Cajaninstilbene Acid Ameliorates Cognitive Impairment Induced by Intrahippocampal Injection of Amyloid-β1–42 Oligomers
Amyloid-β1-42 (Aβ1-42) oligomers play an important role at the early stage of Alzheimer's disease (AD) and have been a vital target in the development of therapeutic drugs for AD. Cajaninstilbene acid (CSA), a major bioactive stilbene isolated from pigeon pea (Cajanus cajan) leaves, exerted the...
Saved in:
Published in | Frontiers in pharmacology Vol. 10; p. 1084 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Frontiers Media S.A
24.09.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1663-9812 1663-9812 |
DOI | 10.3389/fphar.2019.01084 |
Cover
Abstract | Amyloid-β1-42 (Aβ1-42) oligomers play an important role at the early stage of Alzheimer's disease (AD) and have been a vital target in the development of therapeutic drugs for AD. Cajaninstilbene acid (CSA), a major bioactive stilbene isolated from pigeon pea (Cajanus cajan) leaves, exerted the neuroprotective property in our previous studies. The present study utilized a validated mouse model of early-stage AD induced by bilateral injection of Aβ1-42 oligomers into hippocampal CA1 regions (100 pmol/mouse) to investigate the cognitive enhancing effects of CSA and the underlying mechanism, by a combination of animal behavioral tests, immunohistochemistry, liquid chromatography-tandem mass spectrometry analysis, and Western blot methods. Intragastric administration of CSA (7.5, 15, and 30 mg/kg) attenuated the impairment of learning and memory induced by Aβ1-42 oligomers. CSA stimulated Aβ clearance and prevented microglial activation and astrocyte reactivity in the hippocampus of model mice. It also decreased the high levels of Glu but increased the low levels of GABA. In addition, CSA inhibited excessive expression of GluN2B-containing NMDARs and upregulated the downstream PKA/CREB/BDNF/TrkB signaling pathway. These results suggest that CSA could be a potential therapeutic agent at the early stage of AD.Amyloid-β1-42 (Aβ1-42) oligomers play an important role at the early stage of Alzheimer's disease (AD) and have been a vital target in the development of therapeutic drugs for AD. Cajaninstilbene acid (CSA), a major bioactive stilbene isolated from pigeon pea (Cajanus cajan) leaves, exerted the neuroprotective property in our previous studies. The present study utilized a validated mouse model of early-stage AD induced by bilateral injection of Aβ1-42 oligomers into hippocampal CA1 regions (100 pmol/mouse) to investigate the cognitive enhancing effects of CSA and the underlying mechanism, by a combination of animal behavioral tests, immunohistochemistry, liquid chromatography-tandem mass spectrometry analysis, and Western blot methods. Intragastric administration of CSA (7.5, 15, and 30 mg/kg) attenuated the impairment of learning and memory induced by Aβ1-42 oligomers. CSA stimulated Aβ clearance and prevented microglial activation and astrocyte reactivity in the hippocampus of model mice. It also decreased the high levels of Glu but increased the low levels of GABA. In addition, CSA inhibited excessive expression of GluN2B-containing NMDARs and upregulated the downstream PKA/CREB/BDNF/TrkB signaling pathway. These results suggest that CSA could be a potential therapeutic agent at the early stage of AD. |
---|---|
AbstractList | Amyloid-β1–42 (Aβ1–42) oligomers play an important role at the early stage of Alzheimer’s disease (AD) and have been a vital target in the development of therapeutic drugs for AD. Cajaninstilbene acid (CSA), a major bioactive stilbene isolated from pigeon pea (Cajanus cajan) leaves, exerted the neuroprotective property in our previous studies. The present study utilized a validated mouse model of early-stage AD induced by bilateral injection of Aβ1–42 oligomers into hippocampal CA1 regions (100 pmol/mouse) to investigate the cognitive enhancing effects of CSA and the underlying mechanism, by a combination of animal behavioral tests, immunohistochemistry, liquid chromatography-tandem mass spectrometry analysis, and Western blot methods. Intragastric administration of CSA (7.5, 15, and 30 mg/kg) attenuated the impairment of learning and memory induced by Aβ1–42 oligomers. CSA stimulated Aβ clearance and prevented microglial activation and astrocyte reactivity in the hippocampus of model mice. It also decreased the high levels of Glu but increased the low levels of GABA. In addition, CSA inhibited excessive expression of GluN2B-containing NMDARs and upregulated the downstream PKA/CREB/BDNF/TrkB signaling pathway. These results suggest that CSA could be a potential therapeutic agent at the early stage of AD. Amyloid-β 1–42 (Aβ 1–42 ) oligomers play an important role at the early stage of Alzheimer’s disease (AD) and have been a vital target in the development of therapeutic drugs for AD. Cajaninstilbene acid (CSA), a major bioactive stilbene isolated from pigeon pea ( Cajanus cajan ) leaves, exerted the neuroprotective property in our previous studies. The present study utilized a validated mouse model of early-stage AD induced by bilateral injection of Aβ 1–42 oligomers into hippocampal CA1 regions (100 pmol/mouse) to investigate the cognitive enhancing effects of CSA and the underlying mechanism, by a combination of animal behavioral tests, immunohistochemistry, liquid chromatography-tandem mass spectrometry analysis, and Western blot methods. Intragastric administration of CSA (7.5, 15, and 30 mg/kg) attenuated the impairment of learning and memory induced by Aβ 1–42 oligomers. CSA stimulated Aβ clearance and prevented microglial activation and astrocyte reactivity in the hippocampus of model mice. It also decreased the high levels of Glu but increased the low levels of GABA. In addition, CSA inhibited excessive expression of GluN2B-containing NMDARs and upregulated the downstream PKA/CREB/BDNF/TrkB signaling pathway. These results suggest that CSA could be a potential therapeutic agent at the early stage of AD. Amyloid-β1-42 (Aβ1-42) oligomers play an important role at the early stage of Alzheimer's disease (AD) and have been a vital target in the development of therapeutic drugs for AD. Cajaninstilbene acid (CSA), a major bioactive stilbene isolated from pigeon pea (Cajanus cajan) leaves, exerted the neuroprotective property in our previous studies. The present study utilized a validated mouse model of early-stage AD induced by bilateral injection of Aβ1-42 oligomers into hippocampal CA1 regions (100 pmol/mouse) to investigate the cognitive enhancing effects of CSA and the underlying mechanism, by a combination of animal behavioral tests, immunohistochemistry, liquid chromatography-tandem mass spectrometry analysis, and Western blot methods. Intragastric administration of CSA (7.5, 15, and 30 mg/kg) attenuated the impairment of learning and memory induced by Aβ1-42 oligomers. CSA stimulated Aβ clearance and prevented microglial activation and astrocyte reactivity in the hippocampus of model mice. It also decreased the high levels of Glu but increased the low levels of GABA. In addition, CSA inhibited excessive expression of GluN2B-containing NMDARs and upregulated the downstream PKA/CREB/BDNF/TrkB signaling pathway. These results suggest that CSA could be a potential therapeutic agent at the early stage of AD.Amyloid-β1-42 (Aβ1-42) oligomers play an important role at the early stage of Alzheimer's disease (AD) and have been a vital target in the development of therapeutic drugs for AD. Cajaninstilbene acid (CSA), a major bioactive stilbene isolated from pigeon pea (Cajanus cajan) leaves, exerted the neuroprotective property in our previous studies. The present study utilized a validated mouse model of early-stage AD induced by bilateral injection of Aβ1-42 oligomers into hippocampal CA1 regions (100 pmol/mouse) to investigate the cognitive enhancing effects of CSA and the underlying mechanism, by a combination of animal behavioral tests, immunohistochemistry, liquid chromatography-tandem mass spectrometry analysis, and Western blot methods. Intragastric administration of CSA (7.5, 15, and 30 mg/kg) attenuated the impairment of learning and memory induced by Aβ1-42 oligomers. CSA stimulated Aβ clearance and prevented microglial activation and astrocyte reactivity in the hippocampus of model mice. It also decreased the high levels of Glu but increased the low levels of GABA. In addition, CSA inhibited excessive expression of GluN2B-containing NMDARs and upregulated the downstream PKA/CREB/BDNF/TrkB signaling pathway. These results suggest that CSA could be a potential therapeutic agent at the early stage of AD. |
Author | Liao, Yong-Hong Zhou, Yun-Feng Wang, Li-Sha Zhang, Meng-Di Chang, Qi Tao, Xue Pan, Rui-Le Liu, Xin-Min |
AuthorAffiliation | 2 National Key Laboratory of Human Factors Engineering and the State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center , Beijing , China 1 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China |
AuthorAffiliation_xml | – name: 2 National Key Laboratory of Human Factors Engineering and the State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center , Beijing , China – name: 1 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China |
Author_xml | – sequence: 1 givenname: Li-Sha surname: Wang fullname: Wang, Li-Sha – sequence: 2 givenname: Xue surname: Tao fullname: Tao, Xue – sequence: 3 givenname: Xin-Min surname: Liu fullname: Liu, Xin-Min – sequence: 4 givenname: Yun-Feng surname: Zhou fullname: Zhou, Yun-Feng – sequence: 5 givenname: Meng-Di surname: Zhang fullname: Zhang, Meng-Di – sequence: 6 givenname: Yong-Hong surname: Liao fullname: Liao, Yong-Hong – sequence: 7 givenname: Rui-Le surname: Pan fullname: Pan, Rui-Le – sequence: 8 givenname: Qi surname: Chang fullname: Chang, Qi |
BookMark | eNp1ks1uEzEUhUeoiJbSPctZspngv5mxN0hRBDRSpW5gbfnnOnHksQd7Uik73oE34UF4CJ6kk6RIFAlvfHXvOZ_sq_O6uogpQlW9xWhBKRfv3bhVeUEQFguEEWcvqivcdbQRHJOLv-rL6qaUHZoPFYJ27FV1SXHHkaDiqjqs1E5FH8vkg4YI9dJ4Wy8HCD5lNUGpV2kT_eQfoF4Po_J5gDjV62j3BmytD3M5ZbX145iMmgVhbuzATD7FOrmZdAjJ2-bXT_z7-w9G6vvgN2mAXN5UL50KBW6e7uvq66ePX1a3zd395_VqedcY2jLWAHEYOuyw7QQzhLUCLKVGd4hqDpjYlvVOIEqw1T3DzjHmtBKq57blhlt6Xa3PXJvUTo7ZDyofZFJenhopb6TKkzcBJCVO9FqjthOcGSS0Mb0jXAmNscU9nlkfzqxxrwewBo5_D8-gzyfRb-UmPciuFxy1Yga8ewLk9G0PZZKDLwZCUBHSvkhCMRYEt7yfpd1ZanIqJYOTxk_quNeZ7IPESB5jIE8xkMcYyFMMZiP6x_jnff-1PALY-Lqh |
CitedBy_id | crossref_primary_10_1016_j_biopha_2024_116760 crossref_primary_10_3390_ijms23031506 crossref_primary_10_1007_s10571_024_01453_w crossref_primary_10_1016_j_freeradbiomed_2024_11_008 crossref_primary_10_3390_life13071523 crossref_primary_10_1021_acsami_2c19839 crossref_primary_10_1016_j_colsurfb_2020_111069 crossref_primary_10_1021_acschemneuro_1c00182 crossref_primary_10_1007_s13659_022_00354_z crossref_primary_10_1021_acs_jafc_0c06954 crossref_primary_10_3390_microorganisms9010197 crossref_primary_10_1016_j_bpsgos_2023_02_009 crossref_primary_10_1039_D0FO02042G crossref_primary_10_1021_acs_analchem_2c03765 crossref_primary_10_3389_fpsyt_2021_622204 crossref_primary_10_1007_s12031_020_01747_w crossref_primary_10_3892_etm_2024_12762 crossref_primary_10_2174_1570180818666210901125519 crossref_primary_10_1016_j_bbr_2023_114651 crossref_primary_10_3390_molecules29225440 crossref_primary_10_1007_s12031_022_02020_y crossref_primary_10_1007_s40203_020_00067_6 crossref_primary_10_3233_JAD_220904 crossref_primary_10_3390_ijms21041460 crossref_primary_10_3389_fphar_2022_824138 crossref_primary_10_1002_ptr_7627 crossref_primary_10_1016_j_bbr_2024_115142 |
Cites_doi | 10.1002/jmri.24665 10.1016/S0197-0186(02)00050-5 10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M 10.1073/pnas.1306832110 10.1186/1742-2094-2-22 10.1002/jnr.22445 10.1016/j.phymed.2015.02.005 10.1016/j.nurt.2010.05.017 10.1016/j.neurobiolaging.2007.03.005 10.1523/JNEUROSCI.21-14-05079.2001 10.1007/s11011-014-9601-9 10.1039/C6FO00689B 10.1016/j.neuropharm.2012.07.035 10.1523/JNEUROSCI.0482-13.2013 10.1016/j.neurobiolaging.2015.03.005 10.1523/JNEUROSCI.1269-16.2016 10.1038/aps.2013.203 10.1038/nn835 10.3109/10520298309066795 10.1073/pnas.0911829107 10.1159/000366317 10.1038/nprot.2006.116 10.1016/0165-6147(90)90011-V 10.1073/pnas.95.11.6448 10.1097/NEN.0b013e318217a118 10.3390/molecules22112007 10.1021/jf103970b 10.3233/JAD-2010-101263 10.1002/jcp.27868 10.33549/physiolres.933873 10.1021/acs.jafc.6b00227 10.1016/j.neulet.2009.10.029 10.1074/jbc.M210207200 10.1016/j.foodchem.2010.01.062 10.1007/BF01887400 10.1016/j.jchromb.2019.02.021 10.1016/S0006-3495(94)80591-0 10.1177/1073858404269012 10.3389/fneur.2018.00797 10.1038/nm838 10.1523/JNEUROSCI.0203-11.2011 10.1002/chin.201423216 10.16438/j.0513-4870.2018-0088 10.1002/ana.410400512 10.1007/s00018-018-2837-5 10.1016/j.bbr.2018.03.005 10.1016/j.phymed.2014.02.011 10.1152/physrev.2001.81.2.741 10.1016/j.neuroscience.2008.08.022 10.1074/jbc.M201750200 10.1016/j.neuropharm.2018.03.007 10.2165/11595870-000000000-00000 10.1080/1028415X.2017.1373928 10.1074/jbc.M116.761189 10.1523/JNEUROSCI.0616-08.2008 10.1016/j.brainresbull.2010.04.016 10.1016/S0306-4522(99)00036-6 10.1523/JNEUROSCI.5572-08.2009 10.1016/0006-8993(95)01032-7 10.1016/j.neurobiolaging.2005.09.012 10.1073/pnas.1834302100 10.1016/j.nlm.2011.06.004 10.13590/j.cjfh.2011.05.004 10.1016/S0006-8993(03)02361-8 10.4162/nrp.2018.12.3.199 10.1016/j.neuint.2013.06.016 10.1073/pnas.1017033108 10.1111/j.0959-9673.2005.00428.x 10.1093/brain/aww349 10.1093/jnen/63.9.964 10.1007/s00401-009-0517-0 10.1016/j.neurobiolaging.2007.02.029 10.1038/nature04533 10.1111/j.1471-4159.2011.07642.x 10.1038/1831202a0 10.1002/glia.20967 10.1196/annals.1397.051 10.1016/j.neures.2010.03.009 10.1016/j.brainresbull.2006.07.012 10.1038/mp.2012.168 10.3233/JAD-160763 10.1016/S0959-4388(00)00215-4 10.1016/j.neuint.2014.08.007 10.1038/416535a 10.1016/j.neuroscience.2016.08.051 10.1016/j.fct.2012.11.002 10.1038/nrd.2016.281 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Wang, Tao, Liu, Zhou, Zhang, Liao, Pan and Chang. Copyright © 2019 Wang, Tao, Liu, Zhou, Zhang, Liao, Pan and Chang 2019 Wang, Tao, Liu, Zhou, Zhang, Liao, Pan and Chang |
Copyright_xml | – notice: Copyright © 2019 Wang, Tao, Liu, Zhou, Zhang, Liao, Pan and Chang. – notice: Copyright © 2019 Wang, Tao, Liu, Zhou, Zhang, Liao, Pan and Chang 2019 Wang, Tao, Liu, Zhou, Zhang, Liao, Pan and Chang |
DBID | AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/fphar.2019.01084 |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1663-9812 |
ExternalDocumentID | oai_doaj_org_article_32f97bb056984c09bcc7f28a9b11d171 PMC6798059 10_3389_fphar_2019_01084 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 P2P PGMZT RNS RPM 7X8 5PM |
ID | FETCH-LOGICAL-c3544-e2f1e61f1d694c2459ed33cb603b8e12d547f90321db741ff44fba9a78d58c8d3 |
IEDL.DBID | DOA |
ISSN | 1663-9812 |
IngestDate | Wed Aug 27 01:27:53 EDT 2025 Thu Aug 21 14:11:58 EDT 2025 Sun Aug 24 04:05:23 EDT 2025 Tue Jul 01 03:27:24 EDT 2025 Thu Apr 24 23:03:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3544-e2f1e61f1d694c2459ed33cb603b8e12d547f90321db741ff44fba9a78d58c8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Ashok Kumar, University of Florida, United States This article was submitted to Neuropharmacology, a section of the journal Frontiers in Pharmacology Reviewed by: Luca Ferraro, University of Ferrara, Italy; Lucio Tremolizzo, University of Milano Bicocca, Italy; Yona Levites, University of Florida, United States |
OpenAccessLink | https://doaj.org/article/32f97bb056984c09bcc7f28a9b11d171 |
PMID | 31680939 |
PQID | 2311921587 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_32f97bb056984c09bcc7f28a9b11d171 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6798059 proquest_miscellaneous_2311921587 crossref_citationtrail_10_3389_fphar_2019_01084 crossref_primary_10_3389_fphar_2019_01084 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190924 |
PublicationDateYYYYMMDD | 2019-09-24 |
PublicationDate_xml | – month: 9 year: 2019 text: 20190924 day: 24 |
PublicationDecade | 2010 |
PublicationTitle | Frontiers in pharmacology |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Hickman (B29) 2008; 28 Jin (B32) 2011; 108 Klein (B36) 2002; 41 Choi (B7) 2011; 96 Fan (B21) 2017; 140 Ruan (B64) 2010; 67 Tabaton (B73) 2005; 86 Lu (B46) 2018; 349 Heneka (B27) 2005; 2 Selkoe (B67) 2001; 81 Dineley (B17) 2010; 88 Ledo (B39) 2016; 36 Bu (B4) 2011; 23 Wang (B81) 2017; 344 Xue (B85) 2010; 14 Li (B42) 2011; 31 Matos (B49) 2008; 156 Patel (B59) 2014; 21 Paxinos (B60) 2001 Gong (B25) 2003; 100 Choi (B6) 2012; 120 Herrmann (B28) 2011; 71 Lindroos (B43) 1983; 58 Chun (B9) 2018; 9 Zhou (B91) 2019; 68 Talantova (B74) 2013; 110 Maurice (B50) 1996; 706 Wang (B79) 2019; 1112 Olabarria (B57) 2010; 58 Sultana (B71) 2009; 118 Wyss-Coray (B84) 2003; 9 Masliah (B48) 1996; 40 Snyder (B68) 1994; 67 Youssef (B88) 2008; 29 Bai (B1) 2015; 41 Chen (B5) 2015; 30 Scheff (B65) 2006; 27 Stine (B69) 2003; 278 Sun (B72) 2019; 234 De Felice (B16) 2008; 29 Liu (B44) 2014; 78 Moon (B53) 2011; 23 Misiti (B52) 2006; 71 Mullard (B54) 2016; 16 Ruan (B63) 2009; 467 Lesne (B41) 2006; 440 Nagele (B55) 2003; 971 Kong (B37) 2010; 121 Reid (B61) 2018; 12 Balducci (B2) 2010; 107 Stine (B70) 1996; 15 Choi (B8) 2013; 53 Cohen (B10) 1959; 183 Verkhratsky (B75) 2010; 7 Huang (B30) 2016; 64 Jiang (B31) 2014; 34 Dahlgren (B14) 2002; 277 Schuster (B66) 2016; 7 Zhang (B89) 2014; 35 Pal (B58) 2018; 75 Yang (B87) 2018; 135 Vorhees (B76) 2006; 1 Kim (B34) 2007; 1095 Brito-Moreira (B3) 2017; 292 Walsh (B77) 2002; 416 Dong (B18) 2019; 22 Cull-Candy (B13) 2001; 11 Rocha-Souto (B15) 2011; 70 Wang (B78) 2018; 53 Zhao (B90) 2004; 63 Wu (B83) 2011; 59 Collingridge (B11) 1990; 11 McLean (B51) 1999; 46 Geng (B24) 2013; 63 Kim (B35) 2016 Figueiredo (B22) 2013; 33 Noda (B56) 1999; 92 Mandrekar (B47) 2009; 29 Crump (B12) 2001; 21 Kasza (B33) 2017; 22 Ruan (B62) 2010; 4 Yang (B86) 2012; 63 Epelbaum (B19) 2015; 36 Ledo (B40) 2013; 18 Hardingham (B26) 2002; 5 Waxman (B82) 2005; 11 Liu (B45) 2014; 45 Wang (B80) 2017; 57 Fa (B20) 2010 Lambert (B38) 1998; 95 Fu (B23) 2015; 22 |
References_xml | – volume: 41 start-page: 1326 year: 2015 ident: B1 article-title: Decreased gamma-aminobutyric acid levels in the parietal region of patients with Alzheimer’s disease publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.24665 – volume: 41 start-page: 345 year: 2002 ident: B36 article-title: Abeta toxicity in Alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets publication-title: Neurochem. Int. doi: 10.1016/S0197-0186(02)00050-5 – volume: 46 start-page: 860 year: 1999 ident: B51 article-title: Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease publication-title: Ann. Neurol. doi: 10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M – volume: 110 start-page: E2518 year: 2013 ident: B74 article-title: Abeta induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1306832110 – volume: 2 start-page: 22 year: 2005 ident: B27 article-title: Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice publication-title: J. Neuroinflam. doi: 10.1186/1742-2094-2-22 – volume: 88 start-page: 2923 year: 2010 ident: B17 article-title: Amyloid-beta oligomers impair fear conditioned memory in a calcineurin-dependent fashion in mice publication-title: J. Neurosci. Res. doi: 10.1002/jnr.22445 – volume: 22 start-page: 462 year: 2015 ident: B23 article-title: Cell cycle arrest and induction of apoptosis by cajanin stilbene acid from Cajanus cajan in breast cancer cells publication-title: Phytomedicine doi: 10.1016/j.phymed.2015.02.005 – volume: 7 start-page: 399 year: 2010 ident: B75 article-title: Astrocytes in Alzheimer’s disease publication-title: Neurotherapeutics doi: 10.1016/j.nurt.2010.05.017 – volume: 29 start-page: 1319 year: 2008 ident: B88 article-title: N-truncated amyloid-beta oligomers induce learning impairment and neuronal apoptosis publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2007.03.005 – volume: 21 start-page: 5079 year: 2001 ident: B12 article-title: cAMP-dependent protein kinase mediates activity-regulated synaptic targeting of NMDA receptors publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.21-14-05079.2001 – volume: 30 start-page: 537 year: 2015 ident: B5 article-title: Baicalin attenuates alzheimer-like pathological changes and memory deficits induced by amyloid beta1–42 protein publication-title: Metab. Brain Dis. doi: 10.1007/s11011-014-9601-9 – volume: 7 start-page: 3798 year: 2016 ident: B66 article-title: Cajanus cajan- a source of PPARgamma activators leading to anti-inflammatory and cytotoxic effects publication-title: Food Funct. doi: 10.1039/C6FO00689B – volume: 63 start-page: 1042 year: 2012 ident: B86 article-title: Anti-amnesic effect of neurosteroid PREGS in Abeta25-35-injected mice through sigma1 receptor- and alpha7nAChR-mediated neuroprotection publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2012.07.035 – volume: 33 start-page: 9626 year: 2013 ident: B22 article-title: Memantine rescues transient cognitive impairment caused by high-molecular-weight abeta oligomers but not the persistent impairment induced by low-molecular-weight oligomers publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0482-13.2013 – volume: 36 start-page: 2043 year: 2015 ident: B19 article-title: Acute amnestic encephalopathy in amyloid-beta oligomer-injected mice is due to their widespread diffusion in vivo publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2015.03.005 – volume: 36 start-page: 12106 year: 2016 ident: B39 article-title: Cross talk between brain innate immunity and serotonin signaling underlies depressive-like behavior induced by Alzheimer’s amyloid-beta oligomers in mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1269-16.2016 – volume: 35 start-page: 716 year: 2014 ident: B89 article-title: Atorvastatin prevents amyloid-beta peptide oligomer-induced synaptotoxicity and memory dysfunction in rats through a p38 MAPK-dependent pathway publication-title: Acta Pharmacol. Sin. doi: 10.1038/aps.2013.203 – volume: 5 start-page: 405 year: 2002 ident: B26 article-title: Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways publication-title: Nat. Neurosci. doi: 10.1038/nn835 – volume: 58 start-page: 240 year: 1983 ident: B43 article-title: Rapid Nissl staining for frozen sections of fresh brain publication-title: Stain Technol. doi: 10.3109/10520298309066795 – volume: 107 start-page: 2295 year: 2010 ident: B2 article-title: Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0911829107 – volume: 34 start-page: 1015 year: 2014 ident: B31 article-title: Cajaninstilbene acid prevents corticosterone-induced apoptosis in PC12 cells by inhibiting the mitochondrial apoptotic pathway publication-title: Cell Physiol. Biochem. doi: 10.1159/000366317 – volume: 1 start-page: 848 year: 2006 ident: B76 article-title: Morris water maze: procedures for assessing spatial and related forms of learning and memory publication-title: Nat. Protoc. doi: 10.1038/nprot.2006.116 – volume: 11 start-page: 290 year: 1990 ident: B11 article-title: Excitatory amino acid receptors and synaptic plasticity publication-title: Trends Pharmacol. Sci. doi: 10.1016/0165-6147(90)90011-V – volume: 95 start-page: 6448 year: 1998 ident: B38 article-title: Diffusible, nonfibrillar ligands derived from a beta1–42 are potent central nervous system neurotoxins publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.95.11.6448 – volume: 70 start-page: 360 year: 2011 ident: B15 article-title: Brain oligomeric beta-amyloid but not total amyloid plaque burden correlates with neuronal loss and astrocyte inflammatory response in amyloid precursor protein/tau transgenic mice publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1097/NEN.0b013e318217a118 – volume: 22 start-page: 2007 year: 2017 ident: B33 article-title: Studies for improving a rat model of Alzheimer’s disease: ICV administration of well-characterized beta-amyloid 1–42 oligomers induce dysfunction in spatial memory publication-title: Molecules doi: 10.3390/molecules22112007 – volume: 59 start-page: 437 year: 2011 ident: B83 article-title: In vitro antioxidant properties, DNA damage protective activity, and xanthine oxidase inhibitory effect of cajaninstilbene acid, a stilbene compound derived from pigeon pea [Cajanus cajan (L.) Millsp.] leaves publication-title: J. Agric. Food Chem. doi: 10.1021/jf103970b – volume: 23 start-page: 147 year: 2011 ident: B53 article-title: Ghrelin ameliorates cognitive dysfunction and neurodegeneration in intrahippocampal amyloid-beta1–42 oligomer-injected mice publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-2010-101263 – volume: 234 start-page: 11792 year: 2019 ident: B72 article-title: Cajaninstilbene acid inhibits osteoporosis through suppressing osteoclast formation and RANKL-induced signaling pathways publication-title: J. Cell. Physiol. doi: 10.1002/jcp.27868 – volume: 68 start-page: 107 year: 2019 ident: B91 article-title: Downregulation of HCN1 channels in hippocampus and prefrontal cortex in methamphetamine re-exposed mice with enhanced working memory publication-title: Physiol. Res. doi: 10.33549/physiolres.933873 – volume: 64 start-page: 2893 year: 2016 ident: B30 article-title: Anti-inflammatory effects of cajaninstilbene acid and its derivatives publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.6b00227 – volume: 467 start-page: 159 year: 2009 ident: B63 article-title: Protective effect of stilbenes containing extract-fraction from Cajanus cajan L publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2009.10.029 – volume: 278 start-page: 11612 year: 2003 ident: B69 article-title: In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M210207200 – volume: 14 start-page: 2778 year: 2010 ident: B85 article-title: Establishment of a highly automated and intelligent experimental system of passive avoidance for mice publication-title: J. Clin. Rehabil. Tissue Eng. Res. – volume: 121 start-page: 1150 year: 2010 ident: B37 article-title: Cajanuslactone, a new coumarin with anti-bacterial activity from pigeon pea [Cajanus cajan (L.) Millsp.] leaves publication-title: Food Chem. doi: 10.1016/j.foodchem.2010.01.062 – volume: 15 start-page: 193 year: 1996 ident: B70 article-title: The nanometer-scale structure of amyloid-beta visualized by atomic force microscopy publication-title: J. Protein Chem. doi: 10.1007/BF01887400 – volume: 1112 start-page: 24 year: 2019 ident: B79 article-title: LC-MS/MS-based quantification of tryptophan metabolites and neurotransmitters in the serum and brain of mice publication-title: J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. doi: 10.1016/j.jchromb.2019.02.021 – volume: 67 start-page: 1216 year: 1994 ident: B68 article-title: Amyloid-beta aggregation: selective inhibition of aggregation in mixtures of amyloid with different chain lengths publication-title: Biophys. J. doi: 10.1016/S0006-3495(94)80591-0 – volume: 11 start-page: 37 year: 2005 ident: B82 article-title: N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease publication-title: Neuroscientist doi: 10.1177/1073858404269012 – volume: 9 start-page: 797 year: 2018 ident: B9 article-title: Elucidating the interactive roles of glia in alzheimer’s disease using established and newly developed experimental models publication-title: Front. Neurol. doi: 10.3389/fneur.2018.00797 – volume: 9 start-page: 453 year: 2003 ident: B84 article-title: Adult mouse astrocytes degrade amyloid-beta in vitro and in situ publication-title: Nat. Med. doi: 10.1038/nm838 – volume: 31 start-page: 6627 year: 2011 ident: B42 article-title: Soluble Abeta oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0203-11.2011 – volume: 45 start-page: 466 year: 2014 ident: B45 article-title: Chemical constituents from leaves of Cajanus cajan publication-title: Chin. Tradit. Herbal Drugs doi: 10.1002/chin.201423216 – volume: 53 start-page: 1060 year: 2018 ident: B78 article-title: Application of the animal model of intracerebral injection of amyloid-β oligomers to the study of Alzheimer’s disease publication-title: Acta Pharm. Sin. doi: 10.16438/j.0513-4870.2018-0088 – volume: 40 start-page: 759 year: 1996 ident: B48 article-title: Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease publication-title: Ann. Neurol. doi: 10.1002/ana.410400512 – volume: 75 start-page: 2917 year: 2018 ident: B58 article-title: Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-018-2837-5 – volume: 349 start-page: 109 year: 2018 ident: B46 article-title: Ginsenoside Rh2 reverses sleep deprivation induced cognitive deficit in mice publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2018.03.005 – volume: 21 start-page: 946 year: 2014 ident: B59 article-title: Pinostrobin and Cajanus lactone isolated from Cajanus cajan (L.) leaves inhibits TNF-alpha and IL-1beta production: in vitro and in vivo experimentation publication-title: Phytomedicine doi: 10.1016/j.phymed.2014.02.011 – volume: 81 start-page: 741 year: 2001 ident: B67 article-title: Alzheimer’s disease: genes, proteins, and therapy publication-title: Physiol. Rev. doi: 10.1152/physrev.2001.81.2.741 – volume: 156 start-page: 898 year: 2008 ident: B49 article-title: Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades publication-title: Neuroscience doi: 10.1016/j.neuroscience.2008.08.022 – volume: 277 start-page: 32046 year: 2002 ident: B14 article-title: Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability publication-title: J. Biol. Chem. doi: 10.1074/jbc.M201750200 – volume: 135 start-page: 100 year: 2018 ident: B87 article-title: Rhynchophylline suppresses soluble Abeta1–42-induced impairment of spatial cognition function via inhibiting excessive activation of extrasynaptic NR2B-containing NMDA receptors publication-title: Neuropharmacology doi: 10.1016/j.neuropharm.2018.03.007 – volume: 71 start-page: 2031 year: 2011 ident: B28 article-title: Current and emerging drug treatment options for Alzheimer’s disease: a systematic review publication-title: Drugs doi: 10.2165/11595870-000000000-00000 – start-page: 53308 volume-title: J. Visualized Exp. JoVE year: 2016 ident: B35 article-title: Intracerebroventricular injection of amyloid-beta peptides in normal mice to acutely induce alzheimer-like cognitive deficits – volume-title: The mouse brain in stereotaxic coordinatesPsychoneuroendocrinology year: 2001 ident: B60 – volume: 22 start-page: 235 year: 2019 ident: B18 article-title: Memory enhancement of fresh ginseng on deficits induced by chronic restraint stress in mice publication-title: Nutr. Neurosci. doi: 10.1080/1028415X.2017.1373928 – volume: 292 start-page: 7327 year: 2017 ident: B3 article-title: Interaction of amyloid-beta (Abeta) oligomers with neurexin 2alpha and neuroligin 1 mediates synapse damage and memory loss in mice publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.761189 – volume: 28 start-page: 8354 year: 2008 ident: B29 article-title: Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0616-08.2008 – start-page: 1884 volume-title: J. Visualized Exp. JoVE year: 2010 ident: B20 article-title: Preparation of oligomeric beta-amyloid 1–42 and induction of synaptic plasticity impairment on hippocampal slices – volume: 4 start-page: 016 year: 2010 ident: B62 article-title: Protective effects of trans-2, 4-dimethoxystibene on cognitive, impairments induced by Abeta(25–35) in, hypercholesterolemic rats publication-title: Brain doi: 10.1016/j.brainresbull.2010.04.016 – volume: 92 start-page: 1465 year: 1999 ident: B56 article-title: Glutamate release from microglia via glutamate transporter is enhanced by amyloid-beta peptide publication-title: Neuroscience doi: 10.1016/S0306-4522(99)00036-6 – volume: 29 start-page: 4252 year: 2009 ident: B47 article-title: Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5572-08.2009 – volume: 706 start-page: 181 year: 1996 ident: B50 article-title: Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction publication-title: Brain Res. doi: 10.1016/0006-8993(95)01032-7 – volume: 27 start-page: 1372 year: 2006 ident: B65 article-title: Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2005.09.012 – volume: 100 start-page: 10417 year: 2003 ident: B25 article-title: Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1834302100 – volume: 96 start-page: 306 year: 2011 ident: B7 article-title: Gami-Chunghyuldan ameliorates memory impairment and neurodegeneration induced by intrahippocampal Abeta 1–42 oligomer injection publication-title: Neurobiol. Learn. Mem. doi: 10.1016/j.nlm.2011.06.004 – volume: 23 start-page: 402 year: 2011 ident: B4 article-title: An animal model for evaluating the effect of memory improvement assisted by functional foods publication-title: Chin. J. Food Hyg. doi: 10.13590/j.cjfh.2011.05.004 – volume: 971 start-page: 197 year: 2003 ident: B55 article-title: Astrocytes accumulate A beta 42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains publication-title: Brain Res. doi: 10.1016/S0006-8993(03)02361-8 – volume: 12 start-page: 199 year: 2018 ident: B61 article-title: GABA-enriched fermented Laminaria japonica improves cognitive impairment and neuroplasticity in scopolamine- and ethanol-induced dementia model mice publication-title: Nutr. Res. Pract. doi: 10.4162/nrp.2018.12.3.199 – volume: 63 start-page: 283 year: 2013 ident: B24 article-title: Protective effects of EphB2 on Abeta1–42 oligomer-induced neurotoxicity and synaptic NMDA receptor signaling in hippocampal neurons publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2013.06.016 – volume: 108 start-page: 5819 year: 2011 ident: B32 article-title: Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1017033108 – volume: 86 start-page: 139 year: 2005 ident: B73 article-title: Role of water-soluble amyloid-beta in the pathogenesis of Alzheimer’s disease publication-title: Int. J. Exp. Pathol. doi: 10.1111/j.0959-9673.2005.00428.x – volume: 140 start-page: 792 year: 2017 ident: B21 article-title: An early and late peak in microglial activation in Alzheimer’s disease trajectory publication-title: Brain doi: 10.1093/brain/aww349 – volume: 63 start-page: 964 year: 2004 ident: B90 article-title: Activated microglia initiate motor neuron injury by a nitric oxide and glutamate-mediated mechanism publication-title: J. Neuropathol. Exp. Neurol. doi: 10.1093/jnen/63.9.964 – volume: 118 start-page: 131 year: 2009 ident: B71 article-title: Oxidatively modified proteins in Alzheimer’s disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis publication-title: Acta Neuropathol. doi: 10.1007/s00401-009-0517-0 – volume: 29 start-page: 1334 year: 2008 ident: B16 article-title: Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by A beta oligomers publication-title: Neurobiol. Aging doi: 10.1016/j.neurobiolaging.2007.02.029 – volume: 440 start-page: 352 year: 2006 ident: B41 article-title: A specific amyloid-beta protein assembly in the brain impairs memory publication-title: Nature doi: 10.1038/nature04533 – volume: 120 start-page: 1048 year: 2012 ident: B6 article-title: Obovatol improves cognitive functions in animal models for Alzheimer’s disease publication-title: J. Neurochem. doi: 10.1111/j.1471-4159.2011.07642.x – volume: 183 start-page: 1202 year: 1959 ident: B10 article-title: Electron microscopic observations on a fibrous component in amyloid of diverse origins publication-title: Nature doi: 10.1038/1831202a0 – volume: 58 start-page: 831 year: 2010 ident: B57 article-title: Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease publication-title: Glia doi: 10.1002/glia.20967 – volume: 1095 start-page: 473 year: 2007 ident: B34 article-title: Protective effects of piceatannol against beta-amyloid-induced neuronal cell death publication-title: Ann. N. Y. Acad. Sci. doi: 10.1196/annals.1397.051 – volume: 67 start-page: 209 year: 2010 ident: B64 article-title: Effects of trans-2,4-dimethoxystibene against the neurotoxicity induced by Abeta(25–35) both in vitro and in vivo publication-title: Neurosci. Res. doi: 10.1016/j.neures.2010.03.009 – volume: 71 start-page: 29 year: 2006 ident: B52 article-title: Protective effect of rhubarb derivatives on amyloid beta (1–42) peptide-induced apoptosis in IMR-32 cells: a case of nutrigenomic publication-title: Brain Res. Bull. doi: 10.1016/j.brainresbull.2006.07.012 – volume: 18 start-page: 1053 year: 2013 ident: B40 article-title: Amyloid-beta oligomers link depressive-like behavior and cognitive deficits in mice publication-title: Mol. Psychiatry doi: 10.1038/mp.2012.168 – volume: 57 start-page: 1041 year: 2017 ident: B80 article-title: Role of Glutamate and NMDA Receptors in Alzheimer’s Disease publication-title: J. Alzheimers Dis. doi: 10.3233/JAD-160763 – volume: 11 start-page: 327 year: 2001 ident: B13 article-title: NMDA receptor subunits: diversity, development and disease publication-title: Curr. Opin. Neurobiol. doi: 10.1016/S0959-4388(00)00215-4 – volume: 78 start-page: 43 year: 2014 ident: B44 article-title: Cajaninstilbene acid protects corticosterone-induced injury in PC12 cells by inhibiting oxidative and endoplasmic reticulum stress-mediated apoptosis publication-title: Neurochem. Int. doi: 10.1016/j.neuint.2014.08.007 – volume: 416 start-page: 535 year: 2002 ident: B77 article-title: Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo publication-title: Nature doi: 10.1038/416535a – volume: 344 start-page: 39 year: 2017 ident: B81 article-title: Resveratrol ameliorates spatial learning memory impairment induced by Abeta1–42 in rats publication-title: Neuroscience doi: 10.1016/j.neuroscience.2016.08.051 – volume: 53 start-page: 105 year: 2013 ident: B8 article-title: Tartary buckwheat improves cognition and memory function in an in vivo amyloid-beta-induced Alzheimer model publication-title: Food Chem. Toxicol. doi: 10.1016/j.fct.2012.11.002 – volume: 16 start-page: 3 year: 2016 ident: B54 article-title: Alzheimer amyloid hypothesis lives on publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2016.281 |
SSID | ssj0000399364 |
Score | 2.3033736 |
Snippet | Amyloid-β1-42 (Aβ1-42) oligomers play an important role at the early stage of Alzheimer's disease (AD) and have been a vital target in the development of... Amyloid-β 1–42 (Aβ 1–42 ) oligomers play an important role at the early stage of Alzheimer’s disease (AD) and have been a vital target in the development of... Amyloid-β1–42 (Aβ1–42) oligomers play an important role at the early stage of Alzheimer’s disease (AD) and have been a vital target in the development of... |
SourceID | doaj pubmedcentral proquest crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1084 |
SubjectTerms | Alzheimer’s disease amyloid-β oligomer astrocyte cajaninstilbene acid cognition microglia Pharmacology |
SummonAdditionalLinks | – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagXLggfsVCQUZClZCadp1MnPiA0LKiKkiFHrpSb1H8100Vku1uK7E33oE34UF4CJ6EGW-2S6SKE7fIcRLH4_F8Y4-_Yex1EnsPoGSklfcRWAeoc2UaCfS2cAzpxASy6qPP8nACn07T083x6K4DFze6dpRPajKv975dLN-hwr8ljxPt7b6fTUui9hRqD72LHG6zO2iXJLliRx3YD_My2WIJq73KGx_s2aZA4d_Dnf2oyb_M0MF9dq_Dj3y0EvgDdss1D9nO8YqAernLTzbnqRa7fIcfb6ipl4_Yclyel01FAQK1xlmOj0xl-eirq-mkPqJOPl6HE_GPOFFUc1o85JTfwzjL9RIvsVXTajZDG4gVaiw4D9FcDW89vgn9_8pGv36K399_QMy_1NVZS0vjj9nk4MPJ-DDqki9EJkkBIhd74aTwwkoFJoZUOZskRsthonMnYptC5tUwiYXViEpI4l6Xqsxym-Ymt8kTttW0jXvKOHhpnQHKgyVBAWipNJTKIRaS2pvhgO2vu70wHTM5JcioC_RQSFBFEFRBgiqCoAbszfUTsxUrxz_qvidJXtcjPu1Q0M7Pik49CxyyKtMa0aDKwQyVNibzcV4qLYQVmRiwV-txUKD-0aZK2bj2alEgPiZKuTTPBizrDZDeF_t3mmoamLxpCwzx7bP_0cTn7C79dBR2zLbZ1uX8yr1AwHSpXwY9-AOyjRpk priority: 102 providerName: Scholars Portal |
Title | Cajaninstilbene Acid Ameliorates Cognitive Impairment Induced by Intrahippocampal Injection of Amyloid-β1–42 Oligomers |
URI | https://www.proquest.com/docview/2311921587 https://pubmed.ncbi.nlm.nih.gov/PMC6798059 https://doaj.org/article/32f97bb056984c09bcc7f28a9b11d171 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT70goCCWPxkJVUJq2DiZOPZxu6IqSIUeWqm3KP5jU4Xsqj-HvfUd-iY8CA_Bk3TG2W03F7hwiSLHcRzP2DPjGX_D2Ic8CwFAy8ToEBJwHnDO1UUi0NpCHjK5jWDVR9_k4Sl8PSvONlJ9UUxYDw_cD9wYG9OlMSintQKbamNtGTJVayOEE_H0eJbqdMOYimswyV0JvV8SrTA9DotZTfifQn9CE0TBQA5FuP6BjjmMkNwQOQdP2OOVrsgnfR-fske-e8Z2j3uw6eUeP3k4O3W5x3f58QMM9XKHLaf1ed01FAzQGlzR-MQ2jk9--pZO5aOGyafr0CH-BReF5oI2Cjnl8rDecbPEW-zVrFksUN5hhRYLzmPkVsfnAVtCW79xye9f4s_NLWT8e9v8mNM2-HN2evD5ZHqYrBItJDYvABKfBeGlCMJJDTaDQnuX59bINDfKi8wVUAad5plwBjUQom4wta5L5QpllctfsK1u3vmXjEOQzlugnFcSNICR2kCtPeo90gSbjth4PeyVXaGQUzKMtkJrhAhVRUJVRKgqEmrEPt6_segROP5Sd58oeV-PsLNjAXJUteKo6l8cNWLv13xQ4VwjB0rd-fn1ZYW6MMHHFaocsXLAIIMvDp90zSyidpO7C3XZV_-ji6_ZNv10Er1jb9jW1cW1f4vK0ZV5F-cBXo9A3QEYjhL3 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cajaninstilbene+Acid+Ameliorates+Cognitive+Impairment+Induced+by+Intrahippocampal+Injection+of+Amyloid-%CE%B21%E2%80%9342+Oligomers&rft.jtitle=Frontiers+in+pharmacology&rft.au=Li-Sha+Wang&rft.au=Xue+Tao&rft.au=Xin-Min+Liu&rft.au=Xin-Min+Liu&rft.date=2019-09-24&rft.pub=Frontiers+Media+S.A&rft.eissn=1663-9812&rft.volume=10&rft_id=info:doi/10.3389%2Ffphar.2019.01084&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_32f97bb056984c09bcc7f28a9b11d171 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-9812&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-9812&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-9812&client=summon |