Transcutaneous auricular vagus stimulation (taVNS) improves human working memory performance under sleep deprivation stress
Many human activities require high cognitive performance over long periods, while impairments induced by sleep deprivation influence various aspects of cognitive abilities, including working memory (WM), attention, and processing speed. Based on previous research, vagal nerve stimulation can modulat...
Saved in:
Published in | Behavioural brain research Vol. 439; p. 114247 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
15.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0166-4328 1872-7549 1872-7549 |
DOI | 10.1016/j.bbr.2022.114247 |
Cover
Abstract | Many human activities require high cognitive performance over long periods, while impairments induced by sleep deprivation influence various aspects of cognitive abilities, including working memory (WM), attention, and processing speed. Based on previous research, vagal nerve stimulation can modulate cognitive abilities, attention, and arousal. Two experiments were conducted to assess the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) to relieve the deleterious effects of sleep deprivation. In the first experiment, 35 participants completed N-back tasks at 8:00 a.m. for two consecutive days in a within-subject study. Then, the participants received either taVNS or earlobe stimulation (active control) intervention in two sessions at random orders after 24 h of sustained wakefulness. Then, they completed the N-back tasks again. In the second experiment, 30 participants completed the psychomotor vigilance task (PVT), and 32 completed the N-back tasks at 8:00 a.m. on the first and second days. Then, they received either taVNS or earlobe stimulation at random orders and finished the N-back and PVT tasks immediately after one hour. In Experiment 1, taVNS could significantly improve the accuracy rate of participants in spatial 3-back tasks compared to active control, which was consistent with experiment 2. However, taVNS did not specifically enhance PVT performance. Therefore, taVNS could be a powerful intervention for acute sleep deprivation as it can improve performance on high cognitive load tasks and is easy to administer.
•Working memory and alertness were impaired stably after 24-hour sleep deprivation.•taVNS improved working memory performance accuracy after 24-hour sleep deprivation.•taVNS showed large potential to be a fatigue countermeasure after sleep deprivation. |
---|---|
AbstractList | Many human activities require high cognitive performance over long periods, while impairments induced by sleep deprivation influence various aspects of cognitive abilities, including working memory (WM), attention, and processing speed. Based on previous research, vagal nerve stimulation can modulate cognitive abilities, attention, and arousal. Two experiments were conducted to assess the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) to relieve the deleterious effects of sleep deprivation. In the first experiment, 35 participants completed N-back tasks at 8:00 a.m. for two consecutive days in a within-subject study. Then, the participants received either taVNS or earlobe stimulation (active control) intervention in two sessions at random orders after 24 h of sustained wakefulness. Then, they completed the N-back tasks again. In the second experiment, 30 participants completed the psychomotor vigilance task (PVT), and 32 completed the N-back tasks at 8:00 a.m. on the first and second days. Then, they received either taVNS or earlobe stimulation at random orders and finished the N-back and PVT tasks immediately after one hour. In Experiment 1, taVNS could significantly improve the accuracy rate of participants in spatial 3-back tasks compared to active control, which was consistent with experiment 2. However, taVNS did not specifically enhance PVT performance. Therefore, taVNS could be a powerful intervention for acute sleep deprivation as it can improve performance on high cognitive load tasks and is easy to administer.
•Working memory and alertness were impaired stably after 24-hour sleep deprivation.•taVNS improved working memory performance accuracy after 24-hour sleep deprivation.•taVNS showed large potential to be a fatigue countermeasure after sleep deprivation. Many human activities require high cognitive performance over long periods, while impairments induced by sleep deprivation influence various aspects of cognitive abilities, including working memory (WM), attention, and processing speed. Based on previous research, vagal nerve stimulation can modulate cognitive abilities, attention, and arousal. Two experiments were conducted to assess the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) to relieve the deleterious effects of sleep deprivation. In the first experiment, 35 participants completed N-back tasks at 8:00 a.m. for two consecutive days in a within-subject study. Then, the participants received either taVNS or earlobe stimulation (active control) intervention in two sessions at random orders after 24 h of sustained wakefulness. Then, they completed the N-back tasks again. In the second experiment, 30 participants completed the psychomotor vigilance task (PVT), and 32 completed the N-back tasks at 8:00 a.m. on the first and second days. Then, they received either taVNS or earlobe stimulation at random orders and finished the N-back and PVT tasks immediately after one hour. In Experiment 1, taVNS could significantly improve the accuracy rate of participants in spatial 3-back tasks compared to active control, which was consistent with experiment 2. However, taVNS did not specifically enhance PVT performance. Therefore, taVNS could be a powerful intervention for acute sleep deprivation as it can improve performance on high cognitive load tasks and is easy to administer. Many human activities require high cognitive performance over long periods, while impairments induced by sleep deprivation influence various aspects of cognitive abilities, including working memory (WM), attention, and processing speed. Based on previous research, vagal nerve stimulation can modulate cognitive abilities, attention, and arousal. Two experiments were conducted to assess the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) to relieve the deleterious effects of sleep deprivation. In the first experiment, 35 participants completed N-back tasks at 8:00 a.m. for two consecutive days in a within-subject study. Then, the participants received either taVNS or earlobe stimulation (active control) intervention in two sessions at random orders after 24 h of sustained wakefulness. Then, they completed the N-back tasks again. In the second experiment, 30 participants completed the psychomotor vigilance task (PVT), and 32 completed the N-back tasks at 8:00 a.m. on the first and second days. Then, they received either taVNS or earlobe stimulation at random orders and finished the N-back and PVT tasks immediately after one hour. In Experiment 1, taVNS could significantly improve the accuracy rate of participants in spatial 3-back tasks compared to active control, which was consistent with experiment 2. However, taVNS did not specifically enhance PVT performance. Therefore, taVNS could be a powerful intervention for acute sleep deprivation as it can improve performance on high cognitive load tasks and is easy to administer.Many human activities require high cognitive performance over long periods, while impairments induced by sleep deprivation influence various aspects of cognitive abilities, including working memory (WM), attention, and processing speed. Based on previous research, vagal nerve stimulation can modulate cognitive abilities, attention, and arousal. Two experiments were conducted to assess the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) to relieve the deleterious effects of sleep deprivation. In the first experiment, 35 participants completed N-back tasks at 8:00 a.m. for two consecutive days in a within-subject study. Then, the participants received either taVNS or earlobe stimulation (active control) intervention in two sessions at random orders after 24 h of sustained wakefulness. Then, they completed the N-back tasks again. In the second experiment, 30 participants completed the psychomotor vigilance task (PVT), and 32 completed the N-back tasks at 8:00 a.m. on the first and second days. Then, they received either taVNS or earlobe stimulation at random orders and finished the N-back and PVT tasks immediately after one hour. In Experiment 1, taVNS could significantly improve the accuracy rate of participants in spatial 3-back tasks compared to active control, which was consistent with experiment 2. However, taVNS did not specifically enhance PVT performance. Therefore, taVNS could be a powerful intervention for acute sleep deprivation as it can improve performance on high cognitive load tasks and is easy to administer. |
ArticleNumber | 114247 |
Author | Chang, Meng-Ying He, Zhao-Yang Xu, Neng-Gui Lu, Li-Ming Yang, Xue-Juan Kong, Yao Qin, Wei Cheng, Chen Sun, Jin-Bo Cui, Ya-Peng Tian, Qian-Qian Tang, Chun-Zhi Wang, Fu-Min Du, Meng-Yu Zhao, Rui Deng, Hui |
Author_xml | – sequence: 1 givenname: Rui surname: Zhao fullname: Zhao, Rui organization: School of Electronics and Information, Xi’an Polytechnic University, Xi’an, China – sequence: 2 givenname: Meng-Ying surname: Chang fullname: Chang, Meng-Ying organization: School of Electronics and Information, Xi’an Polytechnic University, Xi’an, China – sequence: 3 givenname: Chen surname: Cheng fullname: Cheng, Chen organization: Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi 710126, China – sequence: 4 givenname: Qian-Qian surname: Tian fullname: Tian, Qian-Qian organization: Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi 710126, China – sequence: 5 givenname: Xue-Juan surname: Yang fullname: Yang, Xue-Juan email: xjyang@xidian.edu.cn organization: Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi 710126, China – sequence: 6 givenname: Meng-Yu surname: Du fullname: Du, Meng-Yu organization: Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi 710126, China – sequence: 7 givenname: Ya-Peng surname: Cui fullname: Cui, Ya-Peng organization: Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi 710126, China – sequence: 8 givenname: Zhao-Yang surname: He fullname: He, Zhao-Yang organization: School of Electronics and Information, Xi’an Polytechnic University, Xi’an, China – sequence: 9 givenname: Fu-Min surname: Wang fullname: Wang, Fu-Min organization: School of Electronics and Information, Xi’an Polytechnic University, Xi’an, China – sequence: 10 givenname: Yao surname: Kong fullname: Kong, Yao organization: School of Electronics and Information, Xi’an Polytechnic University, Xi’an, China – sequence: 11 givenname: Hui surname: Deng fullname: Deng, Hui organization: Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi 710126, China – sequence: 12 givenname: Li-Ming surname: Lu fullname: Lu, Li-Ming organization: South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China – sequence: 13 givenname: Chun-Zhi surname: Tang fullname: Tang, Chun-Zhi organization: South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China – sequence: 14 givenname: Neng-Gui surname: Xu fullname: Xu, Neng-Gui organization: South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China – sequence: 15 givenname: Jin-Bo surname: Sun fullname: Sun, Jin-Bo email: sunjb@xidian.edu.cn organization: Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi 710126, China – sequence: 16 givenname: Wei surname: Qin fullname: Qin, Wei organization: Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi 710126, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36473677$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kT1vFDEQhi2UiFwCP4AGuQzFXvy161tRoSgJSBEUBFrLa4-Dj_04xt5DUf58HDZQUKQajeZ5RzPve0wOxmkEQt5wtuaMN2fbddfhWjAh1pwrofQLsuIbLSpdq_aArArTVEqKzRE5TmnLGFOs5i_JkWyUlo3WK3J_g3ZMbs52hGlO1M4Y3dxbpHt7W_qU41DaHKeRnmb7_fPXdzQOO5z2kOiPebAj_T3hzzje0gGGCe_oDjBMWAYO6Dx6QJp6gB31sMO4XzaljJDSK3IYbJ_g9VM9Id8uL27OP1bXX64-nX-4rpysZa587UGyRm6s5sy1QWihW-tDU6uuDWVkofGWW-uZa5RUomVt8EJapoINqpMn5HTZW87-NUPKZojJQd8vPxuh67reMCZUQd8-oXM3gDfl5MHinflrWAH4AjicUkII_xDOzGMoZmtKKOYxFLOEUjT6P42L-Y8RGW3sn1W-X5RQ7NlHQJNchOKsjwguGz_FZ9QPVvupQw |
CitedBy_id | crossref_primary_10_3389_fnagi_2023_1145207 crossref_primary_10_3389_fpsyg_2024_1343413 crossref_primary_10_3389_fnins_2024_1494272 crossref_primary_10_1016_j_brs_2024_04_002 crossref_primary_10_1016_j_neuroscience_2024_12_044 crossref_primary_10_1016_j_sleep_2024_11_007 crossref_primary_10_3389_felec_2025_1503425 crossref_primary_10_1016_j_neurom_2025_01_003 crossref_primary_10_1111_psyp_14744 crossref_primary_10_1007_s10286_024_01053_0 crossref_primary_10_3389_fnins_2023_1133964 crossref_primary_10_1016_j_sleep_2024_11_010 |
Cites_doi | 10.1016/S0959-4388(98)80145-1 10.1007/s11682-018-9868-2 10.1016/j.brs.2015.10.006 10.1016/B978-0-444-53702-7.00007-5 10.1016/j.neuropsychologia.2018.01.003 10.1016/S1566-0702(00)00219-8 10.1016/j.brainres.2015.11.022 10.3389/fnhum.2018.00202 10.1523/JNEUROSCI.3248-07.2008 10.1038/s41380-019-0499-9 10.1080/00207450802323970 10.5535/arm.2012.36.5.585 10.1016/0031-9384(80)90020-7 10.1038/35001068 10.1038/s41467-018-07233-7 10.1016/j.brs.2020.02.019 10.1016/0165-1781(89)90047-4 10.1016/j.neuroscience.2011.05.024 10.1016/j.jneumeth.2019.108325 10.3389/fnhum.2018.00276 10.1007/s11682-015-9490-5 10.1037/a0018883 10.1111/ane.12462 10.1007/s00426-020-01292-6 10.1016/j.smrv.2015.12.005 10.1016/j.sleep.2020.11.010 10.1002/hbm.24596 10.1037/xlm0001023 10.1038/s41467-020-17344-9 10.5664/jcsm.26918 10.1016/j.neuroscience.2005.07.002 10.1007/s00221-005-2334-6 10.1016/S0165-0173(03)00143-7 10.3389/fnins.2021.790793 10.1016/j.sleep.2020.06.019 10.1146/annurev.neuro.25.032502.111311 10.1016/j.neuroscience.2018.11.049 10.1016/j.neuroscience.2017.09.047 10.2174/157015908785777193 10.1016/j.brs.2021.02.010 10.1016/S0306-4522(02)00026-X 10.1093/sleep/zsz016 10.1016/j.brs.2017.08.005 10.3389/fnins.2020.00754 10.1038/nature19773 10.1093/sleep/30.1.61 10.1002/hbm.25886 10.1097/WNR.0000000000001462 10.1016/j.brs.2016.07.004 10.1111/jsr.12354 10.1016/j.psc.2015.07.002 10.1155/2019/7030286 10.1073/pnas.1510383112 10.1016/j.brs.2017.12.009 10.1542/peds.2008-1182 10.1016/j.cpr.2010.11.003 10.1111/jsr.12582 10.1097/WNR.0b013e3282f2adfd 10.1016/j.heliyon.2021.e08336 10.1038/s42003-021-02145-7 10.1016/j.brainres.2018.09.033 10.1016/j.cortex.2017.03.017 10.3389/fnins.2022.947236 10.2147/NSS.S342922 10.3390/brainsci8070137 10.1016/j.cub.2015.09.039 10.14814/phy2.12129 10.1196/annals.1417.002 10.1111/j.1365-2869.1995.tb00220.x 10.1111/head.12647 10.1016/j.conb.2013.02.008 10.5935/1984-0063.20220007 10.1038/40775 10.1016/j.brs.2016.10.001 10.1007/s11065-020-09454-4 10.1111/ner.12541 10.1016/S1389-9457(00)00065-4 10.1016/S0079-6123(07)63018-0 |
ContentType | Journal Article |
Copyright | 2022 Elsevier B.V. Copyright © 2022 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.bbr.2022.114247 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1872-7549 |
ExternalDocumentID | 36473677 10_1016_j_bbr_2022_114247 S0166432822005162 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 6J9 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO ABCQJ ABFNM ABFRF ABIVO ABJNI ABMAC ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGUBO AGWIK AGYEJ AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC C45 CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM L7B M2V M41 MO0 MOBAO N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SPCBC SSN SSZ T5K TEORI TN5 WH7 YR2 ~G- .GJ 41~ 5VS AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGHFR AGQPQ AHHHB AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HMQ HVGLF HZ~ R2- SEW SNS VH1 WUQ XJT ZGI ZXP ZY4 ~HD AGCQF AGRNS BNPGV CGR CUY CVF ECM EIF NPM SSH 7X8 |
ID | FETCH-LOGICAL-c353t-d5de30638a710c9f27279adf654b9fe30ae6da1aad0c64342909fd23a04faf4b3 |
IEDL.DBID | .~1 |
ISSN | 0166-4328 1872-7549 |
IngestDate | Fri Sep 05 08:13:23 EDT 2025 Mon Jul 21 05:45:31 EDT 2025 Thu Apr 24 23:12:30 EDT 2025 Wed Oct 01 03:00:58 EDT 2025 Fri Feb 23 02:40:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Non-invasive neuromodulation TaVNS Working memory Fatigue countermeasure Sleep deprivation |
Language | English |
License | Copyright © 2022 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-d5de30638a710c9f27279adf654b9fe30ae6da1aad0c64342909fd23a04faf4b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 36473677 |
PQID | 2755580024 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2755580024 pubmed_primary_36473677 crossref_primary_10_1016_j_bbr_2022_114247 crossref_citationtrail_10_1016_j_bbr_2022_114247 elsevier_sciencedirect_doi_10_1016_j_bbr_2022_114247 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-15 |
PublicationDateYYYYMMDD | 2023-02-15 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Behavioural brain research |
PublicationTitleAlternate | Behav Brain Res |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhao, Zhang, Zhu (bib52) 2019; 398 Gu (bib31) 2002; 111 Dinges (bib6) 1995; 4 Quiquempoix, Sauvet, Erblang (bib12) 2022; 14 Kuna, Maislin, Pack (bib58) 2012; 35 Liu, Voroslakos, Kronberg (bib68) 2018; 9 Jarrold, Towse (bib43) 2006; 139 McLellan, Kamimori, Voss, Bell, Cole, Johnson (bib13) 2005; 76 Killgore, Muckle, Grugle, Killgore, Balkin (bib9) 2008; 118 Zhu, Feng, Xu (bib53) 2016; 10 Buysse, Reynolds, Monk, Berman, Kupfer (bib42) 1989; 28 Chua, Yeo, Lee (bib59) 2014; 2 Nichols, Nichols, Smirnakis, Engineer, Kilgard, Atzori (bib29) 2011; 189 Weber, Dan (bib72) 2016; 538 Basner, Rao, Goel, Dinges (bib3) 2013; 23 Goehler, Gaykema, Hansen, Anderson, Maier, Watkins (bib23) 2000; 85 Kusztor, Raud, Juel, Nilsen, Storm, Huster (bib1) 2019; 42 Chandler (bib28) 2016; 1641 Saper (bib24) 2002; 25 Li, Zhou, Yu (bib20) 2021; 77 Sun, Tian, Yang (bib73) 2021; 14 Jeon, Han (bib64) 2012; 36 Dawson, Reid (bib8) 1997; 388 Anderson, Storfer-Isser, Taylor, Rosen, Redline (bib40) 2009; 123 McIntire, McKinley, Goodyear, McIntire, Brown (bib33) 2021; 4 Samuels, Szabadi (bib32) 2008; 6 Harley C.W. Norepinephrine and the dentate gyrus. Dentate Gyrus: A Comphrehensive Guide to Structure, Function, and Clinical Implications 2007;163:299–318 doi: 10.1016/S0079–6123(07)63018–0[published Online First: Epub Date]|. Bastien, Vallieres, Morin (bib41) 2001; 2 Schwartz, Kilduff (bib78) 2015; 38 Sun, Cheng, Tian (bib39) 2021; 15 Guo, Jiang, Jiang, McClure, Mu (bib18) 2019; 2019 Eguchi, Satoh (bib71) 1980; 24 Banks, Dinges (bib45) 2007; 3 Adair, Truong, Esmaeilpour (bib77) 2020; 13 Badran, Dowdle, Mithoefer (bib26) 2018; 11 Lim, Dinges (bib2) 2010; 136 Neuser, Teckentrup, Kuhnel, Hallschmid, Walter, Kroemer (bib38) 2020; 11 Xu, Zhu, Fu (bib54) 2016; 25 Zhu, Xi, Sun (bib51) 2019; 40 Lanza (bib17) 2021; 77 Zhao, Zhang, Fei (bib50) 2019; 13 Schwarz, Luo (bib27) 2015; 25 Adair, Truong, Esmaeilpour (bib70) 2020; 13 Foote, Berridge (bib30) 2019; 1709 Chiesa, Calati, Serretti (bib60) 2011; 31 Colzato, Ritter, Steenbergen (bib34) 2018; 111 Zhao, Zhang, Zhu (bib49) 2018; 12 Sun, Zhao, Yang (bib47) 2020; 14 Verlinden, Rijkers, Hoogland, Herrler (bib75) 2016; 133 Yang, Xie, Mu (bib11) 2020; 31 Kronberg, Bridi, Abel, Bikson, Parra (bib69) 2017; 10 Zhu, Xi, Fei (bib55) 2018; 27 Forouzanfar, Gholami, Foroughnia (bib10) 2021; 7 San-Juan, Mas, Gutierrez (bib66) 2022; 15 Tharion, Shukitt-Hale, Lieberman (bib14) 2003; 74 Thompson, Mastitskaya, Holder (bib74) 2019; 325 Fregni, Boggio, Nitsche (bib65) 2005; 166 Zhu, Wang, Xi (bib56) 2017; 365 Yakunina, Kim, Nam (bib25) 2017; 20 Colzato, Sellaro, Beste (bib36) 2017; 92 McIntire, McKinley, Nelson, Goodyear (bib19) 2017; 10 Chase, Boudewyn, Carter, Phillips (bib67) 2020; 25 Annarumma, D'Atri, Alfonsi, De Gennaro (bib16) 2018; 8 Killgore (bib5) 2010; 185 Lim, Choo, Chee (bib57) 2007; 30 Drummond, Brown, Gillin, Stricker, Wong, Buxton (bib4) 2000; 403 Beste, Steenbergen, Sellaro (bib35) 2016; 9 Lee, Howard, Horrey (bib7) 2016; 113 Hill, Fitzgerald, Hoy (bib21) 2016; 9 Riontino, Cavallero (bib48) 2021; 85 Baddeley (bib61) 1998; 8 Ventura-Bort, Wirkner, Genheimer, Wendt, Hamm, Weymar (bib37) 2018; 12 Ohn, Park, Yoo (bib63) 2008; 19 Sloan, Byrne, Enticott, Lum (bib22) 2021; 31 Sun, Zhao, He (bib46) 2022 Zhao, He, Cheng (bib62) 2022; 16 Berridge, Waterhouse (bib80) 2003; 42 Stepan, Altmann, Fenn (bib15) 2021; 47 Yuan, Silberstein (bib76) 2016; 56 Krone, Frase, Piosczyk (bib79) 2017; 31 Lim, Dinges (bib44) 2008; 1129 Mueller, Porter, Quirk (bib81) 2008; 28 Ohn (10.1016/j.bbr.2022.114247_bib63) 2008; 19 Verlinden (10.1016/j.bbr.2022.114247_bib75) 2016; 133 Colzato (10.1016/j.bbr.2022.114247_bib34) 2018; 111 Lim (10.1016/j.bbr.2022.114247_bib57) 2007; 30 Banks (10.1016/j.bbr.2022.114247_bib45) 2007; 3 Gu (10.1016/j.bbr.2022.114247_bib31) 2002; 111 Anderson (10.1016/j.bbr.2022.114247_bib40) 2009; 123 Neuser (10.1016/j.bbr.2022.114247_bib38) 2020; 11 McIntire (10.1016/j.bbr.2022.114247_bib19) 2017; 10 Zhu (10.1016/j.bbr.2022.114247_bib56) 2017; 365 Foote (10.1016/j.bbr.2022.114247_bib30) 2019; 1709 Hill (10.1016/j.bbr.2022.114247_bib21) 2016; 9 Chandler (10.1016/j.bbr.2022.114247_bib28) 2016; 1641 Thompson (10.1016/j.bbr.2022.114247_bib74) 2019; 325 Yuan (10.1016/j.bbr.2022.114247_bib76) 2016; 56 Jarrold (10.1016/j.bbr.2022.114247_bib43) 2006; 139 Bastien (10.1016/j.bbr.2022.114247_bib41) 2001; 2 Fregni (10.1016/j.bbr.2022.114247_bib65) 2005; 166 Zhu (10.1016/j.bbr.2022.114247_bib51) 2019; 40 Adair (10.1016/j.bbr.2022.114247_bib77) 2020; 13 Sloan (10.1016/j.bbr.2022.114247_bib22) 2021; 31 Sun (10.1016/j.bbr.2022.114247_bib46) 2022 Zhao (10.1016/j.bbr.2022.114247_bib50) 2019; 13 Adair (10.1016/j.bbr.2022.114247_bib70) 2020; 13 Sun (10.1016/j.bbr.2022.114247_bib73) 2021; 14 Buysse (10.1016/j.bbr.2022.114247_bib42) 1989; 28 Zhu (10.1016/j.bbr.2022.114247_bib55) 2018; 27 Dinges (10.1016/j.bbr.2022.114247_bib6) 1995; 4 Tharion (10.1016/j.bbr.2022.114247_bib14) 2003; 74 Jeon (10.1016/j.bbr.2022.114247_bib64) 2012; 36 Badran (10.1016/j.bbr.2022.114247_bib26) 2018; 11 Colzato (10.1016/j.bbr.2022.114247_bib36) 2017; 92 Lanza (10.1016/j.bbr.2022.114247_bib17) 2021; 77 Samuels (10.1016/j.bbr.2022.114247_bib32) 2008; 6 Xu (10.1016/j.bbr.2022.114247_bib54) 2016; 25 Schwarz (10.1016/j.bbr.2022.114247_bib27) 2015; 25 Killgore (10.1016/j.bbr.2022.114247_bib9) 2008; 118 Saper (10.1016/j.bbr.2022.114247_bib24) 2002; 25 Lee (10.1016/j.bbr.2022.114247_bib7) 2016; 113 10.1016/j.bbr.2022.114247_bib82 Baddeley (10.1016/j.bbr.2022.114247_bib61) 1998; 8 Stepan (10.1016/j.bbr.2022.114247_bib15) 2021; 47 Forouzanfar (10.1016/j.bbr.2022.114247_bib10) 2021; 7 McLellan (10.1016/j.bbr.2022.114247_bib13) 2005; 76 San-Juan (10.1016/j.bbr.2022.114247_bib66) 2022; 15 Kronberg (10.1016/j.bbr.2022.114247_bib69) 2017; 10 Schwartz (10.1016/j.bbr.2022.114247_bib78) 2015; 38 Kusztor (10.1016/j.bbr.2022.114247_bib1) 2019; 42 Beste (10.1016/j.bbr.2022.114247_bib35) 2016; 9 Berridge (10.1016/j.bbr.2022.114247_bib80) 2003; 42 Lim (10.1016/j.bbr.2022.114247_bib2) 2010; 136 Drummond (10.1016/j.bbr.2022.114247_bib4) 2000; 403 Krone (10.1016/j.bbr.2022.114247_bib79) 2017; 31 Mueller (10.1016/j.bbr.2022.114247_bib81) 2008; 28 Goehler (10.1016/j.bbr.2022.114247_bib23) 2000; 85 Guo (10.1016/j.bbr.2022.114247_bib18) 2019; 2019 Li (10.1016/j.bbr.2022.114247_bib20) 2021; 77 Liu (10.1016/j.bbr.2022.114247_bib68) 2018; 9 Sun (10.1016/j.bbr.2022.114247_bib47) 2020; 14 Chiesa (10.1016/j.bbr.2022.114247_bib60) 2011; 31 Annarumma (10.1016/j.bbr.2022.114247_bib16) 2018; 8 Chase (10.1016/j.bbr.2022.114247_bib67) 2020; 25 Quiquempoix (10.1016/j.bbr.2022.114247_bib12) 2022; 14 Zhao (10.1016/j.bbr.2022.114247_bib49) 2018; 12 Ventura-Bort (10.1016/j.bbr.2022.114247_bib37) 2018; 12 Yang (10.1016/j.bbr.2022.114247_bib11) 2020; 31 Kuna (10.1016/j.bbr.2022.114247_bib58) 2012; 35 Dawson (10.1016/j.bbr.2022.114247_bib8) 1997; 388 Zhu (10.1016/j.bbr.2022.114247_bib53) 2016; 10 Zhao (10.1016/j.bbr.2022.114247_bib52) 2019; 398 Basner (10.1016/j.bbr.2022.114247_bib3) 2013; 23 Yakunina (10.1016/j.bbr.2022.114247_bib25) 2017; 20 Eguchi (10.1016/j.bbr.2022.114247_bib71) 1980; 24 McIntire (10.1016/j.bbr.2022.114247_bib33) 2021; 4 Nichols (10.1016/j.bbr.2022.114247_bib29) 2011; 189 Sun (10.1016/j.bbr.2022.114247_bib39) 2021; 15 Lim (10.1016/j.bbr.2022.114247_bib44) 2008; 1129 Riontino (10.1016/j.bbr.2022.114247_bib48) 2021; 85 Chua (10.1016/j.bbr.2022.114247_bib59) 2014; 2 Killgore (10.1016/j.bbr.2022.114247_bib5) 2010; 185 Zhao (10.1016/j.bbr.2022.114247_bib62) 2022; 16 Weber (10.1016/j.bbr.2022.114247_bib72) 2016; 538 |
References_xml | – volume: 8 start-page: 234 year: 1998 end-page: 238 ident: bib61 article-title: Recent developments in working memory publication-title: Curr. Opin. Neurobiol. – volume: 16 year: 2022 ident: bib62 article-title: Assessing the effect of simultaneous combining of transcranial direct current stimulation and transcutaneous auricular vagus nerve stimulation on the improvement of working memory performance in healthy individuals publication-title: Front. Neurosci. – volume: 11 start-page: 492 year: 2018 end-page: 500 ident: bib26 article-title: Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review publication-title: Brain Stimul. – volume: 25 start-page: R1051 year: 2015 end-page: R1056 ident: bib27 article-title: Organization of the locus coeruleus-norepinephrine system publication-title: Curr. Biol. – volume: 19 start-page: 43 year: 2008 end-page: 47 ident: bib63 article-title: Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory publication-title: Neuroreport – volume: 10 start-page: 51 year: 2017 end-page: 58 ident: bib69 article-title: Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects publication-title: Brain Stimul. – volume: 9 start-page: 811 year: 2016 end-page: 818 ident: bib35 article-title: Effects of concomitant stimulation of the GABAergic and norepinephrine system on inhibitory control – a study using transcutaneous vagus nerve stimulation publication-title: Brain Stimul. – volume: 1709 start-page: 81 year: 2019 end-page: 84 ident: bib30 article-title: New developments and future directions in understanding locus coeruleus – norepinephrine (LC-NE) function publication-title: Brain Res. – volume: 30 start-page: 61 year: 2007 end-page: 70 ident: bib57 article-title: Reproducibility of changes in behaviour and fMRI activation associated with sleep deprivation in a working memory task publication-title: Sleep – volume: 31 start-page: 857 year: 2020 end-page: 864 ident: bib11 article-title: Tea polyphenols protect learning and memory in sleep-deprived mice by promoting AMPA receptor internalization publication-title: Neuroreport – volume: 133 start-page: 173 year: 2016 end-page: 182 ident: bib75 article-title: Morphology of the human cervical vagus nerve: implications for vagus nerve stimulation treatment publication-title: Acta Neurol. Scand. – volume: 38 start-page: 615 year: 2015 end-page: 644 ident: bib78 article-title: The neurobiology of sleep and wakefulness publication-title: Psychiatr. Clin. North Am. – volume: 35 start-page: 1223 year: 2012 end-page: 1233 ident: bib58 article-title: Heritability of performance deficit accumulation during acute sleep deprivation in twins publication-title: Sleep – volume: 4 start-page: 4 year: 1995 end-page: 14 ident: bib6 article-title: An overview of sleepiness and accidents publication-title: J. Sleep. Res. – volume: 9 start-page: 5092 year: 2018 ident: bib68 article-title: Immediate neurophysiological effects of transcranial electrical stimulation publication-title: Nat. Commun. – volume: 76 start-page: 647 year: 2005 end-page: 654 ident: bib13 article-title: Caffeine maintains vigilance and improves run times during night operations for special forces publication-title: Aviat. Space Environ. Med. – volume: 10 start-page: 911 year: 2016 end-page: 919 ident: bib53 article-title: Increased interhemispheric resting-state functional connectivity after sleep deprivation: a resting-state fMRI study publication-title: Brain Imaging Behav. – volume: 538 start-page: 51 year: 2016 end-page: 59 ident: bib72 article-title: Circuit-based interrogation of sleep control publication-title: Nature – volume: 118 start-page: 1547 year: 2008 end-page: 1557 ident: bib9 article-title: Sex differences in cognitive estimation during sleep deprivation: effects of stimulant countermeasures publication-title: Int J. Neurosci. – volume: 24 start-page: 99 year: 1980 end-page: 102 ident: bib71 article-title: Characterization of the neurons in the region of solitary tract nucleus during sleep publication-title: Physiol. Behav. – volume: 113 start-page: 176 year: 2016 end-page: 181 ident: bib7 article-title: High risk of near-crash driving events following night-shift work publication-title: Proc. Natl. Acad. Sci. USA – volume: 166 start-page: 23 year: 2005 end-page: 30 ident: bib65 article-title: Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory publication-title: Exp. Brain Res. – volume: 28 start-page: 193 year: 1989 end-page: 213 ident: bib42 article-title: The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research publication-title: Psychiatry Res – volume: 25 start-page: 169 year: 2016 end-page: 180 ident: bib54 article-title: Frontal metabolic activity contributes to individual differences in vulnerability toward total sleep deprivation-induced changes in cognitive function publication-title: J. Sleep Res. – year: 2022 ident: bib46 article-title: Abnormal dynamic functional connectivity after sleep deprivation from temporal variability perspective publication-title: Hum. Brain Mapp. – volume: 403 start-page: 655 year: 2000 end-page: 657 ident: bib4 article-title: Altered brain response to verbal learning following sleep deprivation publication-title: Nature – reference: Harley C.W. Norepinephrine and the dentate gyrus. Dentate Gyrus: A Comphrehensive Guide to Structure, Function, and Clinical Implications 2007;163:299–318 doi: 10.1016/S0079–6123(07)63018–0[published Online First: Epub Date]|. – volume: 388 start-page: 235 year: 1997 ident: bib8 article-title: Fatigue, alcohol and performance impairment publication-title: Nature – volume: 14 start-page: 754 year: 2020 ident: bib47 article-title: Alteration of brain gray matter density after 24h of sleep deprivation in healthy adults publication-title: Front. Neurosci. – volume: 40 start-page: 3265 year: 2019 end-page: 3278 ident: bib51 article-title: Neural correlates of dynamic changes in working memory performance during one night of sleep deprivation publication-title: Hum. Brain Mapp. – volume: 12 start-page: 202 year: 2018 ident: bib37 article-title: Effects of transcutaneous vagus nerve stimulation (tVNS) on the P300 and alpha-amylase level: a pilot study publication-title: Front. Hum. Neurosci. – volume: 185 start-page: 105 year: 2010 end-page: 129 ident: bib5 article-title: Effects of sleep deprivation on cognition publication-title: Prog. Brain Res. – volume: 1641 start-page: 197 year: 2016 end-page: 206 ident: bib28 article-title: Evidence for a specialized role of the locus coeruleus noradrenergic system in cortical circuitries and behavioral operations publication-title: Brain Res. – volume: 47 start-page: 1371 year: 2021 end-page: 1382 ident: bib15 article-title: Caffeine selectively mitigates cognitive deficits caused by sleep deprivation publication-title: J. Exp. Psychol. Learn Mem. Cogn. – volume: 85 start-page: 480 year: 2021 end-page: 490 ident: bib48 article-title: Individual differences in working memory efficiency modulate proactive interference after sleep deprivation publication-title: Psychol. Res. – volume: 2 start-page: 297 year: 2001 end-page: 307 ident: bib41 article-title: Validation of the insomnia severity index as an outcome measure for insomnia research publication-title: Sleep Med. – volume: 9 start-page: 197 year: 2016 end-page: 208 ident: bib21 article-title: Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations publication-title: Brain Stimul. – volume: 13 start-page: 717 year: 2020 end-page: 750 ident: bib77 article-title: Electrical stimulation of cranial nerves in cognition and disease publication-title: Brain Stimul. – volume: 1129 start-page: 305 year: 2008 end-page: 322 ident: bib44 article-title: Sleep deprivation and vigilant attention publication-title: Ann. N. Y Acad. Sci. – volume: 13 start-page: 717 year: 2020 end-page: 750 ident: bib70 article-title: Electrical stimulation of cranial nerves in cognition and disease publication-title: Brain Stimul. – volume: 15 year: 2021 ident: bib39 article-title: Transcutaneous Auricular Vagus nerve stimulation improves spatial working memory in healthy young adults publication-title: Front Neurosci. – volume: 85 start-page: 49 year: 2000 end-page: 59 ident: bib23 article-title: Vagal immune-to-brain communication: a visceral chemosensory pathway publication-title: Auton. Neurosci. – volume: 325 year: 2019 ident: bib74 article-title: Avoiding off-target effects in electrical stimulation of the cervical vagus nerve: neuroanatomical tracing techniques to study fascicular anatomy of the vagus nerve publication-title: J. Neurosci. Methods – volume: 11 start-page: 3555 year: 2020 ident: bib38 article-title: Vagus nerve stimulation boosts the drive to work for rewards publication-title: Nat. Commun. – volume: 42 start-page: 33 year: 2003 end-page: 84 ident: bib80 article-title: The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes publication-title: Brain Res. Rev. – volume: 23 start-page: 854 year: 2013 end-page: 863 ident: bib3 article-title: Sleep deprivation and neurobehavioral dynamics publication-title: Curr. Opin. Neurobiol. – volume: 4 start-page: 634 year: 2021 ident: bib33 article-title: Cervical transcutaneous vagal nerve stimulation (ctVNS) improves human cognitive performance under sleep deprivation stress publication-title: Commun. Biol. – volume: 189 start-page: 207 year: 2011 end-page: 214 ident: bib29 article-title: Vagus nerve stimulation modulates cortical synchrony and excitability through the activation of muscarinic receptors publication-title: Neuroscience – volume: 398 start-page: 37 year: 2019 end-page: 54 ident: bib52 article-title: Disrupted resting-state functional connectivity in hippocampal subregions after sleep deprivation publication-title: Neuroscience – volume: 13 start-page: 638 year: 2019 end-page: 650 ident: bib50 article-title: Decreased cortical and subcortical response to inhibition control after sleep deprivation publication-title: Brain Imaging Behav. – volume: 14 start-page: 457 year: 2022 end-page: 473 ident: bib12 article-title: Effects of caffeine intake on cognitive performance related to total sleep deprivation and time on task: a randomized cross-over double-blind study publication-title: Nat. Sci. Sleep. – volume: 77 start-page: 270 year: 2021 end-page: 278 ident: bib20 article-title: Effect of repetitive transcranial magnetic stimulation on the cognitive impairment induced by sleep deprivation: a randomized trial publication-title: Sleep Med. – volume: 27 start-page: 184 year: 2018 end-page: 196 ident: bib55 article-title: Dynamics of cerebral responses to sustained attention performance during one night of sleep deprivation publication-title: J. Sleep Res. – volume: 139 start-page: 39 year: 2006 end-page: 50 ident: bib43 article-title: Individual differences in working memory publication-title: Neuroscience – volume: 111 start-page: 815 year: 2002 end-page: 835 ident: bib31 article-title: Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity publication-title: Neuroscience – volume: 123 start-page: e701 year: 2009 end-page: e707 ident: bib40 article-title: Associations of executive function with sleepiness and sleep duration in adolescents publication-title: Pediatrics – volume: 6 start-page: 254 year: 2008 end-page: 285 ident: bib32 article-title: Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part II: physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans publication-title: Curr. Neuropharmacol. – volume: 31 start-page: 17 year: 2017 end-page: 24 ident: bib79 article-title: Top-down control of arousal and sleep: fundamentals and clinical implications publication-title: Sleep Med. Rev. – volume: 77 start-page: 279 year: 2021 end-page: 280 ident: bib17 article-title: Repetitive TMS for the "cognitive tsunami" of sleep deprivation publication-title: Sleep Med. – volume: 12 start-page: 276 year: 2018 ident: bib49 article-title: Prediction of the effect of sleep deprivation on response inhibition via machine learning on structural magnetic resonance imaging data publication-title: Front. Hum. Neurosci. – volume: 365 start-page: 206 year: 2017 end-page: 216 ident: bib56 article-title: White matter microstructural properties are related to inter-individual differences in cognitive instability after sleep deprivation publication-title: Neuroscience – volume: 3 start-page: 519 year: 2007 end-page: 528 ident: bib45 article-title: Behavioral and physiological consequences of sleep restriction publication-title: J. Clin. Sleep Med. – volume: 74 start-page: 309 year: 2003 end-page: 314 ident: bib14 article-title: Caffeine effects on marksmanship during high-stress military training with 72 h sleep deprivation publication-title: Aviat. Space Environ. Med. – volume: 8 year: 2018 ident: bib16 article-title: The efficacy of transcranial current stimulation techniques to modulate resting-state EEG, to affect vigilance and to promote sleepiness publication-title: Brain Sci. – volume: 111 start-page: 72 year: 2018 end-page: 76 ident: bib34 article-title: Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking publication-title: Neuropsychologia – volume: 20 start-page: 290 year: 2017 end-page: 300 ident: bib25 article-title: Optimization of transcutaneous vagus nerve stimulation using functional MRI publication-title: Neuromodulation – volume: 31 start-page: 449 year: 2011 end-page: 464 ident: bib60 article-title: Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings publication-title: Clin. Psychol. Rev. – volume: 2 year: 2014 ident: bib59 article-title: Individual differences in physiologic measures are stable across repeated exposures to total sleep deprivation publication-title: Physiol. Rep. – volume: 14 start-page: 417 year: 2021 end-page: 419 ident: bib73 article-title: Synergistic effects of simultaneous transcranial direct current stimulation (tDCS) and transcutaneous auricular vagus nerve stimulation (taVNS) on the brain responses publication-title: Brain Stimul. – volume: 56 start-page: 71 year: 2016 end-page: 78 ident: bib76 article-title: Vagus nerve and vagus nerve stimulation, a comprehensive review: part I publication-title: Headache – volume: 7 year: 2021 ident: bib10 article-title: The beneficial effects of green tea on sleep deprivation-induced cognitive deficits in rats: the involvement of hippocampal antioxidant defense publication-title: Heliyon – volume: 15 start-page: 89 year: 2022 end-page: 96 ident: bib66 article-title: Effect of the anodal transcranial direct current electrical stimulation on cognition of medical residents with acute sleep deprivation publication-title: Sleep Sci. – volume: 42 year: 2019 ident: bib1 article-title: Sleep deprivation differentially affects subcomponents of cognitive control publication-title: Sleep – volume: 36 start-page: 585 year: 2012 end-page: 595 ident: bib64 article-title: Improvement of the working memory and naming by transcranial direct current stimulation publication-title: Ann. Rehabil. Med. – volume: 2019 year: 2019 ident: bib18 article-title: High-frequency repetitive transcranial magnetic stimulation could improve impaired working memory induced by sleep deprivation publication-title: Neural Plast. – volume: 25 start-page: 433 year: 2002 end-page: 469 ident: bib24 article-title: The central autonomic nervous system: conscious visceral perception and autonomic pattern generation publication-title: Annu Rev. Neurosci. – volume: 92 start-page: 95 year: 2017 end-page: 102 ident: bib36 article-title: Darwin revisited: the vagus nerve is a causal element in controlling recognition of other's emotions publication-title: Cortex – volume: 136 start-page: 375 year: 2010 end-page: 389 ident: bib2 article-title: A meta-analysis of the impact of short-term sleep deprivation on cognitive variables publication-title: Psychol. Bull. – volume: 28 start-page: 369 year: 2008 end-page: 375 ident: bib81 article-title: Noradrenergic signaling in infralimbic cortex increases cell excitability and strengthens memory for fear extinction publication-title: J. Neurosci. – volume: 10 start-page: 1070 year: 2017 end-page: 1078 ident: bib19 article-title: Transcranial direct current stimulation versus caffeine as a fatigue countermeasure publication-title: Brain Stimul. – volume: 25 start-page: 397 year: 2020 end-page: 407 ident: bib67 article-title: Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation publication-title: Mol. Psychiatry – volume: 31 start-page: 115 year: 2021 end-page: 138 ident: bib22 article-title: Non-invasive brain stimulation does not improve working memory in Schizophrenia: a meta-analysis of randomised controlled trials publication-title: Neuropsychol. Rev. – volume: 8 start-page: 234 issue: 2 year: 1998 ident: 10.1016/j.bbr.2022.114247_bib61 article-title: Recent developments in working memory publication-title: Curr. Opin. Neurobiol. doi: 10.1016/S0959-4388(98)80145-1 – volume: 13 start-page: 638 issue: 3 year: 2019 ident: 10.1016/j.bbr.2022.114247_bib50 article-title: Decreased cortical and subcortical response to inhibition control after sleep deprivation publication-title: Brain Imaging Behav. doi: 10.1007/s11682-018-9868-2 – volume: 9 start-page: 197 issue: 2 year: 2016 ident: 10.1016/j.bbr.2022.114247_bib21 article-title: Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations publication-title: Brain Stimul. doi: 10.1016/j.brs.2015.10.006 – volume: 185 start-page: 105 year: 2010 ident: 10.1016/j.bbr.2022.114247_bib5 article-title: Effects of sleep deprivation on cognition publication-title: Prog. Brain Res. doi: 10.1016/B978-0-444-53702-7.00007-5 – volume: 111 start-page: 72 year: 2018 ident: 10.1016/j.bbr.2022.114247_bib34 article-title: Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking publication-title: Neuropsychologia doi: 10.1016/j.neuropsychologia.2018.01.003 – volume: 85 start-page: 49 issue: 1–3 year: 2000 ident: 10.1016/j.bbr.2022.114247_bib23 article-title: Vagal immune-to-brain communication: a visceral chemosensory pathway publication-title: Auton. Neurosci. doi: 10.1016/S1566-0702(00)00219-8 – volume: 1641 start-page: 197 issue: Pt B year: 2016 ident: 10.1016/j.bbr.2022.114247_bib28 article-title: Evidence for a specialized role of the locus coeruleus noradrenergic system in cortical circuitries and behavioral operations publication-title: Brain Res. doi: 10.1016/j.brainres.2015.11.022 – volume: 12 start-page: 202 year: 2018 ident: 10.1016/j.bbr.2022.114247_bib37 article-title: Effects of transcutaneous vagus nerve stimulation (tVNS) on the P300 and alpha-amylase level: a pilot study publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00202 – volume: 28 start-page: 369 issue: 2 year: 2008 ident: 10.1016/j.bbr.2022.114247_bib81 article-title: Noradrenergic signaling in infralimbic cortex increases cell excitability and strengthens memory for fear extinction publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3248-07.2008 – volume: 25 start-page: 397 issue: 2 year: 2020 ident: 10.1016/j.bbr.2022.114247_bib67 article-title: Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation publication-title: Mol. Psychiatry doi: 10.1038/s41380-019-0499-9 – volume: 118 start-page: 1547 issue: 11 year: 2008 ident: 10.1016/j.bbr.2022.114247_bib9 article-title: Sex differences in cognitive estimation during sleep deprivation: effects of stimulant countermeasures publication-title: Int J. Neurosci. doi: 10.1080/00207450802323970 – volume: 36 start-page: 585 issue: 5 year: 2012 ident: 10.1016/j.bbr.2022.114247_bib64 article-title: Improvement of the working memory and naming by transcranial direct current stimulation publication-title: Ann. Rehabil. Med. doi: 10.5535/arm.2012.36.5.585 – volume: 76 start-page: 647 issue: 7 year: 2005 ident: 10.1016/j.bbr.2022.114247_bib13 article-title: Caffeine maintains vigilance and improves run times during night operations for special forces publication-title: Aviat. Space Environ. Med. – volume: 24 start-page: 99 issue: 1 year: 1980 ident: 10.1016/j.bbr.2022.114247_bib71 article-title: Characterization of the neurons in the region of solitary tract nucleus during sleep publication-title: Physiol. Behav. doi: 10.1016/0031-9384(80)90020-7 – volume: 403 start-page: 655 issue: 6770 year: 2000 ident: 10.1016/j.bbr.2022.114247_bib4 article-title: Altered brain response to verbal learning following sleep deprivation publication-title: Nature doi: 10.1038/35001068 – volume: 9 start-page: 5092 issue: 1 year: 2018 ident: 10.1016/j.bbr.2022.114247_bib68 article-title: Immediate neurophysiological effects of transcranial electrical stimulation publication-title: Nat. Commun. doi: 10.1038/s41467-018-07233-7 – volume: 13 start-page: 717 issue: 3 year: 2020 ident: 10.1016/j.bbr.2022.114247_bib77 article-title: Electrical stimulation of cranial nerves in cognition and disease publication-title: Brain Stimul. doi: 10.1016/j.brs.2020.02.019 – volume: 28 start-page: 193 issue: 2 year: 1989 ident: 10.1016/j.bbr.2022.114247_bib42 article-title: The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research publication-title: Psychiatry Res doi: 10.1016/0165-1781(89)90047-4 – volume: 189 start-page: 207 year: 2011 ident: 10.1016/j.bbr.2022.114247_bib29 article-title: Vagus nerve stimulation modulates cortical synchrony and excitability through the activation of muscarinic receptors publication-title: Neuroscience doi: 10.1016/j.neuroscience.2011.05.024 – volume: 325 year: 2019 ident: 10.1016/j.bbr.2022.114247_bib74 article-title: Avoiding off-target effects in electrical stimulation of the cervical vagus nerve: neuroanatomical tracing techniques to study fascicular anatomy of the vagus nerve publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2019.108325 – volume: 12 start-page: 276 year: 2018 ident: 10.1016/j.bbr.2022.114247_bib49 article-title: Prediction of the effect of sleep deprivation on response inhibition via machine learning on structural magnetic resonance imaging data publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2018.00276 – volume: 10 start-page: 911 issue: 3 year: 2016 ident: 10.1016/j.bbr.2022.114247_bib53 article-title: Increased interhemispheric resting-state functional connectivity after sleep deprivation: a resting-state fMRI study publication-title: Brain Imaging Behav. doi: 10.1007/s11682-015-9490-5 – volume: 136 start-page: 375 issue: 3 year: 2010 ident: 10.1016/j.bbr.2022.114247_bib2 article-title: A meta-analysis of the impact of short-term sleep deprivation on cognitive variables publication-title: Psychol. Bull. doi: 10.1037/a0018883 – volume: 133 start-page: 173 issue: 3 year: 2016 ident: 10.1016/j.bbr.2022.114247_bib75 article-title: Morphology of the human cervical vagus nerve: implications for vagus nerve stimulation treatment publication-title: Acta Neurol. Scand. doi: 10.1111/ane.12462 – volume: 85 start-page: 480 issue: 2 year: 2021 ident: 10.1016/j.bbr.2022.114247_bib48 article-title: Individual differences in working memory efficiency modulate proactive interference after sleep deprivation publication-title: Psychol. Res. doi: 10.1007/s00426-020-01292-6 – volume: 31 start-page: 17 year: 2017 ident: 10.1016/j.bbr.2022.114247_bib79 article-title: Top-down control of arousal and sleep: fundamentals and clinical implications publication-title: Sleep Med. Rev. doi: 10.1016/j.smrv.2015.12.005 – volume: 77 start-page: 279 year: 2021 ident: 10.1016/j.bbr.2022.114247_bib17 article-title: Repetitive TMS for the "cognitive tsunami" of sleep deprivation publication-title: Sleep Med. doi: 10.1016/j.sleep.2020.11.010 – volume: 40 start-page: 3265 issue: 11 year: 2019 ident: 10.1016/j.bbr.2022.114247_bib51 article-title: Neural correlates of dynamic changes in working memory performance during one night of sleep deprivation publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.24596 – volume: 47 start-page: 1371 issue: 9 year: 2021 ident: 10.1016/j.bbr.2022.114247_bib15 article-title: Caffeine selectively mitigates cognitive deficits caused by sleep deprivation publication-title: J. Exp. Psychol. Learn Mem. Cogn. doi: 10.1037/xlm0001023 – volume: 11 start-page: 3555 issue: 1 year: 2020 ident: 10.1016/j.bbr.2022.114247_bib38 article-title: Vagus nerve stimulation boosts the drive to work for rewards publication-title: Nat. Commun. doi: 10.1038/s41467-020-17344-9 – volume: 13 start-page: 717 issue: 3 year: 2020 ident: 10.1016/j.bbr.2022.114247_bib70 article-title: Electrical stimulation of cranial nerves in cognition and disease publication-title: Brain Stimul. doi: 10.1016/j.brs.2020.02.019 – volume: 3 start-page: 519 issue: 5 year: 2007 ident: 10.1016/j.bbr.2022.114247_bib45 article-title: Behavioral and physiological consequences of sleep restriction publication-title: J. Clin. Sleep Med. doi: 10.5664/jcsm.26918 – volume: 139 start-page: 39 issue: 1 year: 2006 ident: 10.1016/j.bbr.2022.114247_bib43 article-title: Individual differences in working memory publication-title: Neuroscience doi: 10.1016/j.neuroscience.2005.07.002 – volume: 35 start-page: 1223 issue: 9 year: 2012 ident: 10.1016/j.bbr.2022.114247_bib58 article-title: Heritability of performance deficit accumulation during acute sleep deprivation in twins publication-title: Sleep – volume: 166 start-page: 23 issue: 1 year: 2005 ident: 10.1016/j.bbr.2022.114247_bib65 article-title: Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory publication-title: Exp. Brain Res. doi: 10.1007/s00221-005-2334-6 – volume: 42 start-page: 33 issue: 1 year: 2003 ident: 10.1016/j.bbr.2022.114247_bib80 article-title: The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes publication-title: Brain Res. Rev. doi: 10.1016/S0165-0173(03)00143-7 – volume: 15 year: 2021 ident: 10.1016/j.bbr.2022.114247_bib39 article-title: Transcutaneous Auricular Vagus nerve stimulation improves spatial working memory in healthy young adults publication-title: Front Neurosci. doi: 10.3389/fnins.2021.790793 – volume: 77 start-page: 270 year: 2021 ident: 10.1016/j.bbr.2022.114247_bib20 article-title: Effect of repetitive transcranial magnetic stimulation on the cognitive impairment induced by sleep deprivation: a randomized trial publication-title: Sleep Med. doi: 10.1016/j.sleep.2020.06.019 – volume: 25 start-page: 433 year: 2002 ident: 10.1016/j.bbr.2022.114247_bib24 article-title: The central autonomic nervous system: conscious visceral perception and autonomic pattern generation publication-title: Annu Rev. Neurosci. doi: 10.1146/annurev.neuro.25.032502.111311 – volume: 398 start-page: 37 year: 2019 ident: 10.1016/j.bbr.2022.114247_bib52 article-title: Disrupted resting-state functional connectivity in hippocampal subregions after sleep deprivation publication-title: Neuroscience doi: 10.1016/j.neuroscience.2018.11.049 – volume: 365 start-page: 206 year: 2017 ident: 10.1016/j.bbr.2022.114247_bib56 article-title: White matter microstructural properties are related to inter-individual differences in cognitive instability after sleep deprivation publication-title: Neuroscience doi: 10.1016/j.neuroscience.2017.09.047 – volume: 6 start-page: 254 issue: 3 year: 2008 ident: 10.1016/j.bbr.2022.114247_bib32 article-title: Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part II: physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans publication-title: Curr. Neuropharmacol. doi: 10.2174/157015908785777193 – volume: 14 start-page: 417 issue: 2 year: 2021 ident: 10.1016/j.bbr.2022.114247_bib73 article-title: Synergistic effects of simultaneous transcranial direct current stimulation (tDCS) and transcutaneous auricular vagus nerve stimulation (taVNS) on the brain responses publication-title: Brain Stimul. doi: 10.1016/j.brs.2021.02.010 – volume: 111 start-page: 815 issue: 4 year: 2002 ident: 10.1016/j.bbr.2022.114247_bib31 article-title: Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity publication-title: Neuroscience doi: 10.1016/S0306-4522(02)00026-X – volume: 42 issue: 4 year: 2019 ident: 10.1016/j.bbr.2022.114247_bib1 article-title: Sleep deprivation differentially affects subcomponents of cognitive control publication-title: Sleep doi: 10.1093/sleep/zsz016 – volume: 10 start-page: 1070 issue: 6 year: 2017 ident: 10.1016/j.bbr.2022.114247_bib19 article-title: Transcranial direct current stimulation versus caffeine as a fatigue countermeasure publication-title: Brain Stimul. doi: 10.1016/j.brs.2017.08.005 – volume: 14 start-page: 754 year: 2020 ident: 10.1016/j.bbr.2022.114247_bib47 article-title: Alteration of brain gray matter density after 24h of sleep deprivation in healthy adults publication-title: Front. Neurosci. doi: 10.3389/fnins.2020.00754 – volume: 538 start-page: 51 issue: 7623 year: 2016 ident: 10.1016/j.bbr.2022.114247_bib72 article-title: Circuit-based interrogation of sleep control publication-title: Nature doi: 10.1038/nature19773 – volume: 30 start-page: 61 issue: 1 year: 2007 ident: 10.1016/j.bbr.2022.114247_bib57 article-title: Reproducibility of changes in behaviour and fMRI activation associated with sleep deprivation in a working memory task publication-title: Sleep doi: 10.1093/sleep/30.1.61 – year: 2022 ident: 10.1016/j.bbr.2022.114247_bib46 article-title: Abnormal dynamic functional connectivity after sleep deprivation from temporal variability perspective publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.25886 – volume: 31 start-page: 857 issue: 12 year: 2020 ident: 10.1016/j.bbr.2022.114247_bib11 article-title: Tea polyphenols protect learning and memory in sleep-deprived mice by promoting AMPA receptor internalization publication-title: Neuroreport doi: 10.1097/WNR.0000000000001462 – volume: 9 start-page: 811 issue: 6 year: 2016 ident: 10.1016/j.bbr.2022.114247_bib35 article-title: Effects of concomitant stimulation of the GABAergic and norepinephrine system on inhibitory control – a study using transcutaneous vagus nerve stimulation publication-title: Brain Stimul. doi: 10.1016/j.brs.2016.07.004 – volume: 25 start-page: 169 issue: 2 year: 2016 ident: 10.1016/j.bbr.2022.114247_bib54 article-title: Frontal metabolic activity contributes to individual differences in vulnerability toward total sleep deprivation-induced changes in cognitive function publication-title: J. Sleep Res. doi: 10.1111/jsr.12354 – volume: 38 start-page: 615 issue: 4 year: 2015 ident: 10.1016/j.bbr.2022.114247_bib78 article-title: The neurobiology of sleep and wakefulness publication-title: Psychiatr. Clin. North Am. doi: 10.1016/j.psc.2015.07.002 – volume: 2019 year: 2019 ident: 10.1016/j.bbr.2022.114247_bib18 article-title: High-frequency repetitive transcranial magnetic stimulation could improve impaired working memory induced by sleep deprivation publication-title: Neural Plast. doi: 10.1155/2019/7030286 – volume: 113 start-page: 176 issue: 1 year: 2016 ident: 10.1016/j.bbr.2022.114247_bib7 article-title: High risk of near-crash driving events following night-shift work publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1510383112 – volume: 11 start-page: 492 issue: 3 year: 2018 ident: 10.1016/j.bbr.2022.114247_bib26 article-title: Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review publication-title: Brain Stimul. doi: 10.1016/j.brs.2017.12.009 – volume: 123 start-page: e701 issue: 4 year: 2009 ident: 10.1016/j.bbr.2022.114247_bib40 article-title: Associations of executive function with sleepiness and sleep duration in adolescents publication-title: Pediatrics doi: 10.1542/peds.2008-1182 – volume: 31 start-page: 449 issue: 3 year: 2011 ident: 10.1016/j.bbr.2022.114247_bib60 article-title: Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings publication-title: Clin. Psychol. Rev. doi: 10.1016/j.cpr.2010.11.003 – volume: 27 start-page: 184 issue: 2 year: 2018 ident: 10.1016/j.bbr.2022.114247_bib55 article-title: Dynamics of cerebral responses to sustained attention performance during one night of sleep deprivation publication-title: J. Sleep Res. doi: 10.1111/jsr.12582 – volume: 19 start-page: 43 issue: 1 year: 2008 ident: 10.1016/j.bbr.2022.114247_bib63 article-title: Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory publication-title: Neuroreport doi: 10.1097/WNR.0b013e3282f2adfd – volume: 7 issue: 11 year: 2021 ident: 10.1016/j.bbr.2022.114247_bib10 article-title: The beneficial effects of green tea on sleep deprivation-induced cognitive deficits in rats: the involvement of hippocampal antioxidant defense publication-title: Heliyon doi: 10.1016/j.heliyon.2021.e08336 – volume: 4 start-page: 634 issue: 1 year: 2021 ident: 10.1016/j.bbr.2022.114247_bib33 article-title: Cervical transcutaneous vagal nerve stimulation (ctVNS) improves human cognitive performance under sleep deprivation stress publication-title: Commun. Biol. doi: 10.1038/s42003-021-02145-7 – volume: 1709 start-page: 81 year: 2019 ident: 10.1016/j.bbr.2022.114247_bib30 article-title: New developments and future directions in understanding locus coeruleus – norepinephrine (LC-NE) function publication-title: Brain Res. doi: 10.1016/j.brainres.2018.09.033 – volume: 92 start-page: 95 year: 2017 ident: 10.1016/j.bbr.2022.114247_bib36 article-title: Darwin revisited: the vagus nerve is a causal element in controlling recognition of other's emotions publication-title: Cortex doi: 10.1016/j.cortex.2017.03.017 – volume: 16 year: 2022 ident: 10.1016/j.bbr.2022.114247_bib62 article-title: Assessing the effect of simultaneous combining of transcranial direct current stimulation and transcutaneous auricular vagus nerve stimulation on the improvement of working memory performance in healthy individuals publication-title: Front. Neurosci. doi: 10.3389/fnins.2022.947236 – volume: 14 start-page: 457 year: 2022 ident: 10.1016/j.bbr.2022.114247_bib12 article-title: Effects of caffeine intake on cognitive performance related to total sleep deprivation and time on task: a randomized cross-over double-blind study publication-title: Nat. Sci. Sleep. doi: 10.2147/NSS.S342922 – volume: 8 issue: 7 year: 2018 ident: 10.1016/j.bbr.2022.114247_bib16 article-title: The efficacy of transcranial current stimulation techniques to modulate resting-state EEG, to affect vigilance and to promote sleepiness publication-title: Brain Sci. doi: 10.3390/brainsci8070137 – volume: 25 start-page: R1051 issue: 21 year: 2015 ident: 10.1016/j.bbr.2022.114247_bib27 article-title: Organization of the locus coeruleus-norepinephrine system publication-title: Curr. Biol. doi: 10.1016/j.cub.2015.09.039 – volume: 2 issue: 9 year: 2014 ident: 10.1016/j.bbr.2022.114247_bib59 article-title: Individual differences in physiologic measures are stable across repeated exposures to total sleep deprivation publication-title: Physiol. Rep. doi: 10.14814/phy2.12129 – volume: 1129 start-page: 305 year: 2008 ident: 10.1016/j.bbr.2022.114247_bib44 article-title: Sleep deprivation and vigilant attention publication-title: Ann. N. Y Acad. Sci. doi: 10.1196/annals.1417.002 – volume: 4 start-page: 4 issue: S2 year: 1995 ident: 10.1016/j.bbr.2022.114247_bib6 article-title: An overview of sleepiness and accidents publication-title: J. Sleep. Res. doi: 10.1111/j.1365-2869.1995.tb00220.x – volume: 56 start-page: 71 issue: 1 year: 2016 ident: 10.1016/j.bbr.2022.114247_bib76 article-title: Vagus nerve and vagus nerve stimulation, a comprehensive review: part I publication-title: Headache doi: 10.1111/head.12647 – volume: 23 start-page: 854 issue: 5 year: 2013 ident: 10.1016/j.bbr.2022.114247_bib3 article-title: Sleep deprivation and neurobehavioral dynamics publication-title: Curr. Opin. Neurobiol. doi: 10.1016/j.conb.2013.02.008 – volume: 15 start-page: 89 issue: Spec 1 year: 2022 ident: 10.1016/j.bbr.2022.114247_bib66 article-title: Effect of the anodal transcranial direct current electrical stimulation on cognition of medical residents with acute sleep deprivation publication-title: Sleep Sci. doi: 10.5935/1984-0063.20220007 – volume: 74 start-page: 309 issue: 4 year: 2003 ident: 10.1016/j.bbr.2022.114247_bib14 article-title: Caffeine effects on marksmanship during high-stress military training with 72 h sleep deprivation publication-title: Aviat. Space Environ. Med. – volume: 388 start-page: 235 issue: 6639 year: 1997 ident: 10.1016/j.bbr.2022.114247_bib8 article-title: Fatigue, alcohol and performance impairment publication-title: Nature doi: 10.1038/40775 – volume: 10 start-page: 51 issue: 1 year: 2017 ident: 10.1016/j.bbr.2022.114247_bib69 article-title: Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects publication-title: Brain Stimul. doi: 10.1016/j.brs.2016.10.001 – volume: 31 start-page: 115 issue: 1 year: 2021 ident: 10.1016/j.bbr.2022.114247_bib22 article-title: Non-invasive brain stimulation does not improve working memory in Schizophrenia: a meta-analysis of randomised controlled trials publication-title: Neuropsychol. Rev. doi: 10.1007/s11065-020-09454-4 – volume: 20 start-page: 290 issue: 3 year: 2017 ident: 10.1016/j.bbr.2022.114247_bib25 article-title: Optimization of transcutaneous vagus nerve stimulation using functional MRI publication-title: Neuromodulation doi: 10.1111/ner.12541 – volume: 2 start-page: 297 issue: 4 year: 2001 ident: 10.1016/j.bbr.2022.114247_bib41 article-title: Validation of the insomnia severity index as an outcome measure for insomnia research publication-title: Sleep Med. doi: 10.1016/S1389-9457(00)00065-4 – ident: 10.1016/j.bbr.2022.114247_bib82 doi: 10.1016/S0079-6123(07)63018-0 |
SSID | ssj0004051 |
Score | 2.4872174 |
Snippet | Many human activities require high cognitive performance over long periods, while impairments induced by sleep deprivation influence various aspects of... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 114247 |
SubjectTerms | Cognition Fatigue countermeasure Humans Memory, Short-Term Non-invasive neuromodulation Sleep Deprivation TaVNS Vagus Nerve - physiology Vagus Nerve Stimulation Working memory |
Title | Transcutaneous auricular vagus stimulation (taVNS) improves human working memory performance under sleep deprivation stress |
URI | https://dx.doi.org/10.1016/j.bbr.2022.114247 https://www.ncbi.nlm.nih.gov/pubmed/36473677 https://www.proquest.com/docview/2755580024 |
Volume | 439 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7549 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004051 issn: 0166-4328 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7549 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004051 issn: 0166-4328 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7549 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004051 issn: 0166-4328 databaseCode: AIKHN dateStart: 19950123 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1872-7549 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004051 issn: 0166-4328 databaseCode: ACRLP dateStart: 19950123 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7549 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004051 issn: 0166-4328 databaseCode: AKRWK dateStart: 19950123 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DX3wRdV7mZUQQUaGuTdN2fRzDMRX34oW9hbRNZLLNsYsyBH-75yTthqA--Ng2oSEnyfly8uU7hJyweqLqTMZOhDKXXHPXqfM4dcJYeYkClxeYUPZdJ2w_8ptu0C2RZnEXBmmV-dpv13SzWudvanlv1ka9Xu0ewAq4U6RB4sgy6zCqf8GYvvxc0jwAkNichGHoYOniZNNwvJIEJUEZQ8VchhlWfvZNv2FP44NaG2Q9B4-0Ydu3SUpquEXKjSFsnAdzekoNndPEycvkw3ihdAbgT8Hunhr5IOSc0jf5DM8wtQd56i56NpVPnftz2jMRBjWhJnMffbeBdDpANu6cjpZ3DChePRvTSV-pEUUybZ4jjdqrJ9vksXX10Gw7eaYFJ_UDf-pkQaZ8BC8SAEcaawaoJpaZDgOexBo-SRVm0pMyc1Poc_Bhbqwz5kuXa6l54u-QleHrUO0RyqX0I5kh0Ew5Y54EwOTJUMe6zplSSYW4RR-LNJchx2wYfVHwzV4EmEWgWYQ1S4VcLKqMrAbHX4V5YTjxbSAJ8BF_VTsujCxgguGpiTWPYBFKoiGWqZBda_1FK1B83w-jaP9_Pz0ga5i9HkngXnBIVqbjmToCjDNNqmYQV8lq4_q23fkC4Z777Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5V5bBcELu8uuzDSAgtSFETx0maY4UWlS30wkPcLCexUVHbrfoAVfx5ZmwHtNIuhz3mYSXy2DOf7W--ATjknUJ3uMqDjGQuhRFh0BF5GaS5jgqNIS-xW9mXg7R3I37dJXcNOK1zYYhW6X2_8-nWW_s7bd-b7elw2L5CsILhlGiQNLLID6-JBH1yE9a65_3e4C09MkxcWcI0DahBfbhpaV5FQaqgnJNoLqciK38PT_-CnzYMnW3ChsePrOt-8SM09OQTbHUnuHYer9gRs4xOu1W-Bc82EJVLxH8aF_jMKggR7ZQ9qnu8xtk99tW72I-Fuh1cHbOh3WTQc2aL97Ent5fOxkTIXbHpW5oBo-yzGZuPtJ4y4tP6MmnMZZ9sw83Zz-vTXuCLLQRlnMSLoEoqHRN-UYg5ytxwBDa5qkyaiCI3-EjptFKRUlVYYrdjGAtzU_FYhcIoI4p4B5qT3xO9B0woFWeqIqxZCs4jhZgpUqnJTUdwrYsWhHUfy9IrkVNBjJGsKWcPEs0iySzSmaUFJ69Npk6G472XRW04-cdYkhgm3mt2UBtZ4hyjgxNnHskzUkUjONOCXWf9178g_f04zbLP__fR7_Chd315IS_OB_19WKdi9sQJj5Iv0FzMlvorQp5F8c0P6Rdr6_6Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcutaneous+auricular+vagus+stimulation+%28taVNS%29+improves+human+working+memory+performance+under+sleep+deprivation+stress&rft.jtitle=Behavioural+brain+research&rft.au=Zhao%2C+Rui&rft.au=Chang%2C+Meng-Ying&rft.au=Cheng%2C+Chen&rft.au=Tian%2C+Qian-Qian&rft.date=2023-02-15&rft.issn=0166-4328&rft.volume=439&rft.spage=114247&rft_id=info:doi/10.1016%2Fj.bbr.2022.114247&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbr_2022_114247 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-4328&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-4328&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-4328&client=summon |