Cajaninstilbene Acid Ameliorates Cognitive Impairment Induced by Intrahippocampal Injection of Amyloid-β1–42 Oligomers

Amyloid-β1-42 (Aβ1-42) oligomers play an important role at the early stage of Alzheimer's disease (AD) and have been a vital target in the development of therapeutic drugs for AD. Cajaninstilbene acid (CSA), a major bioactive stilbene isolated from pigeon pea (Cajanus cajan) leaves, exerted the...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in pharmacology Vol. 10; p. 1084
Main Authors Wang, Li-Sha, Tao, Xue, Liu, Xin-Min, Zhou, Yun-Feng, Zhang, Meng-Di, Liao, Yong-Hong, Pan, Rui-Le, Chang, Qi
Format Journal Article
LanguageEnglish
Published Frontiers Media S.A 24.09.2019
Subjects
Online AccessGet full text
ISSN1663-9812
1663-9812
DOI10.3389/fphar.2019.01084

Cover

Abstract Amyloid-β1-42 (Aβ1-42) oligomers play an important role at the early stage of Alzheimer's disease (AD) and have been a vital target in the development of therapeutic drugs for AD. Cajaninstilbene acid (CSA), a major bioactive stilbene isolated from pigeon pea (Cajanus cajan) leaves, exerted the neuroprotective property in our previous studies. The present study utilized a validated mouse model of early-stage AD induced by bilateral injection of Aβ1-42 oligomers into hippocampal CA1 regions (100 pmol/mouse) to investigate the cognitive enhancing effects of CSA and the underlying mechanism, by a combination of animal behavioral tests, immunohistochemistry, liquid chromatography-tandem mass spectrometry analysis, and Western blot methods. Intragastric administration of CSA (7.5, 15, and 30 mg/kg) attenuated the impairment of learning and memory induced by Aβ1-42 oligomers. CSA stimulated Aβ clearance and prevented microglial activation and astrocyte reactivity in the hippocampus of model mice. It also decreased the high levels of Glu but increased the low levels of GABA. In addition, CSA inhibited excessive expression of GluN2B-containing NMDARs and upregulated the downstream PKA/CREB/BDNF/TrkB signaling pathway. These results suggest that CSA could be a potential therapeutic agent at the early stage of AD.Amyloid-β1-42 (Aβ1-42) oligomers play an important role at the early stage of Alzheimer's disease (AD) and have been a vital target in the development of therapeutic drugs for AD. Cajaninstilbene acid (CSA), a major bioactive stilbene isolated from pigeon pea (Cajanus cajan) leaves, exerted the neuroprotective property in our previous studies. The present study utilized a validated mouse model of early-stage AD induced by bilateral injection of Aβ1-42 oligomers into hippocampal CA1 regions (100 pmol/mouse) to investigate the cognitive enhancing effects of CSA and the underlying mechanism, by a combination of animal behavioral tests, immunohistochemistry, liquid chromatography-tandem mass spectrometry analysis, and Western blot methods. Intragastric administration of CSA (7.5, 15, and 30 mg/kg) attenuated the impairment of learning and memory induced by Aβ1-42 oligomers. CSA stimulated Aβ clearance and prevented microglial activation and astrocyte reactivity in the hippocampus of model mice. It also decreased the high levels of Glu but increased the low levels of GABA. In addition, CSA inhibited excessive expression of GluN2B-containing NMDARs and upregulated the downstream PKA/CREB/BDNF/TrkB signaling pathway. These results suggest that CSA could be a potential therapeutic agent at the early stage of AD.
AbstractList Amyloid-β1–42 (Aβ1–42) oligomers play an important role at the early stage of Alzheimer’s disease (AD) and have been a vital target in the development of therapeutic drugs for AD. Cajaninstilbene acid (CSA), a major bioactive stilbene isolated from pigeon pea (Cajanus cajan) leaves, exerted the neuroprotective property in our previous studies. The present study utilized a validated mouse model of early-stage AD induced by bilateral injection of Aβ1–42 oligomers into hippocampal CA1 regions (100 pmol/mouse) to investigate the cognitive enhancing effects of CSA and the underlying mechanism, by a combination of animal behavioral tests, immunohistochemistry, liquid chromatography-tandem mass spectrometry analysis, and Western blot methods. Intragastric administration of CSA (7.5, 15, and 30 mg/kg) attenuated the impairment of learning and memory induced by Aβ1–42 oligomers. CSA stimulated Aβ clearance and prevented microglial activation and astrocyte reactivity in the hippocampus of model mice. It also decreased the high levels of Glu but increased the low levels of GABA. In addition, CSA inhibited excessive expression of GluN2B-containing NMDARs and upregulated the downstream PKA/CREB/BDNF/TrkB signaling pathway. These results suggest that CSA could be a potential therapeutic agent at the early stage of AD.
Amyloid-β 1–42 (Aβ 1–42 ) oligomers play an important role at the early stage of Alzheimer’s disease (AD) and have been a vital target in the development of therapeutic drugs for AD. Cajaninstilbene acid (CSA), a major bioactive stilbene isolated from pigeon pea ( Cajanus cajan ) leaves, exerted the neuroprotective property in our previous studies. The present study utilized a validated mouse model of early-stage AD induced by bilateral injection of Aβ 1–42 oligomers into hippocampal CA1 regions (100 pmol/mouse) to investigate the cognitive enhancing effects of CSA and the underlying mechanism, by a combination of animal behavioral tests, immunohistochemistry, liquid chromatography-tandem mass spectrometry analysis, and Western blot methods. Intragastric administration of CSA (7.5, 15, and 30 mg/kg) attenuated the impairment of learning and memory induced by Aβ 1–42 oligomers. CSA stimulated Aβ clearance and prevented microglial activation and astrocyte reactivity in the hippocampus of model mice. It also decreased the high levels of Glu but increased the low levels of GABA. In addition, CSA inhibited excessive expression of GluN2B-containing NMDARs and upregulated the downstream PKA/CREB/BDNF/TrkB signaling pathway. These results suggest that CSA could be a potential therapeutic agent at the early stage of AD.
Amyloid-β1-42 (Aβ1-42) oligomers play an important role at the early stage of Alzheimer's disease (AD) and have been a vital target in the development of therapeutic drugs for AD. Cajaninstilbene acid (CSA), a major bioactive stilbene isolated from pigeon pea (Cajanus cajan) leaves, exerted the neuroprotective property in our previous studies. The present study utilized a validated mouse model of early-stage AD induced by bilateral injection of Aβ1-42 oligomers into hippocampal CA1 regions (100 pmol/mouse) to investigate the cognitive enhancing effects of CSA and the underlying mechanism, by a combination of animal behavioral tests, immunohistochemistry, liquid chromatography-tandem mass spectrometry analysis, and Western blot methods. Intragastric administration of CSA (7.5, 15, and 30 mg/kg) attenuated the impairment of learning and memory induced by Aβ1-42 oligomers. CSA stimulated Aβ clearance and prevented microglial activation and astrocyte reactivity in the hippocampus of model mice. It also decreased the high levels of Glu but increased the low levels of GABA. In addition, CSA inhibited excessive expression of GluN2B-containing NMDARs and upregulated the downstream PKA/CREB/BDNF/TrkB signaling pathway. These results suggest that CSA could be a potential therapeutic agent at the early stage of AD.Amyloid-β1-42 (Aβ1-42) oligomers play an important role at the early stage of Alzheimer's disease (AD) and have been a vital target in the development of therapeutic drugs for AD. Cajaninstilbene acid (CSA), a major bioactive stilbene isolated from pigeon pea (Cajanus cajan) leaves, exerted the neuroprotective property in our previous studies. The present study utilized a validated mouse model of early-stage AD induced by bilateral injection of Aβ1-42 oligomers into hippocampal CA1 regions (100 pmol/mouse) to investigate the cognitive enhancing effects of CSA and the underlying mechanism, by a combination of animal behavioral tests, immunohistochemistry, liquid chromatography-tandem mass spectrometry analysis, and Western blot methods. Intragastric administration of CSA (7.5, 15, and 30 mg/kg) attenuated the impairment of learning and memory induced by Aβ1-42 oligomers. CSA stimulated Aβ clearance and prevented microglial activation and astrocyte reactivity in the hippocampus of model mice. It also decreased the high levels of Glu but increased the low levels of GABA. In addition, CSA inhibited excessive expression of GluN2B-containing NMDARs and upregulated the downstream PKA/CREB/BDNF/TrkB signaling pathway. These results suggest that CSA could be a potential therapeutic agent at the early stage of AD.
Author Liao, Yong-Hong
Zhou, Yun-Feng
Wang, Li-Sha
Zhang, Meng-Di
Chang, Qi
Tao, Xue
Pan, Rui-Le
Liu, Xin-Min
AuthorAffiliation 2 National Key Laboratory of Human Factors Engineering and the State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center , Beijing , China
1 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
AuthorAffiliation_xml – name: 2 National Key Laboratory of Human Factors Engineering and the State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center , Beijing , China
– name: 1 Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing , China
Author_xml – sequence: 1
  givenname: Li-Sha
  surname: Wang
  fullname: Wang, Li-Sha
– sequence: 2
  givenname: Xue
  surname: Tao
  fullname: Tao, Xue
– sequence: 3
  givenname: Xin-Min
  surname: Liu
  fullname: Liu, Xin-Min
– sequence: 4
  givenname: Yun-Feng
  surname: Zhou
  fullname: Zhou, Yun-Feng
– sequence: 5
  givenname: Meng-Di
  surname: Zhang
  fullname: Zhang, Meng-Di
– sequence: 6
  givenname: Yong-Hong
  surname: Liao
  fullname: Liao, Yong-Hong
– sequence: 7
  givenname: Rui-Le
  surname: Pan
  fullname: Pan, Rui-Le
– sequence: 8
  givenname: Qi
  surname: Chang
  fullname: Chang, Qi
BookMark eNp1ks1uEzEUhUeoiJbSPctZspngv5mxN0hRBDRSpW5gbfnnOnHksQd7Uik73oE34UF4CJ6kk6RIFAlvfHXvOZ_sq_O6uogpQlW9xWhBKRfv3bhVeUEQFguEEWcvqivcdbQRHJOLv-rL6qaUHZoPFYJ27FV1SXHHkaDiqjqs1E5FH8vkg4YI9dJ4Wy8HCD5lNUGpV2kT_eQfoF4Po_J5gDjV62j3BmytD3M5ZbX145iMmgVhbuzATD7FOrmZdAjJ2-bXT_z7-w9G6vvgN2mAXN5UL50KBW6e7uvq66ePX1a3zd395_VqedcY2jLWAHEYOuyw7QQzhLUCLKVGd4hqDpjYlvVOIEqw1T3DzjHmtBKq57blhlt6Xa3PXJvUTo7ZDyofZFJenhopb6TKkzcBJCVO9FqjthOcGSS0Mb0jXAmNscU9nlkfzqxxrwewBo5_D8-gzyfRb-UmPciuFxy1Yga8ewLk9G0PZZKDLwZCUBHSvkhCMRYEt7yfpd1ZanIqJYOTxk_quNeZ7IPESB5jIE8xkMcYyFMMZiP6x_jnff-1PALY-Lqh
CitedBy_id crossref_primary_10_1016_j_biopha_2024_116760
crossref_primary_10_3390_ijms23031506
crossref_primary_10_1007_s10571_024_01453_w
crossref_primary_10_1016_j_freeradbiomed_2024_11_008
crossref_primary_10_3390_life13071523
crossref_primary_10_1021_acsami_2c19839
crossref_primary_10_1016_j_colsurfb_2020_111069
crossref_primary_10_1021_acschemneuro_1c00182
crossref_primary_10_1007_s13659_022_00354_z
crossref_primary_10_1021_acs_jafc_0c06954
crossref_primary_10_3390_microorganisms9010197
crossref_primary_10_1016_j_bpsgos_2023_02_009
crossref_primary_10_1039_D0FO02042G
crossref_primary_10_1021_acs_analchem_2c03765
crossref_primary_10_3389_fpsyt_2021_622204
crossref_primary_10_1007_s12031_020_01747_w
crossref_primary_10_3892_etm_2024_12762
crossref_primary_10_2174_1570180818666210901125519
crossref_primary_10_1016_j_bbr_2023_114651
crossref_primary_10_3390_molecules29225440
crossref_primary_10_1007_s12031_022_02020_y
crossref_primary_10_1007_s40203_020_00067_6
crossref_primary_10_3233_JAD_220904
crossref_primary_10_3390_ijms21041460
crossref_primary_10_3389_fphar_2022_824138
crossref_primary_10_1002_ptr_7627
crossref_primary_10_1016_j_bbr_2024_115142
Cites_doi 10.1002/jmri.24665
10.1016/S0197-0186(02)00050-5
10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M
10.1073/pnas.1306832110
10.1186/1742-2094-2-22
10.1002/jnr.22445
10.1016/j.phymed.2015.02.005
10.1016/j.nurt.2010.05.017
10.1016/j.neurobiolaging.2007.03.005
10.1523/JNEUROSCI.21-14-05079.2001
10.1007/s11011-014-9601-9
10.1039/C6FO00689B
10.1016/j.neuropharm.2012.07.035
10.1523/JNEUROSCI.0482-13.2013
10.1016/j.neurobiolaging.2015.03.005
10.1523/JNEUROSCI.1269-16.2016
10.1038/aps.2013.203
10.1038/nn835
10.3109/10520298309066795
10.1073/pnas.0911829107
10.1159/000366317
10.1038/nprot.2006.116
10.1016/0165-6147(90)90011-V
10.1073/pnas.95.11.6448
10.1097/NEN.0b013e318217a118
10.3390/molecules22112007
10.1021/jf103970b
10.3233/JAD-2010-101263
10.1002/jcp.27868
10.33549/physiolres.933873
10.1021/acs.jafc.6b00227
10.1016/j.neulet.2009.10.029
10.1074/jbc.M210207200
10.1016/j.foodchem.2010.01.062
10.1007/BF01887400
10.1016/j.jchromb.2019.02.021
10.1016/S0006-3495(94)80591-0
10.1177/1073858404269012
10.3389/fneur.2018.00797
10.1038/nm838
10.1523/JNEUROSCI.0203-11.2011
10.1002/chin.201423216
10.16438/j.0513-4870.2018-0088
10.1002/ana.410400512
10.1007/s00018-018-2837-5
10.1016/j.bbr.2018.03.005
10.1016/j.phymed.2014.02.011
10.1152/physrev.2001.81.2.741
10.1016/j.neuroscience.2008.08.022
10.1074/jbc.M201750200
10.1016/j.neuropharm.2018.03.007
10.2165/11595870-000000000-00000
10.1080/1028415X.2017.1373928
10.1074/jbc.M116.761189
10.1523/JNEUROSCI.0616-08.2008
10.1016/j.brainresbull.2010.04.016
10.1016/S0306-4522(99)00036-6
10.1523/JNEUROSCI.5572-08.2009
10.1016/0006-8993(95)01032-7
10.1016/j.neurobiolaging.2005.09.012
10.1073/pnas.1834302100
10.1016/j.nlm.2011.06.004
10.13590/j.cjfh.2011.05.004
10.1016/S0006-8993(03)02361-8
10.4162/nrp.2018.12.3.199
10.1016/j.neuint.2013.06.016
10.1073/pnas.1017033108
10.1111/j.0959-9673.2005.00428.x
10.1093/brain/aww349
10.1093/jnen/63.9.964
10.1007/s00401-009-0517-0
10.1016/j.neurobiolaging.2007.02.029
10.1038/nature04533
10.1111/j.1471-4159.2011.07642.x
10.1038/1831202a0
10.1002/glia.20967
10.1196/annals.1397.051
10.1016/j.neures.2010.03.009
10.1016/j.brainresbull.2006.07.012
10.1038/mp.2012.168
10.3233/JAD-160763
10.1016/S0959-4388(00)00215-4
10.1016/j.neuint.2014.08.007
10.1038/416535a
10.1016/j.neuroscience.2016.08.051
10.1016/j.fct.2012.11.002
10.1038/nrd.2016.281
ContentType Journal Article
Copyright Copyright © 2019 Wang, Tao, Liu, Zhou, Zhang, Liao, Pan and Chang.
Copyright © 2019 Wang, Tao, Liu, Zhou, Zhang, Liao, Pan and Chang 2019 Wang, Tao, Liu, Zhou, Zhang, Liao, Pan and Chang
Copyright_xml – notice: Copyright © 2019 Wang, Tao, Liu, Zhou, Zhang, Liao, Pan and Chang.
– notice: Copyright © 2019 Wang, Tao, Liu, Zhou, Zhang, Liao, Pan and Chang 2019 Wang, Tao, Liu, Zhou, Zhang, Liao, Pan and Chang
DBID AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/fphar.2019.01084
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
EISSN 1663-9812
ExternalDocumentID oai_doaj_org_article_32f97bb056984c09bcc7f28a9b11d171
PMC6798059
10_3389_fphar_2019_01084
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
RNS
RPM
7X8
5PM
ID FETCH-LOGICAL-c3544-e2f1e61f1d694c2459ed33cb603b8e12d547f90321db741ff44fba9a78d58c8d3
IEDL.DBID DOA
ISSN 1663-9812
IngestDate Wed Aug 27 01:27:53 EDT 2025
Thu Aug 21 14:11:58 EDT 2025
Sun Aug 24 04:05:23 EDT 2025
Tue Jul 01 03:27:24 EDT 2025
Thu Apr 24 23:03:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3544-e2f1e61f1d694c2459ed33cb603b8e12d547f90321db741ff44fba9a78d58c8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Ashok Kumar, University of Florida, United States
This article was submitted to Neuropharmacology, a section of the journal Frontiers in Pharmacology
Reviewed by: Luca Ferraro, University of Ferrara, Italy; Lucio Tremolizzo, University of Milano Bicocca, Italy; Yona Levites, University of Florida, United States
OpenAccessLink https://doaj.org/article/32f97bb056984c09bcc7f28a9b11d171
PMID 31680939
PQID 2311921587
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_32f97bb056984c09bcc7f28a9b11d171
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6798059
proquest_miscellaneous_2311921587
crossref_citationtrail_10_3389_fphar_2019_01084
crossref_primary_10_3389_fphar_2019_01084
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190924
PublicationDateYYYYMMDD 2019-09-24
PublicationDate_xml – month: 9
  year: 2019
  text: 20190924
  day: 24
PublicationDecade 2010
PublicationTitle Frontiers in pharmacology
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Hickman (B29) 2008; 28
Jin (B32) 2011; 108
Klein (B36) 2002; 41
Choi (B7) 2011; 96
Fan (B21) 2017; 140
Ruan (B64) 2010; 67
Tabaton (B73) 2005; 86
Lu (B46) 2018; 349
Heneka (B27) 2005; 2
Selkoe (B67) 2001; 81
Dineley (B17) 2010; 88
Ledo (B39) 2016; 36
Bu (B4) 2011; 23
Wang (B81) 2017; 344
Xue (B85) 2010; 14
Li (B42) 2011; 31
Matos (B49) 2008; 156
Patel (B59) 2014; 21
Paxinos (B60) 2001
Gong (B25) 2003; 100
Choi (B6) 2012; 120
Herrmann (B28) 2011; 71
Lindroos (B43) 1983; 58
Chun (B9) 2018; 9
Zhou (B91) 2019; 68
Talantova (B74) 2013; 110
Maurice (B50) 1996; 706
Wang (B79) 2019; 1112
Olabarria (B57) 2010; 58
Sultana (B71) 2009; 118
Wyss-Coray (B84) 2003; 9
Masliah (B48) 1996; 40
Snyder (B68) 1994; 67
Youssef (B88) 2008; 29
Bai (B1) 2015; 41
Chen (B5) 2015; 30
Scheff (B65) 2006; 27
Stine (B69) 2003; 278
Sun (B72) 2019; 234
De Felice (B16) 2008; 29
Liu (B44) 2014; 78
Moon (B53) 2011; 23
Misiti (B52) 2006; 71
Mullard (B54) 2016; 16
Ruan (B63) 2009; 467
Lesne (B41) 2006; 440
Nagele (B55) 2003; 971
Kong (B37) 2010; 121
Reid (B61) 2018; 12
Balducci (B2) 2010; 107
Stine (B70) 1996; 15
Choi (B8) 2013; 53
Cohen (B10) 1959; 183
Verkhratsky (B75) 2010; 7
Huang (B30) 2016; 64
Jiang (B31) 2014; 34
Dahlgren (B14) 2002; 277
Schuster (B66) 2016; 7
Zhang (B89) 2014; 35
Pal (B58) 2018; 75
Yang (B87) 2018; 135
Vorhees (B76) 2006; 1
Kim (B34) 2007; 1095
Brito-Moreira (B3) 2017; 292
Walsh (B77) 2002; 416
Dong (B18) 2019; 22
Cull-Candy (B13) 2001; 11
Rocha-Souto (B15) 2011; 70
Wang (B78) 2018; 53
Zhao (B90) 2004; 63
Wu (B83) 2011; 59
Collingridge (B11) 1990; 11
McLean (B51) 1999; 46
Geng (B24) 2013; 63
Kim (B35) 2016
Figueiredo (B22) 2013; 33
Noda (B56) 1999; 92
Mandrekar (B47) 2009; 29
Crump (B12) 2001; 21
Kasza (B33) 2017; 22
Ruan (B62) 2010; 4
Yang (B86) 2012; 63
Epelbaum (B19) 2015; 36
Ledo (B40) 2013; 18
Hardingham (B26) 2002; 5
Waxman (B82) 2005; 11
Liu (B45) 2014; 45
Wang (B80) 2017; 57
Fa (B20) 2010
Lambert (B38) 1998; 95
Fu (B23) 2015; 22
References_xml – volume: 41
  start-page: 1326
  year: 2015
  ident: B1
  article-title: Decreased gamma-aminobutyric acid levels in the parietal region of patients with Alzheimer’s disease
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.24665
– volume: 41
  start-page: 345
  year: 2002
  ident: B36
  article-title: Abeta toxicity in Alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets
  publication-title: Neurochem. Int.
  doi: 10.1016/S0197-0186(02)00050-5
– volume: 46
  start-page: 860
  year: 1999
  ident: B51
  article-title: Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease
  publication-title: Ann. Neurol.
  doi: 10.1002/1531-8249(199912)46:6<860::AID-ANA8>3.0.CO;2-M
– volume: 110
  start-page: E2518
  year: 2013
  ident: B74
  article-title: Abeta induces astrocytic glutamate release, extrasynaptic NMDA receptor activation, and synaptic loss
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1306832110
– volume: 2
  start-page: 22
  year: 2005
  ident: B27
  article-title: Focal glial activation coincides with increased BACE1 activation and precedes amyloid plaque deposition in APP[V717I] transgenic mice
  publication-title: J. Neuroinflam.
  doi: 10.1186/1742-2094-2-22
– volume: 88
  start-page: 2923
  year: 2010
  ident: B17
  article-title: Amyloid-beta oligomers impair fear conditioned memory in a calcineurin-dependent fashion in mice
  publication-title: J. Neurosci. Res.
  doi: 10.1002/jnr.22445
– volume: 22
  start-page: 462
  year: 2015
  ident: B23
  article-title: Cell cycle arrest and induction of apoptosis by cajanin stilbene acid from Cajanus cajan in breast cancer cells
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2015.02.005
– volume: 7
  start-page: 399
  year: 2010
  ident: B75
  article-title: Astrocytes in Alzheimer’s disease
  publication-title: Neurotherapeutics
  doi: 10.1016/j.nurt.2010.05.017
– volume: 29
  start-page: 1319
  year: 2008
  ident: B88
  article-title: N-truncated amyloid-beta oligomers induce learning impairment and neuronal apoptosis
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2007.03.005
– volume: 21
  start-page: 5079
  year: 2001
  ident: B12
  article-title: cAMP-dependent protein kinase mediates activity-regulated synaptic targeting of NMDA receptors
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.21-14-05079.2001
– volume: 30
  start-page: 537
  year: 2015
  ident: B5
  article-title: Baicalin attenuates alzheimer-like pathological changes and memory deficits induced by amyloid beta1–42 protein
  publication-title: Metab. Brain Dis.
  doi: 10.1007/s11011-014-9601-9
– volume: 7
  start-page: 3798
  year: 2016
  ident: B66
  article-title: Cajanus cajan- a source of PPARgamma activators leading to anti-inflammatory and cytotoxic effects
  publication-title: Food Funct.
  doi: 10.1039/C6FO00689B
– volume: 63
  start-page: 1042
  year: 2012
  ident: B86
  article-title: Anti-amnesic effect of neurosteroid PREGS in Abeta25-35-injected mice through sigma1 receptor- and alpha7nAChR-mediated neuroprotection
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2012.07.035
– volume: 33
  start-page: 9626
  year: 2013
  ident: B22
  article-title: Memantine rescues transient cognitive impairment caused by high-molecular-weight abeta oligomers but not the persistent impairment induced by low-molecular-weight oligomers
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0482-13.2013
– volume: 36
  start-page: 2043
  year: 2015
  ident: B19
  article-title: Acute amnestic encephalopathy in amyloid-beta oligomer-injected mice is due to their widespread diffusion in vivo
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2015.03.005
– volume: 36
  start-page: 12106
  year: 2016
  ident: B39
  article-title: Cross talk between brain innate immunity and serotonin signaling underlies depressive-like behavior induced by Alzheimer’s amyloid-beta oligomers in mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1269-16.2016
– volume: 35
  start-page: 716
  year: 2014
  ident: B89
  article-title: Atorvastatin prevents amyloid-beta peptide oligomer-induced synaptotoxicity and memory dysfunction in rats through a p38 MAPK-dependent pathway
  publication-title: Acta Pharmacol. Sin.
  doi: 10.1038/aps.2013.203
– volume: 5
  start-page: 405
  year: 2002
  ident: B26
  article-title: Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn835
– volume: 58
  start-page: 240
  year: 1983
  ident: B43
  article-title: Rapid Nissl staining for frozen sections of fresh brain
  publication-title: Stain Technol.
  doi: 10.3109/10520298309066795
– volume: 107
  start-page: 2295
  year: 2010
  ident: B2
  article-title: Synthetic amyloid-beta oligomers impair long-term memory independently of cellular prion protein
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0911829107
– volume: 34
  start-page: 1015
  year: 2014
  ident: B31
  article-title: Cajaninstilbene acid prevents corticosterone-induced apoptosis in PC12 cells by inhibiting the mitochondrial apoptotic pathway
  publication-title: Cell Physiol. Biochem.
  doi: 10.1159/000366317
– volume: 1
  start-page: 848
  year: 2006
  ident: B76
  article-title: Morris water maze: procedures for assessing spatial and related forms of learning and memory
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2006.116
– volume: 11
  start-page: 290
  year: 1990
  ident: B11
  article-title: Excitatory amino acid receptors and synaptic plasticity
  publication-title: Trends Pharmacol. Sci.
  doi: 10.1016/0165-6147(90)90011-V
– volume: 95
  start-page: 6448
  year: 1998
  ident: B38
  article-title: Diffusible, nonfibrillar ligands derived from a beta1–42 are potent central nervous system neurotoxins
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.95.11.6448
– volume: 70
  start-page: 360
  year: 2011
  ident: B15
  article-title: Brain oligomeric beta-amyloid but not total amyloid plaque burden correlates with neuronal loss and astrocyte inflammatory response in amyloid precursor protein/tau transgenic mice
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/NEN.0b013e318217a118
– volume: 22
  start-page: 2007
  year: 2017
  ident: B33
  article-title: Studies for improving a rat model of Alzheimer’s disease: ICV administration of well-characterized beta-amyloid 1–42 oligomers induce dysfunction in spatial memory
  publication-title: Molecules
  doi: 10.3390/molecules22112007
– volume: 59
  start-page: 437
  year: 2011
  ident: B83
  article-title: In vitro antioxidant properties, DNA damage protective activity, and xanthine oxidase inhibitory effect of cajaninstilbene acid, a stilbene compound derived from pigeon pea [Cajanus cajan (L.) Millsp.] leaves
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/jf103970b
– volume: 23
  start-page: 147
  year: 2011
  ident: B53
  article-title: Ghrelin ameliorates cognitive dysfunction and neurodegeneration in intrahippocampal amyloid-beta1–42 oligomer-injected mice
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-2010-101263
– volume: 234
  start-page: 11792
  year: 2019
  ident: B72
  article-title: Cajaninstilbene acid inhibits osteoporosis through suppressing osteoclast formation and RANKL-induced signaling pathways
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.27868
– volume: 68
  start-page: 107
  year: 2019
  ident: B91
  article-title: Downregulation of HCN1 channels in hippocampus and prefrontal cortex in methamphetamine re-exposed mice with enhanced working memory
  publication-title: Physiol. Res.
  doi: 10.33549/physiolres.933873
– volume: 64
  start-page: 2893
  year: 2016
  ident: B30
  article-title: Anti-inflammatory effects of cajaninstilbene acid and its derivatives
  publication-title: J. Agric. Food Chem.
  doi: 10.1021/acs.jafc.6b00227
– volume: 467
  start-page: 159
  year: 2009
  ident: B63
  article-title: Protective effect of stilbenes containing extract-fraction from Cajanus cajan L
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2009.10.029
– volume: 278
  start-page: 11612
  year: 2003
  ident: B69
  article-title: In vitro characterization of conditions for amyloid-beta peptide oligomerization and fibrillogenesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M210207200
– volume: 14
  start-page: 2778
  year: 2010
  ident: B85
  article-title: Establishment of a highly automated and intelligent experimental system of passive avoidance for mice
  publication-title: J. Clin. Rehabil. Tissue Eng. Res.
– volume: 121
  start-page: 1150
  year: 2010
  ident: B37
  article-title: Cajanuslactone, a new coumarin with anti-bacterial activity from pigeon pea [Cajanus cajan (L.) Millsp.] leaves
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2010.01.062
– volume: 15
  start-page: 193
  year: 1996
  ident: B70
  article-title: The nanometer-scale structure of amyloid-beta visualized by atomic force microscopy
  publication-title: J. Protein Chem.
  doi: 10.1007/BF01887400
– volume: 1112
  start-page: 24
  year: 2019
  ident: B79
  article-title: LC-MS/MS-based quantification of tryptophan metabolites and neurotransmitters in the serum and brain of mice
  publication-title: J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.
  doi: 10.1016/j.jchromb.2019.02.021
– volume: 67
  start-page: 1216
  year: 1994
  ident: B68
  article-title: Amyloid-beta aggregation: selective inhibition of aggregation in mixtures of amyloid with different chain lengths
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(94)80591-0
– volume: 11
  start-page: 37
  year: 2005
  ident: B82
  article-title: N-methyl-D-aspartate receptor subtypes: multiple roles in excitotoxicity and neurological disease
  publication-title: Neuroscientist
  doi: 10.1177/1073858404269012
– volume: 9
  start-page: 797
  year: 2018
  ident: B9
  article-title: Elucidating the interactive roles of glia in alzheimer’s disease using established and newly developed experimental models
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2018.00797
– volume: 9
  start-page: 453
  year: 2003
  ident: B84
  article-title: Adult mouse astrocytes degrade amyloid-beta in vitro and in situ
  publication-title: Nat. Med.
  doi: 10.1038/nm838
– volume: 31
  start-page: 6627
  year: 2011
  ident: B42
  article-title: Soluble Abeta oligomers inhibit long-term potentiation through a mechanism involving excessive activation of extrasynaptic NR2B-containing NMDA receptors
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0203-11.2011
– volume: 45
  start-page: 466
  year: 2014
  ident: B45
  article-title: Chemical constituents from leaves of Cajanus cajan
  publication-title: Chin. Tradit. Herbal Drugs
  doi: 10.1002/chin.201423216
– volume: 53
  start-page: 1060
  year: 2018
  ident: B78
  article-title: Application of the animal model of intracerebral injection of amyloid-β oligomers to the study of Alzheimer’s disease
  publication-title: Acta Pharm. Sin.
  doi: 10.16438/j.0513-4870.2018-0088
– volume: 40
  start-page: 759
  year: 1996
  ident: B48
  article-title: Deficient glutamate transport is associated with neurodegeneration in Alzheimer’s disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.410400512
– volume: 75
  start-page: 2917
  year: 2018
  ident: B58
  article-title: Involvement of extrasynaptic glutamate in physiological and pathophysiological changes of neuronal excitability
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-018-2837-5
– volume: 349
  start-page: 109
  year: 2018
  ident: B46
  article-title: Ginsenoside Rh2 reverses sleep deprivation induced cognitive deficit in mice
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2018.03.005
– volume: 21
  start-page: 946
  year: 2014
  ident: B59
  article-title: Pinostrobin and Cajanus lactone isolated from Cajanus cajan (L.) leaves inhibits TNF-alpha and IL-1beta production: in vitro and in vivo experimentation
  publication-title: Phytomedicine
  doi: 10.1016/j.phymed.2014.02.011
– volume: 81
  start-page: 741
  year: 2001
  ident: B67
  article-title: Alzheimer’s disease: genes, proteins, and therapy
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.2001.81.2.741
– volume: 156
  start-page: 898
  year: 2008
  ident: B49
  article-title: Amyloid-beta peptide decreases glutamate uptake in cultured astrocytes: involvement of oxidative stress and mitogen-activated protein kinase cascades
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2008.08.022
– volume: 277
  start-page: 32046
  year: 2002
  ident: B14
  article-title: Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M201750200
– volume: 135
  start-page: 100
  year: 2018
  ident: B87
  article-title: Rhynchophylline suppresses soluble Abeta1–42-induced impairment of spatial cognition function via inhibiting excessive activation of extrasynaptic NR2B-containing NMDA receptors
  publication-title: Neuropharmacology
  doi: 10.1016/j.neuropharm.2018.03.007
– volume: 71
  start-page: 2031
  year: 2011
  ident: B28
  article-title: Current and emerging drug treatment options for Alzheimer’s disease: a systematic review
  publication-title: Drugs
  doi: 10.2165/11595870-000000000-00000
– start-page: 53308
  volume-title: J. Visualized Exp. JoVE
  year: 2016
  ident: B35
  article-title: Intracerebroventricular injection of amyloid-beta peptides in normal mice to acutely induce alzheimer-like cognitive deficits
– volume-title: The mouse brain in stereotaxic coordinatesPsychoneuroendocrinology
  year: 2001
  ident: B60
– volume: 22
  start-page: 235
  year: 2019
  ident: B18
  article-title: Memory enhancement of fresh ginseng on deficits induced by chronic restraint stress in mice
  publication-title: Nutr. Neurosci.
  doi: 10.1080/1028415X.2017.1373928
– volume: 292
  start-page: 7327
  year: 2017
  ident: B3
  article-title: Interaction of amyloid-beta (Abeta) oligomers with neurexin 2alpha and neuroligin 1 mediates synapse damage and memory loss in mice
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.761189
– volume: 28
  start-page: 8354
  year: 2008
  ident: B29
  article-title: Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0616-08.2008
– start-page: 1884
  volume-title: J. Visualized Exp. JoVE
  year: 2010
  ident: B20
  article-title: Preparation of oligomeric beta-amyloid 1–42 and induction of synaptic plasticity impairment on hippocampal slices
– volume: 4
  start-page: 016
  year: 2010
  ident: B62
  article-title: Protective effects of trans-2, 4-dimethoxystibene on cognitive, impairments induced by Abeta(25–35) in, hypercholesterolemic rats
  publication-title: Brain
  doi: 10.1016/j.brainresbull.2010.04.016
– volume: 92
  start-page: 1465
  year: 1999
  ident: B56
  article-title: Glutamate release from microglia via glutamate transporter is enhanced by amyloid-beta peptide
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(99)00036-6
– volume: 29
  start-page: 4252
  year: 2009
  ident: B47
  article-title: Microglia mediate the clearance of soluble Abeta through fluid phase macropinocytosis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5572-08.2009
– volume: 706
  start-page: 181
  year: 1996
  ident: B50
  article-title: Amnesia induced in mice by centrally administered beta-amyloid peptides involves cholinergic dysfunction
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(95)01032-7
– volume: 27
  start-page: 1372
  year: 2006
  ident: B65
  article-title: Hippocampal synaptic loss in early Alzheimer’s disease and mild cognitive impairment
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2005.09.012
– volume: 100
  start-page: 10417
  year: 2003
  ident: B25
  article-title: Alzheimer’s disease-affected brain: presence of oligomeric A beta ligands (ADDLs) suggests a molecular basis for reversible memory loss
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1834302100
– volume: 96
  start-page: 306
  year: 2011
  ident: B7
  article-title: Gami-Chunghyuldan ameliorates memory impairment and neurodegeneration induced by intrahippocampal Abeta 1–42 oligomer injection
  publication-title: Neurobiol. Learn. Mem.
  doi: 10.1016/j.nlm.2011.06.004
– volume: 23
  start-page: 402
  year: 2011
  ident: B4
  article-title: An animal model for evaluating the effect of memory improvement assisted by functional foods
  publication-title: Chin. J. Food Hyg.
  doi: 10.13590/j.cjfh.2011.05.004
– volume: 971
  start-page: 197
  year: 2003
  ident: B55
  article-title: Astrocytes accumulate A beta 42 and give rise to astrocytic amyloid plaques in Alzheimer disease brains
  publication-title: Brain Res.
  doi: 10.1016/S0006-8993(03)02361-8
– volume: 12
  start-page: 199
  year: 2018
  ident: B61
  article-title: GABA-enriched fermented Laminaria japonica improves cognitive impairment and neuroplasticity in scopolamine- and ethanol-induced dementia model mice
  publication-title: Nutr. Res. Pract.
  doi: 10.4162/nrp.2018.12.3.199
– volume: 63
  start-page: 283
  year: 2013
  ident: B24
  article-title: Protective effects of EphB2 on Abeta1–42 oligomer-induced neurotoxicity and synaptic NMDA receptor signaling in hippocampal neurons
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2013.06.016
– volume: 108
  start-page: 5819
  year: 2011
  ident: B32
  article-title: Soluble amyloid beta-protein dimers isolated from Alzheimer cortex directly induce Tau hyperphosphorylation and neuritic degeneration
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1017033108
– volume: 86
  start-page: 139
  year: 2005
  ident: B73
  article-title: Role of water-soluble amyloid-beta in the pathogenesis of Alzheimer’s disease
  publication-title: Int. J. Exp. Pathol.
  doi: 10.1111/j.0959-9673.2005.00428.x
– volume: 140
  start-page: 792
  year: 2017
  ident: B21
  article-title: An early and late peak in microglial activation in Alzheimer’s disease trajectory
  publication-title: Brain
  doi: 10.1093/brain/aww349
– volume: 63
  start-page: 964
  year: 2004
  ident: B90
  article-title: Activated microglia initiate motor neuron injury by a nitric oxide and glutamate-mediated mechanism
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1093/jnen/63.9.964
– volume: 118
  start-page: 131
  year: 2009
  ident: B71
  article-title: Oxidatively modified proteins in Alzheimer’s disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis
  publication-title: Acta Neuropathol.
  doi: 10.1007/s00401-009-0517-0
– volume: 29
  start-page: 1334
  year: 2008
  ident: B16
  article-title: Alzheimer’s disease-type neuronal tau hyperphosphorylation induced by A beta oligomers
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2007.02.029
– volume: 440
  start-page: 352
  year: 2006
  ident: B41
  article-title: A specific amyloid-beta protein assembly in the brain impairs memory
  publication-title: Nature
  doi: 10.1038/nature04533
– volume: 120
  start-page: 1048
  year: 2012
  ident: B6
  article-title: Obovatol improves cognitive functions in animal models for Alzheimer’s disease
  publication-title: J. Neurochem.
  doi: 10.1111/j.1471-4159.2011.07642.x
– volume: 183
  start-page: 1202
  year: 1959
  ident: B10
  article-title: Electron microscopic observations on a fibrous component in amyloid of diverse origins
  publication-title: Nature
  doi: 10.1038/1831202a0
– volume: 58
  start-page: 831
  year: 2010
  ident: B57
  article-title: Concomitant astroglial atrophy and astrogliosis in a triple transgenic animal model of Alzheimer’s disease
  publication-title: Glia
  doi: 10.1002/glia.20967
– volume: 1095
  start-page: 473
  year: 2007
  ident: B34
  article-title: Protective effects of piceatannol against beta-amyloid-induced neuronal cell death
  publication-title: Ann. N. Y. Acad. Sci.
  doi: 10.1196/annals.1397.051
– volume: 67
  start-page: 209
  year: 2010
  ident: B64
  article-title: Effects of trans-2,4-dimethoxystibene against the neurotoxicity induced by Abeta(25–35) both in vitro and in vivo
  publication-title: Neurosci. Res.
  doi: 10.1016/j.neures.2010.03.009
– volume: 71
  start-page: 29
  year: 2006
  ident: B52
  article-title: Protective effect of rhubarb derivatives on amyloid beta (1–42) peptide-induced apoptosis in IMR-32 cells: a case of nutrigenomic
  publication-title: Brain Res. Bull.
  doi: 10.1016/j.brainresbull.2006.07.012
– volume: 18
  start-page: 1053
  year: 2013
  ident: B40
  article-title: Amyloid-beta oligomers link depressive-like behavior and cognitive deficits in mice
  publication-title: Mol. Psychiatry
  doi: 10.1038/mp.2012.168
– volume: 57
  start-page: 1041
  year: 2017
  ident: B80
  article-title: Role of Glutamate and NMDA Receptors in Alzheimer’s Disease
  publication-title: J. Alzheimers Dis.
  doi: 10.3233/JAD-160763
– volume: 11
  start-page: 327
  year: 2001
  ident: B13
  article-title: NMDA receptor subunits: diversity, development and disease
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/S0959-4388(00)00215-4
– volume: 78
  start-page: 43
  year: 2014
  ident: B44
  article-title: Cajaninstilbene acid protects corticosterone-induced injury in PC12 cells by inhibiting oxidative and endoplasmic reticulum stress-mediated apoptosis
  publication-title: Neurochem. Int.
  doi: 10.1016/j.neuint.2014.08.007
– volume: 416
  start-page: 535
  year: 2002
  ident: B77
  article-title: Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo
  publication-title: Nature
  doi: 10.1038/416535a
– volume: 344
  start-page: 39
  year: 2017
  ident: B81
  article-title: Resveratrol ameliorates spatial learning memory impairment induced by Abeta1–42 in rats
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2016.08.051
– volume: 53
  start-page: 105
  year: 2013
  ident: B8
  article-title: Tartary buckwheat improves cognition and memory function in an in vivo amyloid-beta-induced Alzheimer model
  publication-title: Food Chem. Toxicol.
  doi: 10.1016/j.fct.2012.11.002
– volume: 16
  start-page: 3
  year: 2016
  ident: B54
  article-title: Alzheimer amyloid hypothesis lives on
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2016.281
SSID ssj0000399364
Score 2.3033736
Snippet Amyloid-β1-42 (Aβ1-42) oligomers play an important role at the early stage of Alzheimer's disease (AD) and have been a vital target in the development of...
Amyloid-β 1–42 (Aβ 1–42 ) oligomers play an important role at the early stage of Alzheimer’s disease (AD) and have been a vital target in the development of...
Amyloid-β1–42 (Aβ1–42) oligomers play an important role at the early stage of Alzheimer’s disease (AD) and have been a vital target in the development of...
SourceID doaj
pubmedcentral
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1084
SubjectTerms Alzheimer’s disease
amyloid-β oligomer
astrocyte
cajaninstilbene acid
cognition
microglia
Pharmacology
SummonAdditionalLinks – databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELagXLggfsVCQUZClZCadp1MnPiA0LKiKkiFHrpSb1H8100Vku1uK7E33oE34UF4CJ6EGW-2S6SKE7fIcRLH4_F8Y4-_Yex1EnsPoGSklfcRWAeoc2UaCfS2cAzpxASy6qPP8nACn07T083x6K4DFze6dpRPajKv975dLN-hwr8ljxPt7b6fTUui9hRqD72LHG6zO2iXJLliRx3YD_My2WIJq73KGx_s2aZA4d_Dnf2oyb_M0MF9dq_Dj3y0EvgDdss1D9nO8YqAernLTzbnqRa7fIcfb6ipl4_Yclyel01FAQK1xlmOj0xl-eirq-mkPqJOPl6HE_GPOFFUc1o85JTfwzjL9RIvsVXTajZDG4gVaiw4D9FcDW89vgn9_8pGv36K399_QMy_1NVZS0vjj9nk4MPJ-DDqki9EJkkBIhd74aTwwkoFJoZUOZskRsthonMnYptC5tUwiYXViEpI4l6Xqsxym-Ymt8kTttW0jXvKOHhpnQHKgyVBAWipNJTKIRaS2pvhgO2vu70wHTM5JcioC_RQSFBFEFRBgiqCoAbszfUTsxUrxz_qvidJXtcjPu1Q0M7Pik49CxyyKtMa0aDKwQyVNibzcV4qLYQVmRiwV-txUKD-0aZK2bj2alEgPiZKuTTPBizrDZDeF_t3mmoamLxpCwzx7bP_0cTn7C79dBR2zLbZ1uX8yr1AwHSpXwY9-AOyjRpk
  priority: 102
  providerName: Scholars Portal
Title Cajaninstilbene Acid Ameliorates Cognitive Impairment Induced by Intrahippocampal Injection of Amyloid-β1–42 Oligomers
URI https://www.proquest.com/docview/2311921587
https://pubmed.ncbi.nlm.nih.gov/PMC6798059
https://doaj.org/article/32f97bb056984c09bcc7f28a9b11d171
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQT70goCCWPxkJVUJq2DiZOPZxu6IqSIUeWqm3KP5jU4Xsqj-HvfUd-iY8CA_Bk3TG2W03F7hwiSLHcRzP2DPjGX_D2Ic8CwFAy8ToEBJwHnDO1UUi0NpCHjK5jWDVR9_k4Sl8PSvONlJ9UUxYDw_cD9wYG9OlMSintQKbamNtGTJVayOEE_H0eJbqdMOYimswyV0JvV8SrTA9DotZTfifQn9CE0TBQA5FuP6BjjmMkNwQOQdP2OOVrsgnfR-fske-e8Z2j3uw6eUeP3k4O3W5x3f58QMM9XKHLaf1ed01FAzQGlzR-MQ2jk9--pZO5aOGyafr0CH-BReF5oI2Cjnl8rDecbPEW-zVrFksUN5hhRYLzmPkVsfnAVtCW79xye9f4s_NLWT8e9v8mNM2-HN2evD5ZHqYrBItJDYvABKfBeGlCMJJDTaDQnuX59bINDfKi8wVUAad5plwBjUQom4wta5L5QpllctfsK1u3vmXjEOQzlugnFcSNICR2kCtPeo90gSbjth4PeyVXaGQUzKMtkJrhAhVRUJVRKgqEmrEPt6_segROP5Sd58oeV-PsLNjAXJUteKo6l8cNWLv13xQ4VwjB0rd-fn1ZYW6MMHHFaocsXLAIIMvDp90zSyidpO7C3XZV_-ji6_ZNv10Er1jb9jW1cW1f4vK0ZV5F-cBXo9A3QEYjhL3
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cajaninstilbene+Acid+Ameliorates+Cognitive+Impairment+Induced+by+Intrahippocampal+Injection+of+Amyloid-%CE%B21%E2%80%9342+Oligomers&rft.jtitle=Frontiers+in+pharmacology&rft.au=Li-Sha+Wang&rft.au=Xue+Tao&rft.au=Xin-Min+Liu&rft.au=Xin-Min+Liu&rft.date=2019-09-24&rft.pub=Frontiers+Media+S.A&rft.eissn=1663-9812&rft.volume=10&rft_id=info:doi/10.3389%2Ffphar.2019.01084&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_32f97bb056984c09bcc7f28a9b11d171
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1663-9812&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1663-9812&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1663-9812&client=summon