Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting

•This paper proposes a novel combined electricity demand forecasting method, which based on Back Propagation (BP) neural network, Adaptive Network-based Fuzzy Inference System (ANFIS) and Difference Seasonal Autoregressive Integrated Moving Average (diff-SARIMA).•The combined method eliminates drawb...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 49; pp. 663 - 675
Main Authors Yang, Yi, Chen, Yanhua, Wang, Yachen, Li, Caihong, Li, Lian
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2016
Subjects
Online AccessGet full text
ISSN1568-4946
1872-9681
DOI10.1016/j.asoc.2016.07.053

Cover

Abstract •This paper proposes a novel combined electricity demand forecasting method, which based on Back Propagation (BP) neural network, Adaptive Network-based Fuzzy Inference System (ANFIS) and Difference Seasonal Autoregressive Integrated Moving Average (diff-SARIMA).•The combined method eliminates drawbacks and incorporates in the merits of the individual methods. It has the capability to deal with the linearity, nonlinearity and seasonality data.•Experimental case study shows that the proposed combined method performed better than the other three individual methods and had a higher accuracy. And the proposed method also performed better than the method ESPLSSVM that I proposed before. Electricity demand forecasting, as a vital tool in the electricity market, plays a critical role in power utilities, which can not only reduce production costs but also save energy resources, thus making the forecasting techniques become an indispensable part of the energy system. A novel combined forecasting method based on Back Propagation (BP) neural network, Adaptive Network-based Fuzzy Inference System (ANFIS) and Difference Seasonal Autoregressive Integrated Moving Average (diff-SARIMA) are presented in this paper. Firstly, the combined method uses all the three methods (BP, ANFIS, diff-SARIMA) to forecast respectively, and the three forecasting results were obtained. By multiplying optimal weight coefficients of the three forecasting results respectively and then adding them up, in the end the final forecasting results can be obtained. Among the three individual methods, BP and ANFIS had the ability to deal with the nonlinearity data, and diff-SARIMA had the ability to deal with the linearity and seasonality data. So the combined method eliminates drawbacks and incorporates in the merits of the individual methods. It has the capability to deal with the linearity, nonlinearity and seasonality data. In order to optimize weight coefficients, Differential Evolution (DE) optimization algorithm is brought into the combined method. To prove the superiority and accuracy, the capability of the combined method is verified by comparing it with the three individual methods. The forecasting results of the combined method proved to be better than all the three individual methods and the combined method was able to reduce errors and improve the accuracy between the actual values and forecasted values effectively. Using the half-hour electricity power data of the State of New South Wales in Australia, relevant experimental case studies showed that the proposed combined method performed better than the other three individual methods and had a higher accuracy.
AbstractList •This paper proposes a novel combined electricity demand forecasting method, which based on Back Propagation (BP) neural network, Adaptive Network-based Fuzzy Inference System (ANFIS) and Difference Seasonal Autoregressive Integrated Moving Average (diff-SARIMA).•The combined method eliminates drawbacks and incorporates in the merits of the individual methods. It has the capability to deal with the linearity, nonlinearity and seasonality data.•Experimental case study shows that the proposed combined method performed better than the other three individual methods and had a higher accuracy. And the proposed method also performed better than the method ESPLSSVM that I proposed before. Electricity demand forecasting, as a vital tool in the electricity market, plays a critical role in power utilities, which can not only reduce production costs but also save energy resources, thus making the forecasting techniques become an indispensable part of the energy system. A novel combined forecasting method based on Back Propagation (BP) neural network, Adaptive Network-based Fuzzy Inference System (ANFIS) and Difference Seasonal Autoregressive Integrated Moving Average (diff-SARIMA) are presented in this paper. Firstly, the combined method uses all the three methods (BP, ANFIS, diff-SARIMA) to forecast respectively, and the three forecasting results were obtained. By multiplying optimal weight coefficients of the three forecasting results respectively and then adding them up, in the end the final forecasting results can be obtained. Among the three individual methods, BP and ANFIS had the ability to deal with the nonlinearity data, and diff-SARIMA had the ability to deal with the linearity and seasonality data. So the combined method eliminates drawbacks and incorporates in the merits of the individual methods. It has the capability to deal with the linearity, nonlinearity and seasonality data. In order to optimize weight coefficients, Differential Evolution (DE) optimization algorithm is brought into the combined method. To prove the superiority and accuracy, the capability of the combined method is verified by comparing it with the three individual methods. The forecasting results of the combined method proved to be better than all the three individual methods and the combined method was able to reduce errors and improve the accuracy between the actual values and forecasted values effectively. Using the half-hour electricity power data of the State of New South Wales in Australia, relevant experimental case studies showed that the proposed combined method performed better than the other three individual methods and had a higher accuracy.
Author Li, Lian
Wang, Yachen
Chen, Yanhua
Li, Caihong
Yang, Yi
Author_xml – sequence: 1
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
– sequence: 2
  givenname: Yanhua
  orcidid: 0000-0003-2353-2053
  surname: Chen
  fullname: Chen, Yanhua
  email: chenyh2011@lzu.edu.cn
– sequence: 3
  givenname: Yachen
  surname: Wang
  fullname: Wang, Yachen
– sequence: 4
  givenname: Caihong
  surname: Li
  fullname: Li, Caihong
– sequence: 5
  givenname: Lian
  surname: Li
  fullname: Li, Lian
BookMark eNp9kE1u2zAQhYnABfJ7gazmAlJJSaSooBvDddIA-Vk0WRMUNYrpSqRBMil8jZ44NJJVF8EsZgZ432DeOyUL5x0ScsloySgT37eljt6UVZ5L2paU10fkhMm2Kjoh2SLPXMii6RpxTE5j3NIs7Cp5Qv7d-wGnyboX0GD83FuHA8yYNn6AXse8eAfLh-vb36DdAA5fg55yS399-AN23gX_lkX9Hn6uQU8vPti0ma9gCSbTENPrsIfRB4gbH1KRMMyAE5oUrLFpDwPOh7tZgRlI-ZFz8m3UU8SLz35Gnq_XT6tfxd3jze1qeVeYmtep6Cny0VTU8LpjnRBN0-aqux5HIVGyFpt-7JCZbqwFcqxFo4VsOOcVFaaS9RmpPu6a4GMMOKpdsLMOe8WoOqSqtuqQqjqkqmircqoZkv9B2YVO1rsUtJ2-Rn98oJhNvVkMKhqLzuBgs_ekBm-_wt8BkJeW8w
CitedBy_id crossref_primary_10_1016_j_conbuildmat_2022_126595
crossref_primary_10_1063_1_4979817
crossref_primary_10_1016_j_apenergy_2022_119525
crossref_primary_10_1016_j_scs_2020_102036
crossref_primary_10_1016_j_engappai_2019_03_024
crossref_primary_10_3390_su16114643
crossref_primary_10_1016_j_cie_2018_02_023
crossref_primary_10_1016_j_heliyon_2024_e28717
crossref_primary_10_3390_app14052137
crossref_primary_10_1016_j_asoc_2021_108363
crossref_primary_10_1016_j_jobe_2022_105577
crossref_primary_10_1016_j_physa_2022_127173
crossref_primary_10_1016_j_petrol_2019_106187
crossref_primary_10_1016_j_engappai_2022_105664
crossref_primary_10_1016_j_knosys_2024_111639
crossref_primary_10_1016_j_rser_2018_02_002
crossref_primary_10_1016_j_engappai_2019_08_018
crossref_primary_10_1016_j_renene_2017_09_089
crossref_primary_10_1016_j_rser_2020_110591
crossref_primary_10_1111_opec_12295
crossref_primary_10_1016_j_enbenv_2023_03_002
crossref_primary_10_3390_ijerph18031024
crossref_primary_10_1016_j_cie_2020_106435
crossref_primary_10_1016_j_energy_2017_09_009
crossref_primary_10_1007_s00521_018_03978_w
crossref_primary_10_1007_s40815_019_00758_z
crossref_primary_10_1080_0954898X_2020_1849841
crossref_primary_10_3389_fninf_2022_1103295
crossref_primary_10_1007_s12667_022_00513_8
crossref_primary_10_1007_s00500_022_07168_8
crossref_primary_10_1016_j_scs_2020_102052
crossref_primary_10_1186_s40854_017_0074_9
crossref_primary_10_1007_s13369_018_3562_y
crossref_primary_10_1038_s41598_020_70672_0
crossref_primary_10_3390_en9121050
crossref_primary_10_1080_02626667_2022_2130700
crossref_primary_10_2139_ssrn_4089138
crossref_primary_10_3390_en13112681
crossref_primary_10_1016_j_renene_2017_05_053
crossref_primary_10_3390_en16135105
crossref_primary_10_1155_2021_1026978
crossref_primary_10_2139_ssrn_4200148
crossref_primary_10_1016_j_energy_2019_06_075
crossref_primary_10_1080_0954898X_2020_1759833
crossref_primary_10_1016_j_asoc_2018_01_017
crossref_primary_10_1016_j_scs_2024_105838
crossref_primary_10_1049_tje2_12356
crossref_primary_10_1016_j_enbuild_2022_112337
crossref_primary_10_1016_j_enconman_2017_01_022
crossref_primary_10_1016_j_eswa_2021_115998
crossref_primary_10_1016_j_enconman_2018_10_068
crossref_primary_10_1109_TKDE_2022_3231008
crossref_primary_10_1063_1_5120885
crossref_primary_10_1007_s41870_023_01343_2
crossref_primary_10_1016_j_energy_2018_04_192
crossref_primary_10_1021_acsomega_4c06610
crossref_primary_10_1016_j_apenergy_2021_117992
crossref_primary_10_1007_s11063_023_11332_y
crossref_primary_10_1049_tje2_12146
crossref_primary_10_3390_a10030108
crossref_primary_10_1007_s00500_019_04432_2
crossref_primary_10_3390_electronics13163294
crossref_primary_10_1007_s11063_020_10300_0
crossref_primary_10_1051_ro_2024159
crossref_primary_10_1016_j_energy_2023_128575
crossref_primary_10_1155_2022_3581037
crossref_primary_10_1016_j_renene_2020_03_042
crossref_primary_10_1108_IJESM_09_2018_0015
crossref_primary_10_1016_j_neucom_2020_04_031
crossref_primary_10_1007_s00521_020_04713_0
crossref_primary_10_1016_j_enconman_2020_113680
crossref_primary_10_1016_j_eswa_2022_118746
crossref_primary_10_1016_j_egyai_2023_100302
crossref_primary_10_3390_en13226154
crossref_primary_10_1061__ASCE_HE_1943_5584_0001963
crossref_primary_10_16984_saufenbilder_629553
crossref_primary_10_1080_15435075_2020_1865375
crossref_primary_10_3390_pr11082317
crossref_primary_10_1016_j_rineng_2024_102773
crossref_primary_10_1007_s10479_024_05965_y
crossref_primary_10_1109_ACCESS_2019_2960687
crossref_primary_10_1016_j_apenergy_2019_114243
crossref_primary_10_1007_s00521_020_04996_3
crossref_primary_10_1109_JIOT_2019_2913176
crossref_primary_10_1007_s00500_018_03690_w
crossref_primary_10_1016_j_epsr_2020_106408
crossref_primary_10_3390_en11071848
crossref_primary_10_1016_j_enbuild_2022_112233
crossref_primary_10_2139_ssrn_3900762
crossref_primary_10_1016_j_neucom_2018_05_068
crossref_primary_10_1016_j_cie_2021_107182
crossref_primary_10_1007_s40305_019_00282_9
crossref_primary_10_3390_en16166050
crossref_primary_10_1080_09617353_2019_1569419
crossref_primary_10_1007_s00500_021_05632_5
crossref_primary_10_1108_JM2_05_2021_0116
crossref_primary_10_3390_pr7050258
crossref_primary_10_1007_s00500_022_07334_y
crossref_primary_10_3390_su9071166
crossref_primary_10_3390_en13030532
crossref_primary_10_3390_en12101891
crossref_primary_10_1016_j_enconman_2017_10_099
crossref_primary_10_3390_electronics10040466
crossref_primary_10_1061__ASCE_HE_1943_5584_0001905
crossref_primary_10_1016_j_apenergy_2023_121316
crossref_primary_10_1049_iet_esi_2018_0011
crossref_primary_10_1016_j_asoc_2022_109833
crossref_primary_10_3233_JIFS_222920
crossref_primary_10_1016_j_chaos_2022_111880
crossref_primary_10_1016_j_renene_2018_05_093
crossref_primary_10_3390_e22121412
crossref_primary_10_1016_j_egyr_2024_08_070
crossref_primary_10_1016_j_seta_2022_101962
crossref_primary_10_1016_j_asoc_2019_105587
crossref_primary_10_1108_JM2_06_2020_0159
crossref_primary_10_3390_en15093265
crossref_primary_10_3390_en12081520
Cites_doi 10.1016/S0360-1323(03)00135-5
10.1016/j.energy.2005.12.002
10.1016/j.eswa.2012.02.111
10.3390/en4081246
10.1016/j.ces.2007.03.039
10.1016/j.ejps.2005.04.010
10.1016/j.enpol.2006.02.013
10.1057/jors.1969.103
10.1007/s00521-008-0216-0
10.1287/mnsc.33.3.356
10.1016/j.ijepes.2016.01.020
10.1016/j.cor.2007.02.019
10.1016/j.eswa.2009.02.081
10.1016/j.apenergy.2010.05.012
10.1016/0038-092X(84)90013-6
10.1016/j.energy.2006.11.014
10.1016/j.engappai.2009.09.015
10.1016/S0040-1625(00)00113-X
10.1080/15567240903289549
10.1016/S0169-2070(97)00057-5
10.1016/j.eswa.2008.06.051
10.1007/s00202-009-0116-z
10.1016/j.renene.2008.09.006
10.1016/j.eswa.2010.12.158
10.1016/j.knosys.2013.10.012
10.1016/j.enpol.2012.05.026
10.1016/0142-0615(94)90018-3
10.1016/j.sigpro.2012.10.022
10.1109/72.159060
10.1016/j.energy.2015.01.063
10.1016/j.enpol.2009.04.024
10.1016/j.egypro.2011.12.1188
10.1016/j.envsoft.2006.08.007
10.1016/j.apm.2014.10.065
10.1016/j.energy.2009.06.034
10.1080/10407782.2013.757154
10.1109/TPWRS.2011.2181981
10.1016/j.ijhydene.2009.12.080
10.1016/j.enconman.2008.01.035
10.1007/s00521-008-0214-2
10.1016/j.enpol.2009.12.037
10.1109/TNN.2008.2002913
10.1016/j.compchemeng.2009.02.004
10.1016/0957-4174(95)00013-Y
10.1016/j.ijforecast.2009.05.015
10.1016/j.eswa.2007.09.031
10.1016/j.physa.2008.01.095
10.1016/0169-2070(89)90013-7
10.1016/j.techfore.2010.01.009
ContentType Journal Article
Copyright 2016
Copyright_xml – notice: 2016
DBID AAYXX
CITATION
DOI 10.1016/j.asoc.2016.07.053
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9681
EndPage 675
ExternalDocumentID 10_1016_j_asoc_2016_07_053
S1568494616303891
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c353t-b0e5fc20c539196644747439bef68e817e4bf9e1c9f36e5e364a684555206c283
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Wed Oct 01 02:32:07 EDT 2025
Thu Apr 24 23:10:31 EDT 2025
Fri Feb 23 02:24:51 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Electricity demand forecasting
DE
ANFIS
Combined forecasting method
BP
diff-SARIMA
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-b0e5fc20c539196644747439bef68e817e4bf9e1c9f36e5e364a684555206c283
ORCID 0000-0003-2353-2053
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_asoc_2016_07_053
crossref_citationtrail_10_1016_j_asoc_2016_07_053
elsevier_sciencedirect_doi_10_1016_j_asoc_2016_07_053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Applied soft computing
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Chen, Chen (bib0195) 2013; 93
Azwadi, Zeinali, Safdari (bib0110) 2013; 63
Tan, Zhang, Wang (bib0130) 2010; 87
Kucukali, Baris (bib0050) 2010; 38
Clements, Hendry (bib0150) 1998; 14
Liang (bib0155) 2009; 18
Kavasseri, Seetharaman (bib0165) 2009; 34
Kandananond (bib0075) 2011; 4
El-Shafie, Jaafer, Akrami (bib0175) 2011; 6
Yu, Zhu, Gao (bib0125) 2009; 18
Storn, Price (bib0235) 1995
Zhou, Ang, Poh (bib0065) 2006; 31
Goia, May, Fusai (bib0015) 2010; 26
Pai, Wan, Hsu (bib0100) 2009; 33
Dash, Liew, Rahman (bib0055) 1995; 9
Blanchard, Desrochers (bib0145) 1984; 33
Xiao, Wang, Hou (bib0010) 2015; 82
Petković, Issa, Pavlović (bib0170) 2012; 39
Jang (bib0215) 1992; 3
Koutroumanidis, Ioannou, Arabatzis (bib0160) 2009; 37
Tseng, Yu, Tzeng (bib0230) 2002; 69
Erdogdu (bib0035) 2007; 35
Xiong, Bao, Hu (bib0120) 2014; 55
Khajeh, Modarress, Rezaee (bib0180) 2009; 36
El Ela, Abido, Spea (bib0245) 2009; 91
Xiao, Ye, Zhong (bib0105) 2009; 36
Yongli, Hogg, Zhang (bib0060) 1994; 16
Faruk (bib0210) 2010; 23
Chen, Yang, Liu (bib0275) 2015; 39
Sha, Hsu (bib0240) 2008; 35
Box, Jenkins, Reinsel (bib0225) 2015
Khademi, Rahimpour, Jahanmiri (bib0255) 2010; 35
Babu, Munawar (bib0250) 2007; 62
Bunn (bib0005) 1985
Dong, Pedrycz (bib0030) 2008; 387
Khosravi, Nahavandi, Creighton (bib0045) 2012; 27
Gupta, Wilton (bib0270) 1987; 33
Bianco, Manca, Nardini (bib0025) 2009; 34
Plumb, Rowe, York (bib0080) 2005; 25
Xie, Zhang, Singh (bib0135) 2016; 79
Al-Alawi, Abdul-Wahab, Bakheit (bib0085) 2008; 23
Haykin, Network (bib0205) 2004; 2004
Ke, Wenyan, Xiaoliu (bib0185) 2012; 14
Wang, Zhu, Zhao (bib0190) 2011; 38
Wang, Wang, Zhao (bib0040) 2012; 48
Armstrong (bib0260) 1989; 5
Bianco, Manca, Nardini (bib0020) 2013; 8
Christodoulos, Michalakelis, Varoutas (bib0265) 2010; 77
Azadeh, Saberi, Gitiforouz (bib0090) 2009; 36
Liu, Ling (bib0220) 2003; 38
Khajeh, Modarress, Rezaee (bib0095) 2009; 36
Bates, Granger (bib0115) 1969; 20
Khashman (bib0140) 2008; 19
Azadeh, Ghaderi, Sohrabkhani (bib0200) 2008; 49
Akay, Atak (bib0070) 2007; 32
Clements (10.1016/j.asoc.2016.07.053_bib0150) 1998; 14
Haykin (10.1016/j.asoc.2016.07.053_bib0205) 2004; 2004
Wang (10.1016/j.asoc.2016.07.053_bib0190) 2011; 38
Liu (10.1016/j.asoc.2016.07.053_bib0220) 2003; 38
Khademi (10.1016/j.asoc.2016.07.053_bib0255) 2010; 35
Al-Alawi (10.1016/j.asoc.2016.07.053_bib0085) 2008; 23
Azwadi (10.1016/j.asoc.2016.07.053_bib0110) 2013; 63
Azadeh (10.1016/j.asoc.2016.07.053_bib0090) 2009; 36
Bates (10.1016/j.asoc.2016.07.053_bib0115) 1969; 20
Petković (10.1016/j.asoc.2016.07.053_bib0170) 2012; 39
Goia (10.1016/j.asoc.2016.07.053_bib0015) 2010; 26
Akay (10.1016/j.asoc.2016.07.053_bib0070) 2007; 32
Khajeh (10.1016/j.asoc.2016.07.053_bib0180) 2009; 36
Azadeh (10.1016/j.asoc.2016.07.053_bib0200) 2008; 49
Xie (10.1016/j.asoc.2016.07.053_bib0135) 2016; 79
Khajeh (10.1016/j.asoc.2016.07.053_bib0095) 2009; 36
Yu (10.1016/j.asoc.2016.07.053_bib0125) 2009; 18
Khosravi (10.1016/j.asoc.2016.07.053_bib0045) 2012; 27
Xiong (10.1016/j.asoc.2016.07.053_bib0120) 2014; 55
El Ela (10.1016/j.asoc.2016.07.053_bib0245) 2009; 91
Plumb (10.1016/j.asoc.2016.07.053_bib0080) 2005; 25
Gupta (10.1016/j.asoc.2016.07.053_bib0270) 1987; 33
Zhou (10.1016/j.asoc.2016.07.053_bib0065) 2006; 31
Dong (10.1016/j.asoc.2016.07.053_bib0030) 2008; 387
Bianco (10.1016/j.asoc.2016.07.053_bib0020) 2013; 8
Khashman (10.1016/j.asoc.2016.07.053_bib0140) 2008; 19
Babu (10.1016/j.asoc.2016.07.053_bib0250) 2007; 62
Bianco (10.1016/j.asoc.2016.07.053_bib0025) 2009; 34
Blanchard (10.1016/j.asoc.2016.07.053_bib0145) 1984; 33
Storn (10.1016/j.asoc.2016.07.053_bib0235) 1995
Kandananond (10.1016/j.asoc.2016.07.053_bib0075) 2011; 4
Tan (10.1016/j.asoc.2016.07.053_bib0130) 2010; 87
Xiao (10.1016/j.asoc.2016.07.053_bib0105) 2009; 36
Liang (10.1016/j.asoc.2016.07.053_bib0155) 2009; 18
Sha (10.1016/j.asoc.2016.07.053_bib0240) 2008; 35
Christodoulos (10.1016/j.asoc.2016.07.053_bib0265) 2010; 77
Erdogdu (10.1016/j.asoc.2016.07.053_bib0035) 2007; 35
Pai (10.1016/j.asoc.2016.07.053_bib0100) 2009; 33
Koutroumanidis (10.1016/j.asoc.2016.07.053_bib0160) 2009; 37
El-Shafie (10.1016/j.asoc.2016.07.053_bib0175) 2011; 6
Wang (10.1016/j.asoc.2016.07.053_bib0040) 2012; 48
Dash (10.1016/j.asoc.2016.07.053_bib0055) 1995; 9
Tseng (10.1016/j.asoc.2016.07.053_bib0230) 2002; 69
Kavasseri (10.1016/j.asoc.2016.07.053_bib0165) 2009; 34
Chen (10.1016/j.asoc.2016.07.053_bib0195) 2013; 93
Bunn (10.1016/j.asoc.2016.07.053_bib0005) 1985
Faruk (10.1016/j.asoc.2016.07.053_bib0210) 2010; 23
Jang (10.1016/j.asoc.2016.07.053_bib0215) 1992; 3
Yongli (10.1016/j.asoc.2016.07.053_bib0060) 1994; 16
Ke (10.1016/j.asoc.2016.07.053_bib0185) 2012; 14
Armstrong (10.1016/j.asoc.2016.07.053_bib0260) 1989; 5
Xiao (10.1016/j.asoc.2016.07.053_bib0010) 2015; 82
Chen (10.1016/j.asoc.2016.07.053_bib0275) 2015; 39
Kucukali (10.1016/j.asoc.2016.07.053_bib0050) 2010; 38
Box (10.1016/j.asoc.2016.07.053_bib0225) 2015
References_xml – volume: 34
  start-page: 1413
  year: 2009
  end-page: 1421
  ident: bib0025
  article-title: Electricity consumption forecasting in Italy using linear regression models
  publication-title: Energy
– volume: 19
  start-page: 1896
  year: 2008
  end-page: 1909
  ident: bib0140
  article-title: A modified backpropagation learning algorithm with added emotional coefficients
  publication-title: IEEE Trans. Neural Netw.
– volume: 31
  start-page: 2839
  year: 2006
  end-page: 2847
  ident: bib0065
  article-title: A trigonometric grey prediction approach to forecasting electricity demand
  publication-title: Energy
– volume: 20
  start-page: 451
  year: 1969
  end-page: 468
  ident: bib0115
  article-title: The combination of forecasts
  publication-title: J. Oper. Res. Soc.
– volume: 33
  start-page: 571
  year: 1984
  end-page: 579
  ident: bib0145
  article-title: Generation of autocorrelated wind speeds for wind energy conversion system studies
  publication-title: Sol. Energy
– volume: 18
  start-page: 769
  year: 2009
  end-page: 779
  ident: bib0125
  article-title: A hybrid MPSO-BP structure adaptive algorithm for RBFNs
  publication-title: Neural Comput. Appl.
– volume: 39
  start-page: 9477
  year: 2012
  end-page: 9482
  ident: bib0170
  article-title: Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties
  publication-title: Expert Syst. Appl.
– volume: 36
  start-page: 273
  year: 2009
  end-page: 279
  ident: bib0105
  article-title: BP neural network with rough set for short term load forecasting
  publication-title: Expert Syst. Appl.
– year: 2015
  ident: bib0225
  article-title: Time Series Analysis: Forecasting and Control
– volume: 9
  start-page: 407
  year: 1995
  end-page: 421
  ident: bib0055
  article-title: Building a fuzzy expert system for electric load forecasting using a hybrid neural network
  publication-title: Expert Syst. Appl.
– volume: 36
  start-page: 11108
  year: 2009
  end-page: 11117
  ident: bib0090
  article-title: A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation
  publication-title: Expert Syst. Appl.
– volume: 38
  start-page: 8151
  year: 2011
  end-page: 8158
  ident: bib0190
  article-title: Optimal parameters estimation and input subset for grey model based on chaotic particle swarm optimization algorithm
  publication-title: Expert Syst. Appl.
– volume: 33
  start-page: 356
  year: 1987
  end-page: 372
  ident: bib0270
  article-title: Combination of forecasts: an extension
  publication-title: Manage. Sci.
– volume: 82
  start-page: 524
  year: 2015
  end-page: 549
  ident: bib0010
  article-title: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
  publication-title: Energy
– volume: 93
  start-page: 1566
  year: 2013
  end-page: 1576
  ident: bib0195
  article-title: Efficient ant colony optimization for image feature selection
  publication-title: Signal Process.
– volume: 387
  start-page: 3253
  year: 2008
  end-page: 3270
  ident: bib0030
  article-title: A granular time series approach to long-term forecasting and trend forecasting
  publication-title: Physica A
– volume: 48
  start-page: 284
  year: 2012
  end-page: 294
  ident: bib0040
  article-title: Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China
  publication-title: Energy Policy
– volume: 38
  start-page: 2438
  year: 2010
  end-page: 2445
  ident: bib0050
  article-title: Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach
  publication-title: Energy Policy
– volume: 16
  start-page: 259
  year: 1994
  end-page: 268
  ident: bib0060
  article-title: Hybrid expert system for aiding dispatchers on bulk power systems restoration
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 87
  start-page: 3606
  year: 2010
  end-page: 3610
  ident: bib0130
  article-title: Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models
  publication-title: Appl. Energy
– volume: 36
  start-page: 5728
  year: 2009
  end-page: 5732
  ident: bib0180
  article-title: Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers
  publication-title: Expert Syst. Appl.
– volume: 23
  start-page: 396
  year: 2008
  end-page: 403
  ident: bib0085
  article-title: Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone
  publication-title: Environ. Model. Softw.
– volume: 69
  start-page: 71
  year: 2002
  end-page: 87
  ident: bib0230
  article-title: Combining neural network model with seasonal time series ARIMA model
  publication-title: Technol. Forecast. Soc. Change
– volume: 79
  start-page: 228
  year: 2016
  end-page: 234
  ident: bib0135
  article-title: Reliability forecasting models for electrical distribution systems considering component failures and planned outages
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 91
  start-page: 69
  year: 2009
  end-page: 78
  ident: bib0245
  article-title: Optimal power flow using differential evolution algorithm
  publication-title: Electr. Eng.
– volume: 3
  start-page: 714
  year: 1992
  end-page: 723
  ident: bib0215
  article-title: Self-learning fuzzy controllers based on temporal backpropagation[
  publication-title: IEEE Trans. Neural Netw.
– volume: 14
  start-page: 111
  year: 1998
  end-page: 131
  ident: bib0150
  article-title: Forecasting economic processes
  publication-title: Int. J. Forecast.
– volume: 77
  start-page: 558
  year: 2010
  end-page: 565
  ident: bib0265
  article-title: Forecasting with limited data: combining ARIMA and diffusion models
  publication-title: Technol. Forecast. Soc. Change
– volume: 27
  start-page: 1274
  year: 2012
  end-page: 1282
  ident: bib0045
  article-title: Interval type-2 fuzzy logic systems for load forecasting: a comparative study
  publication-title: IEEE Trans. Power Syst.
– volume: 14
  start-page: 1918
  year: 2012
  end-page: 1924
  ident: bib0185
  article-title: Research on the forecast model of electricity power industry loan based on GA-BP neural network
  publication-title: Energy Procedia
– volume: 49
  start-page: 2272
  year: 2008
  end-page: 2278
  ident: bib0200
  article-title: Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors
  publication-title: Energy Convers. Manage.
– year: 1985
  ident: bib0005
  article-title: Comparative Models for Electrical Load Forecasting
– volume: 8
  start-page: 86
  year: 2013
  end-page: 93
  ident: bib0020
  article-title: Linear regression models to forecast electricity consumption in Italy
  publication-title: Energy Sources B
– volume: 35
  start-page: 3243
  year: 2008
  end-page: 3261
  ident: bib0240
  article-title: A new particle swarm optimization for the open shop scheduling problem
  publication-title: Comput. Oper. Res.
– volume: 55
  start-page: 87
  year: 2014
  end-page: 100
  ident: bib0120
  article-title: Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting
  publication-title: Knowledge Based Syst.
– year: 1995
  ident: bib0235
  article-title: Differential Evolution-a Simple and Efficient Adaptive Scheme for Global Optimization over Continuous Spaces
– volume: 26
  start-page: 700
  year: 2010
  end-page: 711
  ident: bib0015
  article-title: Functional clustering and linear regression for peak load forecasting
  publication-title: Int. J. Forecast.
– volume: 25
  start-page: 395
  year: 2005
  end-page: 405
  ident: bib0080
  article-title: Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm
  publication-title: Eur. J. Pharm. Sci.
– volume: 6
  start-page: 2875
  year: 2011
  end-page: 2888
  ident: bib0175
  article-title: Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River: Malaysia
  publication-title: Int. J. Phys. Sci.
– volume: 5
  start-page: 585
  year: 1989
  end-page: 588
  ident: bib0260
  article-title: Combining forecasts: the end of the beginning or the beginning of the end?
  publication-title: Int. J. Forecast.
– volume: 36
  start-page: 5728
  year: 2009
  end-page: 5732
  ident: bib0095
  article-title: Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers
  publication-title: Expert Syst. Appl.
– volume: 23
  start-page: 586
  year: 2010
  end-page: 594
  ident: bib0210
  article-title: A hybrid neural network and ARIMA model for water quality time series prediction
  publication-title: Eng. Appl. Artif. Intell.
– volume: 38
  start-page: 1303
  year: 2003
  end-page: 1308
  ident: bib0220
  article-title: Using fuzzy neural network approach to estimate contractors’ markup
  publication-title: Build. Environ.
– volume: 35
  start-page: 1129
  year: 2007
  end-page: 1146
  ident: bib0035
  article-title: Electricity demand analysis using cointegration and ARIMA modelling: a case study of Turkey
  publication-title: Energy policy
– volume: 2004
  start-page: 2
  year: 2004
  ident: bib0205
  article-title: A comprehensive foundation
  publication-title: Neural Netw.
– volume: 35
  start-page: 1936
  year: 2010
  end-page: 1950
  ident: bib0255
  article-title: Differential evolution (DE) strategy for optimization of hydrogen production, cyclohexane dehydrogenation and methanol synthesis in a hydrogen-permselective membrane thermally coupled reactor
  publication-title: Int. J. Hydrogen Energy
– volume: 39
  start-page: 2617
  year: 2015
  end-page: 2632
  ident: bib0275
  article-title: A hybrid application algorithm based on the support vector machine and artificial intelligence: an example of electric load forecasting
  publication-title: Appl. Math. Model.
– volume: 63
  start-page: 906
  year: 2013
  end-page: 920
  ident: bib0110
  article-title: Adaptive-network-based fuzzy inference system analysis to predict the temperature and flow fields in a lid-driven cavity
  publication-title: Numer. Heat Transf. A
– volume: 37
  start-page: 3627
  year: 2009
  end-page: 3634
  ident: bib0160
  article-title: Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA-ANN model
  publication-title: Energy Policy
– volume: 18
  start-page: 833
  year: 2009
  end-page: 841
  ident: bib0155
  article-title: Combining seasonal time series ARIMA method and neural networks with genetic algorithms for predicting the production value of the mechanical industry in Taiwan
  publication-title: Neural Comput. Appl.
– volume: 32
  start-page: 1670
  year: 2007
  end-page: 1675
  ident: bib0070
  article-title: Grey prediction with rolling mechanism for electricity demand forecasting of Turkey
  publication-title: Energy
– volume: 4
  start-page: 1246
  year: 2011
  end-page: 1257
  ident: bib0075
  article-title: Forecasting electricity demand in Thailand with an artificial neural network approach
  publication-title: Energies
– volume: 33
  start-page: 1272
  year: 2009
  end-page: 1278
  ident: bib0100
  article-title: Using fuzzy inference system to improve neural network for predicting hospital wastewater treatment plant effluent
  publication-title: Comput. Chem. Eng.
– volume: 34
  start-page: 1388
  year: 2009
  end-page: 1393
  ident: bib0165
  article-title: Day-ahead wind speed forecasting using f-ARIMA models
  publication-title: Renew. Energy
– volume: 62
  start-page: 3720
  year: 2007
  end-page: 3739
  ident: bib0250
  article-title: Differential evolution strategies for optimal design of shell-and-tube heat exchangers
  publication-title: Chem. Eng. Sci.
– volume: 38
  start-page: 1303
  issue: 11
  year: 2003
  ident: 10.1016/j.asoc.2016.07.053_bib0220
  article-title: Using fuzzy neural network approach to estimate contractors’ markup
  publication-title: Build. Environ.
  doi: 10.1016/S0360-1323(03)00135-5
– volume: 31
  start-page: 2839
  issue: 14
  year: 2006
  ident: 10.1016/j.asoc.2016.07.053_bib0065
  article-title: A trigonometric grey prediction approach to forecasting electricity demand
  publication-title: Energy
  doi: 10.1016/j.energy.2005.12.002
– volume: 39
  start-page: 9477
  issue: 10
  year: 2012
  ident: 10.1016/j.asoc.2016.07.053_bib0170
  article-title: Adaptive neuro-fuzzy estimation of conductive silicone rubber mechanical properties
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.02.111
– volume: 4
  start-page: 1246
  issue: 8
  year: 2011
  ident: 10.1016/j.asoc.2016.07.053_bib0075
  article-title: Forecasting electricity demand in Thailand with an artificial neural network approach
  publication-title: Energies
  doi: 10.3390/en4081246
– volume: 2004
  start-page: 2
  year: 2004
  ident: 10.1016/j.asoc.2016.07.053_bib0205
  article-title: A comprehensive foundation
  publication-title: Neural Netw.
– volume: 62
  start-page: 3720
  issue: 14
  year: 2007
  ident: 10.1016/j.asoc.2016.07.053_bib0250
  article-title: Differential evolution strategies for optimal design of shell-and-tube heat exchangers
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2007.03.039
– volume: 25
  start-page: 395
  issue: 4
  year: 2005
  ident: 10.1016/j.asoc.2016.07.053_bib0080
  article-title: Optimisation of the predictive ability of artificial neural network (ANN) models: a comparison of three ANN programs and four classes of training algorithm
  publication-title: Eur. J. Pharm. Sci.
  doi: 10.1016/j.ejps.2005.04.010
– volume: 35
  start-page: 1129
  issue: 2
  year: 2007
  ident: 10.1016/j.asoc.2016.07.053_bib0035
  article-title: Electricity demand analysis using cointegration and ARIMA modelling: a case study of Turkey
  publication-title: Energy policy
  doi: 10.1016/j.enpol.2006.02.013
– volume: 20
  start-page: 451
  issue: 4
  year: 1969
  ident: 10.1016/j.asoc.2016.07.053_bib0115
  article-title: The combination of forecasts
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.1969.103
– volume: 18
  start-page: 833
  issue: 7
  year: 2009
  ident: 10.1016/j.asoc.2016.07.053_bib0155
  article-title: Combining seasonal time series ARIMA method and neural networks with genetic algorithms for predicting the production value of the mechanical industry in Taiwan
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-008-0216-0
– volume: 33
  start-page: 356
  issue: 3
  year: 1987
  ident: 10.1016/j.asoc.2016.07.053_bib0270
  article-title: Combination of forecasts: an extension
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.33.3.356
– volume: 79
  start-page: 228
  year: 2016
  ident: 10.1016/j.asoc.2016.07.053_bib0135
  article-title: Reliability forecasting models for electrical distribution systems considering component failures and planned outages
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2016.01.020
– volume: 35
  start-page: 3243
  issue: 10
  year: 2008
  ident: 10.1016/j.asoc.2016.07.053_bib0240
  article-title: A new particle swarm optimization for the open shop scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2007.02.019
– year: 1985
  ident: 10.1016/j.asoc.2016.07.053_bib0005
– volume: 36
  start-page: 11108
  issue: 8
  year: 2009
  ident: 10.1016/j.asoc.2016.07.053_bib0090
  article-title: A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.02.081
– volume: 87
  start-page: 3606
  issue: 11
  year: 2010
  ident: 10.1016/j.asoc.2016.07.053_bib0130
  article-title: Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2010.05.012
– volume: 33
  start-page: 571
  issue: 6
  year: 1984
  ident: 10.1016/j.asoc.2016.07.053_bib0145
  article-title: Generation of autocorrelated wind speeds for wind energy conversion system studies
  publication-title: Sol. Energy
  doi: 10.1016/0038-092X(84)90013-6
– volume: 32
  start-page: 1670
  issue: 9
  year: 2007
  ident: 10.1016/j.asoc.2016.07.053_bib0070
  article-title: Grey prediction with rolling mechanism for electricity demand forecasting of Turkey
  publication-title: Energy
  doi: 10.1016/j.energy.2006.11.014
– volume: 23
  start-page: 586
  issue: 4
  year: 2010
  ident: 10.1016/j.asoc.2016.07.053_bib0210
  article-title: A hybrid neural network and ARIMA model for water quality time series prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2009.09.015
– volume: 69
  start-page: 71
  issue: 1
  year: 2002
  ident: 10.1016/j.asoc.2016.07.053_bib0230
  article-title: Combining neural network model with seasonal time series ARIMA model
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/S0040-1625(00)00113-X
– volume: 8
  start-page: 86
  issue: 1
  year: 2013
  ident: 10.1016/j.asoc.2016.07.053_bib0020
  article-title: Linear regression models to forecast electricity consumption in Italy
  publication-title: Energy Sources B
  doi: 10.1080/15567240903289549
– volume: 14
  start-page: 111
  issue: 1
  year: 1998
  ident: 10.1016/j.asoc.2016.07.053_bib0150
  article-title: Forecasting economic processes
  publication-title: Int. J. Forecast.
  doi: 10.1016/S0169-2070(97)00057-5
– volume: 36
  start-page: 5728
  issue: 3
  year: 2009
  ident: 10.1016/j.asoc.2016.07.053_bib0180
  article-title: Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.06.051
– volume: 91
  start-page: 69
  issue: 2
  year: 2009
  ident: 10.1016/j.asoc.2016.07.053_bib0245
  article-title: Optimal power flow using differential evolution algorithm
  publication-title: Electr. Eng.
  doi: 10.1007/s00202-009-0116-z
– volume: 34
  start-page: 1388
  issue: 5
  year: 2009
  ident: 10.1016/j.asoc.2016.07.053_bib0165
  article-title: Day-ahead wind speed forecasting using f-ARIMA models
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2008.09.006
– volume: 38
  start-page: 8151
  issue: 7
  year: 2011
  ident: 10.1016/j.asoc.2016.07.053_bib0190
  article-title: Optimal parameters estimation and input subset for grey model based on chaotic particle swarm optimization algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.12.158
– volume: 55
  start-page: 87
  year: 2014
  ident: 10.1016/j.asoc.2016.07.053_bib0120
  article-title: Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting
  publication-title: Knowledge Based Syst.
  doi: 10.1016/j.knosys.2013.10.012
– volume: 48
  start-page: 284
  year: 2012
  ident: 10.1016/j.asoc.2016.07.053_bib0040
  article-title: Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2012.05.026
– volume: 16
  start-page: 259
  issue: 4
  year: 1994
  ident: 10.1016/j.asoc.2016.07.053_bib0060
  article-title: Hybrid expert system for aiding dispatchers on bulk power systems restoration
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/0142-0615(94)90018-3
– volume: 93
  start-page: 1566
  issue: 6
  year: 2013
  ident: 10.1016/j.asoc.2016.07.053_bib0195
  article-title: Efficient ant colony optimization for image feature selection
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2012.10.022
– volume: 3
  start-page: 714
  issue: 5
  year: 1992
  ident: 10.1016/j.asoc.2016.07.053_bib0215
  article-title: Self-learning fuzzy controllers based on temporal backpropagation[
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.159060
– volume: 82
  start-page: 524
  year: 2015
  ident: 10.1016/j.asoc.2016.07.053_bib0010
  article-title: A combined model based on data pre-analysis and weight coefficients optimization for electrical load forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2015.01.063
– volume: 37
  start-page: 3627
  issue: 9
  year: 2009
  ident: 10.1016/j.asoc.2016.07.053_bib0160
  article-title: Predicting fuelwood prices in Greece with the use of ARIMA models, artificial neural networks and a hybrid ARIMA-ANN model
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.04.024
– volume: 6
  start-page: 2875
  issue: 12
  year: 2011
  ident: 10.1016/j.asoc.2016.07.053_bib0175
  article-title: Adaptive neuro-fuzzy inference system based model for rainfall forecasting in Klang River: Malaysia
  publication-title: Int. J. Phys. Sci.
– volume: 14
  start-page: 1918
  year: 2012
  ident: 10.1016/j.asoc.2016.07.053_bib0185
  article-title: Research on the forecast model of electricity power industry loan based on GA-BP neural network
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2011.12.1188
– volume: 23
  start-page: 396
  issue: 4
  year: 2008
  ident: 10.1016/j.asoc.2016.07.053_bib0085
  article-title: Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2006.08.007
– volume: 39
  start-page: 2617
  issue: 9
  year: 2015
  ident: 10.1016/j.asoc.2016.07.053_bib0275
  article-title: A hybrid application algorithm based on the support vector machine and artificial intelligence: an example of electric load forecasting
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2014.10.065
– volume: 34
  start-page: 1413
  issue: 9
  year: 2009
  ident: 10.1016/j.asoc.2016.07.053_bib0025
  article-title: Electricity consumption forecasting in Italy using linear regression models
  publication-title: Energy
  doi: 10.1016/j.energy.2009.06.034
– volume: 63
  start-page: 906
  issue: 12
  year: 2013
  ident: 10.1016/j.asoc.2016.07.053_bib0110
  article-title: Adaptive-network-based fuzzy inference system analysis to predict the temperature and flow fields in a lid-driven cavity
  publication-title: Numer. Heat Transf. A
  doi: 10.1080/10407782.2013.757154
– volume: 27
  start-page: 1274
  issue: 3
  year: 2012
  ident: 10.1016/j.asoc.2016.07.053_bib0045
  article-title: Interval type-2 fuzzy logic systems for load forecasting: a comparative study
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2011.2181981
– volume: 35
  start-page: 1936
  issue: 5
  year: 2010
  ident: 10.1016/j.asoc.2016.07.053_bib0255
  article-title: Differential evolution (DE) strategy for optimization of hydrogen production, cyclohexane dehydrogenation and methanol synthesis in a hydrogen-permselective membrane thermally coupled reactor
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2009.12.080
– year: 2015
  ident: 10.1016/j.asoc.2016.07.053_bib0225
– volume: 49
  start-page: 2272
  issue: 8
  year: 2008
  ident: 10.1016/j.asoc.2016.07.053_bib0200
  article-title: Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2008.01.035
– volume: 18
  start-page: 769
  issue: 7
  year: 2009
  ident: 10.1016/j.asoc.2016.07.053_bib0125
  article-title: A hybrid MPSO-BP structure adaptive algorithm for RBFNs
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-008-0214-2
– volume: 38
  start-page: 2438
  issue: 5
  year: 2010
  ident: 10.1016/j.asoc.2016.07.053_bib0050
  article-title: Turkey’s short-term gross annual electricity demand forecast by fuzzy logic approach
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.12.037
– volume: 19
  start-page: 1896
  issue: 11
  year: 2008
  ident: 10.1016/j.asoc.2016.07.053_bib0140
  article-title: A modified backpropagation learning algorithm with added emotional coefficients
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2008.2002913
– volume: 33
  start-page: 1272
  issue: 7
  year: 2009
  ident: 10.1016/j.asoc.2016.07.053_bib0100
  article-title: Using fuzzy inference system to improve neural network for predicting hospital wastewater treatment plant effluent
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2009.02.004
– volume: 36
  start-page: 5728
  issue: 3
  year: 2009
  ident: 10.1016/j.asoc.2016.07.053_bib0095
  article-title: Application of adaptive neuro-fuzzy inference system for solubility prediction of carbon dioxide in polymers
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.06.051
– volume: 9
  start-page: 407
  issue: 3
  year: 1995
  ident: 10.1016/j.asoc.2016.07.053_bib0055
  article-title: Building a fuzzy expert system for electric load forecasting using a hybrid neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/0957-4174(95)00013-Y
– volume: 26
  start-page: 700
  issue: 4
  year: 2010
  ident: 10.1016/j.asoc.2016.07.053_bib0015
  article-title: Functional clustering and linear regression for peak load forecasting
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2009.05.015
– volume: 36
  start-page: 273
  issue: 1
  year: 2009
  ident: 10.1016/j.asoc.2016.07.053_bib0105
  article-title: BP neural network with rough set for short term load forecasting
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2007.09.031
– year: 1995
  ident: 10.1016/j.asoc.2016.07.053_bib0235
– volume: 387
  start-page: 3253
  issue: 13
  year: 2008
  ident: 10.1016/j.asoc.2016.07.053_bib0030
  article-title: A granular time series approach to long-term forecasting and trend forecasting
  publication-title: Physica A
  doi: 10.1016/j.physa.2008.01.095
– volume: 5
  start-page: 585
  issue: 4
  year: 1989
  ident: 10.1016/j.asoc.2016.07.053_bib0260
  article-title: Combining forecasts: the end of the beginning or the beginning of the end?
  publication-title: Int. J. Forecast.
  doi: 10.1016/0169-2070(89)90013-7
– volume: 77
  start-page: 558
  issue: 4
  year: 2010
  ident: 10.1016/j.asoc.2016.07.053_bib0265
  article-title: Forecasting with limited data: combining ARIMA and diffusion models
  publication-title: Technol. Forecast. Soc. Change
  doi: 10.1016/j.techfore.2010.01.009
SSID ssj0016928
Score 2.5153725
SecondaryResourceType review_article
Snippet •This paper proposes a novel combined electricity demand forecasting method, which based on Back Propagation (BP) neural network, Adaptive Network-based Fuzzy...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 663
SubjectTerms ANFIS
Combined forecasting method
diff-SARIMA
Electricity demand forecasting
Title Modelling a combined method based on ANFIS and neural network improved by DE algorithm: A case study for short-term electricity demand forecasting
URI https://dx.doi.org/10.1016/j.asoc.2016.07.053
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Complete Freedom Collection
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9681
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4muHDhjXhOPnBDZS1N0pXbNJg2HhMCJu1WpUkKRdChMQ5c-BH8Yuw2RSAhDpyqVnbU2on9ufKDsX3Z1txIE3m-wUPOM2U8FYnYE1kWWB2KwEgqcL4cyv6In43FuMG6dS0MpVU621_Z9NJauyctJ83Wc563bjDyaPOYS0QU1CWurGDnEU0xOHz_SvMIZFzOVyVij6hd4UyV46VQApTe5Rp4hr87p28Op7fMFh1ShE71MiusYYtVtlRPYQB3KNfYB40zKztrgwL8DAx1rYFqMjSQkzIwKaAz7A1uQBUGqIMlrltU-d-Ql38VkCh9g5NTUI93k2k-u386hg5o5IayAS0gtoWXe8TqHtlyqKbn5BoxPBj7ROsihUUGSqNeZ6Pe6W2377lJCx6qI5x5qW9Fpo98LcIYjyRiJIwyEKqkNpNt2w4iy9MstoGOs1BaYUPJFQpfCHHkS40IZYPNFZPCbjJIMWLLjOFpYBCsGBXz2NeoA9-myoaB2WJBLeJEuzbkNA3jManzzR4SUktCakn8KEG1bLGDL57nqgnHn9Si1lzyYysl6CX-4Nv-J98OW6C7Ksdll83Npq92D5HKLG2WW7HJ5jvd64srug7O-8NPavHrNg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8QwDI4QDLDwRrzxwIbKtdckvbKdDk53PG4BJLYoTVIogh6CY2DhR_CLsdsUgYQYWFu7au3E_lx9sRnblx3DrbRJEFrc5DzXNtCJSAOR55EzsYispAPOFyM5uOanN-JmivWaszBEq_Sxv47pVbT2V1remq2nomhdYuXR4SmXiCioSxyWQDNctBOqwA7fv3gekUyrAaskHZC4PzlTk7w0moD4Xb6DZ_x7dvqWcfqLbN5DRejWb7PEply5zBaaMQzgd-UK-6B5ZlVrbdCA34G1rrNQj4YGylIWxiV0R_3hJejSArWwxOeWNQEciuq3Agplb3B8AvrhdvxcTO4ej6ALBrWh6kALCG7h5Q7BekDBHOrxOYVBEA_WPdJzUcKhAvGoV9l1_-SqNwj8qIUA_RFPgix0Ijft0Ig4xT2JIAnLDMQqmctlx3WixPEsT11k0jyWTrhYco3WF0K0Q2kQoqyx6XJcunUGGZZsubU8iyyiFatTnoYGfRC6TLs4shssakysjO9DTuMwHlRDOLtX5BZFblFhotAtG-zgS-ep7sLxp7RoPKd-rCWFaeIPvc1_6u2x2cHVxbk6H47Ottgc3akJL9tsevL86nYQtkyy3WpZfgKN6us2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modelling+a+combined+method+based+on+ANFIS+and+neural+network+improved+by+DE+algorithm%3A+A+case+study+for+short-term+electricity+demand+forecasting&rft.jtitle=Applied+soft+computing&rft.au=Yang%2C+Yi&rft.au=Chen%2C+Yanhua&rft.au=Wang%2C+Yachen&rft.au=Li%2C+Caihong&rft.date=2016-12-01&rft.issn=1568-4946&rft.volume=49&rft.spage=663&rft.epage=675&rft_id=info:doi/10.1016%2Fj.asoc.2016.07.053&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2016_07_053
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon