road Damage Detection and Classification Using Deep Neural Networks with Smartphone Images
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12387
https://www.proquest.com/docview/2131892434
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-8667
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0000443
  issn: 1093-9687
  databaseCode: ABDBF
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1467-8667
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0000443
  issn: 1093-9687
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1093-9687
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-8667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000443
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS8MwED6GT_rgdCpOpwT0RaGDNmnWgi_iNqbgHqaDIUjJr77o5rDdi3-9l7TdpoigbyVc0zSXy30J390BnCtp0O-Z2ItSwz0mUu5FFO1RqA4P0b9Ro2008v2QD8bsbhJOanBVxcIU-SGWF27WMtx-bQ1cyGzNyG219jbuu5ENJfcpd-ep0VruKFay62PqxTzqlLlJLY1n9epXb7SCmOtA1Xmafh2eqzEWBJOX9iKXbfXxLX3jf39iB7ZLCEquizWzCzUza0C9hKOkNPYMm6qKD1VbA7bW0hfuwdPoTWjSFVPck0jX5I7VNSNipomrtWlZSE7xxBETUMTMic0Ggl8fFvTzjNiLYPIwxRVsWfKG3Nresn0Y93uPNwOvrNXgKRqyDoJ0G6QrqElVFKTUWNyE4FLRODSICnWquOQ-l1GgBRNUMqZDH7GSYaITSsroAWzM8CuHQGTg01SEeG7XhmnpS2ZRjdEI3OI0VUETLiqdJapMZG7rabwm1YHGzmriZrUJZ0vZeZG-40epVqX6pDThLMFR4AADRlkTLp0Of-khQZvpuaejvwgfwyYCsKigx7RgI39fmBMEObk8dYv5E4gs93M
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64HNSDuziuAb0odGCaNG2P4sK4zcEFxEvJ1ovOKHa8-Ot9L011FBH0VkKatHl5eV_Cl-8B7BrtMO65PMpKJyOhShllHP1RmVQmGN-4s3Qb-bInu7fi7C65C9wcugtT60N8HLiRZ_j1mhycDqRHvJzStbdx4c3ScZgUEjcqhImuRtSjRODX5zzKZZYGdVIi8ny--zUefYLMUajqY83JXJ1QtfIShUQxeWi_DnXbvH0TcPz3b8zDbECh7KCeNgsw5gaLMBcQKQv-XmFRk_ShKVuEmREFwyW4v3pSlh2pPi5L7MgNPbFrwNTAMp9uk4hI3vbMcxOwintmJAiCvfdqBnrF6CyYXfdxEhNR3rFTaq1ahtuT45vDbhTSNUSGJyJFnE73dBV3pcnikjuCTogvDc8Th8DQlkZq2ZE6i60SimshbNJBuOSEShPNBV-BiQH2sgpMxx1eqgS37tYJqztaELBxFrFbXpYmbsFeY7TCBC1zSqnxWDR7GhrVwo9qC3Y-6j7XCh4_1tpobF8EL64K_Ar8wFhw0YJ9b8RfWijQbY7909pfKm_DVPfm8qK4OO2dr8M04rGsZstswMTw5dVtIuYZ6i0_s98BDbf7lA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEB5SB0J7yMNNqVM3ESSXFNbglfZ1DHVMnIcJTgKhl0XPS2vXdO1Lf31mtFrHKaWQ3hahlXY1Gs0n8ekbgBOtLMY9W0S5s2kkpEujnKM_Sp2lCcY3bg3dRr4ZpxcP4vIxeQzcHLoLU-tDrA7cyDP8ek0ObufGrXk5pWvv4cKbZ29gUyRFToy-wWRNPUoEfn3BoyLNs6BOSkSe53dfxqNnkLkOVX2sGe7UCVUrL1FIFJPvveVC9fTvPwQc__s3dmE7oFB2Vk-bPdiwszbsBETKgr9XWNQkfWjK2vBuTcHwPXyb_JSGDeQUlyU2sAtP7JoxOTPMp9skIpK3PfPcBKxi54wEQbD3cc1ArxidBbO7KU5iIspbNqLWqn14GJ7ff72IQrqGSPNEZIjT6Z6u5NbpPHbcEnRCfKl5kVgEhsbpVKX9VOWxkUJyJYRJ-giXrJBZorjgH6A1w14-AlNxnzuZ4NbdWGFUXwkCNtYgdiuc03EHThujlTpomVNKjR9ls6ehUS39qHbgeFV3Xit4_LVWt7F9Gby4KvEr8ANjwUUHvngj_qOFEt3m3D8dvKbyEWzdDobl9Wh89QneIhzLa7JMF1qLX0v7GSHPQh36if0Eu177GA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Road+Damage+Detection+and+Classification+Using+Deep+Neural+Networks+with+Smartphone+Images&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Maeda%2C+Hiroya&rft.au=Sekimoto%2C+Yoshihide&rft.au=Seto%2C+Toshikazu&rft.au=Kashiyama%2C+Takehiro&rft.date=2018-12-01&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=33&rft.issue=12&rft.spage=1127&rft.epage=1141&rft_id=info:doi/10.1111%2Fmice.12387&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_mice_12387
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon