Integration of simulation and dispatch modelling to predict fleet productivity: an open-pit mining case

Predicting the fleet requirement based on fleet productivity estimation is one of the critical parts of a robust long-term mine plan. The dispatch logic that determines the return destination of the empty trucks is significantly important in the overall full and empty travel distances and trucks...

Full description

Saved in:
Bibliographic Details
Published inMining technology (2018) Vol. 131; no. 2; pp. 67 - 79
Main Authors Yeganejou, Mojtaba, Badiozamani, Mahdi, Moradi-Afrapoli, Ali, Askari-Nasab, Hooman
Format Journal Article
LanguageEnglish
Published London, England Taylor & Francis 01.06.2022
SAGE Publications
Subjects
Online AccessGet full text
ISSN2572-6668
2572-6676
DOI10.1080/25726668.2021.2001255

Cover

Abstract Predicting the fleet requirement based on fleet productivity estimation is one of the critical parts of a robust long-term mine plan. The dispatch logic that determines the return destination of the empty trucks is significantly important in the overall full and empty travel distances and trucks' productivity. In this paper, a Monte-Carlo simulation model is presented to mimic the real truck-and-shovel operations and measure trucks' productivity in terms of Tonne Per Gross Operating Hour (TPGOH). A linear programming model is integrated into the simulation model to optimize the dispatch decision through distance minimization subject to the mine's production schedule. The historical data records of oil sands mining operations are used to validate model's performance. The results show significant improvement over the existing mine site's method with closely matching the real TPGOH and better estimation of the total empty travel distance, as a result of new dispatch model implementation.
AbstractList Predicting the fleet requirement based on fleet productivity estimation is one of the critical parts of a robust long-term mine plan. The dispatch logic that determines the return destination of the empty trucks is significantly important in the overall full and empty travel distances and trucks' productivity. In this paper, a Monte-Carlo simulation model is presented to mimic the real truck-and-shovel operations and measure trucks' productivity in terms of Tonne Per Gross Operating Hour (TPGOH). A linear programming model is integrated into the simulation model to optimize the dispatch decision through distance minimization subject to the mine's production schedule. The historical data records of oil sands mining operations are used to validate model's performance. The results show significant improvement over the existing mine site's method with closely matching the real TPGOH and better estimation of the total empty travel distance, as a result of new dispatch model implementation.
Author Badiozamani, Mahdi
Moradi-Afrapoli, Ali
Yeganejou, Mojtaba
Askari-Nasab, Hooman
Author_xml – sequence: 1
  givenname: Mojtaba
  surname: Yeganejou
  fullname: Yeganejou, Mojtaba
  organization: University of Alberta
– sequence: 2
  givenname: Mahdi
  surname: Badiozamani
  fullname: Badiozamani, Mahdi
  organization: University of Alberta
– sequence: 3
  givenname: Ali
  surname: Moradi-Afrapoli
  fullname: Moradi-Afrapoli, Ali
  organization: Laval University
– sequence: 4
  givenname: Hooman
  orcidid: 0000-0002-0630-1002
  surname: Askari-Nasab
  fullname: Askari-Nasab, Hooman
  email: hooman@ualberta.ca
  organization: University of Alberta
BookMark eNqFkMtOwzAQRS1UJErpJyD5B1Jsx3ECbEAVj0qV2MDacv0IrhI7sl1Q_56EFBYs6GZm7mjOSPeeg4nzTgNwidECowpdkaIkjLFqQRDBfUGYFMUJmA77jLGSTX5nVp2BeYxbhFB_Ryi7noJ65ZKug0jWO-gNjLbdNaMSTkFlYyeSfIetV7pprKth8rALWlmZoGm0Tr3yaieT_bBpf9NT0HfaZZ1NsLVuIKSI-gKcGtFEPT_0GXh7fHhdPmfrl6fV8n6dybzIUyZKs5FIa4w1LRQhKKclrTDNFaYkL2W5kaQsGKK4QqzEitKKmpwJQSq6QcbkM3A7_pXBxxi04dKmbz8pCNtwjPgQG_-JjQ-x8UNsPV38obtgWxH2RzkyclHUmm_9Lrje5FHoboSsMz604tOHRvEk9o0PJggnbeT5_y--ADZ8lMc
CitedBy_id crossref_primary_10_1016_j_resourpol_2022_103155
crossref_primary_10_1080_17480930_2023_2242163
crossref_primary_10_1080_25726668_2023_2233230
crossref_primary_10_3390_electronics12183793
crossref_primary_10_1002_sys_21755
crossref_primary_10_1007_s12145_024_01563_5
crossref_primary_10_1080_17480930_2024_2362579
crossref_primary_10_3390_mining3040043
crossref_primary_10_3390_su15010216
crossref_primary_10_1080_25726668_2022_2086357
crossref_primary_10_1007_s11081_022_09741_4
crossref_primary_10_1007_s13198_024_02396_7
Cites_doi 10.1016/j.proeng.2012.01.110
10.1080/23311916.2017.1386852
10.4995/ijpme.2018.10369
10.1016/j.patcog.2016.03.008
10.1080/17480930.2017.1348284
10.1080/17480930.2017.1336607
10.1016/j.ejor.2018.12.015
10.1080/17480930.2018.1448248
10.1016/j.simpat.2019.04.006
10.1080/17480930.2017.1315524
10.4314/gmj.v16i1.5
10.1016/j.cor.2003.11.014
10.1016/j.ijmst.2017.01.007
10.17159/2411-9717/2015/v115n3a6
10.1016/j.ejor.2017.02.039
10.1016/S0167-9031(87)90910-8
10.1016/j.ejor.2019.01.008
10.1145/3097983.3098178
10.1080/25726668.2018.1473314
10.1080/17480930701589674
ContentType Journal Article
Copyright 2021 Institute of Materials, Minerals and Mining and The AusIMM Published by Taylor & Francis on behalf of the Institute and The AusIMM 2021
2021 Institute of Materials, Minerals and Mining and The AusIMM Published by Taylor & Francis on behalf of the Institute and The AusIMM
Copyright_xml – notice: 2021 Institute of Materials, Minerals and Mining and The AusIMM Published by Taylor & Francis on behalf of the Institute and The AusIMM 2021
– notice: 2021 Institute of Materials, Minerals and Mining and The AusIMM Published by Taylor & Francis on behalf of the Institute and The AusIMM
DBID AAYXX
CITATION
DOI 10.1080/25726668.2021.2001255
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2572-6676
EndPage 79
ExternalDocumentID 10_1080_25726668_2021_2001255
10.1080_25726668.2021.2001255
2001255
Genre Research Article
GroupedDBID AAJMT
ABDBF
ABJIA
ABUJY
ABXYU
ACTIO
ADEBD
ADGTB
AEYOC
AGDLA
AHDMH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
ARTOV
BLEHA
BPACV
CCCUG
DGEBU
EAP
EBS
EMK
EPL
ESX
FHBDP
I-F
IPNFZ
KYCEM
LJTGL
M4Z
RIG
TFL
TFW
TTHFI
TUS
EJD
AAYXX
CITATION
ID FETCH-LOGICAL-c353t-a7fbc0ee11e45d22034748143d14237c7bc275604180671d4484f36aa284b0ff3
ISSN 2572-6668
IngestDate Thu Apr 24 23:02:53 EDT 2025
Tue Jul 01 05:23:10 EDT 2025
Tue Jun 17 22:31:00 EDT 2025
Mon Oct 20 23:48:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords truck requirement
fleet productivity
Monte Carlo simulation
Dispatch modelling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c353t-a7fbc0ee11e45d22034748143d14237c7bc275604180671d4484f36aa284b0ff3
ORCID 0000-0002-0630-1002
PageCount 13
ParticipantIDs crossref_citationtrail_10_1080_25726668_2021_2001255
informaworld_taylorfrancis_310_1080_25726668_2021_2001255
sage_journals_10_1080_25726668_2021_2001255
crossref_primary_10_1080_25726668_2021_2001255
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220600
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 6
  year: 2022
  text: 20220600
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
PublicationTitle Mining technology (2018)
PublicationYear 2022
Publisher Taylor & Francis
SAGE Publications
Publisher_xml – name: Taylor & Francis
– name: SAGE Publications
References Upadhyay, Askari-Nasab 2019; 33
Afrapoli, Tabesh, Askari-Nasab 2019; 276
Hashemi, Sattarvand 2015; 60
Pasch, Uludag 2018; 118
Chaowasakoo, Seppälä, Koivo, Zhou 2017; 261
Kaba, Temeng, Eshun 2016; 16
Fisonga, Mutambo 2017; 4
Upadhyay, Askari-Nasab 2016; 125
Nielsen, Andersen, Pretolani 2005; 32
Chaowasakoo, Seppälä, Koivo, Zhou 2017; 27
Zeng, Baafi, Walker 2019; 33
Afrapoli, Tabesh, Upadhyay, Askari-Nasab 2019
Yuriy, Vayenas 2008; 22
Fadin, Moeis 2017; 13
Shishvan, Benndorf 2019; 275
Blom, Pearce, Stuckey 2019; 33
Afrapoli, Tabesh, Askari-Nasab 2019; 128
Shu-Xi 2012; 29
Ozdemir, Kumral 2019; 95
Amin, Adil, Rehman, Ahmad 2019
Dindarloo, Siami-Irdemoosa 2016
Dindarloo, Osanloo, Frimpong 2015; 115
Afrapoli, Upadhyay, Askari-Nasab 2018; 6
Lizotte, Bonates 1987; 5
Afrapoli, Askari-Nasab 2019; 33
Kumar, Reddy 2016; 58
bibr16-25726668.2021.2001255
bibr12-25726668.2021.2001255
bibr24-25726668.2021.2001255
Amin I (bibr7-25726668.2021.2001255) 2019
Afrapoli AM (bibr6-25726668.2021.2001255) 2018; 6
bibr20-25726668.2021.2001255
bibr21-25726668.2021.2001255
bibr25-25726668.2021.2001255
bibr19-25726668.2021.2001255
Pasch O (bibr23-25726668.2021.2001255) 2018; 118
bibr26-25726668.2021.2001255
bibr1-25726668.2021.2001255
bibr14-25726668.2021.2001255
bibr22-25726668.2021.2001255
bibr5-25726668.2021.2001255
bibr18-25726668.2021.2001255
bibr27-25726668.2021.2001255
Upadhyay SP (bibr28-25726668.2021.2001255) 2016; 125
Hashemi AS (bibr15-25726668.2021.2001255) 2015; 60
bibr30-25726668.2021.2001255
bibr9-25726668.2021.2001255
bibr10-25726668.2021.2001255
bibr17-25726668.2021.2001255
bibr4-25726668.2021.2001255
bibr31-25726668.2021.2001255
bibr29-25726668.2021.2001255
bibr8-25726668.2021.2001255
bibr11-25726668.2021.2001255
Fadin AYF (bibr13-25726668.2021.2001255) 2017; 13
Afrapoli AM (bibr2-25726668.2021.2001255) 2017
bibr3-25726668.2021.2001255
References_xml – volume: 22
  start-page: 70
  year: 2008
  end-page: 83
  article-title: Discrete-event simulation of mine equipment systems combined with a reliability assessment model based on genetic algorithms
  publication-title: Int J Mining Reclam Environ
– volume: 58
  start-page: 39
  year: 2016
  end-page: 48
  article-title: A fast DBSCAN clustering algorithm by accelerating neighbor searching using groups method
  publication-title: Pattern Recognit
– volume: 60
  start-page: 195
  year: 2015
  end-page: 208
  article-title: symulacje I badania różnych paradygmatów wykorzystania floty pojazdów I urządzeń W kopalniach odkrywkowych. studium przypadku: kopa [Simulation based investigation of different fleet management paradigms in open pit mines-a case study of Sungun copper mine]
  publication-title: Arch Min Sci
– volume: 32
  start-page: 1477
  year: 2005
  end-page: 1497
  article-title: Finding the K shortest hyperpaths
  publication-title: Comput Oper Res
– volume: 115
  start-page: 209
  year: 2015
  end-page: 219
  article-title: A stochastic simulation framework for truck and shovel selection and sizing in open pit mines
  publication-title: J South African Inst Min Metall
– volume: 5
  start-page: 45
  year: 1987
  end-page: 58
  article-title: Truck and shovel dispatching rules assessment using simulation
  publication-title: Min Sci Technol
– volume: 261
  start-page: 1052
  year: 2017
  end-page: 1065
  article-title: Improving fleet management in mines: the benefit of heterogeneous match factor
  publication-title: Eur J Oper Res
– volume: 4
  start-page: 1386852
  year: 2017
  article-title: Optimization of the fleet per shovel productivity in surface mining: case study of Chilanga cement, Lusaka Zambia
  publication-title: Cogent Eng
– volume: 276
  start-page: 331
  year: 2019
  end-page: 342
  article-title: A multiple objective transportation problem approach to dynamic truck dispatching in surface mines
  publication-title: Eur J Oper Res
– volume: 29
  start-page: 1186
  year: 2012
  end-page: 1190
  article-title: The improved Dijkstra's shortest path algorithm and its application
  publication-title: Procedia Eng
– volume: 16
  start-page: 40
  year: 2016
  end-page: 48
  article-title: Application of discrete event simulation in mine production forecast
  publication-title: Ghana Min J
– volume: 33
  start-page: 1
  year: 2019
  end-page: 20
  article-title: Dynamic shovel allocation approach to short-term production planning in open-pit mines
  publication-title: Int J Mining Reclam Environ
– volume: 118
  start-page: 449
  year: 2018
  end-page: 456
  article-title: Optimization of the load-and-haul operation at an opencast colliery
  publication-title: J South African Inst Min Metall
– volume: 128
  start-page: 9
  year: 2019
  end-page: 20
  article-title: A stochastic hybrid simulation-optimization approach towards haul fleet sizing in surface mines
  publication-title: Min Technol
– start-page: 55
  year: 2019
  end-page: 58
  article-title: Simulation of truck-shovel operations using simio
  publication-title: Int J Econ Environ Geol
– volume: 6
  start-page: 79
  year: 2018
  end-page: 84
  article-title: A fuzzy logic approach towards truck dispatching problem in surface mines
  publication-title: Int J Mech Prod Eng
– volume: 33
  start-page: 102
  year: 2019
  end-page: 117
  article-title: A simulation model to study bunching effect of a truck-shovel system
  publication-title: Int J Mining Reclam Environ
– volume: 33
  start-page: 318
  year: 2019
  end-page: 339
  article-title: Short-term planning for open pit mines: a review
  publication-title: Int J Mining Reclam Environ
– volume: 13
  start-page: 80
  year: 2017
  end-page: 86
  article-title: Simulation-optimization truck dispatch problem using look-ahead algorithm in open pit mines
  publication-title: Int J GEOMATE
– volume: 33
  start-page: 42
  year: 2019
  end-page: 60
  article-title: Mining fleet management systems: a review of models and algorithms
  publication-title: Int J Mining Reclam Environ
– year: 2019
– volume: 125
  start-page: 82
  year: 2016
  end-page: 92
  article-title: Truck-shovel allocation optimisation: a goal programming approach
  publication-title: Min Technol
– volume: 27
  start-page: 229
  year: 2017
  end-page: 236
  article-title: Digitalization of mine operations: scenarios to benefit in real-time truck dispatching
  publication-title: Int J Min Sci Technol
– volume: 95
  start-page: 36
  year: 2019
  end-page: 48
  article-title: Simulation-based optimization of truck-shovel material handling systems in multi-pit surface mines
  publication-title: Simul Model Pract Theory
– volume: 275
  start-page: 1108
  year: 2019
  end-page: 1125
  article-title: Simulation-based optimization approach for material dispatching in continuous mining systems
  publication-title: Eur J Oper Res
– year: 2016
– start-page: 55
  year: 2019
  ident: bibr7-25726668.2021.2001255
  publication-title: Int J Econ Environ Geol
– ident: bibr27-25726668.2021.2001255
  doi: 10.1016/j.proeng.2012.01.110
– ident: bibr14-25726668.2021.2001255
  doi: 10.1080/23311916.2017.1386852
– volume: 118
  start-page: 449
  year: 2018
  ident: bibr23-25726668.2021.2001255
  publication-title: J South African Inst Min Metall
– start-page: 685
  volume-title: Proceedings of the 38th International Symposium on the Application of Computers and Operations Research in the Mineral Industry (APCOM 2017)
  year: 2017
  ident: bibr2-25726668.2021.2001255
– volume: 6
  start-page: 79
  year: 2018
  ident: bibr6-25726668.2021.2001255
  publication-title: Int J Mech Prod Eng
  doi: 10.4995/ijpme.2018.10369
– volume: 13
  start-page: 80
  year: 2017
  ident: bibr13-25726668.2021.2001255
  publication-title: Int J GEOMATE
– ident: bibr18-25726668.2021.2001255
  doi: 10.1016/j.patcog.2016.03.008
– volume: 125
  start-page: 82
  year: 2016
  ident: bibr28-25726668.2021.2001255
  publication-title: Min Technol
– ident: bibr31-25726668.2021.2001255
  doi: 10.1080/17480930.2017.1348284
– volume: 60
  start-page: 195
  year: 2015
  ident: bibr15-25726668.2021.2001255
  publication-title: Arch Min Sci
– ident: bibr1-25726668.2021.2001255
  doi: 10.1080/17480930.2017.1336607
– ident: bibr12-25726668.2021.2001255
– ident: bibr26-25726668.2021.2001255
  doi: 10.1016/j.ejor.2018.12.015
– ident: bibr8-25726668.2021.2001255
  doi: 10.1080/17480930.2018.1448248
– ident: bibr22-25726668.2021.2001255
  doi: 10.1016/j.simpat.2019.04.006
– ident: bibr29-25726668.2021.2001255
  doi: 10.1080/17480930.2017.1315524
– ident: bibr16-25726668.2021.2001255
  doi: 10.4314/gmj.v16i1.5
– ident: bibr24-25726668.2021.2001255
– ident: bibr5-25726668.2021.2001255
– ident: bibr17-25726668.2021.2001255
– ident: bibr21-25726668.2021.2001255
  doi: 10.1016/j.cor.2003.11.014
– ident: bibr10-25726668.2021.2001255
  doi: 10.1016/j.ijmst.2017.01.007
– ident: bibr11-25726668.2021.2001255
  doi: 10.17159/2411-9717/2015/v115n3a6
– ident: bibr9-25726668.2021.2001255
  doi: 10.1016/j.ejor.2017.02.039
– ident: bibr19-25726668.2021.2001255
  doi: 10.1016/S0167-9031(87)90910-8
– ident: bibr3-25726668.2021.2001255
  doi: 10.1016/j.ejor.2019.01.008
– ident: bibr25-25726668.2021.2001255
  doi: 10.1145/3097983.3098178
– ident: bibr4-25726668.2021.2001255
  doi: 10.1080/25726668.2018.1473314
– ident: bibr30-25726668.2021.2001255
  doi: 10.1080/17480930701589674
– ident: bibr20-25726668.2021.2001255
SSID ssj0002002469
Score 2.3118637
Snippet Predicting the fleet requirement based on fleet productivity estimation is one of the critical parts of a robust long-term mine plan. The dispatch logic that...
SourceID crossref
sage
informaworld
SourceType Enrichment Source
Index Database
Publisher
StartPage 67
SubjectTerms Dispatch modelling
fleet productivity
Monte Carlo simulation
truck requirement
Title Integration of simulation and dispatch modelling to predict fleet productivity: an open-pit mining case
URI https://www.tandfonline.com/doi/abs/10.1080/25726668.2021.2001255
https://journals.sagepub.com/doi/full/10.1080/25726668.2021.2001255
Volume 131
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2572-6676
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0002002469
  issn: 2572-6668
  databaseCode: ABDBF
  dateStart: 20180301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELZK9wIHxFMsL_nALUrJw3mUWxdYFaTd0660nCI7tpfANola72V_HL-N8SNuKiqW5RJVbuw0nq_2zHhmPoTesXlMyzpOwlxwMFDiUoaMZqDI0aSIKJVFHunk5JPTfHlOvl5kF5PJr1HU0rVis_pmb17J_0gV2kCuOkv2DpL1g0IDfAb5whUkDNd_kvEXV-vBKX2bZuXIuMyRAG9gtQChWLYbk3YOima_1kczKpBX-jS6twVfDYOEyXuGgXrRhn2jgpXhjgjq4fxm4H2yzcr75LWSCht8OXIqfBOXtBXwDsbf2v1QlG0Nf8qb7oauLJlUcEK_88aLHQDJm3Ah11SzR9gMHP_tYvMTLPvwlG6oOUVagtLvwO38FmDy-viq0YHZXtckrCKAndzS7czEuM1yxfiV220gzciCtuuwpfhwO7plq_ljr7DBlXpg_awZ_EbjLwCNL9tujj5k0fWo9t5_Dx0ksKtEU3SwOPp0dOy9fDoEhhheRf9SQxpZGb3fO9aOgrRTPncn2NDoP2eP0ENnuOCFReFjNBHtE_RgVM7yKboc4RF3Em_xiAGPeMAj9njEqsMOj9jgEY_x-AF64QGN2KIRazQ-Q-fHn88-LkNH5BHWaZaqkBaS1ZEQcSxIxpMkSklBStDUeayjsuqC1ZqFIIKlApSnmBNSEpnmlILuxCIp0-do2nateIFwzRPO4nksmJRgrMM6mJRlySNOslSwhB0iMsxeVbsq95ps5aqKXTHcYdIrPemVm_RDNPPdelvm5bYO87FoKmX8a9KS4VTpLX0DLcfKrSSbvz_p5Z3ufoXub_9sr9FUra_FG1CbFXvrsPkbwL212Q
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integration+of+simulation+and+dispatch+modelling+to+predict+fleet+productivity%3A+an+open-pit+mining+case&rft.jtitle=Mining+technology+%282018%29&rft.au=Yeganejou%2C+Mojtaba&rft.au=Badiozamani%2C+Mahdi&rft.au=Moradi-Afrapoli%2C+Ali&rft.au=Askari-Nasab%2C+Hooman&rft.date=2022-06-01&rft.pub=SAGE+Publications&rft.issn=2572-6668&rft.eissn=2572-6676&rft.volume=131&rft.issue=2&rft.spage=67&rft.epage=79&rft_id=info:doi/10.1080%2F25726668.2021.2001255&rft.externalDocID=10.1080_25726668.2021.2001255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2572-6668&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2572-6668&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2572-6668&client=summon