Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting
•This paper proposes a novel combined electricity demand forecasting method, which based on Back Propagation (BP) neural network, Adaptive Network-based Fuzzy Inference System (ANFIS) and Difference Seasonal Autoregressive Integrated Moving Average (diff-SARIMA).•The combined method eliminates drawb...
        Saved in:
      
    
          | Published in | Applied soft computing Vol. 49; pp. 663 - 675 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.12.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1568-4946 1872-9681  | 
| DOI | 10.1016/j.asoc.2016.07.053 | 
Cover
| Abstract | •This paper proposes a novel combined electricity demand forecasting method, which based on Back Propagation (BP) neural network, Adaptive Network-based Fuzzy Inference System (ANFIS) and Difference Seasonal Autoregressive Integrated Moving Average (diff-SARIMA).•The combined method eliminates drawbacks and incorporates in the merits of the individual methods. It has the capability to deal with the linearity, nonlinearity and seasonality data.•Experimental case study shows that the proposed combined method performed better than the other three individual methods and had a higher accuracy. And the proposed method also performed better than the method ESPLSSVM that I proposed before.
Electricity demand forecasting, as a vital tool in the electricity market, plays a critical role in power utilities, which can not only reduce production costs but also save energy resources, thus making the forecasting techniques become an indispensable part of the energy system. A novel combined forecasting method based on Back Propagation (BP) neural network, Adaptive Network-based Fuzzy Inference System (ANFIS) and Difference Seasonal Autoregressive Integrated Moving Average (diff-SARIMA) are presented in this paper. Firstly, the combined method uses all the three methods (BP, ANFIS, diff-SARIMA) to forecast respectively, and the three forecasting results were obtained. By multiplying optimal weight coefficients of the three forecasting results respectively and then adding them up, in the end the final forecasting results can be obtained. Among the three individual methods, BP and ANFIS had the ability to deal with the nonlinearity data, and diff-SARIMA had the ability to deal with the linearity and seasonality data. So the combined method eliminates drawbacks and incorporates in the merits of the individual methods. It has the capability to deal with the linearity, nonlinearity and seasonality data. In order to optimize weight coefficients, Differential Evolution (DE) optimization algorithm is brought into the combined method. To prove the superiority and accuracy, the capability of the combined method is verified by comparing it with the three individual methods. The forecasting results of the combined method proved to be better than all the three individual methods and the combined method was able to reduce errors and improve the accuracy between the actual values and forecasted values effectively. Using the half-hour electricity power data of the State of New South Wales in Australia, relevant experimental case studies showed that the proposed combined method performed better than the other three individual methods and had a higher accuracy. | 
    
|---|---|
| AbstractList | •This paper proposes a novel combined electricity demand forecasting method, which based on Back Propagation (BP) neural network, Adaptive Network-based Fuzzy Inference System (ANFIS) and Difference Seasonal Autoregressive Integrated Moving Average (diff-SARIMA).•The combined method eliminates drawbacks and incorporates in the merits of the individual methods. It has the capability to deal with the linearity, nonlinearity and seasonality data.•Experimental case study shows that the proposed combined method performed better than the other three individual methods and had a higher accuracy. And the proposed method also performed better than the method ESPLSSVM that I proposed before.
Electricity demand forecasting, as a vital tool in the electricity market, plays a critical role in power utilities, which can not only reduce production costs but also save energy resources, thus making the forecasting techniques become an indispensable part of the energy system. A novel combined forecasting method based on Back Propagation (BP) neural network, Adaptive Network-based Fuzzy Inference System (ANFIS) and Difference Seasonal Autoregressive Integrated Moving Average (diff-SARIMA) are presented in this paper. Firstly, the combined method uses all the three methods (BP, ANFIS, diff-SARIMA) to forecast respectively, and the three forecasting results were obtained. By multiplying optimal weight coefficients of the three forecasting results respectively and then adding them up, in the end the final forecasting results can be obtained. Among the three individual methods, BP and ANFIS had the ability to deal with the nonlinearity data, and diff-SARIMA had the ability to deal with the linearity and seasonality data. So the combined method eliminates drawbacks and incorporates in the merits of the individual methods. It has the capability to deal with the linearity, nonlinearity and seasonality data. In order to optimize weight coefficients, Differential Evolution (DE) optimization algorithm is brought into the combined method. To prove the superiority and accuracy, the capability of the combined method is verified by comparing it with the three individual methods. The forecasting results of the combined method proved to be better than all the three individual methods and the combined method was able to reduce errors and improve the accuracy between the actual values and forecasted values effectively. Using the half-hour electricity power data of the State of New South Wales in Australia, relevant experimental case studies showed that the proposed combined method performed better than the other three individual methods and had a higher accuracy. | 
    
| Author | Li, Lian Wang, Yachen Chen, Yanhua Li, Caihong Yang, Yi  | 
    
| Author_xml | – sequence: 1 givenname: Yi surname: Yang fullname: Yang, Yi – sequence: 2 givenname: Yanhua orcidid: 0000-0003-2353-2053 surname: Chen fullname: Chen, Yanhua email: chenyh2011@lzu.edu.cn – sequence: 3 givenname: Yachen surname: Wang fullname: Wang, Yachen – sequence: 4 givenname: Caihong surname: Li fullname: Li, Caihong – sequence: 5 givenname: Lian surname: Li fullname: Li, Lian  | 
    
| BookMark | eNp9kE1u2zAQhYnABfJ7gazmAlJJSaSooBvDddIA-Vk0WRMUNYrpSqRBMil8jZ44NJJVF8EsZgZ432DeOyUL5x0ScsloySgT37eljt6UVZ5L2paU10fkhMm2Kjoh2SLPXMii6RpxTE5j3NIs7Cp5Qv7d-wGnyboX0GD83FuHA8yYNn6AXse8eAfLh-vb36DdAA5fg55yS399-AN23gX_lkX9Hn6uQU8vPti0ma9gCSbTENPrsIfRB4gbH1KRMMyAE5oUrLFpDwPOh7tZgRlI-ZFz8m3UU8SLz35Gnq_XT6tfxd3jze1qeVeYmtep6Cny0VTU8LpjnRBN0-aqux5HIVGyFpt-7JCZbqwFcqxFo4VsOOcVFaaS9RmpPu6a4GMMOKpdsLMOe8WoOqSqtuqQqjqkqmircqoZkv9B2YVO1rsUtJ2-Rn98oJhNvVkMKhqLzuBgs_ekBm-_wt8BkJeW8w | 
    
| CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2022_126595 crossref_primary_10_1063_1_4979817 crossref_primary_10_1016_j_apenergy_2022_119525 crossref_primary_10_1016_j_scs_2020_102036 crossref_primary_10_1016_j_engappai_2019_03_024 crossref_primary_10_3390_su16114643 crossref_primary_10_1016_j_cie_2018_02_023 crossref_primary_10_1016_j_heliyon_2024_e28717 crossref_primary_10_3390_app14052137 crossref_primary_10_1016_j_asoc_2021_108363 crossref_primary_10_1016_j_jobe_2022_105577 crossref_primary_10_1016_j_physa_2022_127173 crossref_primary_10_1016_j_petrol_2019_106187 crossref_primary_10_1016_j_engappai_2022_105664 crossref_primary_10_1016_j_knosys_2024_111639 crossref_primary_10_1016_j_rser_2018_02_002 crossref_primary_10_1016_j_engappai_2019_08_018 crossref_primary_10_1016_j_renene_2017_09_089 crossref_primary_10_1016_j_rser_2020_110591 crossref_primary_10_1111_opec_12295 crossref_primary_10_1016_j_enbenv_2023_03_002 crossref_primary_10_3390_ijerph18031024 crossref_primary_10_1016_j_cie_2020_106435 crossref_primary_10_1016_j_energy_2017_09_009 crossref_primary_10_1007_s00521_018_03978_w crossref_primary_10_1007_s40815_019_00758_z crossref_primary_10_1080_0954898X_2020_1849841 crossref_primary_10_3389_fninf_2022_1103295 crossref_primary_10_1007_s12667_022_00513_8 crossref_primary_10_1007_s00500_022_07168_8 crossref_primary_10_1016_j_scs_2020_102052 crossref_primary_10_1186_s40854_017_0074_9 crossref_primary_10_1007_s13369_018_3562_y crossref_primary_10_1038_s41598_020_70672_0 crossref_primary_10_3390_en9121050 crossref_primary_10_1080_02626667_2022_2130700 crossref_primary_10_2139_ssrn_4089138 crossref_primary_10_3390_en13112681 crossref_primary_10_1016_j_renene_2017_05_053 crossref_primary_10_3390_en16135105 crossref_primary_10_1155_2021_1026978 crossref_primary_10_2139_ssrn_4200148 crossref_primary_10_1016_j_energy_2019_06_075 crossref_primary_10_1080_0954898X_2020_1759833 crossref_primary_10_1016_j_asoc_2018_01_017 crossref_primary_10_1016_j_scs_2024_105838 crossref_primary_10_1049_tje2_12356 crossref_primary_10_1016_j_enbuild_2022_112337 crossref_primary_10_1016_j_enconman_2017_01_022 crossref_primary_10_1016_j_eswa_2021_115998 crossref_primary_10_1016_j_enconman_2018_10_068 crossref_primary_10_1109_TKDE_2022_3231008 crossref_primary_10_1063_1_5120885 crossref_primary_10_1007_s41870_023_01343_2 crossref_primary_10_1016_j_energy_2018_04_192 crossref_primary_10_1021_acsomega_4c06610 crossref_primary_10_1016_j_apenergy_2021_117992 crossref_primary_10_1007_s11063_023_11332_y crossref_primary_10_1049_tje2_12146 crossref_primary_10_3390_a10030108 crossref_primary_10_1007_s00500_019_04432_2 crossref_primary_10_3390_electronics13163294 crossref_primary_10_1007_s11063_020_10300_0 crossref_primary_10_1051_ro_2024159 crossref_primary_10_1016_j_energy_2023_128575 crossref_primary_10_1155_2022_3581037 crossref_primary_10_1016_j_renene_2020_03_042 crossref_primary_10_1108_IJESM_09_2018_0015 crossref_primary_10_1016_j_neucom_2020_04_031 crossref_primary_10_1007_s00521_020_04713_0 crossref_primary_10_1016_j_enconman_2020_113680 crossref_primary_10_1016_j_eswa_2022_118746 crossref_primary_10_1016_j_egyai_2023_100302 crossref_primary_10_3390_en13226154 crossref_primary_10_1061__ASCE_HE_1943_5584_0001963 crossref_primary_10_16984_saufenbilder_629553 crossref_primary_10_1080_15435075_2020_1865375 crossref_primary_10_3390_pr11082317 crossref_primary_10_1016_j_rineng_2024_102773 crossref_primary_10_1007_s10479_024_05965_y crossref_primary_10_1109_ACCESS_2019_2960687 crossref_primary_10_1016_j_apenergy_2019_114243 crossref_primary_10_1007_s00521_020_04996_3 crossref_primary_10_1109_JIOT_2019_2913176 crossref_primary_10_1007_s00500_018_03690_w crossref_primary_10_1016_j_epsr_2020_106408 crossref_primary_10_3390_en11071848 crossref_primary_10_1016_j_enbuild_2022_112233 crossref_primary_10_2139_ssrn_3900762 crossref_primary_10_1016_j_neucom_2018_05_068 crossref_primary_10_1016_j_cie_2021_107182 crossref_primary_10_1007_s40305_019_00282_9 crossref_primary_10_3390_en16166050 crossref_primary_10_1080_09617353_2019_1569419 crossref_primary_10_1007_s00500_021_05632_5 crossref_primary_10_1108_JM2_05_2021_0116 crossref_primary_10_3390_pr7050258 crossref_primary_10_1007_s00500_022_07334_y crossref_primary_10_3390_su9071166 crossref_primary_10_3390_en13030532 crossref_primary_10_3390_en12101891 crossref_primary_10_1016_j_enconman_2017_10_099 crossref_primary_10_3390_electronics10040466 crossref_primary_10_1061__ASCE_HE_1943_5584_0001905 crossref_primary_10_1016_j_apenergy_2023_121316 crossref_primary_10_1049_iet_esi_2018_0011 crossref_primary_10_1016_j_asoc_2022_109833 crossref_primary_10_3233_JIFS_222920 crossref_primary_10_1016_j_chaos_2022_111880 crossref_primary_10_1016_j_renene_2018_05_093 crossref_primary_10_3390_e22121412 crossref_primary_10_1016_j_egyr_2024_08_070 crossref_primary_10_1016_j_seta_2022_101962 crossref_primary_10_1016_j_asoc_2019_105587 crossref_primary_10_1108_JM2_06_2020_0159 crossref_primary_10_3390_en15093265 crossref_primary_10_3390_en12081520  | 
    
| Cites_doi | 10.1016/S0360-1323(03)00135-5 10.1016/j.energy.2005.12.002 10.1016/j.eswa.2012.02.111 10.3390/en4081246 10.1016/j.ces.2007.03.039 10.1016/j.ejps.2005.04.010 10.1016/j.enpol.2006.02.013 10.1057/jors.1969.103 10.1007/s00521-008-0216-0 10.1287/mnsc.33.3.356 10.1016/j.ijepes.2016.01.020 10.1016/j.cor.2007.02.019 10.1016/j.eswa.2009.02.081 10.1016/j.apenergy.2010.05.012 10.1016/0038-092X(84)90013-6 10.1016/j.energy.2006.11.014 10.1016/j.engappai.2009.09.015 10.1016/S0040-1625(00)00113-X 10.1080/15567240903289549 10.1016/S0169-2070(97)00057-5 10.1016/j.eswa.2008.06.051 10.1007/s00202-009-0116-z 10.1016/j.renene.2008.09.006 10.1016/j.eswa.2010.12.158 10.1016/j.knosys.2013.10.012 10.1016/j.enpol.2012.05.026 10.1016/0142-0615(94)90018-3 10.1016/j.sigpro.2012.10.022 10.1109/72.159060 10.1016/j.energy.2015.01.063 10.1016/j.enpol.2009.04.024 10.1016/j.egypro.2011.12.1188 10.1016/j.envsoft.2006.08.007 10.1016/j.apm.2014.10.065 10.1016/j.energy.2009.06.034 10.1080/10407782.2013.757154 10.1109/TPWRS.2011.2181981 10.1016/j.ijhydene.2009.12.080 10.1016/j.enconman.2008.01.035 10.1007/s00521-008-0214-2 10.1016/j.enpol.2009.12.037 10.1109/TNN.2008.2002913 10.1016/j.compchemeng.2009.02.004 10.1016/0957-4174(95)00013-Y 10.1016/j.ijforecast.2009.05.015 10.1016/j.eswa.2007.09.031 10.1016/j.physa.2008.01.095 10.1016/0169-2070(89)90013-7 10.1016/j.techfore.2010.01.009  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2016 | 
    
| Copyright_xml | – notice: 2016 | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.asoc.2016.07.053 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 1872-9681 | 
    
| EndPage | 675 | 
    
| ExternalDocumentID | 10_1016_j_asoc_2016_07_053 S1568494616303891  | 
    
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD  | 
    
| ID | FETCH-LOGICAL-c353t-b0e5fc20c539196644747439bef68e817e4bf9e1c9f36e5e364a684555206c283 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1568-4946 | 
    
| IngestDate | Wed Oct 01 02:32:07 EDT 2025 Thu Apr 24 23:10:31 EDT 2025 Fri Feb 23 02:24:51 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Electricity demand forecasting DE ANFIS Combined forecasting method BP diff-SARIMA  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c353t-b0e5fc20c539196644747439bef68e817e4bf9e1c9f36e5e364a684555206c283 | 
    
| ORCID | 0000-0003-2353-2053 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2016_07_053 crossref_citationtrail_10_1016_j_asoc_2016_07_053 elsevier_sciencedirect_doi_10_1016_j_asoc_2016_07_053  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-12-01 | 
    
| PublicationDateYYYYMMDD | 2016-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Applied soft computing | 
    
| PublicationYear | 2016 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Chen, Chen, Chen (bib0195) 2013; 93 Azwadi, Zeinali, Safdari (bib0110) 2013; 63 Tan, Zhang, Wang (bib0130) 2010; 87 Kucukali, Baris (bib0050) 2010; 38 Clements, Hendry (bib0150) 1998; 14 Liang (bib0155) 2009; 18 Kavasseri, Seetharaman (bib0165) 2009; 34 Kandananond (bib0075) 2011; 4 El-Shafie, Jaafer, Akrami (bib0175) 2011; 6 Yu, Zhu, Gao (bib0125) 2009; 18 Storn, Price (bib0235) 1995 Zhou, Ang, Poh (bib0065) 2006; 31 Goia, May, Fusai (bib0015) 2010; 26 Pai, Wan, Hsu (bib0100) 2009; 33 Dash, Liew, Rahman (bib0055) 1995; 9 Blanchard, Desrochers (bib0145) 1984; 33 Xiao, Wang, Hou (bib0010) 2015; 82 Petković, Issa, Pavlović (bib0170) 2012; 39 Jang (bib0215) 1992; 3 Koutroumanidis, Ioannou, Arabatzis (bib0160) 2009; 37 Tseng, Yu, Tzeng (bib0230) 2002; 69 Erdogdu (bib0035) 2007; 35 Xiong, Bao, Hu (bib0120) 2014; 55 Khajeh, Modarress, Rezaee (bib0180) 2009; 36 El Ela, Abido, Spea (bib0245) 2009; 91 Xiao, Ye, Zhong (bib0105) 2009; 36 Yongli, Hogg, Zhang (bib0060) 1994; 16 Faruk (bib0210) 2010; 23 Chen, Yang, Liu (bib0275) 2015; 39 Sha, Hsu (bib0240) 2008; 35 Box, Jenkins, Reinsel (bib0225) 2015 Khademi, Rahimpour, Jahanmiri (bib0255) 2010; 35 Babu, Munawar (bib0250) 2007; 62 Bunn (bib0005) 1985 Dong, Pedrycz (bib0030) 2008; 387 Khosravi, Nahavandi, Creighton (bib0045) 2012; 27 Gupta, Wilton (bib0270) 1987; 33 Bianco, Manca, Nardini (bib0025) 2009; 34 Plumb, Rowe, York (bib0080) 2005; 25 Xie, Zhang, Singh (bib0135) 2016; 79 Al-Alawi, Abdul-Wahab, Bakheit (bib0085) 2008; 23 Haykin, Network (bib0205) 2004; 2004 Ke, Wenyan, Xiaoliu (bib0185) 2012; 14 Wang, Zhu, Zhao (bib0190) 2011; 38 Wang, Wang, Zhao (bib0040) 2012; 48 Armstrong (bib0260) 1989; 5 Bianco, Manca, Nardini (bib0020) 2013; 8 Christodoulos, Michalakelis, Varoutas (bib0265) 2010; 77 Azadeh, Saberi, Gitiforouz (bib0090) 2009; 36 Liu, Ling (bib0220) 2003; 38 Khajeh, Modarress, Rezaee (bib0095) 2009; 36 Bates, Granger (bib0115) 1969; 20 Khashman (bib0140) 2008; 19 Azadeh, Ghaderi, Sohrabkhani (bib0200) 2008; 49 Akay, Atak (bib0070) 2007; 32 Clements (10.1016/j.asoc.2016.07.053_bib0150) 1998; 14 Haykin (10.1016/j.asoc.2016.07.053_bib0205) 2004; 2004 Wang (10.1016/j.asoc.2016.07.053_bib0190) 2011; 38 Liu (10.1016/j.asoc.2016.07.053_bib0220) 2003; 38 Khademi (10.1016/j.asoc.2016.07.053_bib0255) 2010; 35 Al-Alawi (10.1016/j.asoc.2016.07.053_bib0085) 2008; 23 Azwadi (10.1016/j.asoc.2016.07.053_bib0110) 2013; 63 Azadeh (10.1016/j.asoc.2016.07.053_bib0090) 2009; 36 Bates (10.1016/j.asoc.2016.07.053_bib0115) 1969; 20 Petković (10.1016/j.asoc.2016.07.053_bib0170) 2012; 39 Goia (10.1016/j.asoc.2016.07.053_bib0015) 2010; 26 Akay (10.1016/j.asoc.2016.07.053_bib0070) 2007; 32 Khajeh (10.1016/j.asoc.2016.07.053_bib0180) 2009; 36 Azadeh (10.1016/j.asoc.2016.07.053_bib0200) 2008; 49 Xie (10.1016/j.asoc.2016.07.053_bib0135) 2016; 79 Khajeh (10.1016/j.asoc.2016.07.053_bib0095) 2009; 36 Yu (10.1016/j.asoc.2016.07.053_bib0125) 2009; 18 Khosravi (10.1016/j.asoc.2016.07.053_bib0045) 2012; 27 Xiong (10.1016/j.asoc.2016.07.053_bib0120) 2014; 55 El Ela (10.1016/j.asoc.2016.07.053_bib0245) 2009; 91 Plumb (10.1016/j.asoc.2016.07.053_bib0080) 2005; 25 Gupta (10.1016/j.asoc.2016.07.053_bib0270) 1987; 33 Zhou (10.1016/j.asoc.2016.07.053_bib0065) 2006; 31 Dong (10.1016/j.asoc.2016.07.053_bib0030) 2008; 387 Bianco (10.1016/j.asoc.2016.07.053_bib0020) 2013; 8 Khashman (10.1016/j.asoc.2016.07.053_bib0140) 2008; 19 Babu (10.1016/j.asoc.2016.07.053_bib0250) 2007; 62 Bianco (10.1016/j.asoc.2016.07.053_bib0025) 2009; 34 Blanchard (10.1016/j.asoc.2016.07.053_bib0145) 1984; 33 Storn (10.1016/j.asoc.2016.07.053_bib0235) 1995 Kandananond (10.1016/j.asoc.2016.07.053_bib0075) 2011; 4 Tan (10.1016/j.asoc.2016.07.053_bib0130) 2010; 87 Xiao (10.1016/j.asoc.2016.07.053_bib0105) 2009; 36 Liang (10.1016/j.asoc.2016.07.053_bib0155) 2009; 18 Sha (10.1016/j.asoc.2016.07.053_bib0240) 2008; 35 Christodoulos (10.1016/j.asoc.2016.07.053_bib0265) 2010; 77 Erdogdu (10.1016/j.asoc.2016.07.053_bib0035) 2007; 35 Pai (10.1016/j.asoc.2016.07.053_bib0100) 2009; 33 Koutroumanidis (10.1016/j.asoc.2016.07.053_bib0160) 2009; 37 El-Shafie (10.1016/j.asoc.2016.07.053_bib0175) 2011; 6 Wang (10.1016/j.asoc.2016.07.053_bib0040) 2012; 48 Dash (10.1016/j.asoc.2016.07.053_bib0055) 1995; 9 Tseng (10.1016/j.asoc.2016.07.053_bib0230) 2002; 69 Kavasseri (10.1016/j.asoc.2016.07.053_bib0165) 2009; 34 Chen (10.1016/j.asoc.2016.07.053_bib0195) 2013; 93 Bunn (10.1016/j.asoc.2016.07.053_bib0005) 1985 Faruk (10.1016/j.asoc.2016.07.053_bib0210) 2010; 23 Jang (10.1016/j.asoc.2016.07.053_bib0215) 1992; 3 Yongli (10.1016/j.asoc.2016.07.053_bib0060) 1994; 16 Ke (10.1016/j.asoc.2016.07.053_bib0185) 2012; 14 Armstrong (10.1016/j.asoc.2016.07.053_bib0260) 1989; 5 Xiao (10.1016/j.asoc.2016.07.053_bib0010) 2015; 82 Chen (10.1016/j.asoc.2016.07.053_bib0275) 2015; 39 Kucukali (10.1016/j.asoc.2016.07.053_bib0050) 2010; 38 Box (10.1016/j.asoc.2016.07.053_bib0225) 2015  | 
    
