On Multiple Solutions to the Steady Flow of Incompressible Fluids Subject to Do-nothing or Constant Traction Boundary Conditions on Artificial Boundaries
The boundary conditions prescribing the constant traction or the so-called do-nothing conditions are frequently taken on artificial boundaries in the numerical simulations of steady flow of incompressible fluids, despite the fact that they do not facilitate a well-posed problem, not allowing to esta...
Saved in:
Published in | Journal of mathematical fluid mechanics Vol. 22; no. 1 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.03.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1422-6928 1422-6952 |
DOI | 10.1007/s00021-019-0472-z |
Cover
Abstract | The boundary conditions prescribing the constant traction or the so-called
do-nothing
conditions are frequently taken on artificial boundaries in the numerical simulations of steady flow of incompressible fluids, despite the fact that they do not facilitate a well-posed problem, not allowing to establish the standard energy estimates. In a pursuit to understand better the possible consequences of using these conditions, we present a particular set of examples of flow problems, where we find none or two analytical or numerical solutions. Namely, we consider problems where the flow connects two such artificial boundaries. In the simple case of the isotropic radial flows where both steady and unsteady analytical solutions are derived easily, we demonstrate that while for some (large) boundary data all unsteady solutions blow up in finite time, for other data (including small or trivial) the unsteady flows either converge asymptotically to one of two steady solutions, or blow up in finite time, depending on the initial state. We then document the very same behavior of the numerical solutions for planar flow in a diverging channel. Finally, we provide an illustrative example of two steady numerical solutions to the flow in a three-dimensional bifurcating tube, where the inflow velocity is prescribed at the inlet, while the two outlets are treated by the
do-nothing
boundary condition. |
---|---|
AbstractList | The boundary conditions prescribing the constant traction or the so-called do-nothing conditions are frequently taken on artificial boundaries in the numerical simulations of steady flow of incompressible fluids, despite the fact that they do not facilitate a well-posed problem, not allowing to establish the standard energy estimates. In a pursuit to understand better the possible consequences of using these conditions, we present a particular set of examples of flow problems, where we find none or two analytical or numerical solutions. Namely, we consider problems where the flow connects two such artificial boundaries. In the simple case of the isotropic radial flows where both steady and unsteady analytical solutions are derived easily, we demonstrate that while for some (large) boundary data all unsteady solutions blow up in finite time, for other data (including small or trivial) the unsteady flows either converge asymptotically to one of two steady solutions, or blow up in finite time, depending on the initial state. We then document the very same behavior of the numerical solutions for planar flow in a diverging channel. Finally, we provide an illustrative example of two steady numerical solutions to the flow in a three-dimensional bifurcating tube, where the inflow velocity is prescribed at the inlet, while the two outlets are treated by the do-nothing boundary condition. The boundary conditions prescribing the constant traction or the so-called do-nothing conditions are frequently taken on artificial boundaries in the numerical simulations of steady flow of incompressible fluids, despite the fact that they do not facilitate a well-posed problem, not allowing to establish the standard energy estimates. In a pursuit to understand better the possible consequences of using these conditions, we present a particular set of examples of flow problems, where we find none or two analytical or numerical solutions. Namely, we consider problems where the flow connects two such artificial boundaries. In the simple case of the isotropic radial flows where both steady and unsteady analytical solutions are derived easily, we demonstrate that while for some (large) boundary data all unsteady solutions blow up in finite time, for other data (including small or trivial) the unsteady flows either converge asymptotically to one of two steady solutions, or blow up in finite time, depending on the initial state. We then document the very same behavior of the numerical solutions for planar flow in a diverging channel. Finally, we provide an illustrative example of two steady numerical solutions to the flow in a three-dimensional bifurcating tube, where the inflow velocity is prescribed at the inlet, while the two outlets are treated by the do-nothing boundary condition. |
ArticleNumber | 11 |
Author | Lanzendörfer, M. Hron, J. |
Author_xml | – sequence: 1 givenname: M. orcidid: 0000-0002-7157-8040 surname: Lanzendörfer fullname: Lanzendörfer, M. email: martin.lanzendorfer@natur.cuni.cz organization: Faculty of Science, Charles University – sequence: 2 givenname: J. orcidid: 0000-0001-5862-2353 surname: Hron fullname: Hron, J. organization: Faculty of Mathematics and Physics, Charles University |
BookMark | eNp9kN1OAjEQhRuDiYA-gHdNvF6ddtkfLhFFSTBcwH3T7XahZGmx7cbAm_i2drP-JCZ6Nc30fGdmzgD1tNESoWsCtwQgu3MAQEkEZBzBKKPR6Qz1yYjSKB0ntPf9pvkFGji3AyBZMqZ99L7U-KWpvTrUEq9M3XhltMPeYL8NDS95ecSz2rxhU-G5FmZ_sNI5VQT5rG5U6fCqKXZS-JZ5MJE2fqv0BhuLp8HJc-3x2nLR-uJ70-iS22P7VapuVGhPrFeVEorXXwol3SU6r3jt5NVnHaLV7HE9fY4Wy6f5dLKIRJzEPpIceJEJkeQ0o1Clo6SUaQw5lQUpcjKGXEJStQKaxiKNS6hkJUnBRRZKPEQ3nevBmtdGOs92prE6DGQ0DjaQZKM8qEinEtY4Z2XFDlbtwyGMAGvzZ13-LOTP2vzZKTDZL0Yoz9ubveWq_pekHenCFL2R9menv6EPGtWfyQ |
CitedBy_id | crossref_primary_10_1007_s10231_021_01066_w crossref_primary_10_1002_mma_7888 crossref_primary_10_1080_0305215X_2024_2389281 crossref_primary_10_1088_1361_6544_ac8fd8 |
Cites_doi | 10.1145/1731022.1731030 10.1016/j.amc.2015.05.066 10.1137/120870670 10.1007/978-3-642-23099-8 10.11588/ans.2015.100.20553 10.1007/978-3-7643-7806-6_3 10.3934/dcdss.2012.5.1147 10.1007/978-1-4612-3172-1 10.4208/jcm.1405-m4347 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y 10.1007/s11012-017-0731-0 10.1002/cnm.2918 10.1007/s10492-011-0016-1 10.1051/m2an/1996300708151 10.1007/978-3-7643-7806-6_4 |
ContentType | Journal Article |
Copyright | Springer Nature Switzerland AG 2019 2019© Springer Nature Switzerland AG 2019 |
Copyright_xml | – notice: Springer Nature Switzerland AG 2019 – notice: 2019© Springer Nature Switzerland AG 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00021-019-0472-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1422-6952 |
ExternalDocumentID | 10_1007_s00021_019_0472_z |
GrantInformation_xml | – fundername: Operational Programme Research, Development and Education within ERDF grantid: CZ.02.1.01/0.0/0.0/16_013/0001800 – fundername: Czech Science Foundation grantid: GA17-01747S |
GroupedDBID | -5F -5G -BR -EM -Y2 -~C .86 .VR 06D 0VY 1N0 1SB 203 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- MBV N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9T PF0 PT4 PT5 QOS R89 R9I RNI RNS ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c353t-ea0ab7cc582720f645de63082eb1b81908e05f7cc5263c63d0fefe1bac7fe13 |
IEDL.DBID | AGYKE |
ISSN | 1422-6928 |
IngestDate | Wed Sep 17 23:59:23 EDT 2025 Tue Jul 01 01:44:37 EDT 2025 Thu Apr 24 23:08:03 EDT 2025 Fri Feb 21 02:37:24 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Navier–Stokes equations Stability Do-nothing Uniqueness Boundary conditions Finite element approximation Primary 76D03 Traction Existence Secondary 65N30 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-ea0ab7cc582720f645de63082eb1b81908e05f7cc5263c63d0fefe1bac7fe13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7157-8040 0000-0001-5862-2353 |
PQID | 2330805748 |
PQPubID | 2043894 |
ParticipantIDs | proquest_journals_2330805748 crossref_primary_10_1007_s00021_019_0472_z crossref_citationtrail_10_1007_s00021_019_0472_z springer_journals_10_1007_s00021_019_0472_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200300 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 3 year: 2020 text: 20200300 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Heidelberg |
PublicationTitle | Journal of mathematical fluid mechanics |
PublicationTitleAbbrev | J. Math. Fluid Mech |
PublicationYear | 2020 |
Publisher | Springer International Publishing Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V |
References | Rannacher, R.: Methods for Numerical Flow Simulation. In: Galdi, G.P., Rannacher, R., Robertson, A.M., Turek, S. (eds.) Hemodynamical Flows: Modeling. Analysis and Simulation, pp. 275–332. Birkhäuser Verlag, Berlin, Oberwolfach Seminars edition (2008) HeywoodJGRannacherRTurekSArtificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equationsInt. J. Numer. Meth. Fluids1996225325352138084410.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y LanzendörferMMálekJRajagopalKRNumerical simulations of an incompressible piezoviscous fluid flowing in a plane slider bearingMeccanica2018531–2209228376091610.1007/s11012-017-0731-0 BruneauC-HFabriePNew efficient boundary conditions for incompressible Navier–Stokes equations: a well-posedness resultMath. Model. Numer. Anal.1996307815840142308110.1051/m2an/1996300708151 LoggAMardalK-AWellsGNAutomated Solution of Differential Equations by the Finite Element Method2012BerlinSpringer10.1007/978-3-642-23099-8 Galdi, G.P.: Mathematical Problems in Classical and Non-Newtonian Fluid Mechanics. In: Galdi, G.P., Rannacher, R., Robertson, A.M., Turek, S. (eds.) Hemodynamical Flows: Modeling. Analysis and Simulation, pp. 121–274. Birkhäuser Verlag, Berlin, Oberwolfach Seminars edition (2008) Brezi, F., Fortin, M.: Mixed and hybrid finite element methods. In: Springer Series on Computational Mathematics, 15. Springer (1991) BraackMMuchaPBDirectional do-nothing condition for the Navier–Stokes equationsJ. Comput. Math.2014325507521325802510.4208/jcm.1405-m43471324.76015 GreshoP MSaniR LIncompressible Flow and the Finite Element Method: Advection Diffusion and Isothermal Laminar Flow1998New YorkWiley0941.76002 BotheDKöhneMPrüssJOn a class of energy preserving boundary conditions for incompressible newtonian flowsSIAM J. Math. Anal.201345637683822314383010.1137/1208706701286.35191 Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, Ch., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 15. Arch. Numer. Softw. (2015). https://doi.org/10.11588/ans.2015.100.20553 BertoglioCCaiazzoABazilevsYBraackMEsmailyMGravemeierVMarsdenALOVignon-ClementelIEWallWAInt. J. Numer. Methods Biomed. Eng.201810.1002/cnm.2918 NeustupaTA steady flow through a plane cascade of profiles with an arbitrarily large inflow–the mathematical model, existence of a weak solutionAppl. Math. Comput.2016272687691342337610.1016/j.amc.2015.05.0661410.35098 RannacherRA short course on numerical simulation of viscous flow: discretization, optimization and stability analysisDiscrete Contin. Dyn. Syst. Ser. S20125611471194296894010.3934/dcdss.2012.5.114706104996ISSN 19371632 LanzendörferMStebelJOn pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscositiesAppl. Math.2011563265285280057810.1007/s10492-011-0016-11224.35347 LoggAWellsGNDOLFIN: automated finite element computingACM Trans. Math. Softw.2010273822710.1145/1731022.17310301364.65254 472_CR12 R Rannacher (472_CR4) 2012; 5 D Bothe (472_CR6) 2013; 45 M Lanzendörfer (472_CR11) 2018; 53 A Logg (472_CR14) 2010 472_CR16 P M Gresho (472_CR15) 1998 T Neustupa (472_CR10) 2016; 272 JG Heywood (472_CR3) 1996; 22 472_CR2 472_CR1 M Braack (472_CR5) 2014; 32 C Bertoglio (472_CR7) 2018 C-H Bruneau (472_CR8) 1996; 30 M Lanzendörfer (472_CR9) 2011; 56 A Logg (472_CR13) 2012 |
References_xml | – reference: Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, Ch., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 15. Arch. Numer. Softw. (2015). https://doi.org/10.11588/ans.2015.100.20553 – reference: GreshoP MSaniR LIncompressible Flow and the Finite Element Method: Advection Diffusion and Isothermal Laminar Flow1998New YorkWiley0941.76002 – reference: Rannacher, R.: Methods for Numerical Flow Simulation. In: Galdi, G.P., Rannacher, R., Robertson, A.M., Turek, S. (eds.) Hemodynamical Flows: Modeling. Analysis and Simulation, pp. 275–332. Birkhäuser Verlag, Berlin, Oberwolfach Seminars edition (2008) – reference: LanzendörferMStebelJOn pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscositiesAppl. Math.2011563265285280057810.1007/s10492-011-0016-11224.35347 – reference: Brezi, F., Fortin, M.: Mixed and hybrid finite element methods. In: Springer Series on Computational Mathematics, 15. Springer (1991) – reference: RannacherRA short course on numerical simulation of viscous flow: discretization, optimization and stability analysisDiscrete Contin. Dyn. Syst. Ser. S20125611471194296894010.3934/dcdss.2012.5.114706104996ISSN 19371632 – reference: BruneauC-HFabriePNew efficient boundary conditions for incompressible Navier–Stokes equations: a well-posedness resultMath. Model. Numer. Anal.1996307815840142308110.1051/m2an/1996300708151 – reference: Galdi, G.P.: Mathematical Problems in Classical and Non-Newtonian Fluid Mechanics. In: Galdi, G.P., Rannacher, R., Robertson, A.M., Turek, S. (eds.) Hemodynamical Flows: Modeling. Analysis and Simulation, pp. 121–274. Birkhäuser Verlag, Berlin, Oberwolfach Seminars edition (2008) – reference: LanzendörferMMálekJRajagopalKRNumerical simulations of an incompressible piezoviscous fluid flowing in a plane slider bearingMeccanica2018531–2209228376091610.1007/s11012-017-0731-0 – reference: LoggAWellsGNDOLFIN: automated finite element computingACM Trans. Math. Softw.2010273822710.1145/1731022.17310301364.65254 – reference: BotheDKöhneMPrüssJOn a class of energy preserving boundary conditions for incompressible newtonian flowsSIAM J. Math. Anal.201345637683822314383010.1137/1208706701286.35191 – reference: BertoglioCCaiazzoABazilevsYBraackMEsmailyMGravemeierVMarsdenALOVignon-ClementelIEWallWAInt. J. Numer. Methods Biomed. Eng.201810.1002/cnm.2918 – reference: LoggAMardalK-AWellsGNAutomated Solution of Differential Equations by the Finite Element Method2012BerlinSpringer10.1007/978-3-642-23099-8 – reference: NeustupaTA steady flow through a plane cascade of profiles with an arbitrarily large inflow–the mathematical model, existence of a weak solutionAppl. Math. Comput.2016272687691342337610.1016/j.amc.2015.05.0661410.35098 – reference: HeywoodJGRannacherRTurekSArtificial boundaries and flux and pressure conditions for the incompressible Navier–Stokes equationsInt. J. Numer. Meth. Fluids1996225325352138084410.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y – reference: BraackMMuchaPBDirectional do-nothing condition for the Navier–Stokes equationsJ. Comput. Math.2014325507521325802510.4208/jcm.1405-m43471324.76015 – year: 2010 ident: 472_CR14 publication-title: ACM Trans. Math. Softw. doi: 10.1145/1731022.1731030 – volume: 272 start-page: 687 year: 2016 ident: 472_CR10 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.05.066 – volume: 45 start-page: 3768 issue: 6 year: 2013 ident: 472_CR6 publication-title: SIAM J. Math. Anal. doi: 10.1137/120870670 – volume-title: Automated Solution of Differential Equations by the Finite Element Method year: 2012 ident: 472_CR13 doi: 10.1007/978-3-642-23099-8 – volume-title: Incompressible Flow and the Finite Element Method: Advection Diffusion and Isothermal Laminar Flow year: 1998 ident: 472_CR15 – ident: 472_CR12 doi: 10.11588/ans.2015.100.20553 – ident: 472_CR1 doi: 10.1007/978-3-7643-7806-6_3 – volume: 5 start-page: 1147 issue: 6 year: 2012 ident: 472_CR4 publication-title: Discrete Contin. Dyn. Syst. Ser. S doi: 10.3934/dcdss.2012.5.1147 – ident: 472_CR16 doi: 10.1007/978-1-4612-3172-1 – volume: 32 start-page: 507 issue: 5 year: 2014 ident: 472_CR5 publication-title: J. Comput. Math. doi: 10.4208/jcm.1405-m4347 – volume: 22 start-page: 325 issue: 5 year: 1996 ident: 472_CR3 publication-title: Int. J. Numer. Meth. Fluids doi: 10.1002/(SICI)1097-0363(19960315)22:5<325::AID-FLD307>3.0.CO;2-Y – volume: 53 start-page: 209 issue: 1–2 year: 2018 ident: 472_CR11 publication-title: Meccanica doi: 10.1007/s11012-017-0731-0 – volume-title: Int. J. Numer. Methods Biomed. Eng. year: 2018 ident: 472_CR7 doi: 10.1002/cnm.2918 – volume: 56 start-page: 265 issue: 3 year: 2011 ident: 472_CR9 publication-title: Appl. Math. doi: 10.1007/s10492-011-0016-1 – volume: 30 start-page: 815 issue: 7 year: 1996 ident: 472_CR8 publication-title: Math. Model. Numer. Anal. doi: 10.1051/m2an/1996300708151 – ident: 472_CR2 doi: 10.1007/978-3-7643-7806-6_4 |
SSID | ssj0017592 |
Score | 2.2294314 |
Snippet | The boundary conditions prescribing the constant traction or the so-called
do-nothing
conditions are frequently taken on artificial boundaries in the numerical... The boundary conditions prescribing the constant traction or the so-called do-nothing conditions are frequently taken on artificial boundaries in the numerical... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Bifurcations Boundary conditions Classical and Continuum Physics Computational fluid dynamics Computer simulation Exact solutions Fluid flow Fluid mechanics Fluid- and Aerodynamics Incompressible flow Incompressible fluids Inflow Mathematical Methods in Physics Physics Physics and Astronomy Radial flow Steady flow Theoretical mathematics Three dimensional flow Traction Unsteady flow Well posed problems |
Title | On Multiple Solutions to the Steady Flow of Incompressible Fluids Subject to Do-nothing or Constant Traction Boundary Conditions on Artificial Boundaries |
URI | https://link.springer.com/article/10.1007/s00021-019-0472-z https://www.proquest.com/docview/2330805748 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1422-6952 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017592 issn: 1422-6928 databaseCode: AFBBN dateStart: 19990401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1422-6952 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017592 issn: 1422-6928 databaseCode: AGYKE dateStart: 19990101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1422-6952 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017592 issn: 1422-6928 databaseCode: U2A dateStart: 19990401 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwEB3RrZC4UCggFspqDpxArrJx7CTH3dJQgVoObKVyimLHkSpWCdpkhbp_wt8ydpxUVIDUqz22bI1n_Ox5HgO8LcJE8SROmUhUwKJYSFbISDIlkrgyhrZMl7fg_EKeXUafrsSVf8fdDmz3ISTpPPX42C1wdILAPrqJ4pDt9mBf2PPJBPYXH799Ph2DB7FwfyHb2w0m0zAZgpl_6-TP7egWY94Ji7rdJjuA1TDOnmTy_XjbqWO9u5PC8Z4TeQKPPfrERb9cnsIDUx_CgUei6O28PYSHjhiq22fw60uN5550iOMdGnYNEnJEywYubzBbNz-xqZCcDbkXx6xVJJ6tt9dli-Sb7GWPbfOhYTUtDRotNhs86bFph6tN_7wCl-6Tp82NrSp7MhlSsR1vn-likKDz_XP4mp2uTs6Y_86BaS54x0wRFCrWWiQ29lvJSJRG2mw5tF0oC0wSE4jKCoSSa8nLoDKVmatC06qZ8xcwqZvavASs4nROp5xICF1EKU8V52VJOFSFhgo5n0Iw6DTXPtO5_XBjnY85mp0KclJBblWQ76bwbmzyo0_z8T_ho2Gh5N7i2zzkNBUCv1EyhfeD3m-r_9nZq3tJv4ZHoT3wOxLcEUy6zda8IVTUqRlZQbZcXsy8Ncxg7zJc_AYM4Aca |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3BVgguFAoVCy34wAnkKht_xDmWtstCu-XAIpVTFDuOhFglaJMV6v4T_i1jx0nVqiD1ao8tW2PPPHuexwBv81hpppKUCqUjyhMhaS65pFqopLQWXabPWzA_l7Nv_POFuAjvuJue7d6HJL2lHh67RZ5OELlHNzyJ6eY-bPGJUnwEW4cfv5-eDMGDRPi_kN3tBpVprPpg5m2dXHdHVxjzRljUe5vpNiz6cXYkk58H61YfmM2NFI53nMgTeBzQJznslstTuGerHdgOSJSEfd7swANPDDXNM_jzpSLzQDokwx0aaWuCyJE4NnBxSabL-jepS4LGBs2LZ9ZqFJ8u1z-KhqBtcpc9rs1xTStcGjhaUq_IUYdNW7JYdc8ryAf_ydPq0lUVHZmMYLEbb5fpopfA8_1z-Do9WRzNaPjOgRomWEttHuU6MUYoF_stJReFlS5bDroL7YCJspEonUAsmZGsiEpb2onODa6aCduFUVVX9gWQMkkneMrhQpicpyzVjBUF4lAdWyxkbAxRr9PMhEzn7sONZTbkaPYqyFAFmVNBthnDu6HJry7Nx_-E9_qFkoUd32Qxw6kg-OVqDO97vV9V_7Ozl3eSfgMPZ4v5WXb26fz0FTyK3eHfE-L2YNSu1nYfEVKrX4cd8Rcplgem |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS91AEB6sYumL9VZ6rNp58MmymJO9JHm0alDrDargW8gmGxAOyeEkUvSf-G-d3Vyk0gq-ZmeXTSY7883ODWAn9UPNwyBiMtQeE4FULFVCMS3DoDCGVKarW3B-oY5vxOmtvO36nNZ9tHvvkmxzGmyVprLZm-bF3pD45rnQAs8m4IjAZ48fYEGQqrbW142_P7gRAum6Itt7DqYiP-zdmv9a4m_F9II2XzlInd6Jl2GpA4y433J4BeZMuQqfO_CI3dGsV2HRxXJm9Ro8XZZ43sUJ4nDthU2FBPbQBvDmDxhPqj9YFUjygSSCC4bVRB5P7u_yGkmc2PsZO-ewYiVxk_aG1QwPWjjZ4PWszYjAn64v0-zBDuVt_BfSY7vftjhFT0Em-Tr8jo-uD45Z14GBZVzyhpnUS3WQZTK07tpCCZkbZQvckITXFkuExpOFJfAVzxTPvcIUZqzTjBg95l9gvqxK8xWwCKIxGSZCyiwVEY8053lO0FH7hh5yPgKv__hJ1hUntz0yJslQVtnxKyF-JZZfyeMIdocp07Yyx1vEmz1Hk-6Q1onP6VUIr4pwBD96Lr8M_3exjXdRf4ePV4dxcnZy8esbfPKtue5C2DZhvpndmy3CNI3edv_tM02p7tg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Multiple+Solutions+to+the+Steady+Flow+of+Incompressible+Fluids+Subject+to+Do-nothing+or+Constant+Traction+Boundary+Conditions+on+Artificial+Boundaries&rft.jtitle=Journal+of+mathematical+fluid+mechanics&rft.au=Lanzend%C3%B6rfer%2C+M&rft.au=Hron%2C+J&rft.date=2020-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1422-6928&rft.eissn=1422-6952&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1007%2Fs00021-019-0472-z&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1422-6928&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1422-6928&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1422-6928&client=summon |