Experimental study of gas evolution and dissolution process

Changes in pressure above the saturated liquid in an airtight container can cause gas evolution and dissolution. In this study, a mathematical model was developed based on the relationship between the amount of dissolved gas and saturated solution pressure according to Henry’s law. The model can be...

Full description

Saved in:
Bibliographic Details
Published inPhysica scripta Vol. 98; no. 8; pp. 85210 - 85225
Main Authors Jiang, Dan, Zhao, Wenting, Jiang, Shangbin, Guo, Qing
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.08.2023
Subjects
Online AccessGet full text
ISSN0031-8949
1402-4896
DOI10.1088/1402-4896/ace089

Cover

Abstract Changes in pressure above the saturated liquid in an airtight container can cause gas evolution and dissolution. In this study, a mathematical model was developed based on the relationship between the amount of dissolved gas and saturated solution pressure according to Henry’s law. The model can be utilized to predict changes in the pressure above the liquid, the rate of gas evolution and dissolution, and variations in free gas as the under- (over-)saturated solution reaches the saturated solution. The proposed model was built according to the solubility constant, gas-liquid volume ratio, initial equilibrium pressure of the saturated solution, and the half-life of gas evolution and dissolution. An experiment was also conducted to investigate gas evolution and dissolution; the setup included an electric vibration platform and an airtight container used to generate vibration. When the measured pressure above the liquid showed no change in the airtight container under sustained vibration, an equilibrium state was considered to be achieved. With industrial gear oil, anti-wear hydraulic oil, and water, respectively, as subjects, changes in the pressure and half-life period of gas evolution and dissolution in each liquid were measured under various gas-liquid volume ratios. Comparison against the experimental data and mathematical model pressure curves validated the models feasibility and effectiveness, and revealed that the half-life of gas evolution and dissolution decreases as the gas-liquid volume ratio increases.
AbstractList Changes in pressure above the saturated liquid in an airtight container can cause gas evolution and dissolution. In this study, a mathematical model was developed based on the relationship between the amount of dissolved gas and saturated solution pressure according to Henry’s law. The model can be utilized to predict changes in the pressure above the liquid, the rate of gas evolution and dissolution, and variations in free gas as the under- (over-)saturated solution reaches the saturated solution. The proposed model was built according to the solubility constant, gas-liquid volume ratio, initial equilibrium pressure of the saturated solution, and the half-life of gas evolution and dissolution. An experiment was also conducted to investigate gas evolution and dissolution; the setup included an electric vibration platform and an airtight container used to generate vibration. When the measured pressure above the liquid showed no change in the airtight container under sustained vibration, an equilibrium state was considered to be achieved. With industrial gear oil, anti-wear hydraulic oil, and water, respectively, as subjects, changes in the pressure and half-life period of gas evolution and dissolution in each liquid were measured under various gas-liquid volume ratios. Comparison against the experimental data and mathematical model pressure curves validated the models feasibility and effectiveness, and revealed that the half-life of gas evolution and dissolution decreases as the gas-liquid volume ratio increases.
Author Guo, Qing
Jiang, Dan
Zhao, Wenting
Jiang, Shangbin
Author_xml – sequence: 1
  givenname: Dan
  surname: Jiang
  fullname: Jiang, Dan
  organization: University of Electronic Science and Technology of China School of Mechanical and Electrical Engineering, Chengdu, Sichuan 611731, People’s Republic of China
– sequence: 2
  givenname: Wenting
  orcidid: 0000-0002-7063-1321
  surname: Zhao
  fullname: Zhao, Wenting
  organization: University of Electronic Science and Technology of China School of Mechanical and Electrical Engineering, Chengdu, Sichuan 611731, People’s Republic of China
– sequence: 3
  givenname: Shangbin
  surname: Jiang
  fullname: Jiang, Shangbin
  organization: University of Electronic Science and Technology of China School of Mechanical and Electrical Engineering, Chengdu, Sichuan 611731, People’s Republic of China
– sequence: 4
  givenname: Qing
  orcidid: 0000-0003-0522-1243
  surname: Guo
  fullname: Guo, Qing
  organization: University of Electronic Science and Technology of China School of Aeronautics and Astronautics, Chengdu, Sichuan 611731, People’s Republic of China
BookMark eNp9kE1Lw0AQhhepYFu9e8zJk7GzH0ln8SSlfkDBi56XzWZXUmI27CZi_70JUQ8iPQ0zvM8wzyzIrPGNJeSSwg0FxBUVwFKBMl9pYwHlCZn_jmZkDsBpilLIM7KIcQ_AcpbLObndfrY2VO-26XSdxK4vD4l3yZuOif3wdd9Vvkl0UyZlFeNP3wZvbIzn5NTpOtqL77okr_fbl81junt-eNrc7VLDM96lhaEypyih5AXTghqz5sYJ5kqNFoVAY3OnmQNNJXWZpTTjrEBwA7c2gvMlyae9JvgYg3XKVJ0eL-mCrmpFQY0vUKOvGn3V9IIBhD9gO6jqcDiGXE9I5Vu1931oBrNj8at_4m1UEhUqwIwNaFs6_gUmgHwr
CODEN PHSTBO
CitedBy_id crossref_primary_10_1016_j_euromechflu_2023_12_014
Cites_doi 10.1016/j.ijheatmasstransfer.2010.05.042
10.1016/j.compfluid.2012.07.005
10.1088/1674-1056/17/7/040
10.1063/1.1699579
10.1088/0022-3727/37/24/004
10.1115/1.3448739
10.1177/002034837218600145
10.1080/00221686.2021.2001586
10.1088/1361-6463/ab25dc
10.1115/1.3240926
10.3390/math10121960
10.1088/1361-6463/aa754a
10.1088/1361-6463/abba5e
10.1063/1.1700019
10.1088/0022-3727/49/23/235204
10.1088/0022-3727/30/8/007
10.1016/j.ijengsci.2013.02.007
10.1061/JYCEAJ.0004077
10.1115/1.4024864
10.1088/1361-6463/50/1/015603
ContentType Journal Article
Copyright 2023 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2023 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/1402-4896/ace089
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1402-4896
ExternalDocumentID 10_1088_1402_4896_ace089
psace089
GrantInformation_xml – fundername: Sichuan Science and Technology Program
  grantid: NO.2022YFG0341
GroupedDBID -~X
123
1JI
4.4
5B3
5PX
5VS
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABJNI
ABLJU
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AEINN
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
IJHAN
IOP
IZVLO
KOT
LAP
MV1
N5L
N9A
PJBAE
RIN
RNS
ROL
RPA
SJN
SY9
TN5
W28
WH7
XPP
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c353t-bc1961890d3b2a41cc73cf42fda8e8448ce6fa2f0a191f5e11532b80fc197c433
IEDL.DBID IOP
ISSN 0031-8949
IngestDate Thu Sep 25 00:44:49 EDT 2025
Thu Apr 24 22:54:17 EDT 2025
Tue Sep 23 23:11:33 EDT 2025
Tue Jul 11 22:30:33 EDT 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-bc1961890d3b2a41cc73cf42fda8e8448ce6fa2f0a191f5e11532b80fc197c433
Notes PHYSSCR-120982.R2
ORCID 0000-0002-7063-1321
0000-0003-0522-1243
OpenAccessLink https://doi.org/10.1088/1402-4896/ace089
PageCount 16
ParticipantIDs crossref_citationtrail_10_1088_1402_4896_ace089
crossref_primary_10_1088_1402_4896_ace089
iop_journals_10_1088_1402_4896_ace089
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Physica scripta
PublicationTitleAbbrev PS
PublicationTitleAlternate Phys. Scr
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Zhou (psace089bib17) 2013; 135
Ferrari (psace089bib15) 2010; 53
Mousavifard (psace089bib18) 2022; 60
Zhang (psace089bib5) 2020; 54
Kruszelnicki (psace089bib6) 2019; 52
Qizheng (psace089bib4) 2004; 37
Kranenburg (psace089bib10) 1974; 100
Williams (psace089bib3) 1997; 30
Khani (psace089bib19) 2022; 10
da Silva (psace089bib16) 2013; 66
Lindsay (psace089bib21) 2016; 49
Sasaki (psace089bib1) 2017; 50
Tereshonok (psace089bib2) 2016; 50
Chong-Fu (psace089bib7) 2008; 17
Schweitzer (psace089bib8) 1950; 21
Jiang (psace089bib20) 2012; 67
Szebehely (psace089bib9) 1951; 22
Baasiri (psace089bib13) 1983; 105
Swaffield (psace089bib12) 1972; 186
Wylie (psace089bib14) 1993; vol 1
Wiggert (psace089bib11) 1979; 101
References_xml – volume: 53
  start-page: 4193
  year: 2010
  ident: psace089bib15
  article-title: Modelling approaches to acoustic cavitation in transmission pipelines
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2010.05.042
– volume: 67
  start-page: 79
  year: 2012
  ident: psace089bib20
  article-title: Modeling and simulation of low pressure oil-hydraulic pipeline transients
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2012.07.005
– volume: 17
  start-page: 2580
  year: 2008
  ident: psace089bib7
  article-title: The pressure field in the liquid column in the tube-arrest method
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/17/7/040
– volume: 21
  start-page: 1218
  year: 1950
  ident: psace089bib8
  article-title: Gas evolution in liquids and cavitation
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1699579
– volume: 37
  start-page: 3373
  year: 2004
  ident: psace089bib4
  article-title: Analytical model of the breakdown mechanism in a two-phase mixture
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/37/24/004
– volume: 101
  start-page: 79
  year: 1979
  ident: psace089bib11
  article-title: The effect of gaseous cavitation on fluid transients
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.3448739
– volume: 186
  start-page: 693
  year: 1972
  ident: psace089bib12
  article-title: A study of the influence of air release on column separation in an aviation kerosine pipeline
  publication-title: Proc. Inst. Mech. Eng.
  doi: 10.1177/002034837218600145
– volume: 60
  start-page: 295
  year: 2022
  ident: psace089bib18
  article-title: Numerical analysis of transient cavitating pipe flow by Quasi 2D and 1D models
  publication-title: J. Hydraul. Res.
  doi: 10.1080/00221686.2021.2001586
– volume: 52
  year: 2019
  ident: psace089bib6
  article-title: Atmospheric pressure plasma activation of water droplets
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/ab25dc
– volume: 105
  start-page: 113
  year: 1983
  ident: psace089bib13
  article-title: Air release during column separation
  publication-title: Journal of Fluids Engineering-Transactions of the ASME
  doi: 10.1115/1.3240926
– volume: vol 1
  year: 1993
  ident: psace089bib14
– volume: 10
  start-page: 1960
  year: 2022
  ident: psace089bib19
  article-title: Calculating column separation in liquid pipelines using a 1D-CFD coupled model
  publication-title: Mathematics
  doi: 10.3390/math10121960
– volume: 50
  year: 2017
  ident: psace089bib1
  article-title: Discharge phenomena in a cavitation bubble induced by liquid-phase laser ablation
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aa754a
– volume: 54
  year: 2020
  ident: psace089bib5
  article-title: Underwater low-velocity gas flow measurement based on passive acoustics with stable volume resolution
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/abba5e
– volume: 22
  start-page: 627
  year: 1951
  ident: psace089bib9
  article-title: Relation between gas evolution and physical properties of liquids
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1700019
– volume: 49
  year: 2016
  ident: psace089bib21
  article-title: Fully coupled simulation of the plasma liquid interface and interfacial coefficient effects
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/49/23/235204
– volume: 30
  start-page: 1197
  year: 1997
  ident: psace089bib3
  article-title: Pressure waves arising from the oscillation of cavitation bubbles under dynamic stressing
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/30/8/007
– volume: 66
  start-page: 21
  year: 2013
  ident: psace089bib16
  article-title: Modeling of release and absorption of gas in liquid-gas flows within a consistent thermodynamic framework
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2013.02.007
– volume: 100
  start-page: 1383
  year: 1974
  ident: psace089bib10
  article-title: Gas release during transient cavitation in pipes
  publication-title: Journal of the Hydraulics Division
  doi: 10.1061/JYCEAJ.0004077
– volume: 135
  start-page: 091305
  year: 2013
  ident: psace089bib17
  article-title: A novel approach for the prediction of dynamic features of air release and absorption in hydraulic oils
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.4024864
– volume: 50
  year: 2016
  ident: psace089bib2
  article-title: Cavitation in liquid dielectric under nanosecond high-voltage impulse
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/50/1/015603
SSID ssj0026269
Score 2.3628657
Snippet Changes in pressure above the saturated liquid in an airtight container can cause gas evolution and dissolution. In this study, a mathematical model was...
SourceID crossref
iop
SourceType Enrichment Source
Index Database
Publisher
StartPage 85210
SubjectTerms electric vibration platform
half-life of gas evolution and dissolution
Henry’s law
pressure curve
Title Experimental study of gas evolution and dissolution process
URI https://iopscience.iop.org/article/10.1088/1402-4896/ace089
Volume 98
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9zInjxW5yfPejBQ7amSdOUnUQ2huDHwcEOQkjSxIOyFdt58K83abOxiQzxUtrwkoZH2ryX997vB8ClIlIkUlNITGjshVIoI6oglYnGKcLIaHfecf9AB0NyN4pHDdCd18JMcv_rb9vbGii4VqFPiGMd6xJEkLCUdoTSIUvXwDp2TEqueu_xae5tWUu9tn0xgiwlqY9R_jbC0p60Zt-7sMX0t8HLbHJ1Zslbe1rKtvr6gdv4z9nvgC1vegY3teguaOjxHtioUkBVsQ-6vQWw_6CCnQ0mJngVRaA__QINxDgLXAh_9pzXdQYHYNjvPd8OoKdWgArHuIRSIUf1koYZlpEgSKkEK0MikwmmmXXZlKZGRCYU1p8zsbZ2I44kC43tlyiC8SFojidjfQQCjUjimisKehIrQUmcuXCpbcaSoBbozJTLlccdd_QX77yKfzPGnUq4UwmvVdIC1_MeeY25sUL2ymqa-w-vWCF3sSSXFzxlnHFrcVqnl-eZOf7jSCdg01HOu3NlFJ-CZvkx1WfWMCnlebUAvwEzCdmt
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8Eo_HitxG_2EEPHgbb2nVdPBmFgB_IQRJute1aDxpYBDz419uuhYAxxMTLsjWv7fbWrr-39_p7AJwLxFnCJfaRCpQ-YOzzCAsf80TCNIShkuZ_x2MHt3rorh_3XZ7TYi_MMHef_po-tUTBVoUuII7UtUkQ-YikuM6EDEhazzNVAqsxjBMzM9tP3ZnFpdG6xb8w9EmKUuen_K2VhXWppPueW2aaW-BleoM2uuStNhnzmvj6wd34jyfYBpsOgnrXVnwHrMjBLlgrQkHFaA9cNeZI_72CftYbKu-VjTz56QaqxwaZZ1z50-vc7jfYB71m4_mm5bsUC76AMRz7XIQm5UsaZJBHDIVCJFAoFKmMEUm06SYkVixSAdN2nYqlxo8w4iRQul4iEIQHoDwYDuQh8GSIElNcpKJHsWAYxZlxm-piyFFYAfWpgqlw_OMmDcY7LfzghFCjFmrUQq1aKuByViO33BtLZC-0tqmbgKMlctUFuXxEU0IJ1chTG79Uv4ijP7ZUBevd2yZ9aHfuj8GGyUJv4wJPQHn8MZGnGquM-VkxHr8B1Z7fEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+study+of+gas+evolution+and+dissolution+process&rft.jtitle=Physica+scripta&rft.au=Jiang%2C+Dan&rft.au=Zhao%2C+Wenting&rft.au=Jiang%2C+Shangbin&rft.au=Guo%2C+Qing&rft.date=2023-08-01&rft.pub=IOP+Publishing&rft.issn=0031-8949&rft.eissn=1402-4896&rft.volume=98&rft.issue=8&rft_id=info:doi/10.1088%2F1402-4896%2Face089&rft.externalDocID=psace089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-8949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-8949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-8949&client=summon