| References_xml | – volume: 34 start-page: 1413 year: 2009 end-page: 1421 ident: bib0025 article-title: Electricity consumption forecasting in Italy using linear regression models publication-title: Energy – volume: 19 start-page: 1896 year: 2008 end-page: 1909 ident: bib0140 article-title: A modified backpropagation learning algorithm with added emotional coefficients publication-title: IEEE Trans. Neural Netw. – volume: 31 start-page: 2839 year: 2006 end-page: 2847 ident: bib0065 article-title: A trigonometric grey prediction approach to forecasting electricity demand publication-title: Energy – volume: 20 start-page: 451 year: 1969 end-page: 468 ident: bib0115 article-title: The combination of forecasts publication-title: J. Oper. Res. Soc. – volume: 33 start-page: 571 year: 1984 end-page: 579 ident: bib0145 article-title: Generation of autocorrelated wind speeds for wind energy conversion system studies publication-title: Sol. Energy – volume: 18 start-page: 769 year: 2009 end-page: 779 ident: bib0125 article-title: A hybrid MPSO-BP structure adaptive algorithm for RBFNs publication-title: Neural Comput. Appl. – volume: 39 start-page: 9477 year: 2012 end-page: 9482 ident: bib0170 article-title: Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties publication-title: Expert Syst. Appl. – volume: 36 start-page: 273 year: 2009 end-page: 279 ident: bib0105 article-title: BP neural network with rough set for short term load forecasting publication-title: Expert Syst. Appl. – year: 2015 ident: bib0225 article-title: Time Series Analysis: Forecasting and Control – volume: 9 start-page: 407 year: 1995 end-page: 421 ident: bib0055 article-title: Building a fuzzy expert system for electric load forecasting using a hybrid neural network publication-title: Expert Syst. Appl. – volume: 36 start-page: 11108 year: 2009 end-page: 11117 ident: bib0090 article-title: A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation publication-title: Expert Syst. Appl. – volume: 38 start-page: 8151 year: 2011 end-page: 8158 ident: bib0190 article-title: Optimal parameters estimation and input subset for grey model based on chaotic particle swarm optimization algorithm publication-title: Expert Syst. Appl. – volume: 33 start-page: 356 year: 1987 end-page: 372 ident: bib0270 article-title: Combination of forecasts: an extension publication-title: Manage. Sci. – volume: 82 start-page: 524 year: 2015 end-page: 549 ident: bib0010 article-title: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting publication-title: Energy – volume: 93 start-page: 1566 year: 2013 end-page: 1576 ident: bib0195 article-title: Efficient ant colony optimization for image feature selection publication-title: Signal Process. – volume: 387 start-page: 3253 year: 2008 end-page: 3270 ident: bib0030 article-title: A granular time series approach to long-term forecasting and trend forecasting publication-title: Physica A – volume: 48 start-page: 284 year: 2012 end-page: 294 ident: bib0040 article-title: Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China publication-title: Energy Policy – volume: 38 start-page: 2438 year: 2010 end-page: 2445 ident: bib0050 article-title: Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach publication-title: Energy Policy – volume: 16 start-page: 259 year: 1994 end-page: 268 ident: bib0060 article-title: Hybrid expert system for aiding dispatchers on bulk power systems restoration publication-title: Int. J. Electr. Power Energy Syst. – volume: 87 start-page: 3606 year: 2010 end-page: 3610 ident: bib0130 article-title: Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models publication-title: Appl. Energy – volume: 36 start-page: 5728 year: 2009 end-page: 5732 ident: bib0180 article-title: Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers publication-title: Expert Syst. Appl. – volume: 23 start-page: 396 year: 2008 end-page: 403 ident: bib0085 article-title: Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone publication-title: Environ. Model. Softw. – volume: 69 start-page: 71 year: 2002 end-page: 87 ident: bib0230 article-title: Combining neural network model with seasonal time series ARIMA model publication-title: Technol. Forecast. Soc. Change – volume: 79 start-page: 228 year: 2016 end-page: 234 ident: bib0135 article-title: Reliability forecasting models for electrical distribution systems considering component failures and planned outages publication-title: Int. J. Electr. Power Energy Syst. – volume: 91 start-page: 69 year: 2009 end-page: 78 ident: bib0245 article-title: Optimal power flow using differential evolution algorithm publication-title: Electr. Eng. – volume: 3 start-page: 714 year: 1992 end-page: 723 ident: bib0215 article-title: Self-learning fuzzy controllers based on temporal backpropagation[ publication-title: IEEE Trans. Neural Netw. – volume: 14 start-page: 111 year: 1998 end-page: 131 ident: bib0150 article-title: Forecasting economic processes publication-title: Int. J. Forecast. – volume: 77 start-page: 558 year: 2010 end-page: 565 ident: bib0265 article-title: Forecasting with limited data: combining ARIMA and diffusion models publication-title: Technol. Forecast. Soc. Change – volume: 27 start-page: 1274 year: 2012 end-page: 1282 ident: bib0045 article-title: Interval type-2 fuzzy logic systems for load forecasting: a comparative study publication-title: IEEE Trans. Power Syst. – volume: 14 start-page: 1918 year: 2012 end-page: 1924 ident: bib0185 article-title: Research on the forecast model of electricity power industry loan based on GA-BP neural network publication-title: Energy Procedia – volume: 49 start-page: 2272 year: 2008 end-page: 2278 ident: bib0200 article-title: Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors publication-title: Energy Convers. Manage. – year: 1985 ident: bib0005 article-title: Comparative Models for Electrical Load Forecasting – volume: 8 start-page: 86 year: 2013 end-page: 93 ident: bib0020 article-title: Linear regression models to forecast electricity consumption in Italy publication-title: Energy Sources B – volume: 35 start-page: 3243 year: 2008 end-page: 3261 ident: bib0240 article-title: A new particle swarm optimization for the open shop scheduling problem publication-title: Comput. Oper. Res. – volume: 55 start-page: 87 year: 2014 end-page: 100 ident: bib0120 article-title: Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting publication-title: Knowledge Based Syst. – year: 1995 ident: bib0235 article-title: Differential Evolution-a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces – volume: 26 start-page: 700 year: 2010 end-page: 711 ident: bib0015 article-title: Functional clustering and linear regression for peak load forecasting publication-title: Int. J. Forecast. – volume: 25 start-page: 395 year: 2005 end-page: 405 ident: bib0080 article-title: Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm publication-title: Eur. J. Pharm. Sci. – volume: 6 start-page: 2875 year: 2011 end-page: 2888 ident: bib0175 article-title: Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River: Malaysia publication-title: Int. J. Phys. Sci. – volume: 5 start-page: 585 year: 1989 end-page: 588 ident: bib0260 article-title: Combining forecasts: the end of the beginning or the beginning of the end? publication-title: Int. J. Forecast. – volume: 36 start-page: 5728 year: 2009 end-page: 5732 ident: bib0095 article-title: Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers publication-title: Expert Syst. Appl. – volume: 23 start-page: 586 year: 2010 end-page: 594 ident: bib0210 article-title: A hybrid neural network and ARIMA model for water quality time series prediction publication-title: Eng. Appl. Artif. Intell. – volume: 38 start-page: 1303 year: 2003 end-page: 1308 ident: bib0220 article-title: Using fuzzy neural network approach to estimate contractors’ markup publication-title: Build. Environ. – volume: 35 start-page: 1129 year: 2007 end-page: 1146 ident: bib0035 article-title: Electricity demand analysis using cointegration and ARIMA modelling: a case study of Turkey publication-title: Energy policy – volume: 2004 start-page: 2 year: 2004 ident: bib0205 article-title: A comprehensive foundation publication-title: Neural Netw. – volume: 35 start-page: 1936 year: 2010 end-page: 1950 ident: bib0255 article-title: Differential evolution (DE) strategy for optimization of hydrogen production, cyclohexane dehydrogenation and methanol synthesis in a hydrogen-permselective membrane thermally coupled reactor publication-title: Int. J. Hydrogen Energy – volume: 39 start-page: 2617 year: 2015 end-page: 2632 ident: bib0275 article-title: A hybrid application algorithm based on the support vector machine and artificial intelligence: an example of electric load forecasting publication-title: Appl. Math. Model. – volume: 63 start-page: 906 year: 2013 end-page: 920 ident: bib0110 article-title: Adaptive-network-based fuzzy inference system analysis to predict the temperature and flow fields in a lid-driven cavity publication-title: Numer. Heat Transf. A – volume: 37 start-page: 3627 year: 2009 end-page: 3634 ident: bib0160 article-title: Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA-ANN model publication-title: Energy Policy – volume: 18 start-page: 833 year: 2009 end-page: 841 ident: bib0155 article-title: Combining seasonal time series ARIMA method and neural networks with genetic algorithms for predicting the production value of the mechanical industry in Taiwan publication-title: Neural Comput. Appl. – volume: 32 start-page: 1670 year: 2007 end-page: 1675 ident: bib0070 article-title: Grey prediction with rolling mechanism for electricity demand forecasting of Turkey publication-title: Energy – volume: 4 start-page: 1246 year: 2011 end-page: 1257 ident: bib0075 article-title: Forecasting electricity demand in Thailand with an artificial neural network approach publication-title: Energies – volume: 33 start-page: 1272 year: 2009 end-page: 1278 ident: bib0100 article-title: Using fuzzy inference system to improve neural network for predicting hospital wastewater treatment plant effluent publication-title: Comput. Chem. Eng. – volume: 34 start-page: 1388 year: 2009 end-page: 1393 ident: bib0165 article-title: Day-ahead wind speed forecasting using f-ARIMA models publication-title: Renew. Energy – volume: 62 start-page: 3720 year: 2007 end-page: 3739 ident: bib0250 article-title: Differential evolution strategies for optimal design of shell-and-tube heat exchangers publication-title: Chem. Eng. Sci. – volume: 38 start-page: 1303 issue: 11 year: 2003 ident: 10.1016/j.asoc.2016.07.053_bib0220 article-title: Using fuzzy neural network approach to estimate contractors’ markup publication-title: Build. Environ. doi: 10.1016/S0360-1323(03)00135-5 – volume: 31 start-page: 2839 issue: 14 year: 2006 ident: 10.1016/j.asoc.2016.07.053_bib0065 article-title: A trigonometric grey prediction approach to forecasting electricity demand publication-title: Energy doi: 10.1016/j.energy.2005.12.002 – volume: 39 start-page: 9477 issue: 10 year: 2012 ident: 10.1016/j.asoc.2016.07.053_bib0170 article-title: Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.02.111 – volume: 4 start-page: 1246 issue: 8 year: 2011 ident: 10.1016/j.asoc.2016.07.053_bib0075 article-title: Forecasting electricity demand in Thailand with an artificial neural network approach publication-title: Energies doi: 10.3390/en4081246 – volume: 2004 start-page: 2 year: 2004 ident: 10.1016/j.asoc.2016.07.053_bib0205 article-title: A comprehensive foundation publication-title: Neural Netw. – volume: 62 start-page: 3720 issue: 14 year: 2007 ident: 10.1016/j.asoc.2016.07.053_bib0250 article-title: Differential evolution strategies for optimal design of shell-and-tube heat exchangers publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2007.03.039 – volume: 25 start-page: 395 issue: 4 year: 2005 ident: 10.1016/j.asoc.2016.07.053_bib0080 article-title: Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm publication-title: Eur. J. Pharm. Sci. doi: 10.1016/j.ejps.2005.04.010 – volume: 35 start-page: 1129 issue: 2 year: 2007 ident: 10.1016/j.asoc.2016.07.053_bib0035 article-title: Electricity demand analysis using cointegration and ARIMA modelling: a case study of Turkey publication-title: Energy policy doi: 10.1016/j.enpol.2006.02.013 – volume: 20 start-page: 451 issue: 4 year: 1969 ident: 10.1016/j.asoc.2016.07.053_bib0115 article-title: The combination of forecasts publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.1969.103 – volume: 18 start-page: 833 issue: 7 year: 2009 ident: 10.1016/j.asoc.2016.07.053_bib0155 article-title: Combining seasonal time series ARIMA method and neural networks with genetic algorithms for predicting the production value of the mechanical industry in Taiwan publication-title: Neural Comput. Appl. doi: 10.1007/s00521-008-0216-0 – volume: 33 start-page: 356 issue: 3 year: 1987 ident: 10.1016/j.asoc.2016.07.053_bib0270 article-title: Combination of forecasts: an extension publication-title: Manage. Sci. doi: 10.1287/mnsc.33.3.356 – volume: 79 start-page: 228 year: 2016 ident: 10.1016/j.asoc.2016.07.053_bib0135 article-title: Reliability forecasting models for electrical distribution systems considering component failures and planned outages publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2016.01.020 – volume: 35 start-page: 3243 issue: 10 year: 2008 ident: 10.1016/j.asoc.2016.07.053_bib0240 article-title: A new particle swarm optimization for the open shop scheduling problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2007.02.019 – year: 1985 ident: 10.1016/j.asoc.2016.07.053_bib0005 – volume: 36 start-page: 11108 issue: 8 year: 2009 ident: 10.1016/j.asoc.2016.07.053_bib0090 article-title: A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.02.081 – volume: 87 start-page: 3606 issue: 11 year: 2010 ident: 10.1016/j.asoc.2016.07.053_bib0130 article-title: Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models publication-title: Appl. Energy doi: 10.1016/j.apenergy.2010.05.012 – volume: 33 start-page: 571 issue: 6 year: 1984 ident: 10.1016/j.asoc.2016.07.053_bib0145 article-title: Generation of autocorrelated wind speeds for wind energy conversion system studies publication-title: Sol. Energy doi: 10.1016/0038-092X(84)90013-6 – volume: 32 start-page: 1670 issue: 9 year: 2007 ident: 10.1016/j.asoc.2016.07.053_bib0070 article-title: Grey prediction with rolling mechanism for electricity demand forecasting of Turkey publication-title: Energy doi: 10.1016/j.energy.2006.11.014 – volume: 23 start-page: 586 issue: 4 year: 2010 ident: 10.1016/j.asoc.2016.07.053_bib0210 article-title: A hybrid neural network and ARIMA model for water quality time series prediction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2009.09.015 – volume: 69 start-page: 71 issue: 1 year: 2002 ident: 10.1016/j.asoc.2016.07.053_bib0230 article-title: Combining neural network model with seasonal time series ARIMA model publication-title: Technol. Forecast. Soc. Change doi: 10.1016/S0040-1625(00)00113-X – volume: 8 start-page: 86 issue: 1 year: 2013 ident: 10.1016/j.asoc.2016.07.053_bib0020 article-title: Linear regression models to forecast electricity consumption in Italy publication-title: Energy Sources B doi: 10.1080/15567240903289549 – volume: 14 start-page: 111 issue: 1 year: 1998 ident: 10.1016/j.asoc.2016.07.053_bib0150 article-title: Forecasting economic processes publication-title: Int. J. Forecast. doi: 10.1016/S0169-2070(97)00057-5 – volume: 36 start-page: 5728 issue: 3 year: 2009 ident: 10.1016/j.asoc.2016.07.053_bib0180 article-title: Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.06.051 – volume: 91 start-page: 69 issue: 2 year: 2009 ident: 10.1016/j.asoc.2016.07.053_bib0245 article-title: Optimal power flow using differential evolution algorithm publication-title: Electr. Eng. doi: 10.1007/s00202-009-0116-z – volume: 34 start-page: 1388 issue: 5 year: 2009 ident: 10.1016/j.asoc.2016.07.053_bib0165 article-title: Day-ahead wind speed forecasting using f-ARIMA models publication-title: Renew. Energy doi: 10.1016/j.renene.2008.09.006 – volume: 38 start-page: 8151 issue: 7 year: 2011 ident: 10.1016/j.asoc.2016.07.053_bib0190 article-title: Optimal parameters estimation and input subset for grey model based on chaotic particle swarm optimization algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.12.158 – volume: 55 start-page: 87 year: 2014 ident: 10.1016/j.asoc.2016.07.053_bib0120 article-title: Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting publication-title: Knowledge Based Syst. doi: 10.1016/j.knosys.2013.10.012 – volume: 48 start-page: 284 year: 2012 ident: 10.1016/j.asoc.2016.07.053_bib0040 article-title: Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China publication-title: Energy Policy doi: 10.1016/j.enpol.2012.05.026 – volume: 16 start-page: 259 issue: 4 year: 1994 ident: 10.1016/j.asoc.2016.07.053_bib0060 article-title: Hybrid expert system for aiding dispatchers on bulk power systems restoration publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/0142-0615(94)90018-3 – volume: 93 start-page: 1566 issue: 6 year: 2013 ident: 10.1016/j.asoc.2016.07.053_bib0195 article-title: Efficient ant colony optimization for image feature selection publication-title: Signal Process. doi: 10.1016/j.sigpro.2012.10.022 – volume: 3 start-page: 714 issue: 5 year: 1992 ident: 10.1016/j.asoc.2016.07.053_bib0215 article-title: Self-learning fuzzy controllers based on temporal backpropagation[ publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.159060 – volume: 82 start-page: 524 year: 2015 ident: 10.1016/j.asoc.2016.07.053_bib0010 article-title: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting publication-title: Energy doi: 10.1016/j.energy.2015.01.063 – volume: 37 start-page: 3627 issue: 9 year: 2009 ident: 10.1016/j.asoc.2016.07.053_bib0160 article-title: Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA-ANN model publication-title: Energy Policy doi: 10.1016/j.enpol.2009.04.024 – volume: 6 start-page: 2875 issue: 12 year: 2011 ident: 10.1016/j.asoc.2016.07.053_bib0175 article-title: Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River: Malaysia publication-title: Int. J. Phys. Sci. – volume: 14 start-page: 1918 year: 2012 ident: 10.1016/j.asoc.2016.07.053_bib0185 article-title: Research on the forecast model of electricity power industry loan based on GA-BP neural network publication-title: Energy Procedia doi: 10.1016/j.egypro.2011.12.1188 – volume: 23 start-page: 396 issue: 4 year: 2008 ident: 10.1016/j.asoc.2016.07.053_bib0085 article-title: Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2006.08.007 – volume: 39 start-page: 2617 issue: 9 year: 2015 ident: 10.1016/j.asoc.2016.07.053_bib0275 article-title: A hybrid application algorithm based on the support vector machine and artificial intelligence: an example of electric load forecasting publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2014.10.065 – volume: 34 start-page: 1413 issue: 9 year: 2009 ident: 10.1016/j.asoc.2016.07.053_bib0025 article-title: Electricity consumption forecasting in Italy using linear regression models publication-title: Energy doi: 10.1016/j.energy.2009.06.034 – volume: 63 start-page: 906 issue: 12 year: 2013 ident: 10.1016/j.asoc.2016.07.053_bib0110 article-title: Adaptive-network-based fuzzy inference system analysis to predict the temperature and flow fields in a lid-driven cavity publication-title: Numer. Heat Transf. A doi: 10.1080/10407782.2013.757154 – volume: 27 start-page: 1274 issue: 3 year: 2012 ident: 10.1016/j.asoc.2016.07.053_bib0045 article-title: Interval type-2 fuzzy logic systems for load forecasting: a comparative study publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2011.2181981 – volume: 35 start-page: 1936 issue: 5 year: 2010 ident: 10.1016/j.asoc.2016.07.053_bib0255 article-title: Differential evolution (DE) strategy for optimization of hydrogen production, cyclohexane dehydrogenation and methanol synthesis in a hydrogen-permselective membrane thermally coupled reactor publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2009.12.080 – year: 2015 ident: 10.1016/j.asoc.2016.07.053_bib0225 – volume: 49 start-page: 2272 issue: 8 year: 2008 ident: 10.1016/j.asoc.2016.07.053_bib0200 article-title: Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2008.01.035 – volume: 18 start-page: 769 issue: 7 year: 2009 ident: 10.1016/j.asoc.2016.07.053_bib0125 article-title: A hybrid MPSO-BP structure adaptive algorithm for RBFNs publication-title: Neural Comput. Appl. doi: 10.1007/s00521-008-0214-2 – volume: 38 start-page: 2438 issue: 5 year: 2010 ident: 10.1016/j.asoc.2016.07.053_bib0050 article-title: Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach publication-title: Energy Policy doi: 10.1016/j.enpol.2009.12.037 – volume: 19 start-page: 1896 issue: 11 year: 2008 ident: 10.1016/j.asoc.2016.07.053_bib0140 article-title: A modified backpropagation learning algorithm with added emotional coefficients publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2008.2002913 – volume: 33 start-page: 1272 issue: 7 year: 2009 ident: 10.1016/j.asoc.2016.07.053_bib0100 article-title: Using fuzzy inference system to improve neural network for predicting hospital wastewater treatment plant effluent publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2009.02.004 – volume: 36 start-page: 5728 issue: 3 year: 2009 ident: 10.1016/j.asoc.2016.07.053_bib0095 article-title: Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.06.051 – volume: 9 start-page: 407 issue: 3 year: 1995 ident: 10.1016/j.asoc.2016.07.053_bib0055 article-title: Building a fuzzy expert system for electric load forecasting using a hybrid neural network publication-title: Expert Syst. Appl. doi: 10.1016/0957-4174(95)00013-Y – volume: 26 start-page: 700 issue: 4 year: 2010 ident: 10.1016/j.asoc.2016.07.053_bib0015 article-title: Functional clustering and linear regression for peak load forecasting publication-title: Int. J. Forecast. doi: 10.1016/j.ijforecast.2009.05.015 – volume: 36 start-page: 273 issue: 1 year: 2009 ident: 10.1016/j.asoc.2016.07.053_bib0105 article-title: BP neural network with rough set for short term load forecasting publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2007.09.031 – year: 1995 ident: 10.1016/j.asoc.2016.07.053_bib0235 – volume: 387 start-page: 3253 issue: 13 year: 2008 ident: 10.1016/j.asoc.2016.07.053_bib0030 article-title: A granular time series approach to long-term forecasting and trend forecasting publication-title: Physica A doi: 10.1016/j.physa.2008.01.095 – volume: 5 start-page: 585 issue: 4 year: 1989 ident: 10.1016/j.asoc.2016.07.053_bib0260 article-title: Combining forecasts: the end of the beginning or the beginning of the end? publication-title: Int. J. Forecast. doi: 10.1016/0169-2070(89)90013-7 – volume: 77 start-page: 558 issue: 4 year: 2010 ident: 10.1016/j.asoc.2016.07.053_bib0265 article-title: Forecasting with limited data: combining ARIMA and diffusion models publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2010.01.009  | 
    
| SSID | ssj0016928 | 
    
| Score | 2.5153725 | 
    
| SecondaryResourceType | review_article | 
    
| Snippet | •This paper proposes a novel combined electricity demand forecasting method, which based on Back Propagation (BP) neural network, Adaptive Network-based Fuzzy... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 663 | 
    
| SubjectTerms | ANFIS Combined forecasting method diff-SARIMA Electricity demand forecasting  | 
    
| Title | Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting | 
    
| URI | https://dx.doi.org/10.1016/j.asoc.2016.07.053 | 
    
| Volume | 49 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Complete Freedom Collection customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9681 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4muHDhjXhOPnBDZS1N0pXbNJg2HhMCJu1WpUkKRdChMQ5c-BH8Yuw2RSAhDpyqVnbU2on9ufKDsX3Z1txIE3m-wUPOM2U8FYnYE1kWWB2KwEgqcL4cyv6In43FuMG6dS0MpVU621_Z9NJauyctJ83Wc563bjDyaPOYS0QU1CWurGDnEU0xOHz_SvMIZFzOVyVij6hd4UyV46VQApTe5Rp4hr87p28Op7fMFh1ShE71MiusYYtVtlRPYQB3KNfYB40zKztrgwL8DAx1rYFqMjSQkzIwKaAz7A1uQBUGqIMlrltU-d-Ql38VkCh9g5NTUI93k2k-u386hg5o5IayAS0gtoWXe8TqHtlyqKbn5BoxPBj7ROsihUUGSqNeZ6Pe6W2377lJCx6qI5x5qW9Fpo98LcIYjyRiJIwyEKqkNpNt2w4iy9MstoGOs1BaYUPJFQpfCHHkS40IZYPNFZPCbjJIMWLLjOFpYBCsGBXz2NeoA9-myoaB2WJBLeJEuzbkNA3jManzzR4SUktCakn8KEG1bLGDL57nqgnHn9Si1lzyYysl6CX-4Nv-J98OW6C7Ksdll83Npq92D5HKLG2WW7HJ5jvd64srug7O-8NPavHrNg | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8QwDI4QDLDwRrzxwIbKtdckvbKdDk53PG4BJLYoTVIogh6CY2DhR_CLsdsUgYQYWFu7au3E_lx9sRnblx3DrbRJEFrc5DzXNtCJSAOR55EzsYispAPOFyM5uOanN-JmivWaszBEq_Sxv47pVbT2V1remq2nomhdYuXR4SmXiCioSxyWQDNctBOqwA7fv3gekUyrAaskHZC4PzlTk7w0moD4Xb6DZ_x7dvqWcfqLbN5DRejWb7PEply5zBaaMQzgd-UK-6B5ZlVrbdCA34G1rrNQj4YGylIWxiV0R_3hJejSArWwxOeWNQEciuq3Agplb3B8AvrhdvxcTO4ej6ALBrWh6kALCG7h5Q7BekDBHOrxOYVBEA_WPdJzUcKhAvGoV9l1_-SqNwj8qIUA_RFPgix0Ijft0Ig4xT2JIAnLDMQqmctlx3WixPEsT11k0jyWTrhYco3WF0K0Q2kQoqyx6XJcunUGGZZsubU8iyyiFatTnoYGfRC6TLs4shssakysjO9DTuMwHlRDOLtX5BZFblFhotAtG-zgS-ep7sLxp7RoPKd-rCWFaeIPvc1_6u2x2cHVxbk6H47Ottgc3akJL9tsevL86nYQtkyy3WpZfgKN6us2 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+a+combined+method+based+on+ANFIS+and+neural+network+improved+by+DE+algorithm%3A+A+case+study+for+short-term+electricity+demand+forecasting&rft.jtitle=Applied+soft+computing&rft.au=Yang%2C+Yi&rft.au=Chen%2C+Yanhua&rft.au=Wang%2C+Yachen&rft.au=Li%2C+Caihong&rft.date=2016-12-01&rft.issn=1568-4946&rft.volume=49&rft.spage=663&rft.epage=675&rft_id=info:doi/10.1016%2Fj.asoc.2016.07.053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2016_07_053 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |