Machine learning phases of matter
The success of machine learning techniques in handling big data sets proves ideal for classifying condensed-matter phases and phase transitions. The technique is even amenable to detecting non-trivial states lacking in conventional order. Condensed-matter physics is the study of the collective behav...
Saved in:
Published in | Nature physics Vol. 13; no. 5; pp. 431 - 434 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.05.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 1745-2473 1745-2481 |
DOI | 10.1038/nphys4035 |
Cover
Abstract | The success of machine learning techniques in handling big data sets proves ideal for classifying condensed-matter phases and phase transitions. The technique is even amenable to detecting non-trivial states lacking in conventional order.
Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits
1
. This complexity is reflected in the size of the state space, which grows exponentially with the number of particles, reminiscent of the ‘curse of dimensionality’ commonly encountered in machine learning
2
. Despite this curse, the machine learning community has developed techniques with remarkable abilities to recognize, classify, and characterize complex sets of data. Here, we show that modern machine learning architectures, such as fully connected and convolutional neural networks
3
, can identify phases and phase transitions in a variety of condensed-matter Hamiltonians. Readily programmable through modern software libraries
4
,
5
, neural networks can be trained to detect multiple types of order parameter, as well as highly non-trivial states with no conventional order, directly from raw state configurations sampled with Monte Carlo
6
,
7
. |
---|---|
AbstractList | Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits1. This complexity is reflected in the size of the state space, which grows exponentially with the number of particles, reminiscent of the curse of dimensionality commonly encountered in machine learning2. Despite this curse, the machine learning community has developed techniques with remarkable abilities to recognize, classify, and characterize complex sets of data. Here, we show that modern machine learning architectures, such as fully connected and convolutional neural networks3, can identify phases and phase transitions in a variety of condensed-matter Hamiltonians. Readily programmable through modern software libraries4,5, neural networks can be trained to detect multiple types of order parameter, as well as highly non-trivial states with no conventional order, directly from raw state configurations sampled with Monte Carlo6,7. Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits. This complexity is reflected in the size of the state space, which grows exponentially with the number of particles, reminiscent of the 'curse of dimensionality' commonly encountered in machine learning. Despite this curse, the machine learning community has developed techniques with remarkable abilities to recognize, classify, and characterize complex sets of data. Here, we show that modern machine learning architectures, such as fully connected and convolutional neural networks, can identify phases and phase transitions in a variety of condensed-matter Hamiltonians. Readily programmable through modern software libraries, neural networks can be trained to detect multiple types of order parameter, as well as highly non-trivial states with no conventional order, directly from raw state configurations sampled with Monte Carlo. The success of machine learning techniques in handling big data sets proves ideal for classifying condensed-matter phases and phase transitions. The technique is even amenable to detecting non-trivial states lacking in conventional order.Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits1. This complexity is reflected in the size of the state space, which grows exponentially with the number of particles, reminiscent of the ‘curse of dimensionality’ commonly encountered in machine learning2. Despite this curse, the machine learning community has developed techniques with remarkable abilities to recognize, classify, and characterize complex sets of data. Here, we show that modern machine learning architectures, such as fully connected and convolutional neural networks3, can identify phases and phase transitions in a variety of condensed-matter Hamiltonians. Readily programmable through modern software libraries4,5, neural networks can be trained to detect multiple types of order parameter, as well as highly non-trivial states with no conventional order, directly from raw state configurations sampled with Monte Carlo6,7. The success of machine learning techniques in handling big data sets proves ideal for classifying condensed-matter phases and phase transitions. The technique is even amenable to detecting non-trivial states lacking in conventional order. Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits 1 . This complexity is reflected in the size of the state space, which grows exponentially with the number of particles, reminiscent of the ‘curse of dimensionality’ commonly encountered in machine learning 2 . Despite this curse, the machine learning community has developed techniques with remarkable abilities to recognize, classify, and characterize complex sets of data. Here, we show that modern machine learning architectures, such as fully connected and convolutional neural networks 3 , can identify phases and phase transitions in a variety of condensed-matter Hamiltonians. Readily programmable through modern software libraries 4 , 5 , neural networks can be trained to detect multiple types of order parameter, as well as highly non-trivial states with no conventional order, directly from raw state configurations sampled with Monte Carlo 6 , 7 . |
Author | Melko, Roger G. Carrasquilla, Juan |
Author_xml | – sequence: 1 givenname: Juan surname: Carrasquilla fullname: Carrasquilla, Juan email: jcarrasquilla@perimeterinstitute.ca organization: Perimeter Institute for Theoretical Physics – sequence: 2 givenname: Roger G. surname: Melko fullname: Melko, Roger G. organization: Perimeter Institute for Theoretical Physics, Department of Physics and Astronomy, University of Waterloo |
BookMark | eNp90E1LAzEQBuAgCrbVg_9gxYsKa5NN0kyOUvyCihc9h2w226Zss2uSHvrvXa0UqeJp5vC8w8sM0aFvvUXojOAbgimMfbfYRIYpP0ADIhjPCwbkcLcLeoyGMS4xZsWE0AE6f9Zm4bzNGquDd36edQsdbczaOlvplGw4QUe1bqI9_Z4j9HZ_9zp9zGcvD0_T21luKKcp1xVhDAMFJrkWAkAYilnFq5ITURnQpTVWGkEMlVTWpcRQFnUpcEVNbwUdocvt3S6072sbk1q5aGzTaG_bdVRE9p2ZYAA9vdijy3YdfN9OUQIwwRyk_E8RkIwJKL7UeKtMaGMMtlbGJZ1c61PQrlEEq8_Hqt1j-8TVXqILbqXD5k97vbWxN35uw48Ov_AHIpCHhA |
CitedBy_id | crossref_primary_10_1016_j_tafmec_2023_104218 crossref_primary_10_1080_23746149_2018_1527723 crossref_primary_10_1103_PhysRevA_107_010101 crossref_primary_10_1088_2632_2153_ad33e1 crossref_primary_10_1002_jcc_26494 crossref_primary_10_1140_epjp_s13360_023_04741_4 crossref_primary_10_3389_fphy_2022_915863 crossref_primary_10_3390_e26070552 crossref_primary_10_7566_JPSJ_88_065001 crossref_primary_10_3390_e22050587 crossref_primary_10_3390_e25030446 crossref_primary_10_1103_PhysRevE_108_035308 crossref_primary_10_1103_PhysRevB_98_241411 crossref_primary_10_1103_PhysRevA_105_052424 crossref_primary_10_1364_JOSAB_448047 crossref_primary_10_1103_PhysRevResearch_6_033111 crossref_primary_10_1103_PhysRevB_97_094207 crossref_primary_10_1051_epjconf_201817116005 crossref_primary_10_1103_PhysRevApplied_12_054049 crossref_primary_10_1063_5_0116618 crossref_primary_10_1103_PhysRevA_97_042324 crossref_primary_10_1088_1361_648X_aaddc6 crossref_primary_10_1103_PhysRevC_109_044616 crossref_primary_10_1126_sciadv_adk3452 crossref_primary_10_1103_PhysRevB_102_134213 crossref_primary_10_1103_PhysRevE_98_053305 crossref_primary_10_1039_D1SM00266J crossref_primary_10_1103_PhysRevE_98_053304 crossref_primary_10_1038_s41598_018_23471_7 crossref_primary_10_1016_j_scib_2023_04_003 crossref_primary_10_1103_PhysRevB_99_214306 crossref_primary_10_1103_PhysRevB_107_165149 crossref_primary_10_1073_pnas_2016708118 crossref_primary_10_1103_PhysRevB_110_214415 crossref_primary_10_1038_s41377_021_00482_0 crossref_primary_10_1021_acsphotonics_0c00266 crossref_primary_10_1063_5_0096938 crossref_primary_10_1103_PhysRevB_108_165408 crossref_primary_10_1103_PhysRevD_109_074509 crossref_primary_10_1103_PhysRevE_101_022502 crossref_primary_10_1103_PhysRevLett_121_255702 crossref_primary_10_3390_molecules26041022 crossref_primary_10_1002_mats_202400009 crossref_primary_10_1007_s11433_023_2221_8 crossref_primary_10_1103_PhysRevB_101_241105 crossref_primary_10_1103_PhysRevX_10_011037 crossref_primary_10_3938_jkps_72_1292 crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_156 crossref_primary_10_1103_PhysRevA_103_012419 crossref_primary_10_1038_s41598_019_42277_9 crossref_primary_10_1103_PhysRevB_99_064103 crossref_primary_10_1088_1402_4896_ad85aa crossref_primary_10_1103_PhysRevD_106_L051502 crossref_primary_10_1103_PhysRevE_101_042101 crossref_primary_10_1016_j_cpc_2024_109169 crossref_primary_10_1103_PhysRevE_101_042102 crossref_primary_10_1103_PhysRevB_110_165134 crossref_primary_10_1103_PhysRevResearch_2_033212 crossref_primary_10_1209_0295_5075_ad0575 crossref_primary_10_1088_2632_2153_abc609 crossref_primary_10_1103_PhysRevB_97_174435 crossref_primary_10_1088_2632_2153_abf5ee crossref_primary_10_1038_s41567_018_0048_5 crossref_primary_10_1088_2632_2153_ab9803 crossref_primary_10_1103_PhysRevE_102_053306 crossref_primary_10_1038_s41567_019_0554_0 crossref_primary_10_11648_j_ajist_20240802_12 crossref_primary_10_1140_epjqt_s40507_022_00138_x crossref_primary_10_3390_e24121701 crossref_primary_10_1039_D0MH01358G crossref_primary_10_1364_OSAC_397103 crossref_primary_10_1016_j_compchemeng_2020_106989 crossref_primary_10_1073_pnas_2015785118 crossref_primary_10_1007_s11128_024_04296_y crossref_primary_10_1038_s41534_019_0201_8 crossref_primary_10_1038_s41524_020_00460_x crossref_primary_10_1103_PhysRevA_101_052338 crossref_primary_10_1088_1361_6633_aa91ea crossref_primary_10_1088_1361_6463_ad6ba0 crossref_primary_10_1126_sciadv_aaz4074 crossref_primary_10_1103_PhysRevC_104_034608 crossref_primary_10_1103_PhysRevE_97_032119 crossref_primary_10_1109_TCBB_2020_3018901 crossref_primary_10_1021_acs_jpcb_8b12557 crossref_primary_10_1088_2632_2153_abffe7 crossref_primary_10_1038_s41598_022_23350_2 crossref_primary_10_1088_1742_6596_2207_1_012058 crossref_primary_10_1088_1742_6596_2207_1_012057 crossref_primary_10_1038_s41467_021_22270_5 crossref_primary_10_1103_PhysRevB_100_045153 crossref_primary_10_1103_PhysRevResearch_5_013026 crossref_primary_10_1103_PhysRevResearch_5_043090 crossref_primary_10_1038_nphys4053 crossref_primary_10_3390_e24050697 crossref_primary_10_1103_RevModPhys_91_045002 crossref_primary_10_1103_PhysRevA_105_042403 crossref_primary_10_1016_j_scitotenv_2021_150554 crossref_primary_10_1038_s41534_023_00747_z crossref_primary_10_1088_0256_307X_40_12_122101 crossref_primary_10_1088_2632_2153_acc007 crossref_primary_10_1103_PRXQuantum_2_040201 crossref_primary_10_1016_j_eml_2021_101372 crossref_primary_10_1007_s00214_021_02726_z crossref_primary_10_1038_s41598_023_33301_0 crossref_primary_10_1038_s41598_017_09098_0 crossref_primary_10_1103_PhysRevA_97_052333 crossref_primary_10_1140_epjp_s13360_022_03587_6 crossref_primary_10_1186_s13007_023_01046_6 crossref_primary_10_1103_PhysRevE_99_013311 crossref_primary_10_1038_s41567_018_0081_4 crossref_primary_10_1016_j_rinp_2021_105134 crossref_primary_10_1002_adma_202106248 crossref_primary_10_1063_5_0209912 crossref_primary_10_1038_s41598_021_85683_8 crossref_primary_10_1103_PhysRevA_103_022425 crossref_primary_10_1016_j_rinp_2023_107264 crossref_primary_10_1039_C8SC02648C crossref_primary_10_1073_pnas_2004976117 crossref_primary_10_1103_PhysRevB_107_075146 crossref_primary_10_3390_e21121152 crossref_primary_10_1088_1361_6455_ac6f33 crossref_primary_10_1103_PhysRevB_107_075147 crossref_primary_10_1088_1361_6633_aab406 crossref_primary_10_1088_1367_2630_ab8ab4 crossref_primary_10_1103_PhysRevLett_126_150602 crossref_primary_10_1021_acsanm_2c01644 crossref_primary_10_1103_PhysRevE_99_062701 crossref_primary_10_1088_1367_2630_ab8aaf crossref_primary_10_21468_SciPostPhys_16_5_132 crossref_primary_10_1063_5_0046406 crossref_primary_10_1088_1367_2630_abdefa crossref_primary_10_1016_j_commatsci_2022_111634 crossref_primary_10_1038_s41567_019_0545_1 crossref_primary_10_1038_s41598_017_11266_1 crossref_primary_10_1038_s41524_019_0221_0 crossref_primary_10_1007_JHEP10_2023_107 crossref_primary_10_1038_s41377_024_01723_8 crossref_primary_10_1038_s41598_021_84336_0 crossref_primary_10_1103_PhysRevResearch_2_033415 crossref_primary_10_1038_s41586_018_0337_2 crossref_primary_10_1088_1361_6560_ab3fc1 crossref_primary_10_1103_PhysRevE_100_033311 crossref_primary_10_1063_1_5094838 crossref_primary_10_1103_PhysRevX_10_011006 crossref_primary_10_1103_PhysRevX_15_011013 crossref_primary_10_1103_PhysRevD_107_034506 crossref_primary_10_1021_acsomega_1c06856 crossref_primary_10_1103_PhysRevB_97_094417 crossref_primary_10_1016_j_engfracmech_2020_107402 crossref_primary_10_1103_PhysRevResearch_1_032039 crossref_primary_10_1038_s41598_020_58263_5 crossref_primary_10_1103_PhysRevB_104_165108 crossref_primary_10_7498_aps_72_20230896 crossref_primary_10_1103_PhysRevA_105_042616 crossref_primary_10_1016_j_physa_2023_128666 crossref_primary_10_1088_1674_1056_abd160 crossref_primary_10_1088_2058_9565_ac310f crossref_primary_10_1103_PhysRevLett_127_046601 crossref_primary_10_1103_PhysRevResearch_3_013074 crossref_primary_10_1103_PhysRevResearch_2_043202 crossref_primary_10_1088_1742_5468_ab9e60 crossref_primary_10_1103_PhysRevD_97_094506 crossref_primary_10_1186_s40537_020_00316_7 crossref_primary_10_1088_2058_9565_ada79b crossref_primary_10_1088_1402_4896_ad7ab6 crossref_primary_10_1088_1361_6633_ad208c crossref_primary_10_1021_acscentsci_3c00515 crossref_primary_10_1063_5_0062508 crossref_primary_10_1103_PhysRevResearch_4_023163 crossref_primary_10_1021_acs_analchem_0c04671 crossref_primary_10_1103_PhysRevApplied_15_054034 crossref_primary_10_1088_1402_4896_ad5879 crossref_primary_10_1103_PhysRevB_102_224434 crossref_primary_10_1140_epjp_s13360_024_05707_w crossref_primary_10_1088_2399_6528_abd7c3 crossref_primary_10_3367_UFNr_2022_12_039303 crossref_primary_10_1103_PhysRevB_99_075418 crossref_primary_10_1103_PhysRevE_103_023310 crossref_primary_10_1134_S0021364022100381 crossref_primary_10_1155_2022_9638108 crossref_primary_10_1007_s11768_019_8289_0 crossref_primary_10_1103_PhysRevB_105_214205 crossref_primary_10_1016_j_dajour_2025_100547 crossref_primary_10_1103_PhysRevA_105_042432 crossref_primary_10_1103_PhysRevApplied_17_054022 crossref_primary_10_1103_PhysRevE_100_032414 crossref_primary_10_1103_PhysRevC_106_L051901 crossref_primary_10_1038_nphys4037 crossref_primary_10_1103_PhysRevLett_120_257204 crossref_primary_10_1140_epjp_s13360_021_02121_4 crossref_primary_10_1007_s10118_020_2442_6 crossref_primary_10_1038_s41566_020_0685_y crossref_primary_10_1088_1751_8121_ab7df6 crossref_primary_10_1103_PhysRevLett_121_255304 crossref_primary_10_1016_j_physa_2022_128154 crossref_primary_10_1063_5_0139118 crossref_primary_10_3367_UFNe_2022_12_039303 crossref_primary_10_1063_5_0216862 crossref_primary_10_1002_adma_202109171 crossref_primary_10_1088_1361_648X_abe39e crossref_primary_10_1088_1367_2630_aaf749 crossref_primary_10_1088_1751_8121_ac331d crossref_primary_10_1016_j_physleta_2024_130179 crossref_primary_10_1038_s41534_018_0081_3 crossref_primary_10_1088_1367_2630_ac9c7a crossref_primary_10_1088_1361_6463_ad1e27 crossref_primary_10_1103_PhysRevD_100_011501 crossref_primary_10_1364_OME_470819 crossref_primary_10_1063_1674_0068_cjcp2107124 crossref_primary_10_1016_j_nanoen_2021_106002 crossref_primary_10_1039_D1SM00358E crossref_primary_10_1016_j_physleta_2021_127589 crossref_primary_10_1103_PhysRevB_108_205152 crossref_primary_10_1134_S0021364024603440 crossref_primary_10_3389_fdgth_2024_1463419 crossref_primary_10_1103_PhysRevA_105_033301 crossref_primary_10_1103_PhysRevB_95_245134 crossref_primary_10_22331_q_2019_09_02_183 crossref_primary_10_1103_PhysRevLett_124_226401 crossref_primary_10_1103_PhysRevB_101_195141 crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_170 crossref_primary_10_1103_PhysRevE_104_044105 crossref_primary_10_1080_23746149_2020_1797528 crossref_primary_10_1016_j_ijfatigue_2024_108169 crossref_primary_10_1021_acs_jpclett_0c00627 crossref_primary_10_1103_PhysRevB_101_214308 crossref_primary_10_1103_PhysRevLett_123_108002 crossref_primary_10_1116_5_0007529 crossref_primary_10_1103_PhysRevA_105_022413 crossref_primary_10_1103_PhysRevLett_129_198003 crossref_primary_10_1088_2632_2153_ac2800 crossref_primary_10_1103_PhysRevLett_124_100401 crossref_primary_10_1103_PhysRevB_98_104426 crossref_primary_10_1038_s41467_022_33737_4 crossref_primary_10_1103_PhysRevB_104_075114 crossref_primary_10_1103_PhysRevD_102_054501 crossref_primary_10_1103_PhysRevResearch_5_043250 crossref_primary_10_3390_sym12050774 crossref_primary_10_1088_1674_1056_ac2490 crossref_primary_10_1103_PhysRevA_109_013303 crossref_primary_10_1038_s42254_022_00552_1 crossref_primary_10_1103_PhysRevE_100_032402 crossref_primary_10_1016_j_cartre_2022_100231 crossref_primary_10_1016_j_nanoen_2021_106227 crossref_primary_10_1103_PhysRevA_102_062405 crossref_primary_10_1103_PhysRevA_99_053419 crossref_primary_10_2139_ssrn_4893681 crossref_primary_10_1007_s11128_023_03871_z crossref_primary_10_1103_PhysRevB_101_195136 crossref_primary_10_1103_PhysRevB_105_235136 crossref_primary_10_1016_j_rinp_2022_105832 crossref_primary_10_1021_acsnano_9b02687 crossref_primary_10_1016_j_physa_2024_129533 crossref_primary_10_1016_j_physleta_2021_127569 crossref_primary_10_1103_PhysRevE_99_023304 crossref_primary_10_1088_2632_2153_abae73 crossref_primary_10_1073_pnas_2106400118 crossref_primary_10_1016_j_jmmm_2020_166482 crossref_primary_10_1103_PhysRevLett_121_245701 crossref_primary_10_1063_1_5121401 crossref_primary_10_1103_PhysRevResearch_4_033175 crossref_primary_10_1002_advs_201801691 crossref_primary_10_1038_s41567_019_0565_x crossref_primary_10_1016_j_aop_2021_168500 crossref_primary_10_1038_s41598_018_36574_y crossref_primary_10_1093_ptep_ptz082 crossref_primary_10_1140_epjp_s13360_021_01206_4 crossref_primary_10_1038_s41598_023_38863_7 crossref_primary_10_7566_JPSJ_87_074002 crossref_primary_10_1103_PhysRevE_103_013309 crossref_primary_10_1103_PhysRevA_101_062331 crossref_primary_10_1103_PhysRevB_97_045207 crossref_primary_10_1103_PhysRevE_103_013302 crossref_primary_10_1088_1572_9494_ad3227 crossref_primary_10_1088_1674_1137_ad5f80 crossref_primary_10_1088_2515_7639_ab084b crossref_primary_10_1103_PhysRevApplied_21_034009 crossref_primary_10_1021_acs_chemrev_0c01303 crossref_primary_10_1021_acsnano_8b03569 crossref_primary_10_1109_JLT_2018_2821361 crossref_primary_10_1016_j_eswa_2023_120013 crossref_primary_10_1063_5_0015301 crossref_primary_10_1063_5_0188516 crossref_primary_10_1088_1674_1056_ac4e0c crossref_primary_10_1103_PhysRevE_98_022138 crossref_primary_10_3390_s21216982 crossref_primary_10_1088_1367_2630_ac7df6 crossref_primary_10_1021_acsami_9b14792 crossref_primary_10_1103_PhysRevE_107_054104 crossref_primary_10_22331_q_2020_09_16_324 crossref_primary_10_1088_1361_6501_ab44d8 crossref_primary_10_1103_PhysRevA_109_012403 crossref_primary_10_1038_s41567_019_0648_8 crossref_primary_10_1088_1742_6596_2150_1_012031 crossref_primary_10_1038_s41467_023_36159_y crossref_primary_10_1103_PhysRevA_102_032412 crossref_primary_10_1088_1361_648X_ac2f0f crossref_primary_10_1103_PhysRevB_111_045408 crossref_primary_10_1016_j_measurement_2024_116098 crossref_primary_10_1063_5_0169961 crossref_primary_10_21468_SciPostPhysCore_7_2_035 crossref_primary_10_1038_s41598_019_51238_1 crossref_primary_10_1007_s41614_022_00083_3 crossref_primary_10_1103_PhysRevLett_130_036401 crossref_primary_10_1103_PhysRevE_105_024121 crossref_primary_10_1140_epjb_s10051_021_00261_1 crossref_primary_10_1051_epjconf_201817511025 crossref_primary_10_1016_j_jmrt_2022_12_143 crossref_primary_10_1063_5_0010904 crossref_primary_10_1088_1367_2630_ab5c5e crossref_primary_10_1088_1367_2630_ac1709 crossref_primary_10_1103_PhysRevB_108_075152 crossref_primary_10_1038_nphys4302 crossref_primary_10_1103_PhysRevB_103_205107 crossref_primary_10_1155_2023_3766214 crossref_primary_10_1088_1751_8121_ad72ba crossref_primary_10_1103_PhysRevC_104_044902 crossref_primary_10_1103_PhysRevE_98_022116 crossref_primary_10_1038_s42256_020_00240_8 crossref_primary_10_1103_PhysRevResearch_3_013238 crossref_primary_10_1103_PhysRevB_105_075425 crossref_primary_10_1103_PhysRevApplied_16_014005 crossref_primary_10_1103_PhysRevLett_121_167204 crossref_primary_10_1088_1361_648X_ac2533 crossref_primary_10_1103_PhysRevLett_131_157101 crossref_primary_10_1021_acsnano_8b07980 crossref_primary_10_1103_PhysRevB_101_064406 crossref_primary_10_1103_PhysRevResearch_4_L032043 crossref_primary_10_1103_PhysRevB_102_094101 crossref_primary_10_21468_SciPostPhys_12_5_165 crossref_primary_10_1016_j_commatsci_2021_110702 crossref_primary_10_1209_0295_5075_ad5468 crossref_primary_10_1103_PhysRevE_108_065304 crossref_primary_10_1002_inf2_12116 crossref_primary_10_1103_PhysRevC_104_055802 crossref_primary_10_1103_PhysRevB_99_094427 crossref_primary_10_1103_PhysRevB_103_035413 crossref_primary_10_1038_s41467_022_32313_0 crossref_primary_10_1016_j_scib_2020_09_009 crossref_primary_10_1088_1367_2630_ac68ff crossref_primary_10_3389_fphy_2021_738112 crossref_primary_10_1103_PhysRevE_99_043307 crossref_primary_10_1103_PhysRevE_99_043308 crossref_primary_10_1103_PhysRevD_102_096001 crossref_primary_10_1016_j_nancom_2020_100312 crossref_primary_10_3390_e25020197 crossref_primary_10_1088_1361_6471_abb1f9 crossref_primary_10_1021_acs_nanolett_9b04090 crossref_primary_10_1088_1742_6596_1740_1_012003 crossref_primary_10_1002_adma_202107839 crossref_primary_10_1038_s43246_021_00209_z crossref_primary_10_1038_s41467_022_31679_5 crossref_primary_10_1103_PhysRevLett_122_210503 crossref_primary_10_1002_jcc_26707 crossref_primary_10_1021_acs_jpcc_9b01045 crossref_primary_10_1088_2632_2153_abda08 crossref_primary_10_1103_PhysRevB_105_214423 crossref_primary_10_1103_PhysRevResearch_3_023230 crossref_primary_10_3389_fphy_2022_858388 crossref_primary_10_1016_j_commatsci_2024_113600 crossref_primary_10_1109_JETCAS_2020_2970080 crossref_primary_10_1038_s41598_021_88931_z crossref_primary_10_7566_JPSJ_93_064002 crossref_primary_10_1103_PhysRevB_97_134109 crossref_primary_10_1038_s41598_020_59435_z crossref_primary_10_1103_PhysRevB_102_195148 crossref_primary_10_1134_S0026893319010175 crossref_primary_10_1103_PhysRevE_106_025305 crossref_primary_10_1126_sciadv_aau6792 crossref_primary_10_1039_D0SM00488J crossref_primary_10_1142_S2810939222500058 crossref_primary_10_7566_JPSJ_87_014001 crossref_primary_10_1088_1367_2630_abc463 crossref_primary_10_1088_1361_6668_acbb34 crossref_primary_10_1016_j_scib_2019_07_014 crossref_primary_10_1103_PhysRevLett_126_110502 crossref_primary_10_1038_s41467_020_18653_9 crossref_primary_10_1103_PhysRevE_97_013306 crossref_primary_10_1103_PhysRevResearch_4_043118 crossref_primary_10_1038_s41598_023_38335_y crossref_primary_10_1103_PhysRevResearch_3_033267 crossref_primary_10_1088_1361_648X_abbe7b crossref_primary_10_1103_PhysRevB_99_104410 crossref_primary_10_1103_PhysRevE_103_043307 crossref_primary_10_1103_PhysRevResearch_3_023256 crossref_primary_10_1002_nano_202100006 crossref_primary_10_1088_1361_6455_aad62b crossref_primary_10_1103_PhysRevE_103_033303 crossref_primary_10_1103_PhysRevB_97_075114 crossref_primary_10_1038_s41567_024_02717_4 crossref_primary_10_1103_PhysRevE_103_033305 crossref_primary_10_1007_s10118_023_2910_x crossref_primary_10_1021_acs_jpca_1c06685 crossref_primary_10_1073_pnas_1714936115 crossref_primary_10_1103_PhysRevResearch_3_023016 crossref_primary_10_1088_1361_648X_ad98da crossref_primary_10_1007_s11467_021_1111_8 crossref_primary_10_1103_PhysRevResearch_3_033052 crossref_primary_10_1007_s41365_022_01140_9 crossref_primary_10_1088_1742_5468_aae025 crossref_primary_10_21468_SciPostPhys_12_3_107 crossref_primary_10_1002_int_22603 crossref_primary_10_1103_PhysRevB_100_155141 crossref_primary_10_1103_PhysRevE_107_044128 crossref_primary_10_1088_2632_2153_ab43b4 crossref_primary_10_1103_PhysRevResearch_4_L022032 crossref_primary_10_1016_j_commatsci_2023_112442 crossref_primary_10_1080_00018732_2017_1341604 crossref_primary_10_1139_cjp_2021_0006 crossref_primary_10_1016_j_epsr_2022_109065 crossref_primary_10_1103_PhysRevLett_119_030501 crossref_primary_10_1002_adom_202200158 crossref_primary_10_1088_2632_2153_aba183 crossref_primary_10_1088_1742_5468_aaf10f crossref_primary_10_7566_JPSJ_89_022001 crossref_primary_10_1088_2632_2153_acc0d6 crossref_primary_10_1103_PhysRevB_100_020302 crossref_primary_10_1002_inf2_12168 crossref_primary_10_1039_C8SC04578J crossref_primary_10_1088_2058_9565_aaf59e crossref_primary_10_1088_1367_2630_ac7fb2 crossref_primary_10_1002_jcc_26508 crossref_primary_10_3390_make1010007 crossref_primary_10_1038_s41598_021_92278_w crossref_primary_10_1088_1361_648X_ab9f09 crossref_primary_10_1103_PhysRevB_104_224307 crossref_primary_10_1103_PhysRevResearch_2_023150 crossref_primary_10_7566_JPSJ_94_031002 crossref_primary_10_7566_JPSJ_94_031003 crossref_primary_10_1103_PhysRevA_104_063316 crossref_primary_10_7566_JPSJ_94_031004 crossref_primary_10_1038_s41467_024_53748_7 crossref_primary_10_1038_s41565_020_00779_y crossref_primary_10_1007_s44214_023_00043_z crossref_primary_10_1038_s41467_022_32611_7 crossref_primary_10_1103_PhysRevB_106_205112 crossref_primary_10_3390_make1010001 crossref_primary_10_1088_1367_2630_ab6f1f crossref_primary_10_1103_PhysRevE_98_042114 crossref_primary_10_1021_acs_macromol_0c02655 crossref_primary_10_3390_universe9020082 crossref_primary_10_1038_s42005_023_01408_5 crossref_primary_10_1140_epjb_s10051_022_00453_3 crossref_primary_10_1002_adts_202100063 crossref_primary_10_1063_5_0222403 crossref_primary_10_1103_PhysRevA_111_023307 crossref_primary_10_1039_D3SM00902E crossref_primary_10_1103_PhysRevB_98_060301 crossref_primary_10_1103_PhysRevB_102_054512 crossref_primary_10_1063_PT_3_4164 crossref_primary_10_1103_PhysRevLett_126_020601 crossref_primary_10_1103_PhysRevResearch_6_033091 crossref_primary_10_1038_s41467_018_07737_2 crossref_primary_10_1103_PhysRevResearch_3_033223 crossref_primary_10_1039_C9SM01979K crossref_primary_10_1038_s41578_021_00340_w crossref_primary_10_1103_PhysRevD_105_014017 crossref_primary_10_1103_PhysRevResearch_3_023212 crossref_primary_10_1039_D3SM01593A crossref_primary_10_21468_SciPostPhysCore_5_2_032 crossref_primary_10_1016_j_chip_2021_100002 crossref_primary_10_21468_SciPostPhysCore_8_1_029 crossref_primary_10_1088_1361_648X_acb030 crossref_primary_10_1103_PhysRevA_102_033326 crossref_primary_10_1103_PhysRevE_108_064613 crossref_primary_10_1080_03080188_2020_1840224 crossref_primary_10_1088_2632_2153_aba821 crossref_primary_10_1103_PhysRevE_104_015311 crossref_primary_10_1021_acs_jpcb_2c08583 crossref_primary_10_1103_PhysRevE_111_024131 crossref_primary_10_1088_1674_1137_adaa59 crossref_primary_10_1103_PhysRevB_106_L081411 crossref_primary_10_1103_PhysRevB_98_085402 crossref_primary_10_1103_PhysRevB_99_245120 crossref_primary_10_1103_PhysRevLett_124_185501 crossref_primary_10_1021_acs_nanolett_8b03171 crossref_primary_10_1007_s00500_019_04429_x crossref_primary_10_1103_PhysRevA_102_012415 crossref_primary_10_21468_SciPostPhysCore_6_4_086 crossref_primary_10_21468_SciPostPhysCore_6_4_087 crossref_primary_10_1007_s11467_023_1311_5 crossref_primary_10_1103_PhysRevResearch_2_013354 crossref_primary_10_1038_s41524_020_0309_6 crossref_primary_10_1103_PhysRevE_99_063304 crossref_primary_10_1016_j_apenergy_2022_119390 crossref_primary_10_1038_s41598_020_70389_0 crossref_primary_10_1364_PRJ_435766 crossref_primary_10_1103_PhysRevResearch_2_022060 crossref_primary_10_22331_q_2023_04_17_981 crossref_primary_10_1088_1361_648X_ac7d85 crossref_primary_10_1103_PhysRevLett_124_113202 crossref_primary_10_1109_MITS_2020_3014079 crossref_primary_10_1103_PhysRevA_99_012307 crossref_primary_10_1038_s42005_021_00755_5 crossref_primary_10_1103_PhysRevB_108_214428 crossref_primary_10_1016_j_apacoust_2022_109052 crossref_primary_10_1103_PhysRevA_109_052623 crossref_primary_10_1103_PhysRevResearch_6_L022064 crossref_primary_10_1103_PhysRevB_107_134420 crossref_primary_10_1016_j_physa_2022_127538 crossref_primary_10_7498_aps_70_20210831 crossref_primary_10_1088_0256_307X_39_5_050701 crossref_primary_10_1103_PhysRevX_13_041038 crossref_primary_10_1088_1361_648X_abb895 crossref_primary_10_1103_PhysRevResearch_2_033154 crossref_primary_10_1038_s41524_019_0262_4 crossref_primary_10_1103_Physics_10_56 crossref_primary_10_1103_PhysRevResearch_2_033399 crossref_primary_10_1103_PhysRevResearch_6_013265 crossref_primary_10_1103_PhysRevResearch_7_013306 crossref_primary_10_1364_OME_425263 crossref_primary_10_1063_5_0122274 crossref_primary_10_1103_PhysRevB_99_060404 crossref_primary_10_1007_s11837_022_05371_4 crossref_primary_10_1088_1367_2630_abae44 crossref_primary_10_1103_PhysRevLett_125_170501 crossref_primary_10_1016_j_commatsci_2023_112628 crossref_primary_10_1016_j_cej_2024_155141 crossref_primary_10_1103_PhysRevResearch_2_023369 crossref_primary_10_1103_PhysRevA_107_022402 crossref_primary_10_1103_PhysRevX_11_011040 crossref_primary_10_1088_0256_307X_38_5_051101 crossref_primary_10_1038_s41598_023_33134_x crossref_primary_10_1142_S0219749922500241 crossref_primary_10_1080_00268976_2018_1483537 crossref_primary_10_1038_s41467_024_53101_y crossref_primary_10_1002_aenm_201903242 crossref_primary_10_1016_j_physletb_2021_136084 crossref_primary_10_1088_0256_307X_36_9_097501 crossref_primary_10_1002_adma_202002425 crossref_primary_10_1103_PhysRevB_107_134204 crossref_primary_10_1103_PhysRevLett_120_240402 crossref_primary_10_1021_acs_jpclett_1c01272 crossref_primary_10_1103_PhysRevResearch_2_033375 crossref_primary_10_1051_epjconf_202225809001 crossref_primary_10_1063_5_0147316 crossref_primary_10_1038_s41598_017_13604_9 crossref_primary_10_1063_1_5103210 crossref_primary_10_1103_PhysRevX_11_021052 crossref_primary_10_1103_PhysRevA_102_022412 crossref_primary_10_1088_2632_072X_abe6e9 crossref_primary_10_1063_5_0005194 crossref_primary_10_1103_PhysRevX_7_031038 crossref_primary_10_1145_3529756 crossref_primary_10_1103_PhysRevB_101_075111 crossref_primary_10_1103_PhysRevB_110_024204 crossref_primary_10_1103_PhysRevB_110_195108 crossref_primary_10_1103_PhysRevB_100_125124 crossref_primary_10_1038_s41567_020_1018_2 crossref_primary_10_1016_j_nuclphysa_2018_11_004 crossref_primary_10_1038_s41467_024_45882_z crossref_primary_10_1063_5_0076324 crossref_primary_10_1103_PhysRevB_102_075409 crossref_primary_10_2139_ssrn_3961645 crossref_primary_10_1007_s10118_023_2891_9 crossref_primary_10_1103_PhysRevA_104_043305 crossref_primary_10_1103_PhysRevB_97_035116 crossref_primary_10_1103_PhysRevB_102_054107 crossref_primary_10_1038_s41598_019_53411_y crossref_primary_10_1088_1751_8121_aaaaf2 crossref_primary_10_1021_acsnano_7b07504 crossref_primary_10_1016_j_cma_2018_10_025 crossref_primary_10_1016_j_engstruct_2023_115749 crossref_primary_10_1103_PhysRevB_99_075132 crossref_primary_10_1109_JPHOT_2020_3022053 crossref_primary_10_1103_PhysRevLett_125_127401 crossref_primary_10_1103_PhysRevLett_132_207301 crossref_primary_10_1126_sciadv_aav2761 crossref_primary_10_1364_OPTICA_6_001132 crossref_primary_10_1007_s11943_017_0208_6 crossref_primary_10_1016_j_jsv_2024_118789 crossref_primary_10_1088_1402_4896_ac5ff6 crossref_primary_10_1103_PhysRevE_105_044306 crossref_primary_10_1142_S2010324722500060 crossref_primary_10_7566_JPSJ_87_033001 crossref_primary_10_3390_condmat7020038 crossref_primary_10_1016_j_physa_2018_03_084 crossref_primary_10_3390_ma14051192 crossref_primary_10_1103_PhysRevE_108_L022302 crossref_primary_10_1103_PhysRevB_99_041108 crossref_primary_10_1103_PhysRevE_108_L032102 crossref_primary_10_1103_PhysRevE_108_034104 crossref_primary_10_1021_acs_jpcc_0c01195 crossref_primary_10_1103_PhysRevX_8_031084 crossref_primary_10_1038_s41534_022_00629_w crossref_primary_10_1103_PhysRevX_8_031086 crossref_primary_10_22331_q_2022_05_17_714 crossref_primary_10_1103_PhysRevResearch_5_013110 crossref_primary_10_1103_PhysRevResearch_2_033125 crossref_primary_10_1016_j_physleta_2022_127921 crossref_primary_10_1103_PhysRevA_104_L041301 crossref_primary_10_1103_PhysRevB_104_L041106 crossref_primary_10_1038_s41598_019_42125_w crossref_primary_10_1103_PhysRevB_103_075106 crossref_primary_10_1103_PhysRevB_99_075113 crossref_primary_10_1126_science_abk3333 crossref_primary_10_1038_s41524_019_0224_x crossref_primary_10_1063_5_0147231 crossref_primary_10_3390_condmat7010017 crossref_primary_10_1016_j_fuel_2023_129948 crossref_primary_10_1063_1_5114643 crossref_primary_10_1093_ptep_ptae147 crossref_primary_10_1140_epjp_s13360_022_03597_4 crossref_primary_10_1016_j_commatsci_2025_113790 crossref_primary_10_1103_PhysRevB_99_121104 crossref_primary_10_1103_PhysRevE_105_064139 crossref_primary_10_1103_Physics_13_2 crossref_primary_10_1103_PhysRevB_99_054208 crossref_primary_10_1063_5_0126571 crossref_primary_10_1038_s41524_019_0148_5 crossref_primary_10_1103_PhysRevE_96_022140 crossref_primary_10_1016_j_cels_2023_02_004 crossref_primary_10_1103_PhysRevResearch_2_023300 crossref_primary_10_1038_s41598_024_81436_5 crossref_primary_10_1038_s41598_024_69366_8 crossref_primary_10_1103_PhysRevB_103_245111 crossref_primary_10_1088_0256_307X_37_8_080501 crossref_primary_10_1016_j_electacta_2021_139424 crossref_primary_10_1021_acs_jcim_0c01072 crossref_primary_10_1103_PhysRevLett_120_176401 crossref_primary_10_3390_cryst9010054 crossref_primary_10_1002_adfm_202315177 crossref_primary_10_1039_D0CP03456H crossref_primary_10_1103_PhysRevB_103_134422 crossref_primary_10_1103_PhysRevB_111_024112 crossref_primary_10_1103_PhysRevE_98_052129 crossref_primary_10_1007_s11433_018_9407_5 crossref_primary_10_1103_PhysRevB_96_144432 crossref_primary_10_1103_PhysRevB_97_205110 crossref_primary_10_1103_PhysRevLett_127_190403 crossref_primary_10_1021_acs_chemrev_0c01047 crossref_primary_10_1038_s41524_017_0055_6 crossref_primary_10_1088_1674_1137_aca5f5 crossref_primary_10_1103_PhysRevResearch_6_033035 crossref_primary_10_1103_PhysRevB_98_174411 crossref_primary_10_1016_j_nuclphysb_2019_114639 crossref_primary_10_1038_s41524_020_0318_5 crossref_primary_10_1038_s41598_024_82990_8 crossref_primary_10_1103_PhysRevApplied_11_024020 crossref_primary_10_1103_PhysRevResearch_5_013146 crossref_primary_10_1016_j_commatsci_2021_110560 crossref_primary_10_3390_diagnostics10110972 crossref_primary_10_1209_0295_5075_ad0c6f crossref_primary_10_1103_PhysRevApplied_19_054078 crossref_primary_10_1088_2053_1591_aafa9f crossref_primary_10_1088_1402_4896_ab7a35 crossref_primary_10_1103_PhysRevB_99_165123 crossref_primary_10_1103_PhysRevLett_124_097201 crossref_primary_10_1103_PhysRevResearch_6_033052 crossref_primary_10_1109_ACCESS_2020_3000901 crossref_primary_10_7498_aps_70_20210789 crossref_primary_10_1103_PhysRevX_11_041021 crossref_primary_10_1103_PhysRevX_8_011006 crossref_primary_10_7498_aps_68_20190643 crossref_primary_10_1038_s41467_020_15402_w crossref_primary_10_1002_qute_201800085 crossref_primary_10_1039_D0CP02894K crossref_primary_10_1063_9_0000078 crossref_primary_10_1021_acs_jpcc_0c06673 crossref_primary_10_1103_PhysRevB_103_134203 crossref_primary_10_1103_PhysRevLett_125_140604 crossref_primary_10_1103_PhysRevA_98_010701 crossref_primary_10_7566_JPSJ_90_094001 crossref_primary_10_1088_2632_2153_ac338d crossref_primary_10_1093_ptep_ptad096 crossref_primary_10_21468_SciPostPhys_8_6_087 crossref_primary_10_1103_PhysRevB_101_115111 crossref_primary_10_1103_PhysRevApplied_13_064017 crossref_primary_10_1038_s41586_019_1319_8 crossref_primary_10_1016_j_cocom_2021_e00605 crossref_primary_10_1103_PhysRevB_106_134437 crossref_primary_10_1002_advs_202003165 crossref_primary_10_1103_PhysRevB_97_205140 crossref_primary_10_1103_PhysRevB_104_104205 crossref_primary_10_1007_s40042_021_00180_5 crossref_primary_10_1088_0256_307X_40_2_027501 crossref_primary_10_22331_q_2023_08_29_1096 crossref_primary_10_1038_s41467_024_51439_x crossref_primary_10_1088_1367_2630_ab8262 crossref_primary_10_1088_1367_2630_ab8261 crossref_primary_10_1002_adma_201904790 crossref_primary_10_1109_TPDS_2022_3161187 crossref_primary_10_1038_s41524_022_00889_2 crossref_primary_10_1021_acs_jpclett_8b00430 crossref_primary_10_1103_PhysRevResearch_7_013070 crossref_primary_10_1140_epjp_s13360_024_05563_8 crossref_primary_10_1093_ptep_ptab057 crossref_primary_10_1039_D0CP02058C crossref_primary_10_1088_1367_2630_ac0b02 crossref_primary_10_1103_PhysRevE_95_062122 crossref_primary_10_1016_j_ppnp_2023_104084 crossref_primary_10_1039_D3MA00591G crossref_primary_10_1088_0256_307X_40_2_020501 crossref_primary_10_1088_0256_307X_38_11_110301 crossref_primary_10_1103_PhysRevB_101_115132 crossref_primary_10_1103_PhysRevB_104_205120 crossref_primary_10_1016_j_actamat_2019_01_051 crossref_primary_10_7566_JPSJ_90_053703 crossref_primary_10_1103_PhysRevMaterials_3_063802 crossref_primary_10_22331_q_2021_12_06_598 crossref_primary_10_7566_JPSJ_93_074005 crossref_primary_10_1038_s41524_022_00745_3 crossref_primary_10_1103_PhysRevA_98_042315 crossref_primary_10_1103_PhysRevB_104_104426 crossref_primary_10_1088_0256_307X_39_12_120502 crossref_primary_10_1038_s41598_020_70558_1 crossref_primary_10_1103_PhysRevE_108_024113 crossref_primary_10_1088_1742_5468_abdc18 crossref_primary_10_1088_1674_1056_ad342b crossref_primary_10_1016_j_photonics_2022_101076 crossref_primary_10_1038_s41467_018_06598_z crossref_primary_10_1088_1361_648X_ad5d35 crossref_primary_10_1103_PhysRevC_99_064307 crossref_primary_10_1103_PhysRevB_100_224202 crossref_primary_10_1103_PhysRevD_103_116023 crossref_primary_10_1103_PhysRevResearch_2_043308 crossref_primary_10_1103_PhysRevE_99_032142 crossref_primary_10_1088_1367_2630_ac63da crossref_primary_10_1063_5_0061571 crossref_primary_10_1002_qute_201800076 crossref_primary_10_1103_PhysRevB_96_161102 crossref_primary_10_1103_PhysRevMaterials_1_043603 crossref_primary_10_1038_s41598_022_07921_x crossref_primary_10_1109_TMBMC_2020_3035383 crossref_primary_10_1002_qute_201800077 crossref_primary_10_1103_PhysRevMaterials_4_123802 crossref_primary_10_1103_PhysRevApplied_16_064039 crossref_primary_10_1007_s11069_023_06186_5 crossref_primary_10_1140_epjb_e2018_90419_7 crossref_primary_10_3390_quantum4040042 crossref_primary_10_1137_20M131309X crossref_primary_10_1021_acsnano_1c09298 crossref_primary_10_1002_adts_202200690 crossref_primary_10_1021_acs_jpca_0c04368 crossref_primary_10_1016_j_ppnp_2023_104070 crossref_primary_10_1103_PhysRevB_108_184202 crossref_primary_10_1016_j_jksues_2020_07_002 crossref_primary_10_1088_1742_6596_1290_1_012006 crossref_primary_10_25205_2541_9447_2022_17_2_5_15 crossref_primary_10_1103_PhysRevApplied_16_044039 crossref_primary_10_1016_j_commatsci_2024_113205 crossref_primary_10_1016_j_commatsci_2019_109286 crossref_primary_10_1088_1674_1137_ac28f9 crossref_primary_10_1103_PhysRevLett_121_150503 crossref_primary_10_1088_2632_072X_abaa2b crossref_primary_10_7566_JPSJ_91_044001 crossref_primary_10_1088_2632_2153_abb213 crossref_primary_10_1007_s10462_024_10874_4 crossref_primary_10_1103_PRXQuantum_6_010350 crossref_primary_10_1103_PhysRevApplied_19_014068 crossref_primary_10_1038_s41598_023_35867_1 crossref_primary_10_1038_s41467_017_02726_3 crossref_primary_10_1038_s41598_022_09870_x crossref_primary_10_1103_PhysRevResearch_4_023005 crossref_primary_10_1016_j_ijinfomgt_2019_08_002 crossref_primary_10_1038_s41467_021_21625_2 crossref_primary_10_1103_PhysRevLett_125_225701 crossref_primary_10_1103_PhysRevD_103_074510 crossref_primary_10_1016_j_physleta_2021_127697 crossref_primary_10_1103_PhysRevLett_124_084503 crossref_primary_10_7566_JPSJNC_21_23 crossref_primary_10_1021_acs_jpcb_7b10695 crossref_primary_10_1103_PhysRevB_109_075124 crossref_primary_10_1063_5_0107205 crossref_primary_10_1016_j_cpc_2021_107832 crossref_primary_10_1039_D2SM00310D crossref_primary_10_1093_ptep_ptac173 crossref_primary_10_1007_s11433_020_1575_2 crossref_primary_10_1016_j_nuclphysa_2020_121847 crossref_primary_10_1103_PhysRevLett_118_216401 crossref_primary_10_1103_PhysRevB_99_085118 crossref_primary_10_1038_s41524_019_0202_3 crossref_primary_10_1038_s42005_021_00609_0 crossref_primary_10_1063_5_0024387 crossref_primary_10_1103_PhysRevB_96_245119 crossref_primary_10_1073_pnas_2017392118 crossref_primary_10_1140_epjb_s10051_021_00140_9 crossref_primary_10_1209_0295_5075_132_60004 crossref_primary_10_1088_1361_648X_abea1c crossref_primary_10_1109_TPS_2023_3268170 crossref_primary_10_1016_j_ultramic_2018_06_017 crossref_primary_10_1038_s41598_019_43465_3 crossref_primary_10_1016_j_matdes_2021_110156 crossref_primary_10_1103_PhysRevE_95_032504 crossref_primary_10_1063_9_0000686 crossref_primary_10_1103_PhysRevB_96_195138 crossref_primary_10_1088_1475_7516_2022_08_071 crossref_primary_10_1088_1367_2630_abc6e6 crossref_primary_10_1016_j_mtcomm_2022_104606 crossref_primary_10_1021_acs_jpclett_1c02923 crossref_primary_10_1103_PhysRevApplied_14_024054 crossref_primary_10_1103_PhysRevE_99_032113 crossref_primary_10_1103_PhysRevE_110_064121 crossref_primary_10_1007_s11128_022_03433_9 crossref_primary_10_1103_PhysRevB_96_195145 crossref_primary_10_1209_0295_5075_126_60002 crossref_primary_10_1515_nanoph_2020_0197 crossref_primary_10_1103_PhysRevResearch_4_013234 crossref_primary_10_1038_s41592_019_0403_1 crossref_primary_10_1088_1361_6528_abe749 crossref_primary_10_3390_cryst12091269 crossref_primary_10_1103_PhysRevE_109_024131 crossref_primary_10_1021_jacs_1c06246 crossref_primary_10_1007_s00521_021_06763_4 crossref_primary_10_1103_PhysRevB_96_184410 crossref_primary_10_1016_j_cpc_2020_107518 crossref_primary_10_1039_D2CS00203E crossref_primary_10_1103_PhysRevLett_120_240501 crossref_primary_10_1103_PhysRevB_99_104106 crossref_primary_10_1364_OE_490070 crossref_primary_10_1088_1751_8121_acd156 crossref_primary_10_1103_PhysRevB_102_115140 crossref_primary_10_1021_acs_macromol_2c02555 crossref_primary_10_1007_s10596_020_10023_0 crossref_primary_10_1080_02678292_2023_2292635 crossref_primary_10_1103_PhysRevResearch_4_043031 crossref_primary_10_21468_SciPostPhys_13_3_057 crossref_primary_10_1103_PhysRevB_99_161120 crossref_primary_10_1103_PhysRevE_109_024121 crossref_primary_10_1007_JHEP08_2023_031 crossref_primary_10_1103_PhysRevResearch_4_023206 crossref_primary_10_1186_s41313_020_00022_0 crossref_primary_10_1016_j_neucom_2022_09_068 crossref_primary_10_1103_PhysRevB_110_125125 crossref_primary_10_1209_0295_5075_ac49d4 crossref_primary_10_1088_1367_2630_acef4e crossref_primary_10_1016_j_physa_2021_126653 crossref_primary_10_1103_PhysRevE_100_052312 crossref_primary_10_1140_epjp_s13360_022_02769_6 crossref_primary_10_1103_PRXQuantum_2_020332 crossref_primary_10_1016_j_rinp_2024_107935 crossref_primary_10_1038_s42005_023_01416_5 crossref_primary_10_1103_PhysRevLett_133_107301 crossref_primary_10_1063_5_0128283 crossref_primary_10_1061__ASCE_MT_1943_5533_0002902 crossref_primary_10_1088_1402_4896_ad3170 crossref_primary_10_1103_PhysRevLett_126_190505 crossref_primary_10_1021_acsami_1c14204 crossref_primary_10_1007_JHEP12_2017_149 crossref_primary_10_1038_s41524_023_00990_0 crossref_primary_10_1103_PhysRevB_107_205132 crossref_primary_10_1063_5_0017894 crossref_primary_10_1515_nanoph_2018_0183 crossref_primary_10_1063_5_0153229 crossref_primary_10_1063_1_5121844 crossref_primary_10_1103_PhysRevB_98_245101 crossref_primary_10_1016_j_physleta_2020_126886 crossref_primary_10_1063_5_0121669 crossref_primary_10_1103_PhysRevE_110_054133 crossref_primary_10_1063_5_0026590 crossref_primary_10_1088_1674_1137_ad2b51 crossref_primary_10_1103_PhysRevB_107_205121 crossref_primary_10_3390_condmat8030083 crossref_primary_10_1103_PhysRevLett_125_170603 crossref_primary_10_1088_1367_2630_aae941 crossref_primary_10_1103_PhysRevResearch_3_013134 crossref_primary_10_1103_PhysRevResearch_3_013132 crossref_primary_10_1021_acs_jpca_0c01375 crossref_primary_10_1038_s41598_021_88605_w crossref_primary_10_1103_PhysRevE_107_045301 crossref_primary_10_1103_PhysRevB_109_144523 crossref_primary_10_1140_epjp_s13360_022_03318_x crossref_primary_10_1103_PhysRevB_107_L161101 crossref_primary_10_2139_ssrn_3995127 crossref_primary_10_21468_SciPostPhys_9_6_087 crossref_primary_10_1016_j_aop_2018_02_018 crossref_primary_10_1002_adma_201800701 crossref_primary_10_1088_1742_5468_aceef1 crossref_primary_10_1103_PhysRevA_108_062420 crossref_primary_10_1103_PhysRevE_103_052127 crossref_primary_10_7566_JPSJ_88_081009 crossref_primary_10_1007_s11128_021_03148_3 crossref_primary_10_1103_PhysRevE_100_050102 crossref_primary_10_1038_s41524_023_01155_9 crossref_primary_10_1038_s41598_021_98785_0 crossref_primary_10_1088_2632_2153_ad9079 crossref_primary_10_1103_PhysRevLett_120_066401 crossref_primary_10_1007_s11467_018_0798_7 crossref_primary_10_1002_adma_201901111 crossref_primary_10_1016_j_mechmat_2022_104309 crossref_primary_10_1103_PhysRevLett_122_200401 crossref_primary_10_22331_q_2023_06_12_1039 crossref_primary_10_1103_PhysRevD_101_076015 crossref_primary_10_1016_j_actbio_2020_02_037 crossref_primary_10_1016_j_physrep_2019_03_001 crossref_primary_10_1103_PhysRevA_106_033315 crossref_primary_10_1088_2040_8986_abb1ce crossref_primary_10_1103_PhysRevE_102_013307 crossref_primary_10_1002_inf2_12026 crossref_primary_10_1016_j_enganabound_2022_04_035 crossref_primary_10_1103_PhysRevB_111_104508 crossref_primary_10_1103_PhysRevE_104_044611 crossref_primary_10_1142_S021974991840004X crossref_primary_10_1063_5_0014194 crossref_primary_10_1016_j_ijleo_2024_171749 crossref_primary_10_1016_j_physa_2020_125065 crossref_primary_10_1140_epjb_e2020_100506_5 crossref_primary_10_1103_PhysRevResearch_3_043184 crossref_primary_10_1103_PhysRevE_103_052140 crossref_primary_10_1063_5_0005228 crossref_primary_10_1063_1_5049850 crossref_primary_10_1038_s41598_021_95523_4 crossref_primary_10_1007_s00521_018_3742_4 crossref_primary_10_1103_PhysRevE_98_033305 crossref_primary_10_1103_PhysRevB_100_075102 crossref_primary_10_1016_j_pnucene_2022_104191 crossref_primary_10_7566_JPSJ_88_123704 crossref_primary_10_1103_PhysRevMaterials_3_095005 crossref_primary_10_1088_1361_648X_aad51f crossref_primary_10_1039_C7CS00461C crossref_primary_10_1103_PhysRevResearch_2_013287 crossref_primary_10_1088_2515_7639_abb74e crossref_primary_10_1103_PhysRevLett_129_270501 crossref_primary_10_1103_PhysRevB_104_235146 crossref_primary_10_1103_PRXQuantum_4_040337 crossref_primary_10_1063_1_5049849 crossref_primary_10_1103_PhysRevMaterials_3_033805 crossref_primary_10_1016_j_jmmm_2022_169706 crossref_primary_10_1088_2632_2153_abcc45 crossref_primary_10_1002_advs_202000566 crossref_primary_10_1103_PhysRevA_98_012315 crossref_primary_10_1063_5_0049258 crossref_primary_10_1093_ptep_ptaa138 crossref_primary_10_1103_PhysRevB_104_024506 crossref_primary_10_1103_PhysRevResearch_4_033223 crossref_primary_10_1088_1674_1056_ab4582 crossref_primary_10_1140_epja_i2019_12919_7 crossref_primary_10_1088_2632_2153_abcc43 crossref_primary_10_1109_ACCESS_2020_2993562 crossref_primary_10_3390_s22186767 crossref_primary_10_1103_PhysRevB_96_205152 crossref_primary_10_1103_PhysRevE_110_034118 crossref_primary_10_1103_PhysRevE_105_035304 crossref_primary_10_1039_C9TC01078E crossref_primary_10_1103_PhysRevA_103_032406 crossref_primary_10_1063_1_5136251 crossref_primary_10_1038_s41598_020_69848_5 crossref_primary_10_3390_s22186751 crossref_primary_10_1038_s42005_018_0058_8 crossref_primary_10_21468_SciPostPhys_15_3_099 crossref_primary_10_1103_PhysRevE_102_021302 crossref_primary_10_1103_PhysRevApplied_20_044002 crossref_primary_10_1103_PhysRevResearch_3_L042035 crossref_primary_10_1016_j_carbon_2021_11_073 crossref_primary_10_1103_PhysRevResearch_2_023283 crossref_primary_10_1088_1674_1056_ad3908 crossref_primary_10_1063_5_0021762 crossref_primary_10_7566_JPSJ_90_065001 crossref_primary_10_1103_PhysRevB_96_205146 crossref_primary_10_1088_1674_1056_abb303 crossref_primary_10_1103_PhysRevResearch_3_033102 crossref_primary_10_1021_acs_jpclett_9b03360 crossref_primary_10_1103_PhysRevB_100_045129 crossref_primary_10_1103_PhysRevB_107_214451 crossref_primary_10_1186_s41313_021_00029_1 crossref_primary_10_1038_s41567_019_0512_x crossref_primary_10_1088_2632_2153_ab4e24 crossref_primary_10_1103_PhysRevE_106_054124 crossref_primary_10_1103_PhysRevE_102_033303 crossref_primary_10_1088_0253_6102_71_11_1379 crossref_primary_10_1103_PhysRevE_107_065303 crossref_primary_10_1103_PhysRevE_99_062107 crossref_primary_10_1103_PhysRevResearch_2_033295 crossref_primary_10_1103_PhysRevResearch_3_033135 crossref_primary_10_3390_jmse11040793 crossref_primary_10_1103_PhysRevB_103_035138 crossref_primary_10_1088_2632_2153_ad27e2 crossref_primary_10_21468_SciPostPhys_11_2_025 crossref_primary_10_1088_1751_8121_ab7210 crossref_primary_10_1103_PhysRevResearch_5_013060 crossref_primary_10_1016_j_commatsci_2024_113079 crossref_primary_10_1103_PhysRevE_111_015305 crossref_primary_10_3847_2041_8213_ada427 crossref_primary_10_1177_0361198120947421 crossref_primary_10_1038_s41586_019_1116_4 crossref_primary_10_1103_PhysRevResearch_4_043216 crossref_primary_10_1103_PhysRevB_100_174408 crossref_primary_10_31857_S0370274X24100239 crossref_primary_10_1038_s41534_020_00347_1 crossref_primary_10_1103_PhysRevB_100_024423 crossref_primary_10_1103_PhysRevB_102_064205 crossref_primary_10_1039_D2DD00026A crossref_primary_10_1103_PhysRevE_110_024102 crossref_primary_10_1088_1367_2630_ab7771 crossref_primary_10_1016_j_commatsci_2019_04_051 crossref_primary_10_1021_acs_jctc_2c00898 crossref_primary_10_1103_PhysRevResearch_2_023232 crossref_primary_10_1016_j_psep_2021_12_025 crossref_primary_10_1103_PhysRevResearch_2_023230 crossref_primary_10_1088_0256_307X_38_7_070302 crossref_primary_10_1364_OE_472280 crossref_primary_10_1103_PhysRevB_99_024423 crossref_primary_10_1371_journal_pcbi_1006514 crossref_primary_10_1016_j_matdes_2021_109855 crossref_primary_10_1103_PhysRevB_108_134422 crossref_primary_10_1134_S1990793122080115 crossref_primary_10_1002_qute_202200025 crossref_primary_10_7498_aps_70_20210711 crossref_primary_10_1088_1674_1056_ac615f crossref_primary_10_1016_j_aop_2019_167938 crossref_primary_10_1038_s41534_020_00305_x crossref_primary_10_1063_5_0098244 crossref_primary_10_1103_PhysRevB_99_024430 crossref_primary_10_1103_PhysRevResearch_2_023008 crossref_primary_10_1063_5_0023980 crossref_primary_10_1103_PhysRevE_96_011301 crossref_primary_10_1103_PhysRevE_110_014137 crossref_primary_10_1088_1361_648X_ac3a85 crossref_primary_10_1103_PhysRevE_110_024129 crossref_primary_10_1103_PhysRevB_101_220409 crossref_primary_10_1007_JHEP03_2024_141 crossref_primary_10_21468_SciPostPhys_14_1_005 crossref_primary_10_1088_1361_6455_ad7e87 crossref_primary_10_1088_1367_2630_ac6232 crossref_primary_10_1038_s42254_024_00798_x crossref_primary_10_7566_JPSJ_92_081004 crossref_primary_10_1103_PhysRevResearch_5_013097 crossref_primary_10_1002_bsl_2392 crossref_primary_10_1088_1367_2630_ad0525 crossref_primary_10_1016_j_matdes_2019_108247 crossref_primary_10_1103_PhysRevB_99_174426 crossref_primary_10_1103_PhysRevD_101_094507 crossref_primary_10_1103_PhysRevX_12_031044 crossref_primary_10_1088_1361_6471_ad0314 crossref_primary_10_1038_s41467_024_45014_7 crossref_primary_10_1038_s41524_019_0165_4 crossref_primary_10_1103_PhysRevApplied_17_024040 crossref_primary_10_1103_PhysRevB_100_184414 crossref_primary_10_1103_PhysRevResearch_2_033499 crossref_primary_10_1103_PhysRevResearch_7_013201 crossref_primary_10_7566_JPSJ_86_113704 crossref_primary_10_1038_nature23474 crossref_primary_10_1103_PhysRevLett_130_210601 crossref_primary_10_1103_PhysRevB_108_144429 crossref_primary_10_1038_s41567_020_0932_7 crossref_primary_10_1103_PhysRevResearch_6_023193 crossref_primary_10_7566_JPSJ_86_093001 crossref_primary_10_1021_acs_jctc_9b00074 crossref_primary_10_1038_s41567_021_01201_7 crossref_primary_10_1088_1674_1056_ac989c crossref_primary_10_1016_j_physleta_2023_128683 |
Cites_doi | 10.1103/PhysRevB.76.174416 10.1007/978-3-642-35106-8 10.1103/PhysRevLett.96.110405 10.1103/PhysRev.79.876 10.1103/RevModPhys.51.659 10.1103/PhysRevLett.96.110404 10.1088/1367-2630/14/8/085004 10.1103/PhysRevLett.114.105503 10.1038/nphys3644 10.1016/S0003-4916(02)00018-0 10.1038/nphys4037 10.1103/PhysRev.65.117 10.1038/srep06367 10.1103/PhysRevB.76.184442 10.1109/5.726791 10.1103/PhysRevB.90.155136 10.1063/1.3518900 10.1038/nmat4395 |
ContentType | Journal Article |
Copyright | Springer Nature Limited 2017 Copyright Nature Publishing Group May 2017 |
Copyright_xml | – notice: Springer Nature Limited 2017 – notice: Copyright Nature Publishing Group May 2017 |
DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U PRINS |
DOI | 10.1038/nphys4035 |
DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE) ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic ProQuest Central China |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) ProQuest Central China |
DatabaseTitleList | ProQuest Central Student Technology Research Database ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 434 |
ExternalDocumentID | 4322150059 10_1038_nphys4035 |
GroupedDBID | 0R~ 123 29M 39C 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AARCD AAYZH ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFANA AFBBN AFKRA AFSHS AFWHJ AGAYW AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NFIDA NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PHGZT PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ACSTC ATHPR CITATION PHGZM PQGLB PUEGO 3V. 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQUKI Q9U PRINS |
ID | FETCH-LOGICAL-c353t-ad1440838495a77887c304d5db517dc8abece9c71c3939fb908b2fb70d3c87c73 |
IEDL.DBID | 8FG |
ISSN | 1745-2473 |
IngestDate | Fri Sep 05 08:26:34 EDT 2025 Sat Aug 23 14:52:34 EDT 2025 Sat Aug 23 13:04:15 EDT 2025 Wed Oct 01 06:33:49 EDT 2025 Thu Apr 24 23:11:29 EDT 2025 Fri Apr 11 01:29:15 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-ad1440838495a77887c304d5db517dc8abece9c71c3939fb908b2fb70d3c87c73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 1894478299 |
PQPubID | 27545 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_1904247488 proquest_journals_3188605899 proquest_journals_1894478299 crossref_citationtrail_10_1038_nphys4035 crossref_primary_10_1038_nphys4035 springer_journals_10_1038_nphys4035 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nature Phys |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | A Kitaev (BFnphys4035_CR10) 2006; 96 LM Ghiringhelli (BFnphys4035_CR14) 2015; 114 SS Schoenholz (BFnphys4035_CR15) 2016; 12 Y LeCun (BFnphys4035_CR22) 1998; 86 L-F Arsenault (BFnphys4035_CR11) 2014; 90 J Bergstra (BFnphys4035_CR5) 2010 O Landon-Cardinal (BFnphys4035_CR27) 2012; 14 M Abadi (BFnphys4035_CR4) 2015 R Bellman (BFnphys4035_CR2) 1957 A Avella (BFnphys4035_CR6) 2013 GF Newell (BFnphys4035_CR19) 1950; 79 BFnphys4035_CR18 BFnphys4035_CR16 JB Kogut (BFnphys4035_CR20) 1979; 51 C Castelnovo (BFnphys4035_CR23) 2007; 76 M Levin (BFnphys4035_CR9) 2006; 96 C Castelnovo (BFnphys4035_CR21) 2007; 76 SV Kalinin (BFnphys4035_CR13) 2015; 14 AW Sandvik (BFnphys4035_CR7) 2010; 1297 AG Kusne (BFnphys4035_CR12) 2014; 4 S Aubry (BFnphys4035_CR24) 1980; 3 BFnphys4035_CR25 I Goodfellow (BFnphys4035_CR3) 2016 A Kitaev (BFnphys4035_CR8) 2003; 303 L Onsager (BFnphys4035_CR17) 1944; 65 X Wen (BFnphys4035_CR1) 2004 BFnphys4035_CR26 |
References_xml | – volume-title: Deep Learning year: 2016 ident: BFnphys4035_CR3 – volume: 76 start-page: 174416 year: 2007 ident: BFnphys4035_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.174416 – volume-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems year: 2015 ident: BFnphys4035_CR4 – ident: BFnphys4035_CR25 – volume-title: Strongly Correlated Systems: Numerical Methods year: 2013 ident: BFnphys4035_CR6 doi: 10.1007/978-3-642-35106-8 – volume-title: Proc. Python Sci. Comput. Conf. (SciPy) year: 2010 ident: BFnphys4035_CR5 – volume: 96 start-page: 110405 year: 2006 ident: BFnphys4035_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.110405 – volume: 79 start-page: 876 year: 1950 ident: BFnphys4035_CR19 publication-title: Phys. Rev. doi: 10.1103/PhysRev.79.876 – volume: 51 start-page: 659 year: 1979 ident: BFnphys4035_CR20 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.51.659 – volume: 96 start-page: 110404 year: 2006 ident: BFnphys4035_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.110404 – volume: 14 start-page: 085004 year: 2012 ident: BFnphys4035_CR27 publication-title: New J. Phys. doi: 10.1088/1367-2630/14/8/085004 – volume: 114 start-page: 105503 year: 2015 ident: BFnphys4035_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.105503 – volume: 12 start-page: 469 year: 2016 ident: BFnphys4035_CR15 publication-title: Nat. Phys. doi: 10.1038/nphys3644 – volume: 3 start-page: 133 year: 1980 ident: BFnphys4035_CR24 publication-title: Ann. Isr. Phys. Soc. – volume: 303 start-page: 2 year: 2003 ident: BFnphys4035_CR8 publication-title: Ann. Phys. doi: 10.1016/S0003-4916(02)00018-0 – ident: BFnphys4035_CR18 doi: 10.1038/nphys4037 – volume: 65 start-page: 117 year: 1944 ident: BFnphys4035_CR17 publication-title: Phys. Rev. doi: 10.1103/PhysRev.65.117 – ident: BFnphys4035_CR26 – volume-title: Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons year: 2004 ident: BFnphys4035_CR1 – volume: 4 start-page: 6367 year: 2014 ident: BFnphys4035_CR12 publication-title: Sci. Rep. doi: 10.1038/srep06367 – volume: 76 start-page: 184442 year: 2007 ident: BFnphys4035_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.184442 – volume-title: Dynamic Programming year: 1957 ident: BFnphys4035_CR2 – volume: 86 start-page: 2278 year: 1998 ident: BFnphys4035_CR22 publication-title: IEEE Proc. doi: 10.1109/5.726791 – ident: BFnphys4035_CR16 – volume: 90 start-page: 155136 year: 2014 ident: BFnphys4035_CR11 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.155136 – volume: 1297 start-page: 135 year: 2010 ident: BFnphys4035_CR7 publication-title: AIP Conf. Proc. doi: 10.1063/1.3518900 – volume: 14 start-page: 973 year: 2015 ident: BFnphys4035_CR13 publication-title: Nat. Mater. doi: 10.1038/nmat4395 |
SSID | ssj0042613 |
Score | 2.7022207 |
Snippet | The success of machine learning techniques in handling big data sets proves ideal for classifying condensed-matter phases and phase transitions. The technique... Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits1.... Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 431 |
SubjectTerms | 639/766/119/2795 639/766/530/2804 Artificial intelligence Atomic Big Data Classical and Continuum Physics Classification Complex Systems Complexity Computer programs Computer simulation Condensed Matter Physics letter Machine learning Magnetic moments Mathematical and Computational Physics Molecular Monte Carlo methods Neural networks Nuclei Nuclei (nuclear physics) Optical and Plasma Physics Order parameters Parameter identification Phase transitions Phases Physics Theoretical |
Title | Machine learning phases of matter |
URI | https://link.springer.com/article/10.1038/nphys4035 https://www.proquest.com/docview/1894478299 https://www.proquest.com/docview/3188605899 https://www.proquest.com/docview/1904247488 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1745-2481 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0042613 issn: 1745-2473 databaseCode: BENPR dateStart: 20051001 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1745-2481 dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0042613 issn: 1745-2473 databaseCode: 8FG dateStart: 20051001 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8oxMQX42ecIhnqgy8N29rR9smoAYkJxBhJeFu2ttMHHejg_7ctHRBCfO5l7e6ud9f-rncAt5jnRMqQozxNBSIkUCgLZYwUjURGBekENjdnMOz0R-RlHI_dhVvp0iorm2gNtZwIc0fe1rrHDITH-f30B5muUQZddS00dqEeRlqTzEvx3nNlic3pAC8eRMYoIhRXlYUwaxfm4oAEtsvbmj9aBZkbuKh1N71DOHBxov-wEOwR7KjiGPZsvqYoT6A1sEmQynddHz786af2R6U_yf1vWzLzFEa97vtTH7luB0jgGM9QKg3OyjDTR5aUmiQ_gQMiY5nFIZWCpZrbigsaCsw1hzMesCzKMxpILDQtxWdQKyaFOgc_igKh963kilBCJElFHIpcsEDlTEdouQd31T8nwpUCNx0pvhILSWOWLNnjwfWSdLqof7GNqFExLnFboExCxgnR8QfnW4dX8vSgtRzWum0Ai7RQk7n-BDfALNU2xoObSh5rM2yu4-L_iS5hPzJO2aYrNqA2-52rKx1SzLKm1Zsm1B-7w9e3P7KgzCY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbGEIIL4ikGA8pL4hKtbVKSHBBCwBhs4wQSt9ImKRygG2wI8af4jThZOxBC3DgnSmLHcex8jg2wS2XGtA4kyZJEEcZ8Q9JAR8TwUKVcsQPfxeZ0rw5aN-zyNrqtwEf5F8aGVZY60Slq3VP2jbyBsicshCflUf-Z2KpRFl0tS2iMxKJt3t_QZRscXpzi_u6FYfPs-qRFiqoCRNGIDkmiLZ4pqEDXIOE2mE6hS68jnUYB10okSJWRigeKSqQklb5IwyzlvqYK-3KK407AJKOU2lz9onlean7rjdDRB8yIhIzTMpMRFY3cPlQw31WV-3b_fRm1P3BYd70152C2sEu945EgzUPF5Asw5eJD1WARtrou6NJ4RZWJe6__gPffwOtl3pNL0bkEN__Ch2Wo5r3crIAXhr5CPaGlYZwxzRIVBSpTwjeZQIswq8F-SXOsitTjtgLGY-wgcCriMXtqsD3u2h_l2_itU71kXFwcuUEcCMkY2jtS_tr8JT812Bo341myAEmSm94rDiEtEMxRp9Vgp9yPbzP8XMfq3xNtwnTrutuJOxdX7TWYCa1B4EIl61AdvryadTRnhumGkyEP7v5baD8BCvoHbQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JTxsxFH6iQVRcEHRRU7aBUqkXKzNjD7YPCLEkgkKiqGqk3KYztoce2kkgQYi_yK_i2fGEKIq4cbbl9fktfssHcEBlwbSOJCmyTBHGQkPySCfE8FjlXLHD0MXmtDuHFz32s5_0l-CpyoWxYZUVT3SMWg-U_SNvIO0J68KTslH4sIjueet4eEssgpT1tFZwGpmHWdBHrtyYT_K4Mo8PaM6Nji7P8e6_x3Gr-fvsgnjEAaJoQsck09bXKahAsyHjNtBOobmvE50nEddKZLhjIxWPFJW4y1yGIo-LnIeaKuzLKY77Dpa5zRetwfJps9P9VckFa6vQSXpmQmLGaVXniIpGab8xWOgw52ak44vKO-eldcKvtQ5rXmsNTiZktgFLpvwAKy56VI0-wl7bhWSawGNQ3ATDvygdR8GgCP67Ap6foPcmJ_EZauWgNF8giONQIRfR0jDOmGaZSiJVKBGaQqC-WNThR7XnVPnC5BYf41_qHORUpNPjqcP-tOtwUo1jUaet6uBS_yBHaSQkY6gNSbmw-YW66rA3bcaXZt0nWWkG9ziEtG5ijhyvDt-q-5iZYX4dX1-faBfeIwGn15edq01Yja224OIot6A2vrs326jrjPMdT0QB_Hlrun0G8P0SRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+phases+of+matter&rft.jtitle=Nature+physics&rft.date=2017-05-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=13&rft.issue=5&rft.spage=431&rft.epage=434&rft_id=info:doi/10.1038%2Fnphys4035&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |