Transcutaneous auricular vagus stimulation (taVNS) improves human working memory performance under sleep deprivation stress

Many human activities require high cognitive performance over long periods, while impairments induced by sleep deprivation influence various aspects of cognitive abilities, including working memory (WM), attention, and processing speed. Based on previous research, vagal nerve stimulation can modulat...

Full description

Saved in:
Bibliographic Details
Published inBehavioural brain research Vol. 439; p. 114247
Main Authors Zhao, Rui, Chang, Meng-Ying, Cheng, Chen, Tian, Qian-Qian, Yang, Xue-Juan, Du, Meng-Yu, Cui, Ya-Peng, He, Zhao-Yang, Wang, Fu-Min, Kong, Yao, Deng, Hui, Lu, Li-Ming, Tang, Chun-Zhi, Xu, Neng-Gui, Sun, Jin-Bo, Qin, Wei
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 15.02.2023
Subjects
Online AccessGet full text
ISSN0166-4328
1872-7549
1872-7549
DOI10.1016/j.bbr.2022.114247

Cover

Abstract Many human activities require high cognitive performance over long periods, while impairments induced by sleep deprivation influence various aspects of cognitive abilities, including working memory (WM), attention, and processing speed. Based on previous research, vagal nerve stimulation can modulate cognitive abilities, attention, and arousal. Two experiments were conducted to assess the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) to relieve the deleterious effects of sleep deprivation. In the first experiment, 35 participants completed N-back tasks at 8:00 a.m. for two consecutive days in a within-subject study. Then, the participants received either taVNS or earlobe stimulation (active control) intervention in two sessions at random orders after 24 h of sustained wakefulness. Then, they completed the N-back tasks again. In the second experiment, 30 participants completed the psychomotor vigilance task (PVT), and 32 completed the N-back tasks at 8:00 a.m. on the first and second days. Then, they received either taVNS or earlobe stimulation at random orders and finished the N-back and PVT tasks immediately after one hour. In Experiment 1, taVNS could significantly improve the accuracy rate of participants in spatial 3-back tasks compared to active control, which was consistent with experiment 2. However, taVNS did not specifically enhance PVT performance. Therefore, taVNS could be a powerful intervention for acute sleep deprivation as it can improve performance on high cognitive load tasks and is easy to administer. •Working memory and alertness were impaired stably after 24-hour sleep deprivation.•taVNS improved working memory performance accuracy after 24-hour sleep deprivation.•taVNS showed large potential to be a fatigue countermeasure after sleep deprivation.
AbstractList Many human activities require high cognitive performance over long periods, while impairments induced by sleep deprivation influence various aspects of cognitive abilities, including working memory (WM), attention, and processing speed. Based on previous research, vagal nerve stimulation can modulate cognitive abilities, attention, and arousal. Two experiments were conducted to assess the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) to relieve the deleterious effects of sleep deprivation. In the first experiment, 35 participants completed N-back tasks at 8:00 a.m. for two consecutive days in a within-subject study. Then, the participants received either taVNS or earlobe stimulation (active control) intervention in two sessions at random orders after 24 h of sustained wakefulness. Then, they completed the N-back tasks again. In the second experiment, 30 participants completed the psychomotor vigilance task (PVT), and 32 completed the N-back tasks at 8:00 a.m. on the first and second days. Then, they received either taVNS or earlobe stimulation at random orders and finished the N-back and PVT tasks immediately after one hour. In Experiment 1, taVNS could significantly improve the accuracy rate of participants in spatial 3-back tasks compared to active control, which was consistent with experiment 2. However, taVNS did not specifically enhance PVT performance. Therefore, taVNS could be a powerful intervention for acute sleep deprivation as it can improve performance on high cognitive load tasks and is easy to administer. •Working memory and alertness were impaired stably after 24-hour sleep deprivation.•taVNS improved working memory performance accuracy after 24-hour sleep deprivation.•taVNS showed large potential to be a fatigue countermeasure after sleep deprivation.
Many human activities require high cognitive performance over long periods, while impairments induced by sleep deprivation influence various aspects of cognitive abilities, including working memory (WM), attention, and processing speed. Based on previous research, vagal nerve stimulation can modulate cognitive abilities, attention, and arousal. Two experiments were conducted to assess the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) to relieve the deleterious effects of sleep deprivation. In the first experiment, 35 participants completed N-back tasks at 8:00 a.m. for two consecutive days in a within-subject study. Then, the participants received either taVNS or earlobe stimulation (active control) intervention in two sessions at random orders after 24 h of sustained wakefulness. Then, they completed the N-back tasks again. In the second experiment, 30 participants completed the psychomotor vigilance task (PVT), and 32 completed the N-back tasks at 8:00 a.m. on the first and second days. Then, they received either taVNS or earlobe stimulation at random orders and finished the N-back and PVT tasks immediately after one hour. In Experiment 1, taVNS could significantly improve the accuracy rate of participants in spatial 3-back tasks compared to active control, which was consistent with experiment 2. However, taVNS did not specifically enhance PVT performance. Therefore, taVNS could be a powerful intervention for acute sleep deprivation as it can improve performance on high cognitive load tasks and is easy to administer.
Many human activities require high cognitive performance over long periods, while impairments induced by sleep deprivation influence various aspects of cognitive abilities, including working memory (WM), attention, and processing speed. Based on previous research, vagal nerve stimulation can modulate cognitive abilities, attention, and arousal. Two experiments were conducted to assess the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) to relieve the deleterious effects of sleep deprivation. In the first experiment, 35 participants completed N-back tasks at 8:00 a.m. for two consecutive days in a within-subject study. Then, the participants received either taVNS or earlobe stimulation (active control) intervention in two sessions at random orders after 24 h of sustained wakefulness. Then, they completed the N-back tasks again. In the second experiment, 30 participants completed the psychomotor vigilance task (PVT), and 32 completed the N-back tasks at 8:00 a.m. on the first and second days. Then, they received either taVNS or earlobe stimulation at random orders and finished the N-back and PVT tasks immediately after one hour. In Experiment 1, taVNS could significantly improve the accuracy rate of participants in spatial 3-back tasks compared to active control, which was consistent with experiment 2. However, taVNS did not specifically enhance PVT performance. Therefore, taVNS could be a powerful intervention for acute sleep deprivation as it can improve performance on high cognitive load tasks and is easy to administer.Many human activities require high cognitive performance over long periods, while impairments induced by sleep deprivation influence various aspects of cognitive abilities, including working memory (WM), attention, and processing speed. Based on previous research, vagal nerve stimulation can modulate cognitive abilities, attention, and arousal. Two experiments were conducted to assess the efficacy of transcutaneous auricular vagus nerve stimulation (taVNS) to relieve the deleterious effects of sleep deprivation. In the first experiment, 35 participants completed N-back tasks at 8:00 a.m. for two consecutive days in a within-subject study. Then, the participants received either taVNS or earlobe stimulation (active control) intervention in two sessions at random orders after 24 h of sustained wakefulness. Then, they completed the N-back tasks again. In the second experiment, 30 participants completed the psychomotor vigilance task (PVT), and 32 completed the N-back tasks at 8:00 a.m. on the first and second days. Then, they received either taVNS or earlobe stimulation at random orders and finished the N-back and PVT tasks immediately after one hour. In Experiment 1, taVNS could significantly improve the accuracy rate of participants in spatial 3-back tasks compared to active control, which was consistent with experiment 2. However, taVNS did not specifically enhance PVT performance. Therefore, taVNS could be a powerful intervention for acute sleep deprivation as it can improve performance on high cognitive load tasks and is easy to administer.
ArticleNumber 114247
Author Chang, Meng-Ying
He, Zhao-Yang
Xu, Neng-Gui
Lu, Li-Ming
Yang, Xue-Juan
Kong, Yao
Qin, Wei
Cheng, Chen
Sun, Jin-Bo
Cui, Ya-Peng
Tian, Qian-Qian
Tang, Chun-Zhi
Wang, Fu-Min
Du, Meng-Yu
Zhao, Rui
Deng, Hui
Author_xml – sequence: 1
  givenname: Rui
  surname: Zhao
  fullname: Zhao, Rui
  organization: School of Electronics and Information, Xi’an Polytechnic University, Xi’an, China
– sequence: 2
  givenname: Meng-Ying
  surname: Chang
  fullname: Chang, Meng-Ying
  organization: School of Electronics and Information, Xi’an Polytechnic University, Xi’an, China
– sequence: 3
  givenname: Chen
  surname: Cheng
  fullname: Cheng, Chen
  organization: Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi 710126, China
– sequence: 4
  givenname: Qian-Qian
  surname: Tian
  fullname: Tian, Qian-Qian
  organization: Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi 710126, China
– sequence: 5
  givenname: Xue-Juan
  surname: Yang
  fullname: Yang, Xue-Juan
  email: xjyang@xidian.edu.cn
  organization: Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi 710126, China
– sequence: 6
  givenname: Meng-Yu
  surname: Du
  fullname: Du, Meng-Yu
  organization: Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi 710126, China
– sequence: 7
  givenname: Ya-Peng
  surname: Cui
  fullname: Cui, Ya-Peng
  organization: Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi 710126, China
– sequence: 8
  givenname: Zhao-Yang
  surname: He
  fullname: He, Zhao-Yang
  organization: School of Electronics and Information, Xi’an Polytechnic University, Xi’an, China
– sequence: 9
  givenname: Fu-Min
  surname: Wang
  fullname: Wang, Fu-Min
  organization: School of Electronics and Information, Xi’an Polytechnic University, Xi’an, China
– sequence: 10
  givenname: Yao
  surname: Kong
  fullname: Kong, Yao
  organization: School of Electronics and Information, Xi’an Polytechnic University, Xi’an, China
– sequence: 11
  givenname: Hui
  surname: Deng
  fullname: Deng, Hui
  organization: Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi 710126, China
– sequence: 12
  givenname: Li-Ming
  surname: Lu
  fullname: Lu, Li-Ming
  organization: South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
– sequence: 13
  givenname: Chun-Zhi
  surname: Tang
  fullname: Tang, Chun-Zhi
  organization: South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
– sequence: 14
  givenname: Neng-Gui
  surname: Xu
  fullname: Xu, Neng-Gui
  organization: South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
– sequence: 15
  givenname: Jin-Bo
  surname: Sun
  fullname: Sun, Jin-Bo
  email: sunjb@xidian.edu.cn
  organization: Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi 710126, China
– sequence: 16
  givenname: Wei
  surname: Qin
  fullname: Qin, Wei
  organization: Intelligent Non-Invasive Neuromodulation Technology and Transformation Joint Laboratory, Xidian University, Xi’an, Shaanxi 710126, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36473677$$D View this record in MEDLINE/PubMed
BookMark eNp9kT1vFDEQhi2UiFwCP4AGuQzFXvy161tRoSgJSBEUBFrLa4-Dj_04xt5DUf58HDZQUKQajeZ5RzPve0wOxmkEQt5wtuaMN2fbddfhWjAh1pwrofQLsuIbLSpdq_aArArTVEqKzRE5TmnLGFOs5i_JkWyUlo3WK3J_g3ZMbs52hGlO1M4Y3dxbpHt7W_qU41DaHKeRnmb7_fPXdzQOO5z2kOiPebAj_T3hzzje0gGGCe_oDjBMWAYO6Dx6QJp6gB31sMO4XzaljJDSK3IYbJ_g9VM9Id8uL27OP1bXX64-nX-4rpysZa587UGyRm6s5sy1QWihW-tDU6uuDWVkofGWW-uZa5RUomVt8EJapoINqpMn5HTZW87-NUPKZojJQd8vPxuh67reMCZUQd8-oXM3gDfl5MHinflrWAH4AjicUkII_xDOzGMoZmtKKOYxFLOEUjT6P42L-Y8RGW3sn1W-X5RQ7NlHQJNchOKsjwguGz_FZ9QPVvupQw
CitedBy_id crossref_primary_10_3389_fnagi_2023_1145207
crossref_primary_10_3389_fpsyg_2024_1343413
crossref_primary_10_3389_fnins_2024_1494272
crossref_primary_10_1016_j_brs_2024_04_002
crossref_primary_10_1016_j_neuroscience_2024_12_044
crossref_primary_10_1016_j_sleep_2024_11_007
crossref_primary_10_3389_felec_2025_1503425
crossref_primary_10_1016_j_neurom_2025_01_003
crossref_primary_10_1111_psyp_14744
crossref_primary_10_1007_s10286_024_01053_0
crossref_primary_10_3389_fnins_2023_1133964
crossref_primary_10_1016_j_sleep_2024_11_010
Cites_doi 10.1016/S0959-4388(98)80145-1
10.1007/s11682-018-9868-2
10.1016/j.brs.2015.10.006
10.1016/B978-0-444-53702-7.00007-5
10.1016/j.neuropsychologia.2018.01.003
10.1016/S1566-0702(00)00219-8
10.1016/j.brainres.2015.11.022
10.3389/fnhum.2018.00202
10.1523/JNEUROSCI.3248-07.2008
10.1038/s41380-019-0499-9
10.1080/00207450802323970
10.5535/arm.2012.36.5.585
10.1016/0031-9384(80)90020-7
10.1038/35001068
10.1038/s41467-018-07233-7
10.1016/j.brs.2020.02.019
10.1016/0165-1781(89)90047-4
10.1016/j.neuroscience.2011.05.024
10.1016/j.jneumeth.2019.108325
10.3389/fnhum.2018.00276
10.1007/s11682-015-9490-5
10.1037/a0018883
10.1111/ane.12462
10.1007/s00426-020-01292-6
10.1016/j.smrv.2015.12.005
10.1016/j.sleep.2020.11.010
10.1002/hbm.24596
10.1037/xlm0001023
10.1038/s41467-020-17344-9
10.5664/jcsm.26918
10.1016/j.neuroscience.2005.07.002
10.1007/s00221-005-2334-6
10.1016/S0165-0173(03)00143-7
10.3389/fnins.2021.790793
10.1016/j.sleep.2020.06.019
10.1146/annurev.neuro.25.032502.111311
10.1016/j.neuroscience.2018.11.049
10.1016/j.neuroscience.2017.09.047
10.2174/157015908785777193
10.1016/j.brs.2021.02.010
10.1016/S0306-4522(02)00026-X
10.1093/sleep/zsz016
10.1016/j.brs.2017.08.005
10.3389/fnins.2020.00754
10.1038/nature19773
10.1093/sleep/30.1.61
10.1002/hbm.25886
10.1097/WNR.0000000000001462
10.1016/j.brs.2016.07.004
10.1111/jsr.12354
10.1016/j.psc.2015.07.002
10.1155/2019/7030286
10.1073/pnas.1510383112
10.1016/j.brs.2017.12.009
10.1542/peds.2008-1182
10.1016/j.cpr.2010.11.003
10.1111/jsr.12582
10.1097/WNR.0b013e3282f2adfd
10.1016/j.heliyon.2021.e08336
10.1038/s42003-021-02145-7
10.1016/j.brainres.2018.09.033
10.1016/j.cortex.2017.03.017
10.3389/fnins.2022.947236
10.2147/NSS.S342922
10.3390/brainsci8070137
10.1016/j.cub.2015.09.039
10.14814/phy2.12129
10.1196/annals.1417.002
10.1111/j.1365-2869.1995.tb00220.x
10.1111/head.12647
10.1016/j.conb.2013.02.008
10.5935/1984-0063.20220007
10.1038/40775
10.1016/j.brs.2016.10.001
10.1007/s11065-020-09454-4
10.1111/ner.12541
10.1016/S1389-9457(00)00065-4
10.1016/S0079-6123(07)63018-0
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.bbr.2022.114247
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1872-7549
ExternalDocumentID 36473677
10_1016_j_bbr_2022_114247
S0166432822005162
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
6J9
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
C45
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
L7B
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
TEORI
TN5
WH7
YR2
~G-
.GJ
41~
5VS
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGHFR
AGQPQ
AHHHB
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
R2-
SEW
SNS
VH1
WUQ
XJT
ZGI
ZXP
ZY4
~HD
AGCQF
AGRNS
BNPGV
CGR
CUY
CVF
ECM
EIF
NPM
SSH
7X8
ID FETCH-LOGICAL-c353t-d5de30638a710c9f27279adf654b9fe30ae6da1aad0c64342909fd23a04faf4b3
IEDL.DBID .~1
ISSN 0166-4328
1872-7549
IngestDate Fri Sep 05 08:13:23 EDT 2025
Mon Jul 21 05:45:31 EDT 2025
Thu Apr 24 23:12:30 EDT 2025
Wed Oct 01 03:00:58 EDT 2025
Fri Feb 23 02:40:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Non-invasive neuromodulation
TaVNS
Working memory
Fatigue countermeasure
Sleep deprivation
Language English
License Copyright © 2022 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-d5de30638a710c9f27279adf654b9fe30ae6da1aad0c64342909fd23a04faf4b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 36473677
PQID 2755580024
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2755580024
pubmed_primary_36473677
crossref_primary_10_1016_j_bbr_2022_114247
crossref_citationtrail_10_1016_j_bbr_2022_114247
elsevier_sciencedirect_doi_10_1016_j_bbr_2022_114247
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-15
PublicationDateYYYYMMDD 2023-02-15
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Behavioural brain research
PublicationTitleAlternate Behav Brain Res
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhao, Zhang, Zhu (bib52) 2019; 398
Gu (bib31) 2002; 111
Dinges (bib6) 1995; 4
Quiquempoix, Sauvet, Erblang (bib12) 2022; 14
Kuna, Maislin, Pack (bib58) 2012; 35
Liu, Voroslakos, Kronberg (bib68) 2018; 9
Jarrold, Towse (bib43) 2006; 139
McLellan, Kamimori, Voss, Bell, Cole, Johnson (bib13) 2005; 76
Killgore, Muckle, Grugle, Killgore, Balkin (bib9) 2008; 118
Zhu, Feng, Xu (bib53) 2016; 10
Buysse, Reynolds, Monk, Berman, Kupfer (bib42) 1989; 28
Chua, Yeo, Lee (bib59) 2014; 2
Nichols, Nichols, Smirnakis, Engineer, Kilgard, Atzori (bib29) 2011; 189
Weber, Dan (bib72) 2016; 538
Basner, Rao, Goel, Dinges (bib3) 2013; 23
Goehler, Gaykema, Hansen, Anderson, Maier, Watkins (bib23) 2000; 85
Kusztor, Raud, Juel, Nilsen, Storm, Huster (bib1) 2019; 42
Chandler (bib28) 2016; 1641
Saper (bib24) 2002; 25
Li, Zhou, Yu (bib20) 2021; 77
Sun, Tian, Yang (bib73) 2021; 14
Jeon, Han (bib64) 2012; 36
Dawson, Reid (bib8) 1997; 388
Anderson, Storfer-Isser, Taylor, Rosen, Redline (bib40) 2009; 123
McIntire, McKinley, Goodyear, McIntire, Brown (bib33) 2021; 4
Samuels, Szabadi (bib32) 2008; 6
Harley C.W. Norepinephrine and the dentate gyrus. Dentate Gyrus: A Comphrehensive Guide to Structure, Function, and Clinical Implications 2007;163:299–318 doi: 10.1016/S0079–6123(07)63018–0[published Online First: Epub Date]|.
Bastien, Vallieres, Morin (bib41) 2001; 2
Schwartz, Kilduff (bib78) 2015; 38
Sun, Cheng, Tian (bib39) 2021; 15
Guo, Jiang, Jiang, McClure, Mu (bib18) 2019; 2019
Eguchi, Satoh (bib71) 1980; 24
Banks, Dinges (bib45) 2007; 3
Adair, Truong, Esmaeilpour (bib77) 2020; 13
Badran, Dowdle, Mithoefer (bib26) 2018; 11
Lim, Dinges (bib2) 2010; 136
Neuser, Teckentrup, Kuhnel, Hallschmid, Walter, Kroemer (bib38) 2020; 11
Xu, Zhu, Fu (bib54) 2016; 25
Zhu, Xi, Sun (bib51) 2019; 40
Lanza (bib17) 2021; 77
Zhao, Zhang, Fei (bib50) 2019; 13
Schwarz, Luo (bib27) 2015; 25
Adair, Truong, Esmaeilpour (bib70) 2020; 13
Foote, Berridge (bib30) 2019; 1709
Chiesa, Calati, Serretti (bib60) 2011; 31
Colzato, Ritter, Steenbergen (bib34) 2018; 111
Zhao, Zhang, Zhu (bib49) 2018; 12
Sun, Zhao, Yang (bib47) 2020; 14
Verlinden, Rijkers, Hoogland, Herrler (bib75) 2016; 133
Yang, Xie, Mu (bib11) 2020; 31
Kronberg, Bridi, Abel, Bikson, Parra (bib69) 2017; 10
Zhu, Xi, Fei (bib55) 2018; 27
Forouzanfar, Gholami, Foroughnia (bib10) 2021; 7
San-Juan, Mas, Gutierrez (bib66) 2022; 15
Tharion, Shukitt-Hale, Lieberman (bib14) 2003; 74
Thompson, Mastitskaya, Holder (bib74) 2019; 325
Fregni, Boggio, Nitsche (bib65) 2005; 166
Zhu, Wang, Xi (bib56) 2017; 365
Yakunina, Kim, Nam (bib25) 2017; 20
Colzato, Sellaro, Beste (bib36) 2017; 92
McIntire, McKinley, Nelson, Goodyear (bib19) 2017; 10
Chase, Boudewyn, Carter, Phillips (bib67) 2020; 25
Annarumma, D'Atri, Alfonsi, De Gennaro (bib16) 2018; 8
Killgore (bib5) 2010; 185
Lim, Choo, Chee (bib57) 2007; 30
Drummond, Brown, Gillin, Stricker, Wong, Buxton (bib4) 2000; 403
Beste, Steenbergen, Sellaro (bib35) 2016; 9
Lee, Howard, Horrey (bib7) 2016; 113
Hill, Fitzgerald, Hoy (bib21) 2016; 9
Riontino, Cavallero (bib48) 2021; 85
Baddeley (bib61) 1998; 8
Ventura-Bort, Wirkner, Genheimer, Wendt, Hamm, Weymar (bib37) 2018; 12
Ohn, Park, Yoo (bib63) 2008; 19
Sloan, Byrne, Enticott, Lum (bib22) 2021; 31
Sun, Zhao, He (bib46) 2022
Zhao, He, Cheng (bib62) 2022; 16
Berridge, Waterhouse (bib80) 2003; 42
Stepan, Altmann, Fenn (bib15) 2021; 47
Yuan, Silberstein (bib76) 2016; 56
Krone, Frase, Piosczyk (bib79) 2017; 31
Lim, Dinges (bib44) 2008; 1129
Mueller, Porter, Quirk (bib81) 2008; 28
Ohn (10.1016/j.bbr.2022.114247_bib63) 2008; 19
Verlinden (10.1016/j.bbr.2022.114247_bib75) 2016; 133
Colzato (10.1016/j.bbr.2022.114247_bib34) 2018; 111
Lim (10.1016/j.bbr.2022.114247_bib57) 2007; 30
Banks (10.1016/j.bbr.2022.114247_bib45) 2007; 3
Gu (10.1016/j.bbr.2022.114247_bib31) 2002; 111
Anderson (10.1016/j.bbr.2022.114247_bib40) 2009; 123
Neuser (10.1016/j.bbr.2022.114247_bib38) 2020; 11
McIntire (10.1016/j.bbr.2022.114247_bib19) 2017; 10
Zhu (10.1016/j.bbr.2022.114247_bib56) 2017; 365
Foote (10.1016/j.bbr.2022.114247_bib30) 2019; 1709
Hill (10.1016/j.bbr.2022.114247_bib21) 2016; 9
Chandler (10.1016/j.bbr.2022.114247_bib28) 2016; 1641
Thompson (10.1016/j.bbr.2022.114247_bib74) 2019; 325
Yuan (10.1016/j.bbr.2022.114247_bib76) 2016; 56
Jarrold (10.1016/j.bbr.2022.114247_bib43) 2006; 139
Bastien (10.1016/j.bbr.2022.114247_bib41) 2001; 2
Fregni (10.1016/j.bbr.2022.114247_bib65) 2005; 166
Zhu (10.1016/j.bbr.2022.114247_bib51) 2019; 40
Adair (10.1016/j.bbr.2022.114247_bib77) 2020; 13
Sloan (10.1016/j.bbr.2022.114247_bib22) 2021; 31
Sun (10.1016/j.bbr.2022.114247_bib46) 2022
Zhao (10.1016/j.bbr.2022.114247_bib50) 2019; 13
Adair (10.1016/j.bbr.2022.114247_bib70) 2020; 13
Sun (10.1016/j.bbr.2022.114247_bib73) 2021; 14
Buysse (10.1016/j.bbr.2022.114247_bib42) 1989; 28
Zhu (10.1016/j.bbr.2022.114247_bib55) 2018; 27
Dinges (10.1016/j.bbr.2022.114247_bib6) 1995; 4
Tharion (10.1016/j.bbr.2022.114247_bib14) 2003; 74
Jeon (10.1016/j.bbr.2022.114247_bib64) 2012; 36
Badran (10.1016/j.bbr.2022.114247_bib26) 2018; 11
Colzato (10.1016/j.bbr.2022.114247_bib36) 2017; 92
Lanza (10.1016/j.bbr.2022.114247_bib17) 2021; 77
Samuels (10.1016/j.bbr.2022.114247_bib32) 2008; 6
Xu (10.1016/j.bbr.2022.114247_bib54) 2016; 25
Schwarz (10.1016/j.bbr.2022.114247_bib27) 2015; 25
Killgore (10.1016/j.bbr.2022.114247_bib9) 2008; 118
Saper (10.1016/j.bbr.2022.114247_bib24) 2002; 25
Lee (10.1016/j.bbr.2022.114247_bib7) 2016; 113
10.1016/j.bbr.2022.114247_bib82
Baddeley (10.1016/j.bbr.2022.114247_bib61) 1998; 8
Stepan (10.1016/j.bbr.2022.114247_bib15) 2021; 47
Forouzanfar (10.1016/j.bbr.2022.114247_bib10) 2021; 7
McLellan (10.1016/j.bbr.2022.114247_bib13) 2005; 76
San-Juan (10.1016/j.bbr.2022.114247_bib66) 2022; 15
Kronberg (10.1016/j.bbr.2022.114247_bib69) 2017; 10
Schwartz (10.1016/j.bbr.2022.114247_bib78) 2015; 38
Kusztor (10.1016/j.bbr.2022.114247_bib1) 2019; 42
Beste (10.1016/j.bbr.2022.114247_bib35) 2016; 9
Berridge (10.1016/j.bbr.2022.114247_bib80) 2003; 42
Lim (10.1016/j.bbr.2022.114247_bib2) 2010; 136
Drummond (10.1016/j.bbr.2022.114247_bib4) 2000; 403
Krone (10.1016/j.bbr.2022.114247_bib79) 2017; 31
Mueller (10.1016/j.bbr.2022.114247_bib81) 2008; 28
Goehler (10.1016/j.bbr.2022.114247_bib23) 2000; 85
Guo (10.1016/j.bbr.2022.114247_bib18) 2019; 2019
Li (10.1016/j.bbr.2022.114247_bib20) 2021; 77
Liu (10.1016/j.bbr.2022.114247_bib68) 2018; 9
Sun (10.1016/j.bbr.2022.114247_bib47) 2020; 14
Chiesa (10.1016/j.bbr.2022.114247_bib60) 2011; 31
Annarumma (10.1016/j.bbr.2022.114247_bib16) 2018; 8
Chase (10.1016/j.bbr.2022.114247_bib67) 2020; 25
Quiquempoix (10.1016/j.bbr.2022.114247_bib12) 2022; 14
Zhao (10.1016/j.bbr.2022.114247_bib49) 2018; 12
Ventura-Bort (10.1016/j.bbr.2022.114247_bib37) 2018; 12
Yang (10.1016/j.bbr.2022.114247_bib11) 2020; 31
Kuna (10.1016/j.bbr.2022.114247_bib58) 2012; 35
Dawson (10.1016/j.bbr.2022.114247_bib8) 1997; 388
Zhu (10.1016/j.bbr.2022.114247_bib53) 2016; 10
Zhao (10.1016/j.bbr.2022.114247_bib52) 2019; 398
Basner (10.1016/j.bbr.2022.114247_bib3) 2013; 23
Yakunina (10.1016/j.bbr.2022.114247_bib25) 2017; 20
Eguchi (10.1016/j.bbr.2022.114247_bib71) 1980; 24
McIntire (10.1016/j.bbr.2022.114247_bib33) 2021; 4
Nichols (10.1016/j.bbr.2022.114247_bib29) 2011; 189
Sun (10.1016/j.bbr.2022.114247_bib39) 2021; 15
Lim (10.1016/j.bbr.2022.114247_bib44) 2008; 1129
Riontino (10.1016/j.bbr.2022.114247_bib48) 2021; 85
Chua (10.1016/j.bbr.2022.114247_bib59) 2014; 2
Killgore (10.1016/j.bbr.2022.114247_bib5) 2010; 185
Zhao (10.1016/j.bbr.2022.114247_bib62) 2022; 16
Weber (10.1016/j.bbr.2022.114247_bib72) 2016; 538
References_xml – volume: 8
  start-page: 234
  year: 1998
  end-page: 238
  ident: bib61
  article-title: Recent developments in working memory
  publication-title: Curr. Opin. Neurobiol.
– volume: 16
  year: 2022
  ident: bib62
  article-title: Assessing the effect of simultaneous combining of transcranial direct current stimulation and transcutaneous auricular vagus nerve stimulation on the improvement of working memory performance in healthy individuals
  publication-title: Front. Neurosci.
– volume: 11
  start-page: 492
  year: 2018
  end-page: 500
  ident: bib26
  article-title: Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review
  publication-title: Brain Stimul.
– volume: 25
  start-page: R1051
  year: 2015
  end-page: R1056
  ident: bib27
  article-title: Organization of the locus coeruleus-norepinephrine system
  publication-title: Curr. Biol.
– volume: 19
  start-page: 43
  year: 2008
  end-page: 47
  ident: bib63
  article-title: Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory
  publication-title: Neuroreport
– volume: 10
  start-page: 51
  year: 2017
  end-page: 58
  ident: bib69
  article-title: Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects
  publication-title: Brain Stimul.
– volume: 9
  start-page: 811
  year: 2016
  end-page: 818
  ident: bib35
  article-title: Effects of concomitant stimulation of the GABAergic and norepinephrine system on inhibitory control – a study using transcutaneous vagus nerve stimulation
  publication-title: Brain Stimul.
– volume: 1709
  start-page: 81
  year: 2019
  end-page: 84
  ident: bib30
  article-title: New developments and future directions in understanding locus coeruleus – norepinephrine (LC-NE) function
  publication-title: Brain Res.
– volume: 30
  start-page: 61
  year: 2007
  end-page: 70
  ident: bib57
  article-title: Reproducibility of changes in behaviour and fMRI activation associated with sleep deprivation in a working memory task
  publication-title: Sleep
– volume: 31
  start-page: 857
  year: 2020
  end-page: 864
  ident: bib11
  article-title: Tea polyphenols protect learning and memory in sleep-deprived mice by promoting AMPA receptor internalization
  publication-title: Neuroreport
– volume: 133
  start-page: 173
  year: 2016
  end-page: 182
  ident: bib75
  article-title: Morphology of the human cervical vagus nerve: implications for vagus nerve stimulation treatment
  publication-title: Acta Neurol. Scand.
– volume: 38
  start-page: 615
  year: 2015
  end-page: 644
  ident: bib78
  article-title: The neurobiology of sleep and wakefulness
  publication-title: Psychiatr. Clin. North Am.
– volume: 35
  start-page: 1223
  year: 2012
  end-page: 1233
  ident: bib58
  article-title: Heritability of performance deficit accumulation during acute sleep deprivation in twins
  publication-title: Sleep
– volume: 4
  start-page: 4
  year: 1995
  end-page: 14
  ident: bib6
  article-title: An overview of sleepiness and accidents
  publication-title: J. Sleep. Res.
– volume: 9
  start-page: 5092
  year: 2018
  ident: bib68
  article-title: Immediate neurophysiological effects of transcranial electrical stimulation
  publication-title: Nat. Commun.
– volume: 76
  start-page: 647
  year: 2005
  end-page: 654
  ident: bib13
  article-title: Caffeine maintains vigilance and improves run times during night operations for special forces
  publication-title: Aviat. Space Environ. Med.
– volume: 10
  start-page: 911
  year: 2016
  end-page: 919
  ident: bib53
  article-title: Increased interhemispheric resting-state functional connectivity after sleep deprivation: a resting-state fMRI study
  publication-title: Brain Imaging Behav.
– volume: 538
  start-page: 51
  year: 2016
  end-page: 59
  ident: bib72
  article-title: Circuit-based interrogation of sleep control
  publication-title: Nature
– volume: 118
  start-page: 1547
  year: 2008
  end-page: 1557
  ident: bib9
  article-title: Sex differences in cognitive estimation during sleep deprivation: effects of stimulant countermeasures
  publication-title: Int J. Neurosci.
– volume: 24
  start-page: 99
  year: 1980
  end-page: 102
  ident: bib71
  article-title: Characterization of the neurons in the region of solitary tract nucleus during sleep
  publication-title: Physiol. Behav.
– volume: 113
  start-page: 176
  year: 2016
  end-page: 181
  ident: bib7
  article-title: High risk of near-crash driving events following night-shift work
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 166
  start-page: 23
  year: 2005
  end-page: 30
  ident: bib65
  article-title: Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory
  publication-title: Exp. Brain Res.
– volume: 28
  start-page: 193
  year: 1989
  end-page: 213
  ident: bib42
  article-title: The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research
  publication-title: Psychiatry Res
– volume: 25
  start-page: 169
  year: 2016
  end-page: 180
  ident: bib54
  article-title: Frontal metabolic activity contributes to individual differences in vulnerability toward total sleep deprivation-induced changes in cognitive function
  publication-title: J. Sleep Res.
– year: 2022
  ident: bib46
  article-title: Abnormal dynamic functional connectivity after sleep deprivation from temporal variability perspective
  publication-title: Hum. Brain Mapp.
– volume: 403
  start-page: 655
  year: 2000
  end-page: 657
  ident: bib4
  article-title: Altered brain response to verbal learning following sleep deprivation
  publication-title: Nature
– reference: Harley C.W. Norepinephrine and the dentate gyrus. Dentate Gyrus: A Comphrehensive Guide to Structure, Function, and Clinical Implications 2007;163:299–318 doi: 10.1016/S0079–6123(07)63018–0[published Online First: Epub Date]|.
– volume: 388
  start-page: 235
  year: 1997
  ident: bib8
  article-title: Fatigue, alcohol and performance impairment
  publication-title: Nature
– volume: 14
  start-page: 754
  year: 2020
  ident: bib47
  article-title: Alteration of brain gray matter density after 24h of sleep deprivation in healthy adults
  publication-title: Front. Neurosci.
– volume: 40
  start-page: 3265
  year: 2019
  end-page: 3278
  ident: bib51
  article-title: Neural correlates of dynamic changes in working memory performance during one night of sleep deprivation
  publication-title: Hum. Brain Mapp.
– volume: 12
  start-page: 202
  year: 2018
  ident: bib37
  article-title: Effects of transcutaneous vagus nerve stimulation (tVNS) on the P300 and alpha-amylase level: a pilot study
  publication-title: Front. Hum. Neurosci.
– volume: 185
  start-page: 105
  year: 2010
  end-page: 129
  ident: bib5
  article-title: Effects of sleep deprivation on cognition
  publication-title: Prog. Brain Res.
– volume: 1641
  start-page: 197
  year: 2016
  end-page: 206
  ident: bib28
  article-title: Evidence for a specialized role of the locus coeruleus noradrenergic system in cortical circuitries and behavioral operations
  publication-title: Brain Res.
– volume: 47
  start-page: 1371
  year: 2021
  end-page: 1382
  ident: bib15
  article-title: Caffeine selectively mitigates cognitive deficits caused by sleep deprivation
  publication-title: J. Exp. Psychol. Learn Mem. Cogn.
– volume: 85
  start-page: 480
  year: 2021
  end-page: 490
  ident: bib48
  article-title: Individual differences in working memory efficiency modulate proactive interference after sleep deprivation
  publication-title: Psychol. Res.
– volume: 2
  start-page: 297
  year: 2001
  end-page: 307
  ident: bib41
  article-title: Validation of the insomnia severity index as an outcome measure for insomnia research
  publication-title: Sleep Med.
– volume: 9
  start-page: 197
  year: 2016
  end-page: 208
  ident: bib21
  article-title: Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations
  publication-title: Brain Stimul.
– volume: 13
  start-page: 717
  year: 2020
  end-page: 750
  ident: bib77
  article-title: Electrical stimulation of cranial nerves in cognition and disease
  publication-title: Brain Stimul.
– volume: 1129
  start-page: 305
  year: 2008
  end-page: 322
  ident: bib44
  article-title: Sleep deprivation and vigilant attention
  publication-title: Ann. N. Y Acad. Sci.
– volume: 13
  start-page: 717
  year: 2020
  end-page: 750
  ident: bib70
  article-title: Electrical stimulation of cranial nerves in cognition and disease
  publication-title: Brain Stimul.
– volume: 15
  year: 2021
  ident: bib39
  article-title: Transcutaneous Auricular Vagus nerve stimulation improves spatial working memory in healthy young adults
  publication-title: Front Neurosci.
– volume: 85
  start-page: 49
  year: 2000
  end-page: 59
  ident: bib23
  article-title: Vagal immune-to-brain communication: a visceral chemosensory pathway
  publication-title: Auton. Neurosci.
– volume: 325
  year: 2019
  ident: bib74
  article-title: Avoiding off-target effects in electrical stimulation of the cervical vagus nerve: neuroanatomical tracing techniques to study fascicular anatomy of the vagus nerve
  publication-title: J. Neurosci. Methods
– volume: 11
  start-page: 3555
  year: 2020
  ident: bib38
  article-title: Vagus nerve stimulation boosts the drive to work for rewards
  publication-title: Nat. Commun.
– volume: 42
  start-page: 33
  year: 2003
  end-page: 84
  ident: bib80
  article-title: The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes
  publication-title: Brain Res. Rev.
– volume: 23
  start-page: 854
  year: 2013
  end-page: 863
  ident: bib3
  article-title: Sleep deprivation and neurobehavioral dynamics
  publication-title: Curr. Opin. Neurobiol.
– volume: 4
  start-page: 634
  year: 2021
  ident: bib33
  article-title: Cervical transcutaneous vagal nerve stimulation (ctVNS) improves human cognitive performance under sleep deprivation stress
  publication-title: Commun. Biol.
– volume: 189
  start-page: 207
  year: 2011
  end-page: 214
  ident: bib29
  article-title: Vagus nerve stimulation modulates cortical synchrony and excitability through the activation of muscarinic receptors
  publication-title: Neuroscience
– volume: 398
  start-page: 37
  year: 2019
  end-page: 54
  ident: bib52
  article-title: Disrupted resting-state functional connectivity in hippocampal subregions after sleep deprivation
  publication-title: Neuroscience
– volume: 13
  start-page: 638
  year: 2019
  end-page: 650
  ident: bib50
  article-title: Decreased cortical and subcortical response to inhibition control after sleep deprivation
  publication-title: Brain Imaging Behav.
– volume: 14
  start-page: 457
  year: 2022
  end-page: 473
  ident: bib12
  article-title: Effects of caffeine intake on cognitive performance related to total sleep deprivation and time on task: a randomized cross-over double-blind study
  publication-title: Nat. Sci. Sleep.
– volume: 77
  start-page: 270
  year: 2021
  end-page: 278
  ident: bib20
  article-title: Effect of repetitive transcranial magnetic stimulation on the cognitive impairment induced by sleep deprivation: a randomized trial
  publication-title: Sleep Med.
– volume: 27
  start-page: 184
  year: 2018
  end-page: 196
  ident: bib55
  article-title: Dynamics of cerebral responses to sustained attention performance during one night of sleep deprivation
  publication-title: J. Sleep Res.
– volume: 139
  start-page: 39
  year: 2006
  end-page: 50
  ident: bib43
  article-title: Individual differences in working memory
  publication-title: Neuroscience
– volume: 111
  start-page: 815
  year: 2002
  end-page: 835
  ident: bib31
  article-title: Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity
  publication-title: Neuroscience
– volume: 123
  start-page: e701
  year: 2009
  end-page: e707
  ident: bib40
  article-title: Associations of executive function with sleepiness and sleep duration in adolescents
  publication-title: Pediatrics
– volume: 6
  start-page: 254
  year: 2008
  end-page: 285
  ident: bib32
  article-title: Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part II: physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans
  publication-title: Curr. Neuropharmacol.
– volume: 31
  start-page: 17
  year: 2017
  end-page: 24
  ident: bib79
  article-title: Top-down control of arousal and sleep: fundamentals and clinical implications
  publication-title: Sleep Med. Rev.
– volume: 77
  start-page: 279
  year: 2021
  end-page: 280
  ident: bib17
  article-title: Repetitive TMS for the "cognitive tsunami" of sleep deprivation
  publication-title: Sleep Med.
– volume: 12
  start-page: 276
  year: 2018
  ident: bib49
  article-title: Prediction of the effect of sleep deprivation on response inhibition via machine learning on structural magnetic resonance imaging data
  publication-title: Front. Hum. Neurosci.
– volume: 365
  start-page: 206
  year: 2017
  end-page: 216
  ident: bib56
  article-title: White matter microstructural properties are related to inter-individual differences in cognitive instability after sleep deprivation
  publication-title: Neuroscience
– volume: 3
  start-page: 519
  year: 2007
  end-page: 528
  ident: bib45
  article-title: Behavioral and physiological consequences of sleep restriction
  publication-title: J. Clin. Sleep Med.
– volume: 74
  start-page: 309
  year: 2003
  end-page: 314
  ident: bib14
  article-title: Caffeine effects on marksmanship during high-stress military training with 72 h sleep deprivation
  publication-title: Aviat. Space Environ. Med.
– volume: 8
  year: 2018
  ident: bib16
  article-title: The efficacy of transcranial current stimulation techniques to modulate resting-state EEG, to affect vigilance and to promote sleepiness
  publication-title: Brain Sci.
– volume: 111
  start-page: 72
  year: 2018
  end-page: 76
  ident: bib34
  article-title: Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking
  publication-title: Neuropsychologia
– volume: 20
  start-page: 290
  year: 2017
  end-page: 300
  ident: bib25
  article-title: Optimization of transcutaneous vagus nerve stimulation using functional MRI
  publication-title: Neuromodulation
– volume: 31
  start-page: 449
  year: 2011
  end-page: 464
  ident: bib60
  article-title: Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings
  publication-title: Clin. Psychol. Rev.
– volume: 2
  year: 2014
  ident: bib59
  article-title: Individual differences in physiologic measures are stable across repeated exposures to total sleep deprivation
  publication-title: Physiol. Rep.
– volume: 14
  start-page: 417
  year: 2021
  end-page: 419
  ident: bib73
  article-title: Synergistic effects of simultaneous transcranial direct current stimulation (tDCS) and transcutaneous auricular vagus nerve stimulation (taVNS) on the brain responses
  publication-title: Brain Stimul.
– volume: 56
  start-page: 71
  year: 2016
  end-page: 78
  ident: bib76
  article-title: Vagus nerve and vagus nerve stimulation, a comprehensive review: part I
  publication-title: Headache
– volume: 7
  year: 2021
  ident: bib10
  article-title: The beneficial effects of green tea on sleep deprivation-induced cognitive deficits in rats: the involvement of hippocampal antioxidant defense
  publication-title: Heliyon
– volume: 15
  start-page: 89
  year: 2022
  end-page: 96
  ident: bib66
  article-title: Effect of the anodal transcranial direct current electrical stimulation on cognition of medical residents with acute sleep deprivation
  publication-title: Sleep Sci.
– volume: 42
  year: 2019
  ident: bib1
  article-title: Sleep deprivation differentially affects subcomponents of cognitive control
  publication-title: Sleep
– volume: 36
  start-page: 585
  year: 2012
  end-page: 595
  ident: bib64
  article-title: Improvement of the working memory and naming by transcranial direct current stimulation
  publication-title: Ann. Rehabil. Med.
– volume: 2019
  year: 2019
  ident: bib18
  article-title: High-frequency repetitive transcranial magnetic stimulation could improve impaired working memory induced by sleep deprivation
  publication-title: Neural Plast.
– volume: 25
  start-page: 433
  year: 2002
  end-page: 469
  ident: bib24
  article-title: The central autonomic nervous system: conscious visceral perception and autonomic pattern generation
  publication-title: Annu Rev. Neurosci.
– volume: 92
  start-page: 95
  year: 2017
  end-page: 102
  ident: bib36
  article-title: Darwin revisited: the vagus nerve is a causal element in controlling recognition of other's emotions
  publication-title: Cortex
– volume: 136
  start-page: 375
  year: 2010
  end-page: 389
  ident: bib2
  article-title: A meta-analysis of the impact of short-term sleep deprivation on cognitive variables
  publication-title: Psychol. Bull.
– volume: 28
  start-page: 369
  year: 2008
  end-page: 375
  ident: bib81
  article-title: Noradrenergic signaling in infralimbic cortex increases cell excitability and strengthens memory for fear extinction
  publication-title: J. Neurosci.
– volume: 10
  start-page: 1070
  year: 2017
  end-page: 1078
  ident: bib19
  article-title: Transcranial direct current stimulation versus caffeine as a fatigue countermeasure
  publication-title: Brain Stimul.
– volume: 25
  start-page: 397
  year: 2020
  end-page: 407
  ident: bib67
  article-title: Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation
  publication-title: Mol. Psychiatry
– volume: 31
  start-page: 115
  year: 2021
  end-page: 138
  ident: bib22
  article-title: Non-invasive brain stimulation does not improve working memory in Schizophrenia: a meta-analysis of randomised controlled trials
  publication-title: Neuropsychol. Rev.
– volume: 8
  start-page: 234
  issue: 2
  year: 1998
  ident: 10.1016/j.bbr.2022.114247_bib61
  article-title: Recent developments in working memory
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/S0959-4388(98)80145-1
– volume: 13
  start-page: 638
  issue: 3
  year: 2019
  ident: 10.1016/j.bbr.2022.114247_bib50
  article-title: Decreased cortical and subcortical response to inhibition control after sleep deprivation
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-018-9868-2
– volume: 9
  start-page: 197
  issue: 2
  year: 2016
  ident: 10.1016/j.bbr.2022.114247_bib21
  article-title: Effects of anodal transcranial direct current stimulation on working memory: a systematic review and meta-analysis of findings from healthy and neuropsychiatric populations
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2015.10.006
– volume: 185
  start-page: 105
  year: 2010
  ident: 10.1016/j.bbr.2022.114247_bib5
  article-title: Effects of sleep deprivation on cognition
  publication-title: Prog. Brain Res.
  doi: 10.1016/B978-0-444-53702-7.00007-5
– volume: 111
  start-page: 72
  year: 2018
  ident: 10.1016/j.bbr.2022.114247_bib34
  article-title: Transcutaneous vagus nerve stimulation (tVNS) enhances divergent thinking
  publication-title: Neuropsychologia
  doi: 10.1016/j.neuropsychologia.2018.01.003
– volume: 85
  start-page: 49
  issue: 1–3
  year: 2000
  ident: 10.1016/j.bbr.2022.114247_bib23
  article-title: Vagal immune-to-brain communication: a visceral chemosensory pathway
  publication-title: Auton. Neurosci.
  doi: 10.1016/S1566-0702(00)00219-8
– volume: 1641
  start-page: 197
  issue: Pt B
  year: 2016
  ident: 10.1016/j.bbr.2022.114247_bib28
  article-title: Evidence for a specialized role of the locus coeruleus noradrenergic system in cortical circuitries and behavioral operations
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2015.11.022
– volume: 12
  start-page: 202
  year: 2018
  ident: 10.1016/j.bbr.2022.114247_bib37
  article-title: Effects of transcutaneous vagus nerve stimulation (tVNS) on the P300 and alpha-amylase level: a pilot study
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00202
– volume: 28
  start-page: 369
  issue: 2
  year: 2008
  ident: 10.1016/j.bbr.2022.114247_bib81
  article-title: Noradrenergic signaling in infralimbic cortex increases cell excitability and strengthens memory for fear extinction
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3248-07.2008
– volume: 25
  start-page: 397
  issue: 2
  year: 2020
  ident: 10.1016/j.bbr.2022.114247_bib67
  article-title: Transcranial direct current stimulation: a roadmap for research, from mechanism of action to clinical implementation
  publication-title: Mol. Psychiatry
  doi: 10.1038/s41380-019-0499-9
– volume: 118
  start-page: 1547
  issue: 11
  year: 2008
  ident: 10.1016/j.bbr.2022.114247_bib9
  article-title: Sex differences in cognitive estimation during sleep deprivation: effects of stimulant countermeasures
  publication-title: Int J. Neurosci.
  doi: 10.1080/00207450802323970
– volume: 36
  start-page: 585
  issue: 5
  year: 2012
  ident: 10.1016/j.bbr.2022.114247_bib64
  article-title: Improvement of the working memory and naming by transcranial direct current stimulation
  publication-title: Ann. Rehabil. Med.
  doi: 10.5535/arm.2012.36.5.585
– volume: 76
  start-page: 647
  issue: 7
  year: 2005
  ident: 10.1016/j.bbr.2022.114247_bib13
  article-title: Caffeine maintains vigilance and improves run times during night operations for special forces
  publication-title: Aviat. Space Environ. Med.
– volume: 24
  start-page: 99
  issue: 1
  year: 1980
  ident: 10.1016/j.bbr.2022.114247_bib71
  article-title: Characterization of the neurons in the region of solitary tract nucleus during sleep
  publication-title: Physiol. Behav.
  doi: 10.1016/0031-9384(80)90020-7
– volume: 403
  start-page: 655
  issue: 6770
  year: 2000
  ident: 10.1016/j.bbr.2022.114247_bib4
  article-title: Altered brain response to verbal learning following sleep deprivation
  publication-title: Nature
  doi: 10.1038/35001068
– volume: 9
  start-page: 5092
  issue: 1
  year: 2018
  ident: 10.1016/j.bbr.2022.114247_bib68
  article-title: Immediate neurophysiological effects of transcranial electrical stimulation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07233-7
– volume: 13
  start-page: 717
  issue: 3
  year: 2020
  ident: 10.1016/j.bbr.2022.114247_bib77
  article-title: Electrical stimulation of cranial nerves in cognition and disease
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2020.02.019
– volume: 28
  start-page: 193
  issue: 2
  year: 1989
  ident: 10.1016/j.bbr.2022.114247_bib42
  article-title: The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research
  publication-title: Psychiatry Res
  doi: 10.1016/0165-1781(89)90047-4
– volume: 189
  start-page: 207
  year: 2011
  ident: 10.1016/j.bbr.2022.114247_bib29
  article-title: Vagus nerve stimulation modulates cortical synchrony and excitability through the activation of muscarinic receptors
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2011.05.024
– volume: 325
  year: 2019
  ident: 10.1016/j.bbr.2022.114247_bib74
  article-title: Avoiding off-target effects in electrical stimulation of the cervical vagus nerve: neuroanatomical tracing techniques to study fascicular anatomy of the vagus nerve
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2019.108325
– volume: 12
  start-page: 276
  year: 2018
  ident: 10.1016/j.bbr.2022.114247_bib49
  article-title: Prediction of the effect of sleep deprivation on response inhibition via machine learning on structural magnetic resonance imaging data
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2018.00276
– volume: 10
  start-page: 911
  issue: 3
  year: 2016
  ident: 10.1016/j.bbr.2022.114247_bib53
  article-title: Increased interhemispheric resting-state functional connectivity after sleep deprivation: a resting-state fMRI study
  publication-title: Brain Imaging Behav.
  doi: 10.1007/s11682-015-9490-5
– volume: 136
  start-page: 375
  issue: 3
  year: 2010
  ident: 10.1016/j.bbr.2022.114247_bib2
  article-title: A meta-analysis of the impact of short-term sleep deprivation on cognitive variables
  publication-title: Psychol. Bull.
  doi: 10.1037/a0018883
– volume: 133
  start-page: 173
  issue: 3
  year: 2016
  ident: 10.1016/j.bbr.2022.114247_bib75
  article-title: Morphology of the human cervical vagus nerve: implications for vagus nerve stimulation treatment
  publication-title: Acta Neurol. Scand.
  doi: 10.1111/ane.12462
– volume: 85
  start-page: 480
  issue: 2
  year: 2021
  ident: 10.1016/j.bbr.2022.114247_bib48
  article-title: Individual differences in working memory efficiency modulate proactive interference after sleep deprivation
  publication-title: Psychol. Res.
  doi: 10.1007/s00426-020-01292-6
– volume: 31
  start-page: 17
  year: 2017
  ident: 10.1016/j.bbr.2022.114247_bib79
  article-title: Top-down control of arousal and sleep: fundamentals and clinical implications
  publication-title: Sleep Med. Rev.
  doi: 10.1016/j.smrv.2015.12.005
– volume: 77
  start-page: 279
  year: 2021
  ident: 10.1016/j.bbr.2022.114247_bib17
  article-title: Repetitive TMS for the "cognitive tsunami" of sleep deprivation
  publication-title: Sleep Med.
  doi: 10.1016/j.sleep.2020.11.010
– volume: 40
  start-page: 3265
  issue: 11
  year: 2019
  ident: 10.1016/j.bbr.2022.114247_bib51
  article-title: Neural correlates of dynamic changes in working memory performance during one night of sleep deprivation
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24596
– volume: 47
  start-page: 1371
  issue: 9
  year: 2021
  ident: 10.1016/j.bbr.2022.114247_bib15
  article-title: Caffeine selectively mitigates cognitive deficits caused by sleep deprivation
  publication-title: J. Exp. Psychol. Learn Mem. Cogn.
  doi: 10.1037/xlm0001023
– volume: 11
  start-page: 3555
  issue: 1
  year: 2020
  ident: 10.1016/j.bbr.2022.114247_bib38
  article-title: Vagus nerve stimulation boosts the drive to work for rewards
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17344-9
– volume: 13
  start-page: 717
  issue: 3
  year: 2020
  ident: 10.1016/j.bbr.2022.114247_bib70
  article-title: Electrical stimulation of cranial nerves in cognition and disease
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2020.02.019
– volume: 3
  start-page: 519
  issue: 5
  year: 2007
  ident: 10.1016/j.bbr.2022.114247_bib45
  article-title: Behavioral and physiological consequences of sleep restriction
  publication-title: J. Clin. Sleep Med.
  doi: 10.5664/jcsm.26918
– volume: 139
  start-page: 39
  issue: 1
  year: 2006
  ident: 10.1016/j.bbr.2022.114247_bib43
  article-title: Individual differences in working memory
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2005.07.002
– volume: 35
  start-page: 1223
  issue: 9
  year: 2012
  ident: 10.1016/j.bbr.2022.114247_bib58
  article-title: Heritability of performance deficit accumulation during acute sleep deprivation in twins
  publication-title: Sleep
– volume: 166
  start-page: 23
  issue: 1
  year: 2005
  ident: 10.1016/j.bbr.2022.114247_bib65
  article-title: Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory
  publication-title: Exp. Brain Res.
  doi: 10.1007/s00221-005-2334-6
– volume: 42
  start-page: 33
  issue: 1
  year: 2003
  ident: 10.1016/j.bbr.2022.114247_bib80
  article-title: The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes
  publication-title: Brain Res. Rev.
  doi: 10.1016/S0165-0173(03)00143-7
– volume: 15
  year: 2021
  ident: 10.1016/j.bbr.2022.114247_bib39
  article-title: Transcutaneous Auricular Vagus nerve stimulation improves spatial working memory in healthy young adults
  publication-title: Front Neurosci.
  doi: 10.3389/fnins.2021.790793
– volume: 77
  start-page: 270
  year: 2021
  ident: 10.1016/j.bbr.2022.114247_bib20
  article-title: Effect of repetitive transcranial magnetic stimulation on the cognitive impairment induced by sleep deprivation: a randomized trial
  publication-title: Sleep Med.
  doi: 10.1016/j.sleep.2020.06.019
– volume: 25
  start-page: 433
  year: 2002
  ident: 10.1016/j.bbr.2022.114247_bib24
  article-title: The central autonomic nervous system: conscious visceral perception and autonomic pattern generation
  publication-title: Annu Rev. Neurosci.
  doi: 10.1146/annurev.neuro.25.032502.111311
– volume: 398
  start-page: 37
  year: 2019
  ident: 10.1016/j.bbr.2022.114247_bib52
  article-title: Disrupted resting-state functional connectivity in hippocampal subregions after sleep deprivation
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2018.11.049
– volume: 365
  start-page: 206
  year: 2017
  ident: 10.1016/j.bbr.2022.114247_bib56
  article-title: White matter microstructural properties are related to inter-individual differences in cognitive instability after sleep deprivation
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2017.09.047
– volume: 6
  start-page: 254
  issue: 3
  year: 2008
  ident: 10.1016/j.bbr.2022.114247_bib32
  article-title: Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part II: physiological and pharmacological manipulations and pathological alterations of locus coeruleus activity in humans
  publication-title: Curr. Neuropharmacol.
  doi: 10.2174/157015908785777193
– volume: 14
  start-page: 417
  issue: 2
  year: 2021
  ident: 10.1016/j.bbr.2022.114247_bib73
  article-title: Synergistic effects of simultaneous transcranial direct current stimulation (tDCS) and transcutaneous auricular vagus nerve stimulation (taVNS) on the brain responses
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2021.02.010
– volume: 111
  start-page: 815
  issue: 4
  year: 2002
  ident: 10.1016/j.bbr.2022.114247_bib31
  article-title: Neuromodulatory transmitter systems in the cortex and their role in cortical plasticity
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(02)00026-X
– volume: 42
  issue: 4
  year: 2019
  ident: 10.1016/j.bbr.2022.114247_bib1
  article-title: Sleep deprivation differentially affects subcomponents of cognitive control
  publication-title: Sleep
  doi: 10.1093/sleep/zsz016
– volume: 10
  start-page: 1070
  issue: 6
  year: 2017
  ident: 10.1016/j.bbr.2022.114247_bib19
  article-title: Transcranial direct current stimulation versus caffeine as a fatigue countermeasure
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2017.08.005
– volume: 14
  start-page: 754
  year: 2020
  ident: 10.1016/j.bbr.2022.114247_bib47
  article-title: Alteration of brain gray matter density after 24h of sleep deprivation in healthy adults
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2020.00754
– volume: 538
  start-page: 51
  issue: 7623
  year: 2016
  ident: 10.1016/j.bbr.2022.114247_bib72
  article-title: Circuit-based interrogation of sleep control
  publication-title: Nature
  doi: 10.1038/nature19773
– volume: 30
  start-page: 61
  issue: 1
  year: 2007
  ident: 10.1016/j.bbr.2022.114247_bib57
  article-title: Reproducibility of changes in behaviour and fMRI activation associated with sleep deprivation in a working memory task
  publication-title: Sleep
  doi: 10.1093/sleep/30.1.61
– year: 2022
  ident: 10.1016/j.bbr.2022.114247_bib46
  article-title: Abnormal dynamic functional connectivity after sleep deprivation from temporal variability perspective
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.25886
– volume: 31
  start-page: 857
  issue: 12
  year: 2020
  ident: 10.1016/j.bbr.2022.114247_bib11
  article-title: Tea polyphenols protect learning and memory in sleep-deprived mice by promoting AMPA receptor internalization
  publication-title: Neuroreport
  doi: 10.1097/WNR.0000000000001462
– volume: 9
  start-page: 811
  issue: 6
  year: 2016
  ident: 10.1016/j.bbr.2022.114247_bib35
  article-title: Effects of concomitant stimulation of the GABAergic and norepinephrine system on inhibitory control – a study using transcutaneous vagus nerve stimulation
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2016.07.004
– volume: 25
  start-page: 169
  issue: 2
  year: 2016
  ident: 10.1016/j.bbr.2022.114247_bib54
  article-title: Frontal metabolic activity contributes to individual differences in vulnerability toward total sleep deprivation-induced changes in cognitive function
  publication-title: J. Sleep Res.
  doi: 10.1111/jsr.12354
– volume: 38
  start-page: 615
  issue: 4
  year: 2015
  ident: 10.1016/j.bbr.2022.114247_bib78
  article-title: The neurobiology of sleep and wakefulness
  publication-title: Psychiatr. Clin. North Am.
  doi: 10.1016/j.psc.2015.07.002
– volume: 2019
  year: 2019
  ident: 10.1016/j.bbr.2022.114247_bib18
  article-title: High-frequency repetitive transcranial magnetic stimulation could improve impaired working memory induced by sleep deprivation
  publication-title: Neural Plast.
  doi: 10.1155/2019/7030286
– volume: 113
  start-page: 176
  issue: 1
  year: 2016
  ident: 10.1016/j.bbr.2022.114247_bib7
  article-title: High risk of near-crash driving events following night-shift work
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1510383112
– volume: 11
  start-page: 492
  issue: 3
  year: 2018
  ident: 10.1016/j.bbr.2022.114247_bib26
  article-title: Neurophysiologic effects of transcutaneous auricular vagus nerve stimulation (taVNS) via electrical stimulation of the tragus: a concurrent taVNS/fMRI study and review
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2017.12.009
– volume: 123
  start-page: e701
  issue: 4
  year: 2009
  ident: 10.1016/j.bbr.2022.114247_bib40
  article-title: Associations of executive function with sleepiness and sleep duration in adolescents
  publication-title: Pediatrics
  doi: 10.1542/peds.2008-1182
– volume: 31
  start-page: 449
  issue: 3
  year: 2011
  ident: 10.1016/j.bbr.2022.114247_bib60
  article-title: Does mindfulness training improve cognitive abilities? A systematic review of neuropsychological findings
  publication-title: Clin. Psychol. Rev.
  doi: 10.1016/j.cpr.2010.11.003
– volume: 27
  start-page: 184
  issue: 2
  year: 2018
  ident: 10.1016/j.bbr.2022.114247_bib55
  article-title: Dynamics of cerebral responses to sustained attention performance during one night of sleep deprivation
  publication-title: J. Sleep Res.
  doi: 10.1111/jsr.12582
– volume: 19
  start-page: 43
  issue: 1
  year: 2008
  ident: 10.1016/j.bbr.2022.114247_bib63
  article-title: Time-dependent effect of transcranial direct current stimulation on the enhancement of working memory
  publication-title: Neuroreport
  doi: 10.1097/WNR.0b013e3282f2adfd
– volume: 7
  issue: 11
  year: 2021
  ident: 10.1016/j.bbr.2022.114247_bib10
  article-title: The beneficial effects of green tea on sleep deprivation-induced cognitive deficits in rats: the involvement of hippocampal antioxidant defense
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2021.e08336
– volume: 4
  start-page: 634
  issue: 1
  year: 2021
  ident: 10.1016/j.bbr.2022.114247_bib33
  article-title: Cervical transcutaneous vagal nerve stimulation (ctVNS) improves human cognitive performance under sleep deprivation stress
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-021-02145-7
– volume: 1709
  start-page: 81
  year: 2019
  ident: 10.1016/j.bbr.2022.114247_bib30
  article-title: New developments and future directions in understanding locus coeruleus – norepinephrine (LC-NE) function
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2018.09.033
– volume: 92
  start-page: 95
  year: 2017
  ident: 10.1016/j.bbr.2022.114247_bib36
  article-title: Darwin revisited: the vagus nerve is a causal element in controlling recognition of other's emotions
  publication-title: Cortex
  doi: 10.1016/j.cortex.2017.03.017
– volume: 16
  year: 2022
  ident: 10.1016/j.bbr.2022.114247_bib62
  article-title: Assessing the effect of simultaneous combining of transcranial direct current stimulation and transcutaneous auricular vagus nerve stimulation on the improvement of working memory performance in healthy individuals
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2022.947236
– volume: 14
  start-page: 457
  year: 2022
  ident: 10.1016/j.bbr.2022.114247_bib12
  article-title: Effects of caffeine intake on cognitive performance related to total sleep deprivation and time on task: a randomized cross-over double-blind study
  publication-title: Nat. Sci. Sleep.
  doi: 10.2147/NSS.S342922
– volume: 8
  issue: 7
  year: 2018
  ident: 10.1016/j.bbr.2022.114247_bib16
  article-title: The efficacy of transcranial current stimulation techniques to modulate resting-state EEG, to affect vigilance and to promote sleepiness
  publication-title: Brain Sci.
  doi: 10.3390/brainsci8070137
– volume: 25
  start-page: R1051
  issue: 21
  year: 2015
  ident: 10.1016/j.bbr.2022.114247_bib27
  article-title: Organization of the locus coeruleus-norepinephrine system
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2015.09.039
– volume: 2
  issue: 9
  year: 2014
  ident: 10.1016/j.bbr.2022.114247_bib59
  article-title: Individual differences in physiologic measures are stable across repeated exposures to total sleep deprivation
  publication-title: Physiol. Rep.
  doi: 10.14814/phy2.12129
– volume: 1129
  start-page: 305
  year: 2008
  ident: 10.1016/j.bbr.2022.114247_bib44
  article-title: Sleep deprivation and vigilant attention
  publication-title: Ann. N. Y Acad. Sci.
  doi: 10.1196/annals.1417.002
– volume: 4
  start-page: 4
  issue: S2
  year: 1995
  ident: 10.1016/j.bbr.2022.114247_bib6
  article-title: An overview of sleepiness and accidents
  publication-title: J. Sleep. Res.
  doi: 10.1111/j.1365-2869.1995.tb00220.x
– volume: 56
  start-page: 71
  issue: 1
  year: 2016
  ident: 10.1016/j.bbr.2022.114247_bib76
  article-title: Vagus nerve and vagus nerve stimulation, a comprehensive review: part I
  publication-title: Headache
  doi: 10.1111/head.12647
– volume: 23
  start-page: 854
  issue: 5
  year: 2013
  ident: 10.1016/j.bbr.2022.114247_bib3
  article-title: Sleep deprivation and neurobehavioral dynamics
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2013.02.008
– volume: 15
  start-page: 89
  issue: Spec 1
  year: 2022
  ident: 10.1016/j.bbr.2022.114247_bib66
  article-title: Effect of the anodal transcranial direct current electrical stimulation on cognition of medical residents with acute sleep deprivation
  publication-title: Sleep Sci.
  doi: 10.5935/1984-0063.20220007
– volume: 74
  start-page: 309
  issue: 4
  year: 2003
  ident: 10.1016/j.bbr.2022.114247_bib14
  article-title: Caffeine effects on marksmanship during high-stress military training with 72 h sleep deprivation
  publication-title: Aviat. Space Environ. Med.
– volume: 388
  start-page: 235
  issue: 6639
  year: 1997
  ident: 10.1016/j.bbr.2022.114247_bib8
  article-title: Fatigue, alcohol and performance impairment
  publication-title: Nature
  doi: 10.1038/40775
– volume: 10
  start-page: 51
  issue: 1
  year: 2017
  ident: 10.1016/j.bbr.2022.114247_bib69
  article-title: Direct current stimulation modulates LTP and LTD: activity dependence and dendritic effects
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2016.10.001
– volume: 31
  start-page: 115
  issue: 1
  year: 2021
  ident: 10.1016/j.bbr.2022.114247_bib22
  article-title: Non-invasive brain stimulation does not improve working memory in Schizophrenia: a meta-analysis of randomised controlled trials
  publication-title: Neuropsychol. Rev.
  doi: 10.1007/s11065-020-09454-4
– volume: 20
  start-page: 290
  issue: 3
  year: 2017
  ident: 10.1016/j.bbr.2022.114247_bib25
  article-title: Optimization of transcutaneous vagus nerve stimulation using functional MRI
  publication-title: Neuromodulation
  doi: 10.1111/ner.12541
– volume: 2
  start-page: 297
  issue: 4
  year: 2001
  ident: 10.1016/j.bbr.2022.114247_bib41
  article-title: Validation of the insomnia severity index as an outcome measure for insomnia research
  publication-title: Sleep Med.
  doi: 10.1016/S1389-9457(00)00065-4
– ident: 10.1016/j.bbr.2022.114247_bib82
  doi: 10.1016/S0079-6123(07)63018-0
SSID ssj0004051
Score 2.4872174
Snippet Many human activities require high cognitive performance over long periods, while impairments induced by sleep deprivation influence various aspects of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 114247
SubjectTerms Cognition
Fatigue countermeasure
Humans
Memory, Short-Term
Non-invasive neuromodulation
Sleep Deprivation
TaVNS
Vagus Nerve - physiology
Vagus Nerve Stimulation
Working memory
Title Transcutaneous auricular vagus stimulation (taVNS) improves human working memory performance under sleep deprivation stress
URI https://dx.doi.org/10.1016/j.bbr.2022.114247
https://www.ncbi.nlm.nih.gov/pubmed/36473677
https://www.proquest.com/docview/2755580024
Volume 439
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7549
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004051
  issn: 0166-4328
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7549
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004051
  issn: 0166-4328
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7549
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004051
  issn: 0166-4328
  databaseCode: AIKHN
  dateStart: 19950123
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7549
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004051
  issn: 0166-4328
  databaseCode: ACRLP
  dateStart: 19950123
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7549
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004051
  issn: 0166-4328
  databaseCode: AKRWK
  dateStart: 19950123
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5DX3wRdV7mZUQQUaGuTdN2fRzDMRX34oW9hbRNZLLNsYsyBH-75yTthqA--Ng2oSEnyfly8uU7hJyweqLqTMZOhDKXXHPXqfM4dcJYeYkClxeYUPZdJ2w_8ptu0C2RZnEXBmmV-dpv13SzWudvanlv1ka9Xu0ewAq4U6RB4sgy6zCqf8GYvvxc0jwAkNichGHoYOniZNNwvJIEJUEZQ8VchhlWfvZNv2FP44NaG2Q9B4-0Ydu3SUpquEXKjSFsnAdzekoNndPEycvkw3ihdAbgT8Hunhr5IOSc0jf5DM8wtQd56i56NpVPnftz2jMRBjWhJnMffbeBdDpANu6cjpZ3DChePRvTSV-pEUUybZ4jjdqrJ9vksXX10Gw7eaYFJ_UDf-pkQaZ8BC8SAEcaawaoJpaZDgOexBo-SRVm0pMyc1Poc_Bhbqwz5kuXa6l54u-QleHrUO0RyqX0I5kh0Ew5Y54EwOTJUMe6zplSSYW4RR-LNJchx2wYfVHwzV4EmEWgWYQ1S4VcLKqMrAbHX4V5YTjxbSAJ8BF_VTsujCxgguGpiTWPYBFKoiGWqZBda_1FK1B83w-jaP9_Pz0ga5i9HkngXnBIVqbjmToCjDNNqmYQV8lq4_q23fkC4Z777Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB5V5bBcELu8uuzDSAgtSFETx0maY4UWlS30wkPcLCexUVHbrfoAVfx5ZmwHtNIuhz3mYSXy2DOf7W--ATjknUJ3uMqDjGQuhRFh0BF5GaS5jgqNIS-xW9mXg7R3I37dJXcNOK1zYYhW6X2_8-nWW_s7bd-b7elw2L5CsILhlGiQNLLID6-JBH1yE9a65_3e4C09MkxcWcI0DahBfbhpaV5FQaqgnJNoLqciK38PT_-CnzYMnW3ChsePrOt-8SM09OQTbHUnuHYer9gRs4xOu1W-Bc82EJVLxH8aF_jMKggR7ZQ9qnu8xtk99tW72I-Fuh1cHbOh3WTQc2aL97Ent5fOxkTIXbHpW5oBo-yzGZuPtJ4y4tP6MmnMZZ9sw83Zz-vTXuCLLQRlnMSLoEoqHRN-UYg5ytxwBDa5qkyaiCI3-EjptFKRUlVYYrdjGAtzU_FYhcIoI4p4B5qT3xO9B0woFWeqIqxZCs4jhZgpUqnJTUdwrYsWhHUfy9IrkVNBjJGsKWcPEs0iySzSmaUFJ69Npk6G472XRW04-cdYkhgm3mt2UBtZ4hyjgxNnHskzUkUjONOCXWf9178g_f04zbLP__fR7_Chd315IS_OB_19WKdi9sQJj5Iv0FzMlvorQp5F8c0P6Rdr6_6Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcutaneous+auricular+vagus+stimulation+%28taVNS%29+improves+human+working+memory+performance+under+sleep+deprivation+stress&rft.jtitle=Behavioural+brain+research&rft.au=Zhao%2C+Rui&rft.au=Chang%2C+Meng-Ying&rft.au=Cheng%2C+Chen&rft.au=Tian%2C+Qian-Qian&rft.date=2023-02-15&rft.issn=0166-4328&rft.volume=439&rft.spage=114247&rft_id=info:doi/10.1016%2Fj.bbr.2022.114247&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_bbr_2022_114247
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-4328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-4328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-4328&client=summon