Quasi-optimal convergence of AFEM based on separate marking, Part II

Various applications in computational fluid dynamics and solid mechanics motivate the development of reliable and efficient adaptive algorithms for nonstandard finite element methods (FEMs). Standard adaptive finite element algorithms consist of the iterative loop of the basic steps Solve, Estimate,...

Full description

Saved in:
Bibliographic Details
Published inJournal of numerical mathematics Vol. 23; no. 2; pp. 157 - 174
Main Author Rabus, Hella
Format Journal Article
LanguageEnglish
Published Berlin De Gruyter 01.06.2015
Walter de Gruyter GmbH
Subjects
Online AccessGet full text
ISSN1570-2820
1569-3953
DOI10.1515/jnma-2015-0011

Cover

Abstract Various applications in computational fluid dynamics and solid mechanics motivate the development of reliable and efficient adaptive algorithms for nonstandard finite element methods (FEMs). Standard adaptive finite element algorithms consist of the iterative loop of the basic steps Solve, Estimate, Mark, and Refine. For separate marking strategies, this standard scheme may be universalised. The (total) error estimator is split into a volume term and an error estimator term. Since the volume term is independent of the discrete solution, an appropriate data approximation may be realised by a high degree of local mesh refinement. This observation results in a natural adaptive algorithm based on separate marking. Its quasi-optimal convergence is proven in this second part for the pure displacement problem in linear elasticity and the Stokes equations and nonconforming Crouzeix-Raviart FEM. The proofs follow the same general methodology as for the Poisson model problem in the first part of this series. The numerical experiments confirm the optimal convergence rates and reveal its flexibility.
AbstractList Various applications in computational fluid dynamics and solid mechanics motivate the development of reliable and efficient adaptive algorithms for nonstandard finite element methods (FEMs). Standard adaptive finite element algorithms consist of the iterative loop of the basic steps Solve, Estimate, Mark, and Refine. For separate marking strategies, this standard scheme may be universalised. The (total) error estimator is split into a volume term and an error estimator term. Since the volume term is independent of the discrete solution, an appropriate data approximation may be realised by a high degree of local mesh refinement. This observation results in a natural adaptive algorithm based on separate marking. Its quasi-optimal convergence is proven in this second part for the pure displacement problem in linear elasticity and the Stokes equations and nonconforming Crouzeix-Raviart FEM. The proofs follow the same general methodology as for the Poisson model problem in the first part of this series. The numerical experiments confirm the optimal convergence rates and reveal its flexibility.
Various applications in computational fluid dynamics and solid mechanics motivate the development of reliable and efficient adaptive algorithms for nonstandard finite element methods (FEMs). Standard adaptive finite element algorithms consist of the iterative loop of the basic steps Solve, Estimate, Mark, and Refine. For separate marking strategies, this standard scheme may be universalised. The (total) error estimator is split into a volume term and an error estimator term. Since the volume term is independent of the discrete solution, an appropriate data approximation may be realised by a high degree of local mesh refinement. This observation results in a natural adaptive algorithm based on separate marking. Its quasi-optimal convergence is proven in this second part for the pure displacement problem in linear elasticity and the Stokes equations and nonconforming Crouzeix-Raviart FEM. The proofs follow the same general methodology as for the Poisson model problem in the first part of this series. The numerical experiments confirm the optimal convergence rates and reveal its flexibility.
Author Rabus, Hella
Author_xml – sequence: 1
  givenname: Hella
  surname: Rabus
  fullname: Rabus, Hella
  email: rabus@math.hu-berlin.de
  organization: Institute of Mathematics, Humboldt-Universität zu Berlin
BookMark eNp1kU1rGzEQQEVIoYmba8-CXnrIuvpYSSvoxeSjMbg0gfQsxruzZp215EjaBP_77uIeQmhPmsN7YnhzTk598EjIZ87mXHH1bet3UAjGVcEY5yfkjCttC2mVPJ1mwwpRCfaRnKe0HQmjpDwj1w8DpK4I-9ztoKd18C8YN-hrpKGli9ubn3QNCRsaPE24hwgZ6Q7iU-c3l_QeYqbL5SfyoYU-4cXfd0Z-3948Xt0Vq18_lleLVVFLJXPR2FYjQssUa0vBq9pKaKU2a7OGxpZKK9CNQmnRqAq0KVtu1rZhJa8EmJLJGfl6_Hcfw_OAKbtdl2rse_AYhuR4xTWzXFs5ol_eodswRD9u57hhQmirxUTNj1QdQ0oRW7ePY4d4cJy5KaqboropqpuijkL5Tqi7DLkLPkfo-v9r34_aK_QZY4ObOBzG4c1S_xSFFOPh5B-Bmo8Y
CitedBy_id crossref_primary_10_1515_cmam_2019_0034
ContentType Journal Article
Copyright Copyright Walter de Gruyter GmbH Jun 2015
Copyright_xml – notice: Copyright Walter de Gruyter GmbH Jun 2015
DBID AAYXX
CITATION
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
DOI 10.1515/jnma-2015-0011
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Aerospace Database
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1569-3953
EndPage 174
ExternalDocumentID 3772245071
10_1515_jnma_2015_0011
10_1515_jnma_2015_0011232157
GroupedDBID 0R~
0~D
4.4
5GY
AAAEU
AADQG
AAFPC
AAGVJ
AAJBH
AALGR
AAONY
AAOUV
AAPJK
AAQCX
AARVR
AASOL
AASQH
AAWFC
AAXCG
ABAOT
ABAQN
ABFKT
ABIQR
ABJNI
ABMBZ
ABPLS
ABRQL
ABSOE
ABUVI
ABWLS
ABXMZ
ABYKJ
ACDEB
ACEFL
ACGFS
ACIWK
ACMKP
ACPMA
ACUND
ACXLN
ACZBO
ADALX
ADEQT
ADGQD
ADGYE
ADJVZ
ADNPR
ADOZN
AECWL
AEGVQ
AEGXH
AEICA
AEJTT
AEKEB
AENEX
AEQDQ
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFGNR
AFQUK
AFYRI
AGBEV
AHGBP
AHVWV
AHXUK
AIERV
AIKXB
AIWOI
AJATJ
AKXKS
ALMA_UNASSIGNED_HOLDINGS
AMAVY
AMVHM
ASYPN
AZMOX
BAKPI
BBCWN
BCIFA
BLHJL
CFGNV
CS3
DSRVY
DU5
EBS
EJD
FSTRU
HZ~
IY9
KDIRW
O9-
PQQKQ
QD8
RDG
SA.
SLJYH
UK5
WTRAM
AAYXX
CITATION
7SC
7TB
7U5
8FD
FR3
H8D
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c353t-d9f6eeaf050f4218c93af367b7bad94565a6d5e39e758a674f17b9d04182a7403
ISSN 1570-2820
IngestDate Thu Oct 02 04:48:19 EDT 2025
Wed Aug 13 10:01:36 EDT 2025
Thu Apr 24 23:05:27 EDT 2025
Wed Oct 01 03:24:09 EDT 2025
Sat Sep 06 17:03:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c353t-d9f6eeaf050f4218c93af367b7bad94565a6d5e39e758a674f17b9d04182a7403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1702269623
PQPubID 2030169
PageCount 18
ParticipantIDs proquest_miscellaneous_1816091693
proquest_journals_1702269623
crossref_primary_10_1515_jnma_2015_0011
crossref_citationtrail_10_1515_jnma_2015_0011
walterdegruyter_journals_10_1515_jnma_2015_0011232157
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-06-01
PublicationDateYYYYMMDD 2015-06-01
PublicationDate_xml – month: 06
  year: 2015
  text: 2015-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Journal of numerical mathematics
PublicationYear 2015
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
SSID ssj0017533
Score 1.9957231
Snippet Various applications in computational fluid dynamics and solid mechanics motivate the development of reliable and efficient adaptive algorithms for nonstandard...
SourceID proquest
crossref
walterdegruyter
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 157
SubjectTerms Adaptive algorithms
adaptive finite element method
AFEM
Algorithms
ANCFEM
Computational fluid dynamics
Convergence
Crouzeix-Raviart
Estimators
Finite element analysis
Finite element method
linear elasticity
Mathematical analysis
Mathematical models
nonconform FEM
Nonlinear programming
nonstandard FEM
optimal convergence
separate marking
Stokes equations
Title Quasi-optimal convergence of AFEM based on separate marking, Part II
URI https://www.degruyter.com/doi/10.1515/jnma-2015-0011
https://www.proquest.com/docview/1702269623
https://www.proquest.com/docview/1816091693
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1569-3953
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017533
  issn: 1570-2820
  databaseCode: AMVHM
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVAZK
  databaseName: de Gruyter: Complete Journal Package 2023 [unlimited simultaneous users]
  customDbUrl:
  eissn: 1569-3953
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017533
  issn: 1570-2820
  databaseCode: AGBEV
  dateStart: 20010301
  isFulltext: true
  titleUrlDefault: https://www.degruyterbrill.com
  providerName: Walter de Gruyter
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK98LL-BaFgYyExMMwJHHs4McCHeskkJA2tLfIjh0E6hLUJCD46zl_JE3HhmAvUevaTpr73fl39vmM0NNCaYAB50TwIiVpakqiYCAjWmRxbBjVZemiLT7ww5P06JSdTiZHo6ilrlUvil8X7iu5ilShDORqd8n-h2SHTqEAPoN84QoShus_yfhjJ5svpAatP3NpPqrvfi-lmweYHyze79tBStsFgca4JN82XNXNjnv2uG73l8tL-GnV-cWcFTTpU7tuAuOl6powbK3keOogZpsQJx__AThcdz_7MOBgALOIgBvm10pMKOOCUOGT-vZW0-8SDuhIRiYw9gmnw2ga-zN4_jDUzOW0-FqdSeKfLAo2dysj9rmRaogftJ4L9JDb9rlt70LzgBzCza-hnQQsfDRFO_N3rxefhjUlcMzcdov-H4YUntDPy-3n2KYoG79j94eLYNDms39rIyJyfBPtBgnhuYfDLTQx1W10I3gTONjq5g56u4UOPEIHrkts0YEdOnBd4R4dOKDjObbYwMvlXXRysDh-c0jCmRmkoIy2oGMlN0aWEYvKFOhbIagsKc9UpqQWlr5LrpmhwoCjKHmWlnGmhI5S8DNllkb0HppWdWXuI8xZphJGWZQYmYLKikJLmVDQ-gi-KD5DpH9NeRESyttzTVb5xeKZoWdD_W8-lcqlNff6t54HdWvyOAO6yQXQ9Rl6MvwMxtCucMnK1B3UeRVzIMBcQB12Tlqjnv6CngdXbPcQXd9o2B6atuvOPAK62qrHAYe_AST3kfk
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagPcClLS-xpS1GQuKCu8n6VR8X2GUX2gqkFvUW-Qm03aTqJkLtr2ecZNOlwAWOUSaO7fns-cYejxF6aY0DGAhBlLCMMOYDMWDIiFMyTT2nLoQ62uJQTI7ZhxN-snQWJoZVOv_1sroqmwypfVfYKi6UdbkGwAL3T_OZBgWnnERO0_9Wzs7volVwVhgMztXh-zejL91eAhDyOsyey4SAg5G0qRt_L-ZX03TDN9d-1DvXXbWWDNB4HdlF1Zu4k7PdqjS79vpWVsf_a9sGWmv5KR42gHqA7vj8IVpvuSpuZ4L5I_Tuc6Xn30kBM84M5Ovg9focp8dFwMPx6ABHA-lwkeO5rxOMezzT9cr8a_wJAIun08foeDw6ejsh7Y0MxFJOS9BgEN7rkPAkMCAHVlEdqJBGGu1UJIdaOO6p8uCGaCFZSKVRDrSyN9CSJfQJWsmL3D9FWHBpBpzyZOA1A0Ao67QeUMBUAg9G9BBZKCOzbbryeGvGeRbdFuinLPZTFvupjsvroVed_EWTqOOvklsL3WbtgJ1nqQQyIxSQwR560b2GoRb3T3Tuiwpk9lIB9EookOG3MLFU0h9_CsQVALj5j989R_cmRwf72f708OMzdL8BR1wJ2kIr5WXlt4EYlWanRf5P_EEITA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkJc2vISCy0YCYkL7ibrR_BxS3fp8qiKRBG3yI5txGOTqkmE4Nd3nHhDKXCBY5SJ43g-e74ZT8YAjwtjEQZSUiULTjl3nho0ZNSqLE2dYNb7LtviSB6e8JcfxDqbsI5pldZ9PGu_N32F1ImtijYEyoZaA2iBJ5_LlUYFp4IGTjM5tf4qbKCtl3wEG7MX-_P3w1YC8vEuy15kCUX_IomVG39v5VfL9JNubn7rNq6HXl2wP4stMOue92knX_baxuwVPy4VdfyvT9uGzchOyayH0w244sqbsBWZKonrQH0LDt62uv5EK1xvVijfpa53f3E6UnkyW8zfkGAeLalKUruuvLgjK93F5Z-SY4QrWS5vw8li_u75IY3nMdCCCdag_rx0TvtEJJ4jNSgU057JzGRGWxWooZZWOKYcOiFaZtynmVE24ejD6Iwn7A6Myqp0d4FIkZmpYCKZOs0RDqqwWk8ZIirBCyPHQNe6yItYrDycmfE1D04LDlMehikPw9Rl5Y3hySB_2pfp-Kvkzlq1eZyudZ5mSGWkQio4hkfDbZxoYfdEl65qUeZZKpFcSYUy4hIkLrT0x5cibUX83fvH5x7CteODRf56efTqPlzvoRHCQDswas5at4usqDEPIu7PAQycBwU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-optimal+convergence+of+AFEM+based+on+separate+marking%2C+Part+II&rft.jtitle=Journal+of+numerical+mathematics&rft.au=Rabus%2C+Hella&rft.date=2015-06-01&rft.pub=De+Gruyter&rft.issn=1570-2820&rft.eissn=1569-3953&rft.volume=23&rft.issue=2&rft.spage=157&rft.epage=174&rft_id=info:doi/10.1515%2Fjnma-2015-0011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1515_jnma_2015_0011232157
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1570-2820&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1570-2820&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1570-2820&client=summon