A Low-Complexity Iterative Phase Noise Tracker for Bit-Interleaved Coded CPM Signals in AWGN
This paper considers iterative detection of bit-interleaved coded continuous phase modulation in the presence of both phase noise (PN) and additive white Gaussian noise (AWGN). The proposed receiver iterates between a detection module and an estimation module. The detection module operates according...
Saved in:
| Published in | IEEE transactions on signal processing Vol. 59; no. 9; pp. 4271 - 4285 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.09.2011
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-587X 1941-0476 |
| DOI | 10.1109/TSP.2011.2159498 |
Cover
| Summary: | This paper considers iterative detection of bit-interleaved coded continuous phase modulation in the presence of both phase noise (PN) and additive white Gaussian noise (AWGN). The proposed receiver iterates between a detection module and an estimation module. The detection module operates according to the sum-product algorithm and the factor graph framework in order to perform coherent maximum a posteriori bit detection in AWGN, using a PN estimate provided by the estimation module. The latter module, which results from the expectation-maximization algorithm for maximum likelihood estimation of the unknown PN samples, is implemented as a smoothing phase-locked loop that uses soft decisions provided by the detector. The separation between the detection and the estimation modules allows the use of an off-the-shelf (coherent) bit detector. The technique is further characterized by a very low computational complexity, a small error performance degradation and a small number of overhead symbols. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ISSN: | 1053-587X 1941-0476 |
| DOI: | 10.1109/TSP.2011.2159498 |