Machine learning phases of matter

The success of machine learning techniques in handling big data sets proves ideal for classifying condensed-matter phases and phase transitions. The technique is even amenable to detecting non-trivial states lacking in conventional order. Condensed-matter physics is the study of the collective behav...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 13; no. 5; pp. 431 - 434
Main Authors Carrasquilla, Juan, Melko, Roger G.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.05.2017
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN1745-2473
1745-2481
DOI10.1038/nphys4035

Cover

Abstract The success of machine learning techniques in handling big data sets proves ideal for classifying condensed-matter phases and phase transitions. The technique is even amenable to detecting non-trivial states lacking in conventional order. Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits 1 . This complexity is reflected in the size of the state space, which grows exponentially with the number of particles, reminiscent of the ‘curse of dimensionality’ commonly encountered in machine learning 2 . Despite this curse, the machine learning community has developed techniques with remarkable abilities to recognize, classify, and characterize complex sets of data. Here, we show that modern machine learning architectures, such as fully connected and convolutional neural networks 3 , can identify phases and phase transitions in a variety of condensed-matter Hamiltonians. Readily programmable through modern software libraries 4 , 5 , neural networks can be trained to detect multiple types of order parameter, as well as highly non-trivial states with no conventional order, directly from raw state configurations sampled with Monte Carlo 6 , 7 .
AbstractList Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits1. This complexity is reflected in the size of the state space, which grows exponentially with the number of particles, reminiscent of the curse of dimensionality commonly encountered in machine learning2. Despite this curse, the machine learning community has developed techniques with remarkable abilities to recognize, classify, and characterize complex sets of data. Here, we show that modern machine learning architectures, such as fully connected and convolutional neural networks3, can identify phases and phase transitions in a variety of condensed-matter Hamiltonians. Readily programmable through modern software libraries4,5, neural networks can be trained to detect multiple types of order parameter, as well as highly non-trivial states with no conventional order, directly from raw state configurations sampled with Monte Carlo6,7.
Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits. This complexity is reflected in the size of the state space, which grows exponentially with the number of particles, reminiscent of the 'curse of dimensionality' commonly encountered in machine learning. Despite this curse, the machine learning community has developed techniques with remarkable abilities to recognize, classify, and characterize complex sets of data. Here, we show that modern machine learning architectures, such as fully connected and convolutional neural networks, can identify phases and phase transitions in a variety of condensed-matter Hamiltonians. Readily programmable through modern software libraries, neural networks can be trained to detect multiple types of order parameter, as well as highly non-trivial states with no conventional order, directly from raw state configurations sampled with Monte Carlo.
The success of machine learning techniques in handling big data sets proves ideal for classifying condensed-matter phases and phase transitions. The technique is even amenable to detecting non-trivial states lacking in conventional order.Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits1. This complexity is reflected in the size of the state space, which grows exponentially with the number of particles, reminiscent of the ‘curse of dimensionality’ commonly encountered in machine learning2. Despite this curse, the machine learning community has developed techniques with remarkable abilities to recognize, classify, and characterize complex sets of data. Here, we show that modern machine learning architectures, such as fully connected and convolutional neural networks3, can identify phases and phase transitions in a variety of condensed-matter Hamiltonians. Readily programmable through modern software libraries4,5, neural networks can be trained to detect multiple types of order parameter, as well as highly non-trivial states with no conventional order, directly from raw state configurations sampled with Monte Carlo6,7.
The success of machine learning techniques in handling big data sets proves ideal for classifying condensed-matter phases and phase transitions. The technique is even amenable to detecting non-trivial states lacking in conventional order. Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits 1 . This complexity is reflected in the size of the state space, which grows exponentially with the number of particles, reminiscent of the ‘curse of dimensionality’ commonly encountered in machine learning 2 . Despite this curse, the machine learning community has developed techniques with remarkable abilities to recognize, classify, and characterize complex sets of data. Here, we show that modern machine learning architectures, such as fully connected and convolutional neural networks 3 , can identify phases and phase transitions in a variety of condensed-matter Hamiltonians. Readily programmable through modern software libraries 4 , 5 , neural networks can be trained to detect multiple types of order parameter, as well as highly non-trivial states with no conventional order, directly from raw state configurations sampled with Monte Carlo 6 , 7 .
Author Melko, Roger G.
Carrasquilla, Juan
Author_xml – sequence: 1
  givenname: Juan
  surname: Carrasquilla
  fullname: Carrasquilla, Juan
  email: jcarrasquilla@perimeterinstitute.ca
  organization: Perimeter Institute for Theoretical Physics
– sequence: 2
  givenname: Roger G.
  surname: Melko
  fullname: Melko, Roger G.
  organization: Perimeter Institute for Theoretical Physics, Department of Physics and Astronomy, University of Waterloo
BookMark eNp90E1LAzEQBuAgCrbVg_9gxYsKa5NN0kyOUvyCihc9h2w226Zss2uSHvrvXa0UqeJp5vC8w8sM0aFvvUXojOAbgimMfbfYRIYpP0ADIhjPCwbkcLcLeoyGMS4xZsWE0AE6f9Zm4bzNGquDd36edQsdbczaOlvplGw4QUe1bqI9_Z4j9HZ_9zp9zGcvD0_T21luKKcp1xVhDAMFJrkWAkAYilnFq5ITURnQpTVWGkEMlVTWpcRQFnUpcEVNbwUdocvt3S6072sbk1q5aGzTaG_bdVRE9p2ZYAA9vdijy3YdfN9OUQIwwRyk_E8RkIwJKL7UeKtMaGMMtlbGJZ1c61PQrlEEq8_Hqt1j-8TVXqILbqXD5k97vbWxN35uw48Ov_AHIpCHhA
CitedBy_id crossref_primary_10_1016_j_tafmec_2023_104218
crossref_primary_10_1080_23746149_2018_1527723
crossref_primary_10_1103_PhysRevA_107_010101
crossref_primary_10_1088_2632_2153_ad33e1
crossref_primary_10_1002_jcc_26494
crossref_primary_10_1140_epjp_s13360_023_04741_4
crossref_primary_10_3389_fphy_2022_915863
crossref_primary_10_3390_e26070552
crossref_primary_10_7566_JPSJ_88_065001
crossref_primary_10_3390_e22050587
crossref_primary_10_3390_e25030446
crossref_primary_10_1103_PhysRevE_108_035308
crossref_primary_10_1103_PhysRevB_98_241411
crossref_primary_10_1103_PhysRevA_105_052424
crossref_primary_10_1364_JOSAB_448047
crossref_primary_10_1103_PhysRevResearch_6_033111
crossref_primary_10_1103_PhysRevB_97_094207
crossref_primary_10_1051_epjconf_201817116005
crossref_primary_10_1103_PhysRevApplied_12_054049
crossref_primary_10_1063_5_0116618
crossref_primary_10_1103_PhysRevA_97_042324
crossref_primary_10_1088_1361_648X_aaddc6
crossref_primary_10_1103_PhysRevC_109_044616
crossref_primary_10_1126_sciadv_adk3452
crossref_primary_10_1103_PhysRevB_102_134213
crossref_primary_10_1103_PhysRevE_98_053305
crossref_primary_10_1039_D1SM00266J
crossref_primary_10_1103_PhysRevE_98_053304
crossref_primary_10_1038_s41598_018_23471_7
crossref_primary_10_1016_j_scib_2023_04_003
crossref_primary_10_1103_PhysRevB_99_214306
crossref_primary_10_1103_PhysRevB_107_165149
crossref_primary_10_1073_pnas_2016708118
crossref_primary_10_1103_PhysRevB_110_214415
crossref_primary_10_1038_s41377_021_00482_0
crossref_primary_10_1021_acsphotonics_0c00266
crossref_primary_10_1063_5_0096938
crossref_primary_10_1103_PhysRevB_108_165408
crossref_primary_10_1103_PhysRevD_109_074509
crossref_primary_10_1103_PhysRevE_101_022502
crossref_primary_10_1103_PhysRevLett_121_255702
crossref_primary_10_3390_molecules26041022
crossref_primary_10_1002_mats_202400009
crossref_primary_10_1007_s11433_023_2221_8
crossref_primary_10_1103_PhysRevB_101_241105
crossref_primary_10_1103_PhysRevX_10_011037
crossref_primary_10_3938_jkps_72_1292
crossref_primary_10_1016_j_ijheatmasstransfer_2018_04_156
crossref_primary_10_1103_PhysRevA_103_012419
crossref_primary_10_1038_s41598_019_42277_9
crossref_primary_10_1103_PhysRevB_99_064103
crossref_primary_10_1088_1402_4896_ad85aa
crossref_primary_10_1103_PhysRevD_106_L051502
crossref_primary_10_1103_PhysRevE_101_042101
crossref_primary_10_1016_j_cpc_2024_109169
crossref_primary_10_1103_PhysRevE_101_042102
crossref_primary_10_1103_PhysRevB_110_165134
crossref_primary_10_1103_PhysRevResearch_2_033212
crossref_primary_10_1209_0295_5075_ad0575
crossref_primary_10_1088_2632_2153_abc609
crossref_primary_10_1103_PhysRevB_97_174435
crossref_primary_10_1088_2632_2153_abf5ee
crossref_primary_10_1038_s41567_018_0048_5
crossref_primary_10_1088_2632_2153_ab9803
crossref_primary_10_1103_PhysRevE_102_053306
crossref_primary_10_1038_s41567_019_0554_0
crossref_primary_10_11648_j_ajist_20240802_12
crossref_primary_10_1140_epjqt_s40507_022_00138_x
crossref_primary_10_3390_e24121701
crossref_primary_10_1039_D0MH01358G
crossref_primary_10_1364_OSAC_397103
crossref_primary_10_1016_j_compchemeng_2020_106989
crossref_primary_10_1073_pnas_2015785118
crossref_primary_10_1007_s11128_024_04296_y
crossref_primary_10_1038_s41534_019_0201_8
crossref_primary_10_1038_s41524_020_00460_x
crossref_primary_10_1103_PhysRevA_101_052338
crossref_primary_10_1088_1361_6633_aa91ea
crossref_primary_10_1088_1361_6463_ad6ba0
crossref_primary_10_1126_sciadv_aaz4074
crossref_primary_10_1103_PhysRevC_104_034608
crossref_primary_10_1103_PhysRevE_97_032119
crossref_primary_10_1109_TCBB_2020_3018901
crossref_primary_10_1021_acs_jpcb_8b12557
crossref_primary_10_1088_2632_2153_abffe7
crossref_primary_10_1038_s41598_022_23350_2
crossref_primary_10_1088_1742_6596_2207_1_012058
crossref_primary_10_1088_1742_6596_2207_1_012057
crossref_primary_10_1038_s41467_021_22270_5
crossref_primary_10_1103_PhysRevB_100_045153
crossref_primary_10_1103_PhysRevResearch_5_013026
crossref_primary_10_1103_PhysRevResearch_5_043090
crossref_primary_10_1038_nphys4053
crossref_primary_10_3390_e24050697
crossref_primary_10_1103_RevModPhys_91_045002
crossref_primary_10_1103_PhysRevA_105_042403
crossref_primary_10_1016_j_scitotenv_2021_150554
crossref_primary_10_1038_s41534_023_00747_z
crossref_primary_10_1088_0256_307X_40_12_122101
crossref_primary_10_1088_2632_2153_acc007
crossref_primary_10_1103_PRXQuantum_2_040201
crossref_primary_10_1016_j_eml_2021_101372
crossref_primary_10_1007_s00214_021_02726_z
crossref_primary_10_1038_s41598_023_33301_0
crossref_primary_10_1038_s41598_017_09098_0
crossref_primary_10_1103_PhysRevA_97_052333
crossref_primary_10_1140_epjp_s13360_022_03587_6
crossref_primary_10_1186_s13007_023_01046_6
crossref_primary_10_1103_PhysRevE_99_013311
crossref_primary_10_1038_s41567_018_0081_4
crossref_primary_10_1016_j_rinp_2021_105134
crossref_primary_10_1002_adma_202106248
crossref_primary_10_1063_5_0209912
crossref_primary_10_1038_s41598_021_85683_8
crossref_primary_10_1103_PhysRevA_103_022425
crossref_primary_10_1016_j_rinp_2023_107264
crossref_primary_10_1039_C8SC02648C
crossref_primary_10_1073_pnas_2004976117
crossref_primary_10_1103_PhysRevB_107_075146
crossref_primary_10_3390_e21121152
crossref_primary_10_1088_1361_6455_ac6f33
crossref_primary_10_1103_PhysRevB_107_075147
crossref_primary_10_1088_1361_6633_aab406
crossref_primary_10_1088_1367_2630_ab8ab4
crossref_primary_10_1103_PhysRevLett_126_150602
crossref_primary_10_1021_acsanm_2c01644
crossref_primary_10_1103_PhysRevE_99_062701
crossref_primary_10_1088_1367_2630_ab8aaf
crossref_primary_10_21468_SciPostPhys_16_5_132
crossref_primary_10_1063_5_0046406
crossref_primary_10_1088_1367_2630_abdefa
crossref_primary_10_1016_j_commatsci_2022_111634
crossref_primary_10_1038_s41567_019_0545_1
crossref_primary_10_1038_s41598_017_11266_1
crossref_primary_10_1038_s41524_019_0221_0
crossref_primary_10_1007_JHEP10_2023_107
crossref_primary_10_1038_s41377_024_01723_8
crossref_primary_10_1038_s41598_021_84336_0
crossref_primary_10_1103_PhysRevResearch_2_033415
crossref_primary_10_1038_s41586_018_0337_2
crossref_primary_10_1088_1361_6560_ab3fc1
crossref_primary_10_1103_PhysRevE_100_033311
crossref_primary_10_1063_1_5094838
crossref_primary_10_1103_PhysRevX_10_011006
crossref_primary_10_1103_PhysRevX_15_011013
crossref_primary_10_1103_PhysRevD_107_034506
crossref_primary_10_1021_acsomega_1c06856
crossref_primary_10_1103_PhysRevB_97_094417
crossref_primary_10_1016_j_engfracmech_2020_107402
crossref_primary_10_1103_PhysRevResearch_1_032039
crossref_primary_10_1038_s41598_020_58263_5
crossref_primary_10_1103_PhysRevB_104_165108
crossref_primary_10_7498_aps_72_20230896
crossref_primary_10_1103_PhysRevA_105_042616
crossref_primary_10_1016_j_physa_2023_128666
crossref_primary_10_1088_1674_1056_abd160
crossref_primary_10_1088_2058_9565_ac310f
crossref_primary_10_1103_PhysRevLett_127_046601
crossref_primary_10_1103_PhysRevResearch_3_013074
crossref_primary_10_1103_PhysRevResearch_2_043202
crossref_primary_10_1088_1742_5468_ab9e60
crossref_primary_10_1103_PhysRevD_97_094506
crossref_primary_10_1186_s40537_020_00316_7
crossref_primary_10_1088_2058_9565_ada79b
crossref_primary_10_1088_1402_4896_ad7ab6
crossref_primary_10_1088_1361_6633_ad208c
crossref_primary_10_1021_acscentsci_3c00515
crossref_primary_10_1063_5_0062508
crossref_primary_10_1103_PhysRevResearch_4_023163
crossref_primary_10_1021_acs_analchem_0c04671
crossref_primary_10_1103_PhysRevApplied_15_054034
crossref_primary_10_1088_1402_4896_ad5879
crossref_primary_10_1103_PhysRevB_102_224434
crossref_primary_10_1140_epjp_s13360_024_05707_w
crossref_primary_10_1088_2399_6528_abd7c3
crossref_primary_10_3367_UFNr_2022_12_039303
crossref_primary_10_1103_PhysRevB_99_075418
crossref_primary_10_1103_PhysRevE_103_023310
crossref_primary_10_1134_S0021364022100381
crossref_primary_10_1155_2022_9638108
crossref_primary_10_1007_s11768_019_8289_0
crossref_primary_10_1103_PhysRevB_105_214205
crossref_primary_10_1016_j_dajour_2025_100547
crossref_primary_10_1103_PhysRevA_105_042432
crossref_primary_10_1103_PhysRevApplied_17_054022
crossref_primary_10_1103_PhysRevE_100_032414
crossref_primary_10_1103_PhysRevC_106_L051901
crossref_primary_10_1038_nphys4037
crossref_primary_10_1103_PhysRevLett_120_257204
crossref_primary_10_1140_epjp_s13360_021_02121_4
crossref_primary_10_1007_s10118_020_2442_6
crossref_primary_10_1038_s41566_020_0685_y
crossref_primary_10_1088_1751_8121_ab7df6
crossref_primary_10_1103_PhysRevLett_121_255304
crossref_primary_10_1016_j_physa_2022_128154
crossref_primary_10_1063_5_0139118
crossref_primary_10_3367_UFNe_2022_12_039303
crossref_primary_10_1063_5_0216862
crossref_primary_10_1002_adma_202109171
crossref_primary_10_1088_1361_648X_abe39e
crossref_primary_10_1088_1367_2630_aaf749
crossref_primary_10_1088_1751_8121_ac331d
crossref_primary_10_1016_j_physleta_2024_130179
crossref_primary_10_1038_s41534_018_0081_3
crossref_primary_10_1088_1367_2630_ac9c7a
crossref_primary_10_1088_1361_6463_ad1e27
crossref_primary_10_1103_PhysRevD_100_011501
crossref_primary_10_1364_OME_470819
crossref_primary_10_1063_1674_0068_cjcp2107124
crossref_primary_10_1016_j_nanoen_2021_106002
crossref_primary_10_1039_D1SM00358E
crossref_primary_10_1016_j_physleta_2021_127589
crossref_primary_10_1103_PhysRevB_108_205152
crossref_primary_10_1134_S0021364024603440
crossref_primary_10_3389_fdgth_2024_1463419
crossref_primary_10_1103_PhysRevA_105_033301
crossref_primary_10_1103_PhysRevB_95_245134
crossref_primary_10_22331_q_2019_09_02_183
crossref_primary_10_1103_PhysRevLett_124_226401
crossref_primary_10_1103_PhysRevB_101_195141
crossref_primary_10_1016_j_ijheatmasstransfer_2018_12_170
crossref_primary_10_1103_PhysRevE_104_044105
crossref_primary_10_1080_23746149_2020_1797528
crossref_primary_10_1016_j_ijfatigue_2024_108169
crossref_primary_10_1021_acs_jpclett_0c00627
crossref_primary_10_1103_PhysRevB_101_214308
crossref_primary_10_1103_PhysRevLett_123_108002
crossref_primary_10_1116_5_0007529
crossref_primary_10_1103_PhysRevA_105_022413
crossref_primary_10_1103_PhysRevLett_129_198003
crossref_primary_10_1088_2632_2153_ac2800
crossref_primary_10_1103_PhysRevLett_124_100401
crossref_primary_10_1103_PhysRevB_98_104426
crossref_primary_10_1038_s41467_022_33737_4
crossref_primary_10_1103_PhysRevB_104_075114
crossref_primary_10_1103_PhysRevD_102_054501
crossref_primary_10_1103_PhysRevResearch_5_043250
crossref_primary_10_3390_sym12050774
crossref_primary_10_1088_1674_1056_ac2490
crossref_primary_10_1103_PhysRevA_109_013303
crossref_primary_10_1038_s42254_022_00552_1
crossref_primary_10_1103_PhysRevE_100_032402
crossref_primary_10_1016_j_cartre_2022_100231
crossref_primary_10_1016_j_nanoen_2021_106227
crossref_primary_10_1103_PhysRevA_102_062405
crossref_primary_10_1103_PhysRevA_99_053419
crossref_primary_10_2139_ssrn_4893681
crossref_primary_10_1007_s11128_023_03871_z
crossref_primary_10_1103_PhysRevB_101_195136
crossref_primary_10_1103_PhysRevB_105_235136
crossref_primary_10_1016_j_rinp_2022_105832
crossref_primary_10_1021_acsnano_9b02687
crossref_primary_10_1016_j_physa_2024_129533
crossref_primary_10_1016_j_physleta_2021_127569
crossref_primary_10_1103_PhysRevE_99_023304
crossref_primary_10_1088_2632_2153_abae73
crossref_primary_10_1073_pnas_2106400118
crossref_primary_10_1016_j_jmmm_2020_166482
crossref_primary_10_1103_PhysRevLett_121_245701
crossref_primary_10_1063_1_5121401
crossref_primary_10_1103_PhysRevResearch_4_033175
crossref_primary_10_1002_advs_201801691
crossref_primary_10_1038_s41567_019_0565_x
crossref_primary_10_1016_j_aop_2021_168500
crossref_primary_10_1038_s41598_018_36574_y
crossref_primary_10_1093_ptep_ptz082
crossref_primary_10_1140_epjp_s13360_021_01206_4
crossref_primary_10_1038_s41598_023_38863_7
crossref_primary_10_7566_JPSJ_87_074002
crossref_primary_10_1103_PhysRevE_103_013309
crossref_primary_10_1103_PhysRevA_101_062331
crossref_primary_10_1103_PhysRevB_97_045207
crossref_primary_10_1103_PhysRevE_103_013302
crossref_primary_10_1088_1572_9494_ad3227
crossref_primary_10_1088_1674_1137_ad5f80
crossref_primary_10_1088_2515_7639_ab084b
crossref_primary_10_1103_PhysRevApplied_21_034009
crossref_primary_10_1021_acs_chemrev_0c01303
crossref_primary_10_1021_acsnano_8b03569
crossref_primary_10_1109_JLT_2018_2821361
crossref_primary_10_1016_j_eswa_2023_120013
crossref_primary_10_1063_5_0015301
crossref_primary_10_1063_5_0188516
crossref_primary_10_1088_1674_1056_ac4e0c
crossref_primary_10_1103_PhysRevE_98_022138
crossref_primary_10_3390_s21216982
crossref_primary_10_1088_1367_2630_ac7df6
crossref_primary_10_1021_acsami_9b14792
crossref_primary_10_1103_PhysRevE_107_054104
crossref_primary_10_22331_q_2020_09_16_324
crossref_primary_10_1088_1361_6501_ab44d8
crossref_primary_10_1103_PhysRevA_109_012403
crossref_primary_10_1038_s41567_019_0648_8
crossref_primary_10_1088_1742_6596_2150_1_012031
crossref_primary_10_1038_s41467_023_36159_y
crossref_primary_10_1103_PhysRevA_102_032412
crossref_primary_10_1088_1361_648X_ac2f0f
crossref_primary_10_1103_PhysRevB_111_045408
crossref_primary_10_1016_j_measurement_2024_116098
crossref_primary_10_1063_5_0169961
crossref_primary_10_21468_SciPostPhysCore_7_2_035
crossref_primary_10_1038_s41598_019_51238_1
crossref_primary_10_1007_s41614_022_00083_3
crossref_primary_10_1103_PhysRevLett_130_036401
crossref_primary_10_1103_PhysRevE_105_024121
crossref_primary_10_1140_epjb_s10051_021_00261_1
crossref_primary_10_1051_epjconf_201817511025
crossref_primary_10_1016_j_jmrt_2022_12_143
crossref_primary_10_1063_5_0010904
crossref_primary_10_1088_1367_2630_ab5c5e
crossref_primary_10_1088_1367_2630_ac1709
crossref_primary_10_1103_PhysRevB_108_075152
crossref_primary_10_1038_nphys4302
crossref_primary_10_1103_PhysRevB_103_205107
crossref_primary_10_1155_2023_3766214
crossref_primary_10_1088_1751_8121_ad72ba
crossref_primary_10_1103_PhysRevC_104_044902
crossref_primary_10_1103_PhysRevE_98_022116
crossref_primary_10_1038_s42256_020_00240_8
crossref_primary_10_1103_PhysRevResearch_3_013238
crossref_primary_10_1103_PhysRevB_105_075425
crossref_primary_10_1103_PhysRevApplied_16_014005
crossref_primary_10_1103_PhysRevLett_121_167204
crossref_primary_10_1088_1361_648X_ac2533
crossref_primary_10_1103_PhysRevLett_131_157101
crossref_primary_10_1021_acsnano_8b07980
crossref_primary_10_1103_PhysRevB_101_064406
crossref_primary_10_1103_PhysRevResearch_4_L032043
crossref_primary_10_1103_PhysRevB_102_094101
crossref_primary_10_21468_SciPostPhys_12_5_165
crossref_primary_10_1016_j_commatsci_2021_110702
crossref_primary_10_1209_0295_5075_ad5468
crossref_primary_10_1103_PhysRevE_108_065304
crossref_primary_10_1002_inf2_12116
crossref_primary_10_1103_PhysRevC_104_055802
crossref_primary_10_1103_PhysRevB_99_094427
crossref_primary_10_1103_PhysRevB_103_035413
crossref_primary_10_1038_s41467_022_32313_0
crossref_primary_10_1016_j_scib_2020_09_009
crossref_primary_10_1088_1367_2630_ac68ff
crossref_primary_10_3389_fphy_2021_738112
crossref_primary_10_1103_PhysRevE_99_043307
crossref_primary_10_1103_PhysRevE_99_043308
crossref_primary_10_1103_PhysRevD_102_096001
crossref_primary_10_1016_j_nancom_2020_100312
crossref_primary_10_3390_e25020197
crossref_primary_10_1088_1361_6471_abb1f9
crossref_primary_10_1021_acs_nanolett_9b04090
crossref_primary_10_1088_1742_6596_1740_1_012003
crossref_primary_10_1002_adma_202107839
crossref_primary_10_1038_s43246_021_00209_z
crossref_primary_10_1038_s41467_022_31679_5
crossref_primary_10_1103_PhysRevLett_122_210503
crossref_primary_10_1002_jcc_26707
crossref_primary_10_1021_acs_jpcc_9b01045
crossref_primary_10_1088_2632_2153_abda08
crossref_primary_10_1103_PhysRevB_105_214423
crossref_primary_10_1103_PhysRevResearch_3_023230
crossref_primary_10_3389_fphy_2022_858388
crossref_primary_10_1016_j_commatsci_2024_113600
crossref_primary_10_1109_JETCAS_2020_2970080
crossref_primary_10_1038_s41598_021_88931_z
crossref_primary_10_7566_JPSJ_93_064002
crossref_primary_10_1103_PhysRevB_97_134109
crossref_primary_10_1038_s41598_020_59435_z
crossref_primary_10_1103_PhysRevB_102_195148
crossref_primary_10_1134_S0026893319010175
crossref_primary_10_1103_PhysRevE_106_025305
crossref_primary_10_1126_sciadv_aau6792
crossref_primary_10_1039_D0SM00488J
crossref_primary_10_1142_S2810939222500058
crossref_primary_10_7566_JPSJ_87_014001
crossref_primary_10_1088_1367_2630_abc463
crossref_primary_10_1088_1361_6668_acbb34
crossref_primary_10_1016_j_scib_2019_07_014
crossref_primary_10_1103_PhysRevLett_126_110502
crossref_primary_10_1038_s41467_020_18653_9
crossref_primary_10_1103_PhysRevE_97_013306
crossref_primary_10_1103_PhysRevResearch_4_043118
crossref_primary_10_1038_s41598_023_38335_y
crossref_primary_10_1103_PhysRevResearch_3_033267
crossref_primary_10_1088_1361_648X_abbe7b
crossref_primary_10_1103_PhysRevB_99_104410
crossref_primary_10_1103_PhysRevE_103_043307
crossref_primary_10_1103_PhysRevResearch_3_023256
crossref_primary_10_1002_nano_202100006
crossref_primary_10_1088_1361_6455_aad62b
crossref_primary_10_1103_PhysRevE_103_033303
crossref_primary_10_1103_PhysRevB_97_075114
crossref_primary_10_1038_s41567_024_02717_4
crossref_primary_10_1103_PhysRevE_103_033305
crossref_primary_10_1007_s10118_023_2910_x
crossref_primary_10_1021_acs_jpca_1c06685
crossref_primary_10_1073_pnas_1714936115
crossref_primary_10_1103_PhysRevResearch_3_023016
crossref_primary_10_1088_1361_648X_ad98da
crossref_primary_10_1007_s11467_021_1111_8
crossref_primary_10_1103_PhysRevResearch_3_033052
crossref_primary_10_1007_s41365_022_01140_9
crossref_primary_10_1088_1742_5468_aae025
crossref_primary_10_21468_SciPostPhys_12_3_107
crossref_primary_10_1002_int_22603
crossref_primary_10_1103_PhysRevB_100_155141
crossref_primary_10_1103_PhysRevE_107_044128
crossref_primary_10_1088_2632_2153_ab43b4
crossref_primary_10_1103_PhysRevResearch_4_L022032
crossref_primary_10_1016_j_commatsci_2023_112442
crossref_primary_10_1080_00018732_2017_1341604
crossref_primary_10_1139_cjp_2021_0006
crossref_primary_10_1016_j_epsr_2022_109065
crossref_primary_10_1103_PhysRevLett_119_030501
crossref_primary_10_1002_adom_202200158
crossref_primary_10_1088_2632_2153_aba183
crossref_primary_10_1088_1742_5468_aaf10f
crossref_primary_10_7566_JPSJ_89_022001
crossref_primary_10_1088_2632_2153_acc0d6
crossref_primary_10_1103_PhysRevB_100_020302
crossref_primary_10_1002_inf2_12168
crossref_primary_10_1039_C8SC04578J
crossref_primary_10_1088_2058_9565_aaf59e
crossref_primary_10_1088_1367_2630_ac7fb2
crossref_primary_10_1002_jcc_26508
crossref_primary_10_3390_make1010007
crossref_primary_10_1038_s41598_021_92278_w
crossref_primary_10_1088_1361_648X_ab9f09
crossref_primary_10_1103_PhysRevB_104_224307
crossref_primary_10_1103_PhysRevResearch_2_023150
crossref_primary_10_7566_JPSJ_94_031002
crossref_primary_10_7566_JPSJ_94_031003
crossref_primary_10_1103_PhysRevA_104_063316
crossref_primary_10_7566_JPSJ_94_031004
crossref_primary_10_1038_s41467_024_53748_7
crossref_primary_10_1038_s41565_020_00779_y
crossref_primary_10_1007_s44214_023_00043_z
crossref_primary_10_1038_s41467_022_32611_7
crossref_primary_10_1103_PhysRevB_106_205112
crossref_primary_10_3390_make1010001
crossref_primary_10_1088_1367_2630_ab6f1f
crossref_primary_10_1103_PhysRevE_98_042114
crossref_primary_10_1021_acs_macromol_0c02655
crossref_primary_10_3390_universe9020082
crossref_primary_10_1038_s42005_023_01408_5
crossref_primary_10_1140_epjb_s10051_022_00453_3
crossref_primary_10_1002_adts_202100063
crossref_primary_10_1063_5_0222403
crossref_primary_10_1103_PhysRevA_111_023307
crossref_primary_10_1039_D3SM00902E
crossref_primary_10_1103_PhysRevB_98_060301
crossref_primary_10_1103_PhysRevB_102_054512
crossref_primary_10_1063_PT_3_4164
crossref_primary_10_1103_PhysRevLett_126_020601
crossref_primary_10_1103_PhysRevResearch_6_033091
crossref_primary_10_1038_s41467_018_07737_2
crossref_primary_10_1103_PhysRevResearch_3_033223
crossref_primary_10_1039_C9SM01979K
crossref_primary_10_1038_s41578_021_00340_w
crossref_primary_10_1103_PhysRevD_105_014017
crossref_primary_10_1103_PhysRevResearch_3_023212
crossref_primary_10_1039_D3SM01593A
crossref_primary_10_21468_SciPostPhysCore_5_2_032
crossref_primary_10_1016_j_chip_2021_100002
crossref_primary_10_21468_SciPostPhysCore_8_1_029
crossref_primary_10_1088_1361_648X_acb030
crossref_primary_10_1103_PhysRevA_102_033326
crossref_primary_10_1103_PhysRevE_108_064613
crossref_primary_10_1080_03080188_2020_1840224
crossref_primary_10_1088_2632_2153_aba821
crossref_primary_10_1103_PhysRevE_104_015311
crossref_primary_10_1021_acs_jpcb_2c08583
crossref_primary_10_1103_PhysRevE_111_024131
crossref_primary_10_1088_1674_1137_adaa59
crossref_primary_10_1103_PhysRevB_106_L081411
crossref_primary_10_1103_PhysRevB_98_085402
crossref_primary_10_1103_PhysRevB_99_245120
crossref_primary_10_1103_PhysRevLett_124_185501
crossref_primary_10_1021_acs_nanolett_8b03171
crossref_primary_10_1007_s00500_019_04429_x
crossref_primary_10_1103_PhysRevA_102_012415
crossref_primary_10_21468_SciPostPhysCore_6_4_086
crossref_primary_10_21468_SciPostPhysCore_6_4_087
crossref_primary_10_1007_s11467_023_1311_5
crossref_primary_10_1103_PhysRevResearch_2_013354
crossref_primary_10_1038_s41524_020_0309_6
crossref_primary_10_1103_PhysRevE_99_063304
crossref_primary_10_1016_j_apenergy_2022_119390
crossref_primary_10_1038_s41598_020_70389_0
crossref_primary_10_1364_PRJ_435766
crossref_primary_10_1103_PhysRevResearch_2_022060
crossref_primary_10_22331_q_2023_04_17_981
crossref_primary_10_1088_1361_648X_ac7d85
crossref_primary_10_1103_PhysRevLett_124_113202
crossref_primary_10_1109_MITS_2020_3014079
crossref_primary_10_1103_PhysRevA_99_012307
crossref_primary_10_1038_s42005_021_00755_5
crossref_primary_10_1103_PhysRevB_108_214428
crossref_primary_10_1016_j_apacoust_2022_109052
crossref_primary_10_1103_PhysRevA_109_052623
crossref_primary_10_1103_PhysRevResearch_6_L022064
crossref_primary_10_1103_PhysRevB_107_134420
crossref_primary_10_1016_j_physa_2022_127538
crossref_primary_10_7498_aps_70_20210831
crossref_primary_10_1088_0256_307X_39_5_050701
crossref_primary_10_1103_PhysRevX_13_041038
crossref_primary_10_1088_1361_648X_abb895
crossref_primary_10_1103_PhysRevResearch_2_033154
crossref_primary_10_1038_s41524_019_0262_4
crossref_primary_10_1103_Physics_10_56
crossref_primary_10_1103_PhysRevResearch_2_033399
crossref_primary_10_1103_PhysRevResearch_6_013265
crossref_primary_10_1103_PhysRevResearch_7_013306
crossref_primary_10_1364_OME_425263
crossref_primary_10_1063_5_0122274
crossref_primary_10_1103_PhysRevB_99_060404
crossref_primary_10_1007_s11837_022_05371_4
crossref_primary_10_1088_1367_2630_abae44
crossref_primary_10_1103_PhysRevLett_125_170501
crossref_primary_10_1016_j_commatsci_2023_112628
crossref_primary_10_1016_j_cej_2024_155141
crossref_primary_10_1103_PhysRevResearch_2_023369
crossref_primary_10_1103_PhysRevA_107_022402
crossref_primary_10_1103_PhysRevX_11_011040
crossref_primary_10_1088_0256_307X_38_5_051101
crossref_primary_10_1038_s41598_023_33134_x
crossref_primary_10_1142_S0219749922500241
crossref_primary_10_1080_00268976_2018_1483537
crossref_primary_10_1038_s41467_024_53101_y
crossref_primary_10_1002_aenm_201903242
crossref_primary_10_1016_j_physletb_2021_136084
crossref_primary_10_1088_0256_307X_36_9_097501
crossref_primary_10_1002_adma_202002425
crossref_primary_10_1103_PhysRevB_107_134204
crossref_primary_10_1103_PhysRevLett_120_240402
crossref_primary_10_1021_acs_jpclett_1c01272
crossref_primary_10_1103_PhysRevResearch_2_033375
crossref_primary_10_1051_epjconf_202225809001
crossref_primary_10_1063_5_0147316
crossref_primary_10_1038_s41598_017_13604_9
crossref_primary_10_1063_1_5103210
crossref_primary_10_1103_PhysRevX_11_021052
crossref_primary_10_1103_PhysRevA_102_022412
crossref_primary_10_1088_2632_072X_abe6e9
crossref_primary_10_1063_5_0005194
crossref_primary_10_1103_PhysRevX_7_031038
crossref_primary_10_1145_3529756
crossref_primary_10_1103_PhysRevB_101_075111
crossref_primary_10_1103_PhysRevB_110_024204
crossref_primary_10_1103_PhysRevB_110_195108
crossref_primary_10_1103_PhysRevB_100_125124
crossref_primary_10_1038_s41567_020_1018_2
crossref_primary_10_1016_j_nuclphysa_2018_11_004
crossref_primary_10_1038_s41467_024_45882_z
crossref_primary_10_1063_5_0076324
crossref_primary_10_1103_PhysRevB_102_075409
crossref_primary_10_2139_ssrn_3961645
crossref_primary_10_1007_s10118_023_2891_9
crossref_primary_10_1103_PhysRevA_104_043305
crossref_primary_10_1103_PhysRevB_97_035116
crossref_primary_10_1103_PhysRevB_102_054107
crossref_primary_10_1038_s41598_019_53411_y
crossref_primary_10_1088_1751_8121_aaaaf2
crossref_primary_10_1021_acsnano_7b07504
crossref_primary_10_1016_j_cma_2018_10_025
crossref_primary_10_1016_j_engstruct_2023_115749
crossref_primary_10_1103_PhysRevB_99_075132
crossref_primary_10_1109_JPHOT_2020_3022053
crossref_primary_10_1103_PhysRevLett_125_127401
crossref_primary_10_1103_PhysRevLett_132_207301
crossref_primary_10_1126_sciadv_aav2761
crossref_primary_10_1364_OPTICA_6_001132
crossref_primary_10_1007_s11943_017_0208_6
crossref_primary_10_1016_j_jsv_2024_118789
crossref_primary_10_1088_1402_4896_ac5ff6
crossref_primary_10_1103_PhysRevE_105_044306
crossref_primary_10_1142_S2010324722500060
crossref_primary_10_7566_JPSJ_87_033001
crossref_primary_10_3390_condmat7020038
crossref_primary_10_1016_j_physa_2018_03_084
crossref_primary_10_3390_ma14051192
crossref_primary_10_1103_PhysRevE_108_L022302
crossref_primary_10_1103_PhysRevB_99_041108
crossref_primary_10_1103_PhysRevE_108_L032102
crossref_primary_10_1103_PhysRevE_108_034104
crossref_primary_10_1021_acs_jpcc_0c01195
crossref_primary_10_1103_PhysRevX_8_031084
crossref_primary_10_1038_s41534_022_00629_w
crossref_primary_10_1103_PhysRevX_8_031086
crossref_primary_10_22331_q_2022_05_17_714
crossref_primary_10_1103_PhysRevResearch_5_013110
crossref_primary_10_1103_PhysRevResearch_2_033125
crossref_primary_10_1016_j_physleta_2022_127921
crossref_primary_10_1103_PhysRevA_104_L041301
crossref_primary_10_1103_PhysRevB_104_L041106
crossref_primary_10_1038_s41598_019_42125_w
crossref_primary_10_1103_PhysRevB_103_075106
crossref_primary_10_1103_PhysRevB_99_075113
crossref_primary_10_1126_science_abk3333
crossref_primary_10_1038_s41524_019_0224_x
crossref_primary_10_1063_5_0147231
crossref_primary_10_3390_condmat7010017
crossref_primary_10_1016_j_fuel_2023_129948
crossref_primary_10_1063_1_5114643
crossref_primary_10_1093_ptep_ptae147
crossref_primary_10_1140_epjp_s13360_022_03597_4
crossref_primary_10_1016_j_commatsci_2025_113790
crossref_primary_10_1103_PhysRevB_99_121104
crossref_primary_10_1103_PhysRevE_105_064139
crossref_primary_10_1103_Physics_13_2
crossref_primary_10_1103_PhysRevB_99_054208
crossref_primary_10_1063_5_0126571
crossref_primary_10_1038_s41524_019_0148_5
crossref_primary_10_1103_PhysRevE_96_022140
crossref_primary_10_1016_j_cels_2023_02_004
crossref_primary_10_1103_PhysRevResearch_2_023300
crossref_primary_10_1038_s41598_024_81436_5
crossref_primary_10_1038_s41598_024_69366_8
crossref_primary_10_1103_PhysRevB_103_245111
crossref_primary_10_1088_0256_307X_37_8_080501
crossref_primary_10_1016_j_electacta_2021_139424
crossref_primary_10_1021_acs_jcim_0c01072
crossref_primary_10_1103_PhysRevLett_120_176401
crossref_primary_10_3390_cryst9010054
crossref_primary_10_1002_adfm_202315177
crossref_primary_10_1039_D0CP03456H
crossref_primary_10_1103_PhysRevB_103_134422
crossref_primary_10_1103_PhysRevB_111_024112
crossref_primary_10_1103_PhysRevE_98_052129
crossref_primary_10_1007_s11433_018_9407_5
crossref_primary_10_1103_PhysRevB_96_144432
crossref_primary_10_1103_PhysRevB_97_205110
crossref_primary_10_1103_PhysRevLett_127_190403
crossref_primary_10_1021_acs_chemrev_0c01047
crossref_primary_10_1038_s41524_017_0055_6
crossref_primary_10_1088_1674_1137_aca5f5
crossref_primary_10_1103_PhysRevResearch_6_033035
crossref_primary_10_1103_PhysRevB_98_174411
crossref_primary_10_1016_j_nuclphysb_2019_114639
crossref_primary_10_1038_s41524_020_0318_5
crossref_primary_10_1038_s41598_024_82990_8
crossref_primary_10_1103_PhysRevApplied_11_024020
crossref_primary_10_1103_PhysRevResearch_5_013146
crossref_primary_10_1016_j_commatsci_2021_110560
crossref_primary_10_3390_diagnostics10110972
crossref_primary_10_1209_0295_5075_ad0c6f
crossref_primary_10_1103_PhysRevApplied_19_054078
crossref_primary_10_1088_2053_1591_aafa9f
crossref_primary_10_1088_1402_4896_ab7a35
crossref_primary_10_1103_PhysRevB_99_165123
crossref_primary_10_1103_PhysRevLett_124_097201
crossref_primary_10_1103_PhysRevResearch_6_033052
crossref_primary_10_1109_ACCESS_2020_3000901
crossref_primary_10_7498_aps_70_20210789
crossref_primary_10_1103_PhysRevX_11_041021
crossref_primary_10_1103_PhysRevX_8_011006
crossref_primary_10_7498_aps_68_20190643
crossref_primary_10_1038_s41467_020_15402_w
crossref_primary_10_1002_qute_201800085
crossref_primary_10_1039_D0CP02894K
crossref_primary_10_1063_9_0000078
crossref_primary_10_1021_acs_jpcc_0c06673
crossref_primary_10_1103_PhysRevB_103_134203
crossref_primary_10_1103_PhysRevLett_125_140604
crossref_primary_10_1103_PhysRevA_98_010701
crossref_primary_10_7566_JPSJ_90_094001
crossref_primary_10_1088_2632_2153_ac338d
crossref_primary_10_1093_ptep_ptad096
crossref_primary_10_21468_SciPostPhys_8_6_087
crossref_primary_10_1103_PhysRevB_101_115111
crossref_primary_10_1103_PhysRevApplied_13_064017
crossref_primary_10_1038_s41586_019_1319_8
crossref_primary_10_1016_j_cocom_2021_e00605
crossref_primary_10_1103_PhysRevB_106_134437
crossref_primary_10_1002_advs_202003165
crossref_primary_10_1103_PhysRevB_97_205140
crossref_primary_10_1103_PhysRevB_104_104205
crossref_primary_10_1007_s40042_021_00180_5
crossref_primary_10_1088_0256_307X_40_2_027501
crossref_primary_10_22331_q_2023_08_29_1096
crossref_primary_10_1038_s41467_024_51439_x
crossref_primary_10_1088_1367_2630_ab8262
crossref_primary_10_1088_1367_2630_ab8261
crossref_primary_10_1002_adma_201904790
crossref_primary_10_1109_TPDS_2022_3161187
crossref_primary_10_1038_s41524_022_00889_2
crossref_primary_10_1021_acs_jpclett_8b00430
crossref_primary_10_1103_PhysRevResearch_7_013070
crossref_primary_10_1140_epjp_s13360_024_05563_8
crossref_primary_10_1093_ptep_ptab057
crossref_primary_10_1039_D0CP02058C
crossref_primary_10_1088_1367_2630_ac0b02
crossref_primary_10_1103_PhysRevE_95_062122
crossref_primary_10_1016_j_ppnp_2023_104084
crossref_primary_10_1039_D3MA00591G
crossref_primary_10_1088_0256_307X_40_2_020501
crossref_primary_10_1088_0256_307X_38_11_110301
crossref_primary_10_1103_PhysRevB_101_115132
crossref_primary_10_1103_PhysRevB_104_205120
crossref_primary_10_1016_j_actamat_2019_01_051
crossref_primary_10_7566_JPSJ_90_053703
crossref_primary_10_1103_PhysRevMaterials_3_063802
crossref_primary_10_22331_q_2021_12_06_598
crossref_primary_10_7566_JPSJ_93_074005
crossref_primary_10_1038_s41524_022_00745_3
crossref_primary_10_1103_PhysRevA_98_042315
crossref_primary_10_1103_PhysRevB_104_104426
crossref_primary_10_1088_0256_307X_39_12_120502
crossref_primary_10_1038_s41598_020_70558_1
crossref_primary_10_1103_PhysRevE_108_024113
crossref_primary_10_1088_1742_5468_abdc18
crossref_primary_10_1088_1674_1056_ad342b
crossref_primary_10_1016_j_photonics_2022_101076
crossref_primary_10_1038_s41467_018_06598_z
crossref_primary_10_1088_1361_648X_ad5d35
crossref_primary_10_1103_PhysRevC_99_064307
crossref_primary_10_1103_PhysRevB_100_224202
crossref_primary_10_1103_PhysRevD_103_116023
crossref_primary_10_1103_PhysRevResearch_2_043308
crossref_primary_10_1103_PhysRevE_99_032142
crossref_primary_10_1088_1367_2630_ac63da
crossref_primary_10_1063_5_0061571
crossref_primary_10_1002_qute_201800076
crossref_primary_10_1103_PhysRevB_96_161102
crossref_primary_10_1103_PhysRevMaterials_1_043603
crossref_primary_10_1038_s41598_022_07921_x
crossref_primary_10_1109_TMBMC_2020_3035383
crossref_primary_10_1002_qute_201800077
crossref_primary_10_1103_PhysRevMaterials_4_123802
crossref_primary_10_1103_PhysRevApplied_16_064039
crossref_primary_10_1007_s11069_023_06186_5
crossref_primary_10_1140_epjb_e2018_90419_7
crossref_primary_10_3390_quantum4040042
crossref_primary_10_1137_20M131309X
crossref_primary_10_1021_acsnano_1c09298
crossref_primary_10_1002_adts_202200690
crossref_primary_10_1021_acs_jpca_0c04368
crossref_primary_10_1016_j_ppnp_2023_104070
crossref_primary_10_1103_PhysRevB_108_184202
crossref_primary_10_1016_j_jksues_2020_07_002
crossref_primary_10_1088_1742_6596_1290_1_012006
crossref_primary_10_25205_2541_9447_2022_17_2_5_15
crossref_primary_10_1103_PhysRevApplied_16_044039
crossref_primary_10_1016_j_commatsci_2024_113205
crossref_primary_10_1016_j_commatsci_2019_109286
crossref_primary_10_1088_1674_1137_ac28f9
crossref_primary_10_1103_PhysRevLett_121_150503
crossref_primary_10_1088_2632_072X_abaa2b
crossref_primary_10_7566_JPSJ_91_044001
crossref_primary_10_1088_2632_2153_abb213
crossref_primary_10_1007_s10462_024_10874_4
crossref_primary_10_1103_PRXQuantum_6_010350
crossref_primary_10_1103_PhysRevApplied_19_014068
crossref_primary_10_1038_s41598_023_35867_1
crossref_primary_10_1038_s41467_017_02726_3
crossref_primary_10_1038_s41598_022_09870_x
crossref_primary_10_1103_PhysRevResearch_4_023005
crossref_primary_10_1016_j_ijinfomgt_2019_08_002
crossref_primary_10_1038_s41467_021_21625_2
crossref_primary_10_1103_PhysRevLett_125_225701
crossref_primary_10_1103_PhysRevD_103_074510
crossref_primary_10_1016_j_physleta_2021_127697
crossref_primary_10_1103_PhysRevLett_124_084503
crossref_primary_10_7566_JPSJNC_21_23
crossref_primary_10_1021_acs_jpcb_7b10695
crossref_primary_10_1103_PhysRevB_109_075124
crossref_primary_10_1063_5_0107205
crossref_primary_10_1016_j_cpc_2021_107832
crossref_primary_10_1039_D2SM00310D
crossref_primary_10_1093_ptep_ptac173
crossref_primary_10_1007_s11433_020_1575_2
crossref_primary_10_1016_j_nuclphysa_2020_121847
crossref_primary_10_1103_PhysRevLett_118_216401
crossref_primary_10_1103_PhysRevB_99_085118
crossref_primary_10_1038_s41524_019_0202_3
crossref_primary_10_1038_s42005_021_00609_0
crossref_primary_10_1063_5_0024387
crossref_primary_10_1103_PhysRevB_96_245119
crossref_primary_10_1073_pnas_2017392118
crossref_primary_10_1140_epjb_s10051_021_00140_9
crossref_primary_10_1209_0295_5075_132_60004
crossref_primary_10_1088_1361_648X_abea1c
crossref_primary_10_1109_TPS_2023_3268170
crossref_primary_10_1016_j_ultramic_2018_06_017
crossref_primary_10_1038_s41598_019_43465_3
crossref_primary_10_1016_j_matdes_2021_110156
crossref_primary_10_1103_PhysRevE_95_032504
crossref_primary_10_1063_9_0000686
crossref_primary_10_1103_PhysRevB_96_195138
crossref_primary_10_1088_1475_7516_2022_08_071
crossref_primary_10_1088_1367_2630_abc6e6
crossref_primary_10_1016_j_mtcomm_2022_104606
crossref_primary_10_1021_acs_jpclett_1c02923
crossref_primary_10_1103_PhysRevApplied_14_024054
crossref_primary_10_1103_PhysRevE_99_032113
crossref_primary_10_1103_PhysRevE_110_064121
crossref_primary_10_1007_s11128_022_03433_9
crossref_primary_10_1103_PhysRevB_96_195145
crossref_primary_10_1209_0295_5075_126_60002
crossref_primary_10_1515_nanoph_2020_0197
crossref_primary_10_1103_PhysRevResearch_4_013234
crossref_primary_10_1038_s41592_019_0403_1
crossref_primary_10_1088_1361_6528_abe749
crossref_primary_10_3390_cryst12091269
crossref_primary_10_1103_PhysRevE_109_024131
crossref_primary_10_1021_jacs_1c06246
crossref_primary_10_1007_s00521_021_06763_4
crossref_primary_10_1103_PhysRevB_96_184410
crossref_primary_10_1016_j_cpc_2020_107518
crossref_primary_10_1039_D2CS00203E
crossref_primary_10_1103_PhysRevLett_120_240501
crossref_primary_10_1103_PhysRevB_99_104106
crossref_primary_10_1364_OE_490070
crossref_primary_10_1088_1751_8121_acd156
crossref_primary_10_1103_PhysRevB_102_115140
crossref_primary_10_1021_acs_macromol_2c02555
crossref_primary_10_1007_s10596_020_10023_0
crossref_primary_10_1080_02678292_2023_2292635
crossref_primary_10_1103_PhysRevResearch_4_043031
crossref_primary_10_21468_SciPostPhys_13_3_057
crossref_primary_10_1103_PhysRevB_99_161120
crossref_primary_10_1103_PhysRevE_109_024121
crossref_primary_10_1007_JHEP08_2023_031
crossref_primary_10_1103_PhysRevResearch_4_023206
crossref_primary_10_1186_s41313_020_00022_0
crossref_primary_10_1016_j_neucom_2022_09_068
crossref_primary_10_1103_PhysRevB_110_125125
crossref_primary_10_1209_0295_5075_ac49d4
crossref_primary_10_1088_1367_2630_acef4e
crossref_primary_10_1016_j_physa_2021_126653
crossref_primary_10_1103_PhysRevE_100_052312
crossref_primary_10_1140_epjp_s13360_022_02769_6
crossref_primary_10_1103_PRXQuantum_2_020332
crossref_primary_10_1016_j_rinp_2024_107935
crossref_primary_10_1038_s42005_023_01416_5
crossref_primary_10_1103_PhysRevLett_133_107301
crossref_primary_10_1063_5_0128283
crossref_primary_10_1061__ASCE_MT_1943_5533_0002902
crossref_primary_10_1088_1402_4896_ad3170
crossref_primary_10_1103_PhysRevLett_126_190505
crossref_primary_10_1021_acsami_1c14204
crossref_primary_10_1007_JHEP12_2017_149
crossref_primary_10_1038_s41524_023_00990_0
crossref_primary_10_1103_PhysRevB_107_205132
crossref_primary_10_1063_5_0017894
crossref_primary_10_1515_nanoph_2018_0183
crossref_primary_10_1063_5_0153229
crossref_primary_10_1063_1_5121844
crossref_primary_10_1103_PhysRevB_98_245101
crossref_primary_10_1016_j_physleta_2020_126886
crossref_primary_10_1063_5_0121669
crossref_primary_10_1103_PhysRevE_110_054133
crossref_primary_10_1063_5_0026590
crossref_primary_10_1088_1674_1137_ad2b51
crossref_primary_10_1103_PhysRevB_107_205121
crossref_primary_10_3390_condmat8030083
crossref_primary_10_1103_PhysRevLett_125_170603
crossref_primary_10_1088_1367_2630_aae941
crossref_primary_10_1103_PhysRevResearch_3_013134
crossref_primary_10_1103_PhysRevResearch_3_013132
crossref_primary_10_1021_acs_jpca_0c01375
crossref_primary_10_1038_s41598_021_88605_w
crossref_primary_10_1103_PhysRevE_107_045301
crossref_primary_10_1103_PhysRevB_109_144523
crossref_primary_10_1140_epjp_s13360_022_03318_x
crossref_primary_10_1103_PhysRevB_107_L161101
crossref_primary_10_2139_ssrn_3995127
crossref_primary_10_21468_SciPostPhys_9_6_087
crossref_primary_10_1016_j_aop_2018_02_018
crossref_primary_10_1002_adma_201800701
crossref_primary_10_1088_1742_5468_aceef1
crossref_primary_10_1103_PhysRevA_108_062420
crossref_primary_10_1103_PhysRevE_103_052127
crossref_primary_10_7566_JPSJ_88_081009
crossref_primary_10_1007_s11128_021_03148_3
crossref_primary_10_1103_PhysRevE_100_050102
crossref_primary_10_1038_s41524_023_01155_9
crossref_primary_10_1038_s41598_021_98785_0
crossref_primary_10_1088_2632_2153_ad9079
crossref_primary_10_1103_PhysRevLett_120_066401
crossref_primary_10_1007_s11467_018_0798_7
crossref_primary_10_1002_adma_201901111
crossref_primary_10_1016_j_mechmat_2022_104309
crossref_primary_10_1103_PhysRevLett_122_200401
crossref_primary_10_22331_q_2023_06_12_1039
crossref_primary_10_1103_PhysRevD_101_076015
crossref_primary_10_1016_j_actbio_2020_02_037
crossref_primary_10_1016_j_physrep_2019_03_001
crossref_primary_10_1103_PhysRevA_106_033315
crossref_primary_10_1088_2040_8986_abb1ce
crossref_primary_10_1103_PhysRevE_102_013307
crossref_primary_10_1002_inf2_12026
crossref_primary_10_1016_j_enganabound_2022_04_035
crossref_primary_10_1103_PhysRevB_111_104508
crossref_primary_10_1103_PhysRevE_104_044611
crossref_primary_10_1142_S021974991840004X
crossref_primary_10_1063_5_0014194
crossref_primary_10_1016_j_ijleo_2024_171749
crossref_primary_10_1016_j_physa_2020_125065
crossref_primary_10_1140_epjb_e2020_100506_5
crossref_primary_10_1103_PhysRevResearch_3_043184
crossref_primary_10_1103_PhysRevE_103_052140
crossref_primary_10_1063_5_0005228
crossref_primary_10_1063_1_5049850
crossref_primary_10_1038_s41598_021_95523_4
crossref_primary_10_1007_s00521_018_3742_4
crossref_primary_10_1103_PhysRevE_98_033305
crossref_primary_10_1103_PhysRevB_100_075102
crossref_primary_10_1016_j_pnucene_2022_104191
crossref_primary_10_7566_JPSJ_88_123704
crossref_primary_10_1103_PhysRevMaterials_3_095005
crossref_primary_10_1088_1361_648X_aad51f
crossref_primary_10_1039_C7CS00461C
crossref_primary_10_1103_PhysRevResearch_2_013287
crossref_primary_10_1088_2515_7639_abb74e
crossref_primary_10_1103_PhysRevLett_129_270501
crossref_primary_10_1103_PhysRevB_104_235146
crossref_primary_10_1103_PRXQuantum_4_040337
crossref_primary_10_1063_1_5049849
crossref_primary_10_1103_PhysRevMaterials_3_033805
crossref_primary_10_1016_j_jmmm_2022_169706
crossref_primary_10_1088_2632_2153_abcc45
crossref_primary_10_1002_advs_202000566
crossref_primary_10_1103_PhysRevA_98_012315
crossref_primary_10_1063_5_0049258
crossref_primary_10_1093_ptep_ptaa138
crossref_primary_10_1103_PhysRevB_104_024506
crossref_primary_10_1103_PhysRevResearch_4_033223
crossref_primary_10_1088_1674_1056_ab4582
crossref_primary_10_1140_epja_i2019_12919_7
crossref_primary_10_1088_2632_2153_abcc43
crossref_primary_10_1109_ACCESS_2020_2993562
crossref_primary_10_3390_s22186767
crossref_primary_10_1103_PhysRevB_96_205152
crossref_primary_10_1103_PhysRevE_110_034118
crossref_primary_10_1103_PhysRevE_105_035304
crossref_primary_10_1039_C9TC01078E
crossref_primary_10_1103_PhysRevA_103_032406
crossref_primary_10_1063_1_5136251
crossref_primary_10_1038_s41598_020_69848_5
crossref_primary_10_3390_s22186751
crossref_primary_10_1038_s42005_018_0058_8
crossref_primary_10_21468_SciPostPhys_15_3_099
crossref_primary_10_1103_PhysRevE_102_021302
crossref_primary_10_1103_PhysRevApplied_20_044002
crossref_primary_10_1103_PhysRevResearch_3_L042035
crossref_primary_10_1016_j_carbon_2021_11_073
crossref_primary_10_1103_PhysRevResearch_2_023283
crossref_primary_10_1088_1674_1056_ad3908
crossref_primary_10_1063_5_0021762
crossref_primary_10_7566_JPSJ_90_065001
crossref_primary_10_1103_PhysRevB_96_205146
crossref_primary_10_1088_1674_1056_abb303
crossref_primary_10_1103_PhysRevResearch_3_033102
crossref_primary_10_1021_acs_jpclett_9b03360
crossref_primary_10_1103_PhysRevB_100_045129
crossref_primary_10_1103_PhysRevB_107_214451
crossref_primary_10_1186_s41313_021_00029_1
crossref_primary_10_1038_s41567_019_0512_x
crossref_primary_10_1088_2632_2153_ab4e24
crossref_primary_10_1103_PhysRevE_106_054124
crossref_primary_10_1103_PhysRevE_102_033303
crossref_primary_10_1088_0253_6102_71_11_1379
crossref_primary_10_1103_PhysRevE_107_065303
crossref_primary_10_1103_PhysRevE_99_062107
crossref_primary_10_1103_PhysRevResearch_2_033295
crossref_primary_10_1103_PhysRevResearch_3_033135
crossref_primary_10_3390_jmse11040793
crossref_primary_10_1103_PhysRevB_103_035138
crossref_primary_10_1088_2632_2153_ad27e2
crossref_primary_10_21468_SciPostPhys_11_2_025
crossref_primary_10_1088_1751_8121_ab7210
crossref_primary_10_1103_PhysRevResearch_5_013060
crossref_primary_10_1016_j_commatsci_2024_113079
crossref_primary_10_1103_PhysRevE_111_015305
crossref_primary_10_3847_2041_8213_ada427
crossref_primary_10_1177_0361198120947421
crossref_primary_10_1038_s41586_019_1116_4
crossref_primary_10_1103_PhysRevResearch_4_043216
crossref_primary_10_1103_PhysRevB_100_174408
crossref_primary_10_31857_S0370274X24100239
crossref_primary_10_1038_s41534_020_00347_1
crossref_primary_10_1103_PhysRevB_100_024423
crossref_primary_10_1103_PhysRevB_102_064205
crossref_primary_10_1039_D2DD00026A
crossref_primary_10_1103_PhysRevE_110_024102
crossref_primary_10_1088_1367_2630_ab7771
crossref_primary_10_1016_j_commatsci_2019_04_051
crossref_primary_10_1021_acs_jctc_2c00898
crossref_primary_10_1103_PhysRevResearch_2_023232
crossref_primary_10_1016_j_psep_2021_12_025
crossref_primary_10_1103_PhysRevResearch_2_023230
crossref_primary_10_1088_0256_307X_38_7_070302
crossref_primary_10_1364_OE_472280
crossref_primary_10_1103_PhysRevB_99_024423
crossref_primary_10_1371_journal_pcbi_1006514
crossref_primary_10_1016_j_matdes_2021_109855
crossref_primary_10_1103_PhysRevB_108_134422
crossref_primary_10_1134_S1990793122080115
crossref_primary_10_1002_qute_202200025
crossref_primary_10_7498_aps_70_20210711
crossref_primary_10_1088_1674_1056_ac615f
crossref_primary_10_1016_j_aop_2019_167938
crossref_primary_10_1038_s41534_020_00305_x
crossref_primary_10_1063_5_0098244
crossref_primary_10_1103_PhysRevB_99_024430
crossref_primary_10_1103_PhysRevResearch_2_023008
crossref_primary_10_1063_5_0023980
crossref_primary_10_1103_PhysRevE_96_011301
crossref_primary_10_1103_PhysRevE_110_014137
crossref_primary_10_1088_1361_648X_ac3a85
crossref_primary_10_1103_PhysRevE_110_024129
crossref_primary_10_1103_PhysRevB_101_220409
crossref_primary_10_1007_JHEP03_2024_141
crossref_primary_10_21468_SciPostPhys_14_1_005
crossref_primary_10_1088_1361_6455_ad7e87
crossref_primary_10_1088_1367_2630_ac6232
crossref_primary_10_1038_s42254_024_00798_x
crossref_primary_10_7566_JPSJ_92_081004
crossref_primary_10_1103_PhysRevResearch_5_013097
crossref_primary_10_1002_bsl_2392
crossref_primary_10_1088_1367_2630_ad0525
crossref_primary_10_1016_j_matdes_2019_108247
crossref_primary_10_1103_PhysRevB_99_174426
crossref_primary_10_1103_PhysRevD_101_094507
crossref_primary_10_1103_PhysRevX_12_031044
crossref_primary_10_1088_1361_6471_ad0314
crossref_primary_10_1038_s41467_024_45014_7
crossref_primary_10_1038_s41524_019_0165_4
crossref_primary_10_1103_PhysRevApplied_17_024040
crossref_primary_10_1103_PhysRevB_100_184414
crossref_primary_10_1103_PhysRevResearch_2_033499
crossref_primary_10_1103_PhysRevResearch_7_013201
crossref_primary_10_7566_JPSJ_86_113704
crossref_primary_10_1038_nature23474
crossref_primary_10_1103_PhysRevLett_130_210601
crossref_primary_10_1103_PhysRevB_108_144429
crossref_primary_10_1038_s41567_020_0932_7
crossref_primary_10_1103_PhysRevResearch_6_023193
crossref_primary_10_7566_JPSJ_86_093001
crossref_primary_10_1021_acs_jctc_9b00074
crossref_primary_10_1038_s41567_021_01201_7
crossref_primary_10_1088_1674_1056_ac989c
crossref_primary_10_1016_j_physleta_2023_128683
Cites_doi 10.1103/PhysRevB.76.174416
10.1007/978-3-642-35106-8
10.1103/PhysRevLett.96.110405
10.1103/PhysRev.79.876
10.1103/RevModPhys.51.659
10.1103/PhysRevLett.96.110404
10.1088/1367-2630/14/8/085004
10.1103/PhysRevLett.114.105503
10.1038/nphys3644
10.1016/S0003-4916(02)00018-0
10.1038/nphys4037
10.1103/PhysRev.65.117
10.1038/srep06367
10.1103/PhysRevB.76.184442
10.1109/5.726791
10.1103/PhysRevB.90.155136
10.1063/1.3518900
10.1038/nmat4395
ContentType Journal Article
Copyright Springer Nature Limited 2017
Copyright Nature Publishing Group May 2017
Copyright_xml – notice: Springer Nature Limited 2017
– notice: Copyright Nature Publishing Group May 2017
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
PRINS
DOI 10.1038/nphys4035
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials Local Electronic Collection Information
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Earth, Atmospheric & Aquatic Science Database (NC LIVE)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
ProQuest Central China
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
ProQuest Central China
DatabaseTitleList ProQuest Central Student
Technology Research Database
ProQuest Central Student

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 434
ExternalDocumentID 4322150059
10_1038_nphys4035
GroupedDBID 0R~
123
29M
39C
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AARCD
AAYZH
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFANA
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ALPWD
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NFIDA
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PHGZT
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ACSTC
ATHPR
CITATION
PHGZM
PQGLB
PUEGO
3V.
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQUKI
Q9U
PRINS
ID FETCH-LOGICAL-c353t-ad1440838495a77887c304d5db517dc8abece9c71c3939fb908b2fb70d3c87c73
IEDL.DBID 8FG
ISSN 1745-2473
IngestDate Fri Sep 05 08:26:34 EDT 2025
Sat Aug 23 14:52:34 EDT 2025
Sat Aug 23 13:04:15 EDT 2025
Wed Oct 01 06:33:49 EDT 2025
Thu Apr 24 23:11:29 EDT 2025
Fri Apr 11 01:29:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-ad1440838495a77887c304d5db517dc8abece9c71c3939fb908b2fb70d3c87c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1894478299
PQPubID 27545
PageCount 4
ParticipantIDs proquest_miscellaneous_1904247488
proquest_journals_3188605899
proquest_journals_1894478299
crossref_citationtrail_10_1038_nphys4035
crossref_primary_10_1038_nphys4035
springer_journals_10_1038_nphys4035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationTitleAbbrev Nature Phys
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References A Kitaev (BFnphys4035_CR10) 2006; 96
LM Ghiringhelli (BFnphys4035_CR14) 2015; 114
SS Schoenholz (BFnphys4035_CR15) 2016; 12
Y LeCun (BFnphys4035_CR22) 1998; 86
L-F Arsenault (BFnphys4035_CR11) 2014; 90
J Bergstra (BFnphys4035_CR5) 2010
O Landon-Cardinal (BFnphys4035_CR27) 2012; 14
M Abadi (BFnphys4035_CR4) 2015
R Bellman (BFnphys4035_CR2) 1957
A Avella (BFnphys4035_CR6) 2013
GF Newell (BFnphys4035_CR19) 1950; 79
BFnphys4035_CR18
BFnphys4035_CR16
JB Kogut (BFnphys4035_CR20) 1979; 51
C Castelnovo (BFnphys4035_CR23) 2007; 76
M Levin (BFnphys4035_CR9) 2006; 96
C Castelnovo (BFnphys4035_CR21) 2007; 76
SV Kalinin (BFnphys4035_CR13) 2015; 14
AW Sandvik (BFnphys4035_CR7) 2010; 1297
AG Kusne (BFnphys4035_CR12) 2014; 4
S Aubry (BFnphys4035_CR24) 1980; 3
BFnphys4035_CR25
I Goodfellow (BFnphys4035_CR3) 2016
A Kitaev (BFnphys4035_CR8) 2003; 303
L Onsager (BFnphys4035_CR17) 1944; 65
X Wen (BFnphys4035_CR1) 2004
BFnphys4035_CR26
References_xml – volume-title: Deep Learning
  year: 2016
  ident: BFnphys4035_CR3
– volume: 76
  start-page: 174416
  year: 2007
  ident: BFnphys4035_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.174416
– volume-title: TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems
  year: 2015
  ident: BFnphys4035_CR4
– ident: BFnphys4035_CR25
– volume-title: Strongly Correlated Systems: Numerical Methods
  year: 2013
  ident: BFnphys4035_CR6
  doi: 10.1007/978-3-642-35106-8
– volume-title: Proc. Python Sci. Comput. Conf. (SciPy)
  year: 2010
  ident: BFnphys4035_CR5
– volume: 96
  start-page: 110405
  year: 2006
  ident: BFnphys4035_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.110405
– volume: 79
  start-page: 876
  year: 1950
  ident: BFnphys4035_CR19
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.79.876
– volume: 51
  start-page: 659
  year: 1979
  ident: BFnphys4035_CR20
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.51.659
– volume: 96
  start-page: 110404
  year: 2006
  ident: BFnphys4035_CR10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.110404
– volume: 14
  start-page: 085004
  year: 2012
  ident: BFnphys4035_CR27
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/8/085004
– volume: 114
  start-page: 105503
  year: 2015
  ident: BFnphys4035_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.105503
– volume: 12
  start-page: 469
  year: 2016
  ident: BFnphys4035_CR15
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3644
– volume: 3
  start-page: 133
  year: 1980
  ident: BFnphys4035_CR24
  publication-title: Ann. Isr. Phys. Soc.
– volume: 303
  start-page: 2
  year: 2003
  ident: BFnphys4035_CR8
  publication-title: Ann. Phys.
  doi: 10.1016/S0003-4916(02)00018-0
– ident: BFnphys4035_CR18
  doi: 10.1038/nphys4037
– volume: 65
  start-page: 117
  year: 1944
  ident: BFnphys4035_CR17
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.65.117
– ident: BFnphys4035_CR26
– volume-title: Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons
  year: 2004
  ident: BFnphys4035_CR1
– volume: 4
  start-page: 6367
  year: 2014
  ident: BFnphys4035_CR12
  publication-title: Sci. Rep.
  doi: 10.1038/srep06367
– volume: 76
  start-page: 184442
  year: 2007
  ident: BFnphys4035_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.184442
– volume-title: Dynamic Programming
  year: 1957
  ident: BFnphys4035_CR2
– volume: 86
  start-page: 2278
  year: 1998
  ident: BFnphys4035_CR22
  publication-title: IEEE Proc.
  doi: 10.1109/5.726791
– ident: BFnphys4035_CR16
– volume: 90
  start-page: 155136
  year: 2014
  ident: BFnphys4035_CR11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.155136
– volume: 1297
  start-page: 135
  year: 2010
  ident: BFnphys4035_CR7
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.3518900
– volume: 14
  start-page: 973
  year: 2015
  ident: BFnphys4035_CR13
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4395
SSID ssj0042613
Score 2.7022207
Snippet The success of machine learning techniques in handling big data sets proves ideal for classifying condensed-matter phases and phase transitions. The technique...
Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits1....
Condensed-matter physics is the study of the collective behaviour of infinitely complex assemblies of electrons, nuclei, magnetic moments, atoms or qubits....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 431
SubjectTerms 639/766/119/2795
639/766/530/2804
Artificial intelligence
Atomic
Big Data
Classical and Continuum Physics
Classification
Complex Systems
Complexity
Computer programs
Computer simulation
Condensed Matter Physics
letter
Machine learning
Magnetic moments
Mathematical and Computational Physics
Molecular
Monte Carlo methods
Neural networks
Nuclei
Nuclei (nuclear physics)
Optical and Plasma Physics
Order parameters
Parameter identification
Phase transitions
Phases
Physics
Theoretical
Title Machine learning phases of matter
URI https://link.springer.com/article/10.1038/nphys4035
https://www.proquest.com/docview/1894478299
https://www.proquest.com/docview/3188605899
https://www.proquest.com/docview/1904247488
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1745-2481
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: BENPR
  dateStart: 20051001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1745-2481
  dateEnd: 20241003
  omitProxy: true
  ssIdentifier: ssj0042613
  issn: 1745-2473
  databaseCode: 8FG
  dateStart: 20051001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT8IwEL8oxMQX42ecIhnqgy8N29rR9smoAYkJxBhJeFu2ttMHHejg_7ctHRBCfO5l7e6ud9f-rncAt5jnRMqQozxNBSIkUCgLZYwUjURGBekENjdnMOz0R-RlHI_dhVvp0iorm2gNtZwIc0fe1rrHDITH-f30B5muUQZddS00dqEeRlqTzEvx3nNlic3pAC8eRMYoIhRXlYUwaxfm4oAEtsvbmj9aBZkbuKh1N71DOHBxov-wEOwR7KjiGPZsvqYoT6A1sEmQynddHz786af2R6U_yf1vWzLzFEa97vtTH7luB0jgGM9QKg3OyjDTR5aUmiQ_gQMiY5nFIZWCpZrbigsaCsw1hzMesCzKMxpILDQtxWdQKyaFOgc_igKh963kilBCJElFHIpcsEDlTEdouQd31T8nwpUCNx0pvhILSWOWLNnjwfWSdLqof7GNqFExLnFboExCxgnR8QfnW4dX8vSgtRzWum0Ai7RQk7n-BDfALNU2xoObSh5rM2yu4-L_iS5hPzJO2aYrNqA2-52rKx1SzLKm1Zsm1B-7w9e3P7KgzCY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLbGEIIL4ikGA8pL4hKtbVKSHBBCwBhs4wQSt9ImKRygG2wI8af4jThZOxBC3DgnSmLHcex8jg2wS2XGtA4kyZJEEcZ8Q9JAR8TwUKVcsQPfxeZ0rw5aN-zyNrqtwEf5F8aGVZY60Slq3VP2jbyBsicshCflUf-Z2KpRFl0tS2iMxKJt3t_QZRscXpzi_u6FYfPs-qRFiqoCRNGIDkmiLZ4pqEDXIOE2mE6hS68jnUYB10okSJWRigeKSqQklb5IwyzlvqYK-3KK407AJKOU2lz9onlean7rjdDRB8yIhIzTMpMRFY3cPlQw31WV-3b_fRm1P3BYd70152C2sEu945EgzUPF5Asw5eJD1WARtrou6NJ4RZWJe6__gPffwOtl3pNL0bkEN__Ch2Wo5r3crIAXhr5CPaGlYZwxzRIVBSpTwjeZQIswq8F-SXOsitTjtgLGY-wgcCriMXtqsD3u2h_l2_itU71kXFwcuUEcCMkY2jtS_tr8JT812Bo341myAEmSm94rDiEtEMxRp9Vgp9yPbzP8XMfq3xNtwnTrutuJOxdX7TWYCa1B4EIl61AdvryadTRnhumGkyEP7v5baD8BCvoHbQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JTxsxFH6iQVRcEHRRU7aBUqkXKzNjD7YPCLEkgkKiqGqk3KYztoce2kkgQYi_yK_i2fGEKIq4cbbl9fktfssHcEBlwbSOJCmyTBHGQkPySCfE8FjlXLHD0MXmtDuHFz32s5_0l-CpyoWxYZUVT3SMWg-U_SNvIO0J68KTslH4sIjueet4eEssgpT1tFZwGpmHWdBHrtyYT_K4Mo8PaM6Nji7P8e6_x3Gr-fvsgnjEAaJoQsck09bXKahAsyHjNtBOobmvE50nEddKZLhjIxWPFJW4y1yGIo-LnIeaKuzLKY77Dpa5zRetwfJps9P9VckFa6vQSXpmQmLGaVXniIpGab8xWOgw52ak44vKO-eldcKvtQ5rXmsNTiZktgFLpvwAKy56VI0-wl7bhWSawGNQ3ATDvygdR8GgCP67Ap6foPcmJ_EZauWgNF8giONQIRfR0jDOmGaZSiJVKBGaQqC-WNThR7XnVPnC5BYf41_qHORUpNPjqcP-tOtwUo1jUaet6uBS_yBHaSQkY6gNSbmw-YW66rA3bcaXZt0nWWkG9ziEtG5ijhyvDt-q-5iZYX4dX1-faBfeIwGn15edq01Yja224OIot6A2vrs326jrjPMdT0QB_Hlrun0G8P0SRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+phases+of+matter&rft.jtitle=Nature+physics&rft.date=2017-05-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=13&rft.issue=5&rft.spage=431&rft.epage=434&rft_id=info:doi/10.1038%2Fnphys4035&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon