On Multiple Solutions to the Steady Flow of Incompressible Fluids Subject to Do-nothing or Constant Traction Boundary Conditions on Artificial Boundaries

The boundary conditions prescribing the constant traction or the so-called do-nothing conditions are frequently taken on artificial boundaries in the numerical simulations of steady flow of incompressible fluids, despite the fact that they do not facilitate a well-posed problem, not allowing to esta...

Full description

Saved in:
Bibliographic Details
Published inJournal of mathematical fluid mechanics Vol. 22; no. 1
Main Authors Lanzendörfer, M., Hron, J.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1422-6928
1422-6952
DOI10.1007/s00021-019-0472-z

Cover

Abstract The boundary conditions prescribing the constant traction or the so-called do-nothing conditions are frequently taken on artificial boundaries in the numerical simulations of steady flow of incompressible fluids, despite the fact that they do not facilitate a well-posed problem, not allowing to establish the standard energy estimates. In a pursuit to understand better the possible consequences of using these conditions, we present a particular set of examples of flow problems, where we find none or two analytical or numerical solutions. Namely, we consider problems where the flow connects two such artificial boundaries. In the simple case of the isotropic radial flows where both steady and unsteady analytical solutions are derived easily, we demonstrate that while for some (large) boundary data all unsteady solutions blow up in finite time, for other data (including small or trivial) the unsteady flows either converge asymptotically to one of two steady solutions, or blow up in finite time, depending on the initial state. We then document the very same behavior of the numerical solutions for planar flow in a diverging channel. Finally, we provide an illustrative example of two steady numerical solutions to the flow in a three-dimensional bifurcating tube, where the inflow velocity is prescribed at the inlet, while the two outlets are treated by the do-nothing boundary condition.
AbstractList The boundary conditions prescribing the constant traction or the so-called do-nothing conditions are frequently taken on artificial boundaries in the numerical simulations of steady flow of incompressible fluids, despite the fact that they do not facilitate a well-posed problem, not allowing to establish the standard energy estimates. In a pursuit to understand better the possible consequences of using these conditions, we present a particular set of examples of flow problems, where we find none or two analytical or numerical solutions. Namely, we consider problems where the flow connects two such artificial boundaries. In the simple case of the isotropic radial flows where both steady and unsteady analytical solutions are derived easily, we demonstrate that while for some (large) boundary data all unsteady solutions blow up in finite time, for other data (including small or trivial) the unsteady flows either converge asymptotically to one of two steady solutions, or blow up in finite time, depending on the initial state. We then document the very same behavior of the numerical solutions for planar flow in a diverging channel. Finally, we provide an illustrative example of two steady numerical solutions to the flow in a three-dimensional bifurcating tube, where the inflow velocity is prescribed at the inlet, while the two outlets are treated by the do-nothing boundary condition.
The boundary conditions prescribing the constant traction or the so-called do-nothing conditions are frequently taken on artificial boundaries in the numerical simulations of steady flow of incompressible fluids, despite the fact that they do not facilitate a well-posed problem, not allowing to establish the standard energy estimates. In a pursuit to understand better the possible consequences of using these conditions, we present a particular set of examples of flow problems, where we find none or two analytical or numerical solutions. Namely, we consider problems where the flow connects two such artificial boundaries. In the simple case of the isotropic radial flows where both steady and unsteady analytical solutions are derived easily, we demonstrate that while for some (large) boundary data all unsteady solutions blow up in finite time, for other data (including small or trivial) the unsteady flows either converge asymptotically to one of two steady solutions, or blow up in finite time, depending on the initial state. We then document the very same behavior of the numerical solutions for planar flow in a diverging channel. Finally, we provide an illustrative example of two steady numerical solutions to the flow in a three-dimensional bifurcating tube, where the inflow velocity is prescribed at the inlet, while the two outlets are treated by the do-nothing boundary condition.
ArticleNumber 11
Author Lanzendörfer, M.
Hron, J.
Author_xml – sequence: 1
  givenname: M.
  orcidid: 0000-0002-7157-8040
  surname: Lanzendörfer
  fullname: Lanzendörfer, M.
  email: martin.lanzendorfer@natur.cuni.cz
  organization: Faculty of Science, Charles University
– sequence: 2
  givenname: J.
  orcidid: 0000-0001-5862-2353
  surname: Hron
  fullname: Hron, J.
  organization: Faculty of Mathematics and Physics, Charles University
BookMark eNp9kN1OAjEQhRuDiYA-gHdNvF6ddtkfLhFFSTBcwH3T7XahZGmx7cbAm_i2drP-JCZ6Nc30fGdmzgD1tNESoWsCtwQgu3MAQEkEZBzBKKPR6Qz1yYjSKB0ntPf9pvkFGji3AyBZMqZ99L7U-KWpvTrUEq9M3XhltMPeYL8NDS95ecSz2rxhU-G5FmZ_sNI5VQT5rG5U6fCqKXZS-JZ5MJE2fqv0BhuLp8HJc-3x2nLR-uJ70-iS22P7VapuVGhPrFeVEorXXwol3SU6r3jt5NVnHaLV7HE9fY4Wy6f5dLKIRJzEPpIceJEJkeQ0o1Clo6SUaQw5lQUpcjKGXEJStQKaxiKNS6hkJUnBRRZKPEQ3nevBmtdGOs92prE6DGQ0DjaQZKM8qEinEtY4Z2XFDlbtwyGMAGvzZ13-LOTP2vzZKTDZL0Yoz9ubveWq_pekHenCFL2R9menv6EPGtWfyQ
CitedBy_id crossref_primary_10_1007_s10231_021_01066_w
crossref_primary_10_1002_mma_7888
crossref_primary_10_1080_0305215X_2024_2389281
crossref_primary_10_1088_1361_6544_ac8fd8
Cites_doi 10.1145/1731022.1731030
10.1016/j.amc.2015.05.066
10.1137/120870670
10.1007/978-3-642-23099-8
10.11588/ans.2015.100.20553
10.1007/978-3-7643-7806-6_3
10.3934/dcdss.2012.5.1147
10.1007/978-1-4612-3172-1
10.4208/jcm.1405-m4347
10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y
10.1007/s11012-017-0731-0
10.1002/cnm.2918
10.1007/s10492-011-0016-1
10.1051/m2an/1996300708151
10.1007/978-3-7643-7806-6_4
ContentType Journal Article
Copyright Springer Nature Switzerland AG 2019
2019© Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
– notice: 2019© Springer Nature Switzerland AG 2019
DBID AAYXX
CITATION
DOI 10.1007/s00021-019-0472-z
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1422-6952
ExternalDocumentID 10_1007_s00021_019_0472_z
GrantInformation_xml – fundername: Operational Programme Research, Development and Education within ERDF
  grantid: CZ.02.1.01/0.0/0.0/16_013/0001800
– fundername: Czech Science Foundation
  grantid: GA17-01747S
GroupedDBID -5F
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0VY
1N0
1SB
203
29L
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
MBV
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9T
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c353t-ea0ab7cc582720f645de63082eb1b81908e05f7cc5263c63d0fefe1bac7fe13
IEDL.DBID AGYKE
ISSN 1422-6928
IngestDate Wed Sep 17 23:59:23 EDT 2025
Tue Jul 01 01:44:37 EDT 2025
Thu Apr 24 23:08:03 EDT 2025
Fri Feb 21 02:37:24 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Navier–Stokes equations
Stability
Do-nothing
Uniqueness
Boundary conditions
Finite element approximation
Primary 76D03
Traction
Existence
Secondary 65N30
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-ea0ab7cc582720f645de63082eb1b81908e05f7cc5263c63d0fefe1bac7fe13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7157-8040
0000-0001-5862-2353
PQID 2330805748
PQPubID 2043894
ParticipantIDs proquest_journals_2330805748
crossref_primary_10_1007_s00021_019_0472_z
crossref_citationtrail_10_1007_s00021_019_0472_z
springer_journals_10_1007_s00021_019_0472_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200300
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 3
  year: 2020
  text: 20200300
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Journal of mathematical fluid mechanics
PublicationTitleAbbrev J. Math. Fluid Mech
PublicationYear 2020
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Rannacher, R.: Methods for Numerical Flow Simulation. In: Galdi, G.P., Rannacher, R., Robertson, A.M., Turek, S. (eds.) Hemodynamical Flows: Modeling. Analysis and Simulation, pp. 275–332. Birkhäuser Verlag, Berlin, Oberwolfach Seminars edition (2008)
HeywoodJGRannacherRTurekSArtificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equationsInt. J. Numer. Meth. Fluids1996225325352138084410.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y
LanzendörferMMálekJRajagopalKRNumerical simulations of an incompressible piezoviscous fluid flowing in a plane slider bearingMeccanica2018531–2209228376091610.1007/s11012-017-0731-0
BruneauC-HFabriePNew efficient boundary conditions for incompressible Navier–Stokes equations: a well-posedness resultMath. Model. Numer. Anal.1996307815840142308110.1051/m2an/1996300708151
LoggAMardalK-AWellsGNAutomated Solution of Differential Equations by the Finite Element Method2012BerlinSpringer10.1007/978-3-642-23099-8
Galdi, G.P.: Mathematical Problems in Classical and Non-Newtonian Fluid Mechanics. In: Galdi, G.P., Rannacher, R., Robertson, A.M., Turek, S. (eds.) Hemodynamical Flows: Modeling. Analysis and Simulation, pp. 121–274. Birkhäuser Verlag, Berlin, Oberwolfach Seminars edition (2008)
Brezi, F., Fortin, M.: Mixed and hybrid finite element methods. In: Springer Series on Computational Mathematics, 15. Springer (1991)
BraackMMuchaPBDirectional do-nothing condition for the Navier–Stokes equationsJ. Comput. Math.2014325507521325802510.4208/jcm.1405-m43471324.76015
GreshoP MSaniR LIncompressible Flow and the Finite Element Method: Advection Diffusion and Isothermal Laminar Flow1998New YorkWiley0941.76002
BotheDKöhneMPrüssJOn a class of energy preserving boundary conditions for incompressible newtonian flowsSIAM J. Math. Anal.201345637683822314383010.1137/1208706701286.35191
Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, Ch., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 15. Arch. Numer. Softw. (2015). https://doi.org/10.11588/ans.2015.100.20553
BertoglioCCaiazzoABazilevsYBraackMEsmailyMGravemeierVMarsdenALOVignon-ClementelIEWallWAInt. J. Numer. Methods Biomed. Eng.201810.1002/cnm.2918
NeustupaTA steady flow through a plane cascade of profiles with an arbitrarily large inflow–the mathematical model, existence of a weak solutionAppl. Math. Comput.2016272687691342337610.1016/j.amc.2015.05.0661410.35098
RannacherRA short course on numerical simulation of viscous flow: discretization, optimization and stability analysisDiscrete Contin. Dyn. Syst. Ser. S20125611471194296894010.3934/dcdss.2012.5.114706104996ISSN 19371632
LanzendörferMStebelJOn pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscositiesAppl. Math.2011563265285280057810.1007/s10492-011-0016-11224.35347
LoggAWellsGNDOLFIN: automated finite element computingACM Trans. Math. Softw.2010273822710.1145/1731022.17310301364.65254
472_CR12
R Rannacher (472_CR4) 2012; 5
D Bothe (472_CR6) 2013; 45
M Lanzendörfer (472_CR11) 2018; 53
A Logg (472_CR14) 2010
472_CR16
P M Gresho (472_CR15) 1998
T Neustupa (472_CR10) 2016; 272
JG Heywood (472_CR3) 1996; 22
472_CR2
472_CR1
M Braack (472_CR5) 2014; 32
C Bertoglio (472_CR7) 2018
C-H Bruneau (472_CR8) 1996; 30
M Lanzendörfer (472_CR9) 2011; 56
A Logg (472_CR13) 2012
References_xml – reference: Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, Ch., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 15. Arch. Numer. Softw. (2015). https://doi.org/10.11588/ans.2015.100.20553
– reference: GreshoP MSaniR LIncompressible Flow and the Finite Element Method: Advection Diffusion and Isothermal Laminar Flow1998New YorkWiley0941.76002
– reference: Rannacher, R.: Methods for Numerical Flow Simulation. In: Galdi, G.P., Rannacher, R., Robertson, A.M., Turek, S. (eds.) Hemodynamical Flows: Modeling. Analysis and Simulation, pp. 275–332. Birkhäuser Verlag, Berlin, Oberwolfach Seminars edition (2008)
– reference: LanzendörferMStebelJOn pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscositiesAppl. Math.2011563265285280057810.1007/s10492-011-0016-11224.35347
– reference: Brezi, F., Fortin, M.: Mixed and hybrid finite element methods. In: Springer Series on Computational Mathematics, 15. Springer (1991)
– reference: RannacherRA short course on numerical simulation of viscous flow: discretization, optimization and stability analysisDiscrete Contin. Dyn. Syst. Ser. S20125611471194296894010.3934/dcdss.2012.5.114706104996ISSN 19371632
– reference: BruneauC-HFabriePNew efficient boundary conditions for incompressible Navier–Stokes equations: a well-posedness resultMath. Model. Numer. Anal.1996307815840142308110.1051/m2an/1996300708151
– reference: Galdi, G.P.: Mathematical Problems in Classical and Non-Newtonian Fluid Mechanics. In: Galdi, G.P., Rannacher, R., Robertson, A.M., Turek, S. (eds.) Hemodynamical Flows: Modeling. Analysis and Simulation, pp. 121–274. Birkhäuser Verlag, Berlin, Oberwolfach Seminars edition (2008)
– reference: LanzendörferMMálekJRajagopalKRNumerical simulations of an incompressible piezoviscous fluid flowing in a plane slider bearingMeccanica2018531–2209228376091610.1007/s11012-017-0731-0
– reference: LoggAWellsGNDOLFIN: automated finite element computingACM Trans. Math. Softw.2010273822710.1145/1731022.17310301364.65254
– reference: BotheDKöhneMPrüssJOn a class of energy preserving boundary conditions for incompressible newtonian flowsSIAM J. Math. Anal.201345637683822314383010.1137/1208706701286.35191
– reference: BertoglioCCaiazzoABazilevsYBraackMEsmailyMGravemeierVMarsdenALOVignon-ClementelIEWallWAInt. J. Numer. Methods Biomed. Eng.201810.1002/cnm.2918
– reference: LoggAMardalK-AWellsGNAutomated Solution of Differential Equations by the Finite Element Method2012BerlinSpringer10.1007/978-3-642-23099-8
– reference: NeustupaTA steady flow through a plane cascade of profiles with an arbitrarily large inflow–the mathematical model, existence of a weak solutionAppl. Math. Comput.2016272687691342337610.1016/j.amc.2015.05.0661410.35098
– reference: HeywoodJGRannacherRTurekSArtificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equationsInt. J. Numer. Meth. Fluids1996225325352138084410.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y
– reference: BraackMMuchaPBDirectional do-nothing condition for the Navier–Stokes equationsJ. Comput. Math.2014325507521325802510.4208/jcm.1405-m43471324.76015
– year: 2010
  ident: 472_CR14
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/1731022.1731030
– volume: 272
  start-page: 687
  year: 2016
  ident: 472_CR10
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.05.066
– volume: 45
  start-page: 3768
  issue: 6
  year: 2013
  ident: 472_CR6
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/120870670
– volume-title: Automated Solution of Differential Equations by the Finite Element Method
  year: 2012
  ident: 472_CR13
  doi: 10.1007/978-3-642-23099-8
– volume-title: Incompressible Flow and the Finite Element Method: Advection Diffusion and Isothermal Laminar Flow
  year: 1998
  ident: 472_CR15
– ident: 472_CR12
  doi: 10.11588/ans.2015.100.20553
– ident: 472_CR1
  doi: 10.1007/978-3-7643-7806-6_3
– volume: 5
  start-page: 1147
  issue: 6
  year: 2012
  ident: 472_CR4
  publication-title: Discrete Contin. Dyn. Syst. Ser. S
  doi: 10.3934/dcdss.2012.5.1147
– ident: 472_CR16
  doi: 10.1007/978-1-4612-3172-1
– volume: 32
  start-page: 507
  issue: 5
  year: 2014
  ident: 472_CR5
  publication-title: J. Comput. Math.
  doi: 10.4208/jcm.1405-m4347
– volume: 22
  start-page: 325
  issue: 5
  year: 1996
  ident: 472_CR3
  publication-title: Int. J. Numer. Meth. Fluids
  doi: 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y
– volume: 53
  start-page: 209
  issue: 1–2
  year: 2018
  ident: 472_CR11
  publication-title: Meccanica
  doi: 10.1007/s11012-017-0731-0
– volume-title: Int. J. Numer. Methods Biomed. Eng.
  year: 2018
  ident: 472_CR7
  doi: 10.1002/cnm.2918
– volume: 56
  start-page: 265
  issue: 3
  year: 2011
  ident: 472_CR9
  publication-title: Appl. Math.
  doi: 10.1007/s10492-011-0016-1
– volume: 30
  start-page: 815
  issue: 7
  year: 1996
  ident: 472_CR8
  publication-title: Math. Model. Numer. Anal.
  doi: 10.1051/m2an/1996300708151
– ident: 472_CR2
  doi: 10.1007/978-3-7643-7806-6_4
SSID ssj0017592
Score 2.2294314
Snippet The boundary conditions prescribing the constant traction or the so-called do-nothing conditions are frequently taken on artificial boundaries in the numerical...
The boundary conditions prescribing the constant traction or the so-called do-nothing conditions are frequently taken on artificial boundaries in the numerical...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Bifurcations
Boundary conditions
Classical and Continuum Physics
Computational fluid dynamics
Computer simulation
Exact solutions
Fluid flow
Fluid mechanics
Fluid- and Aerodynamics
Incompressible flow
Incompressible fluids
Inflow
Mathematical Methods in Physics
Physics
Physics and Astronomy
Radial flow
Steady flow
Theoretical mathematics
Three dimensional flow
Traction
Unsteady flow
Well posed problems
Title On Multiple Solutions to the Steady Flow of Incompressible Fluids Subject to Do-nothing or Constant Traction Boundary Conditions on Artificial Boundaries
URI https://link.springer.com/article/10.1007/s00021-019-0472-z
https://www.proquest.com/docview/2330805748
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1422-6952
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017592
  issn: 1422-6928
  databaseCode: AFBBN
  dateStart: 19990401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1422-6952
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017592
  issn: 1422-6928
  databaseCode: AGYKE
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1422-6952
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017592
  issn: 1422-6928
  databaseCode: U2A
  dateStart: 19990401
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwEB3RrZC4UCggFspqDpxArrJx7CTH3dJQgVoObKVyimLHkSpWCdpkhbp_wt8ydpxUVIDUqz22bI1n_Ox5HgO8LcJE8SROmUhUwKJYSFbISDIlkrgyhrZMl7fg_EKeXUafrsSVf8fdDmz3ISTpPPX42C1wdILAPrqJ4pDt9mBf2PPJBPYXH799Ph2DB7FwfyHb2w0m0zAZgpl_6-TP7egWY94Ji7rdJjuA1TDOnmTy_XjbqWO9u5PC8Z4TeQKPPfrERb9cnsIDUx_CgUei6O28PYSHjhiq22fw60uN5550iOMdGnYNEnJEywYubzBbNz-xqZCcDbkXx6xVJJ6tt9dli-Sb7GWPbfOhYTUtDRotNhs86bFph6tN_7wCl-6Tp82NrSp7MhlSsR1vn-likKDz_XP4mp2uTs6Y_86BaS54x0wRFCrWWiQ29lvJSJRG2mw5tF0oC0wSE4jKCoSSa8nLoDKVmatC06qZ8xcwqZvavASs4nROp5xICF1EKU8V52VJOFSFhgo5n0Iw6DTXPtO5_XBjnY85mp0KclJBblWQ76bwbmzyo0_z8T_ho2Gh5N7i2zzkNBUCv1EyhfeD3m-r_9nZq3tJv4ZHoT3wOxLcEUy6zda8IVTUqRlZQbZcXsy8Ncxg7zJc_AYM4Aca
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3BVgguFAoVCy34wAnkKht_xDmWtstCu-XAIpVTFDuOhFglaJMV6v4T_i1jx0nVqiD1ao8tW2PPPHuexwBv81hpppKUCqUjyhMhaS65pFqopLQWXabPWzA_l7Nv_POFuAjvuJue7d6HJL2lHh67RZ5OELlHNzyJ6eY-bPGJUnwEW4cfv5-eDMGDRPi_kN3tBpVprPpg5m2dXHdHVxjzRljUe5vpNiz6cXYkk58H61YfmM2NFI53nMgTeBzQJznslstTuGerHdgOSJSEfd7swANPDDXNM_jzpSLzQDokwx0aaWuCyJE4NnBxSabL-jepS4LGBs2LZ9ZqFJ8u1z-KhqBtcpc9rs1xTStcGjhaUq_IUYdNW7JYdc8ryAf_ydPq0lUVHZmMYLEbb5fpopfA8_1z-Do9WRzNaPjOgRomWEttHuU6MUYoF_stJReFlS5bDroL7YCJspEonUAsmZGsiEpb2onODa6aCduFUVVX9gWQMkkneMrhQpicpyzVjBUF4lAdWyxkbAxRr9PMhEzn7sONZTbkaPYqyFAFmVNBthnDu6HJry7Nx_-E9_qFkoUd32Qxw6kg-OVqDO97vV9V_7Ozl3eSfgMPZ4v5WXb26fz0FTyK3eHfE-L2YNSu1nYfEVKrX4cd8Rcplgem
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS91AEB6sYumL9VZ6rNp58MmymJO9JHm0alDrDargW8gmGxAOyeEkUvSf-G-d3Vyk0gq-ZmeXTSY7883ODWAn9UPNwyBiMtQeE4FULFVCMS3DoDCGVKarW3B-oY5vxOmtvO36nNZ9tHvvkmxzGmyVprLZm-bF3pD45rnQAs8m4IjAZ48fYEGQqrbW142_P7gRAum6Itt7DqYiP-zdmv9a4m_F9II2XzlInd6Jl2GpA4y433J4BeZMuQqfO_CI3dGsV2HRxXJm9Ro8XZZ43sUJ4nDthU2FBPbQBvDmDxhPqj9YFUjygSSCC4bVRB5P7u_yGkmc2PsZO-ewYiVxk_aG1QwPWjjZ4PWszYjAn64v0-zBDuVt_BfSY7vftjhFT0Em-Tr8jo-uD45Z14GBZVzyhpnUS3WQZTK07tpCCZkbZQvckITXFkuExpOFJfAVzxTPvcIUZqzTjBg95l9gvqxK8xWwCKIxGSZCyiwVEY8053lO0FH7hh5yPgKv__hJ1hUntz0yJslQVtnxKyF-JZZfyeMIdocp07Yyx1vEmz1Hk-6Q1onP6VUIr4pwBD96Lr8M_3exjXdRf4ePV4dxcnZy8esbfPKtue5C2DZhvpndmy3CNI3edv_tM02p7tg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Multiple+Solutions+to+the+Steady+Flow+of+Incompressible+Fluids+Subject+to+Do-nothing+or+Constant+Traction+Boundary+Conditions+on+Artificial+Boundaries&rft.jtitle=Journal+of+mathematical+fluid+mechanics&rft.au=Lanzend%C3%B6rfer%2C+M&rft.au=Hron%2C+J&rft.date=2020-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1422-6928&rft.eissn=1422-6952&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1007%2Fs00021-019-0472-z&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-6928&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-6928&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-6928&client=summon