A robust and efficient stepwise regression method for building sparse polynomial chaos expansions
Polynomial Chaos (PC) expansions are widely used in various engineering fields for quantifying uncertainties arising from uncertain parameters. The computational cost of classical PC solution schemes is unaffordable as the number of deterministic simulations to be calculated grows dramatically with...
Saved in:
| Published in | Journal of computational physics Vol. 332; pp. 461 - 474 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cambridge
Elsevier Inc
01.03.2017
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0021-9991 1090-2716 |
| DOI | 10.1016/j.jcp.2016.12.015 |
Cover
| Abstract | Polynomial Chaos (PC) expansions are widely used in various engineering fields for quantifying uncertainties arising from uncertain parameters. The computational cost of classical PC solution schemes is unaffordable as the number of deterministic simulations to be calculated grows dramatically with the number of stochastic dimension. This considerably restricts the practical use of PC at the industrial level. A common approach to address such problems is to make use of sparse PC expansions. This paper presents a non-intrusive regression-based method for building sparse PC expansions. The most important PC contributions are detected sequentially through an automatic search procedure. The variable selection criterion is based on efficient tools relevant to probabilistic method. Two benchmark analytical functions are used to validate the proposed algorithm. The computational efficiency of the method is then illustrated by a more realistic CFD application, consisting of the non-deterministic flow around a transonic airfoil subject to geometrical uncertainties. To assess the performance of the developed methodology, a detailed comparison is made with the well established LAR-based selection technique. The results show that the developed sparse regression technique is able to identify the most significant PC contributions describing the problem. Moreover, the most important stochastic features are captured at a reduced computational cost compared to the LAR method. The results also demonstrate the superior robustness of the method by repeating the analyses using random experimental designs. |
|---|---|
| AbstractList | Polynomial Chaos (PC) expansions are widely used in various engineering fields for quantifying uncertainties arising from uncertain parameters. The computational cost of classical PC solution schemes is unaffordable as the number of deterministic simulations to be calculated grows dramatically with the number of stochastic dimension. This considerably restricts the practical use of PC at the industrial level. A common approach to address such problems is to make use of sparse PC expansions. This paper presents a non-intrusive regression-based method for building sparse PC expansions. The most important PC contributions are detected sequentially through an automatic search procedure. The variable selection criterion is based on efficient tools relevant to probabilistic method. Two benchmark analytical functions are used to validate the proposed algorithm. The computational efficiency of the method is then illustrated by a more realistic CFD application, consisting of the non-deterministic flow around a transonic airfoil subject to geometrical uncertainties. To assess the performance of the developed methodology, a detailed comparison is made with the well established LAR-based selection technique. The results show that the developed sparse regression technique is able to identify the most significant PC contributions describing the problem. Moreover, the most important stochastic features are captured at a reduced computational cost compared to the LAR method. The results also demonstrate the superior robustness of the method by repeating the analyses using random experimental designs. |
| Author | Ghorbaniasl, Ghader Raisee, Mehrdad Abraham, Simon Lacor, Chris Contino, Francesco |
| Author_xml | – sequence: 1 givenname: Simon orcidid: 0000-0002-6089-4320 surname: Abraham fullname: Abraham, Simon email: Simon.Abraham@ulb.ac.be organization: Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering, Research Group Fluid Mechanics and Thermodynamics, Pleinlaan 2, 1050 Brussels, Belgium – sequence: 2 givenname: Mehrdad surname: Raisee fullname: Raisee, Mehrdad organization: School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran – sequence: 3 givenname: Ghader surname: Ghorbaniasl fullname: Ghorbaniasl, Ghader organization: Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering, Research Group Fluid Mechanics and Thermodynamics, Pleinlaan 2, 1050 Brussels, Belgium – sequence: 4 givenname: Francesco orcidid: 0000-0002-8341-4350 surname: Contino fullname: Contino, Francesco organization: Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering, Research Group Fluid Mechanics and Thermodynamics, Pleinlaan 2, 1050 Brussels, Belgium – sequence: 5 givenname: Chris surname: Lacor fullname: Lacor, Chris organization: Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering, Research Group Fluid Mechanics and Thermodynamics, Pleinlaan 2, 1050 Brussels, Belgium |
| BackLink | https://www.osti.gov/biblio/22622260$$D View this record in Osti.gov |
| BookMark | eNp9kMFq3DAQhkVJoZu0D9CbIGe7I3lXlsgphCYtBHJpz0KWxlkZr-RK2jR5-8psoJBDDoPm8H3Dr_-cnIUYkJCvDFoGTHyb2skuLa9ry3gLbPeBbBgoaHjPxBnZAHDWKKXYJ3Ke8wQAcreVG2KuaYrDMRdqgqM4jt56DIXmgstfn5EmfEyYs4-BHrDso6NjTHQ4-tn58EjzYlKllji_hHjwZqZ2b2Km-LyYsFr5M_k4mjnjl9f3gvy-_f7r5kdz_3D38-b6vrHdriuNEm7AbkTXbV1vBB-l4tIIAcqwoRudsLy3DiVjsFU7QKZkX5lODiDlVpnuglye7sZcvM7WF7R7G0NAWzTngteB_9SS4p8j5qKneEyhBtMcBFOK90pUqj9RNsWcE466njOlfqck42fNQK-t60nX1vXaumZc19aryd6YS_IHk17eda5ODtZ6njymNT0Gi86nNbyL_h37H7CSnO8 |
| CitedBy_id | crossref_primary_10_3390_aerospace10121022 crossref_primary_10_1016_j_cma_2019_02_021 crossref_primary_10_1063_5_0144937 crossref_primary_10_1016_j_cma_2023_116498 crossref_primary_10_1063_5_0158821 crossref_primary_10_1007_s12665_018_8028_8 crossref_primary_10_1016_j_apm_2020_02_005 crossref_primary_10_1016_j_engstruct_2020_111786 crossref_primary_10_1016_j_jcp_2018_12_023 crossref_primary_10_1063_5_0069749 crossref_primary_10_1016_j_finel_2021_103533 crossref_primary_10_1051_e3sconf_202123810004 crossref_primary_10_1109_TMTT_2023_3253179 crossref_primary_10_1016_j_amc_2017_11_044 crossref_primary_10_1016_j_jcp_2018_04_025 crossref_primary_10_1016_j_energy_2018_12_046 crossref_primary_10_1109_TMTT_2024_3391346 crossref_primary_10_1016_j_energy_2021_121016 crossref_primary_10_1002_nme_6351 crossref_primary_10_1016_j_apenergy_2019_04_101 crossref_primary_10_1016_j_fuel_2020_117049 crossref_primary_10_1007_s00158_018_2184_z crossref_primary_10_1016_j_ymssp_2021_107727 crossref_primary_10_1016_j_cma_2022_115078 crossref_primary_10_1007_s00158_022_03475_8 crossref_primary_10_1007_s12666_019_01624_0 crossref_primary_10_1016_j_apm_2024_115746 crossref_primary_10_1016_j_ymssp_2021_108613 crossref_primary_10_1016_j_compstruc_2017_09_002 crossref_primary_10_1016_j_jaecs_2023_100141 crossref_primary_10_1016_j_jcp_2020_109539 crossref_primary_10_1016_j_ress_2019_01_001 crossref_primary_10_1016_j_compstruc_2021_106583 crossref_primary_10_1002_nme_6145 crossref_primary_10_1016_j_jcp_2019_04_014 crossref_primary_10_1016_j_compbiomed_2018_09_006 crossref_primary_10_1016_j_ymssp_2022_110073 crossref_primary_10_1109_ACCESS_2021_3052473 crossref_primary_10_1016_j_strusafe_2019_101905 crossref_primary_10_1007_s00158_018_2062_8 crossref_primary_10_1007_s00158_019_02413_5 crossref_primary_10_1016_j_strusafe_2018_04_001 crossref_primary_10_1016_j_cam_2020_113372 crossref_primary_10_1016_j_jhydrol_2019_123994 crossref_primary_10_1016_j_probengmech_2021_103157 crossref_primary_10_1016_j_strusafe_2022_102223 crossref_primary_10_3390_app131910751 crossref_primary_10_1016_j_cam_2021_113613 crossref_primary_10_1137_20M1315774 crossref_primary_10_33737_jgpps_138902 crossref_primary_10_1115_1_4045177 crossref_primary_10_1140_epjp_s13360_023_04124_9 crossref_primary_10_1007_s00158_020_02730_0 crossref_primary_10_1016_j_oceaneng_2021_109206 crossref_primary_10_21105_joss_04370 crossref_primary_10_1016_j_enconman_2021_114153 crossref_primary_10_1016_j_ymssp_2018_06_044 crossref_primary_10_1007_s00466_023_02301_2 crossref_primary_10_1016_j_ress_2024_110226 crossref_primary_10_1109_TNNLS_2020_3042434 crossref_primary_10_1016_j_jcp_2023_112377 crossref_primary_10_1137_20M1322029 crossref_primary_10_1016_j_apenergy_2022_118694 crossref_primary_10_1590_1413_70542018423006818 crossref_primary_10_1016_j_energy_2020_118798 crossref_primary_10_1016_j_apm_2021_01_012 crossref_primary_10_1016_j_apacoust_2018_04_012 crossref_primary_10_1109_ACCESS_2020_2991669 crossref_primary_10_1016_j_ecolind_2019_105516 crossref_primary_10_1016_j_prime_2022_100059 crossref_primary_10_1016_j_cma_2018_01_009 crossref_primary_10_1016_j_cma_2019_06_034 crossref_primary_10_1016_j_cma_2018_04_025 crossref_primary_10_1016_j_energy_2021_120692 crossref_primary_10_1016_j_jcp_2019_108909 crossref_primary_10_1142_S0219455421500358 crossref_primary_10_1007_s00477_024_02869_y crossref_primary_10_1007_s11356_019_04555_x crossref_primary_10_15575_join_v6i2_829 crossref_primary_10_1007_s00158_020_02594_4 crossref_primary_10_1080_00102202_2022_2068953 crossref_primary_10_3390_su141912191 crossref_primary_10_1002_nme_6086 crossref_primary_10_1016_j_atmosenv_2020_117975 crossref_primary_10_1063_5_0200406 crossref_primary_10_1007_s00704_020_03380_4 crossref_primary_10_1016_j_egypro_2017_12_545 |
| Cites_doi | 10.1146/annurev.fluid.010908.165248 10.2514/1.2220 10.1137/040613160 10.1016/j.matcom.2009.05.002 10.1016/j.jcp.2010.12.021 10.2307/2371268 10.1016/j.compfluid.2016.08.015 10.1016/j.probengmech.2009.10.003 10.1214/009053604000000067 10.1016/j.crme.2008.02.013 10.1109/MSP.2007.914731 10.1016/j.jcp.2014.09.019 10.1137/S1064827501387826 10.1007/978-3-319-10714-1 10.1016/j.jcp.2011.01.002 10.1007/978-1-4612-3094-6 10.1016/S0010-2180(02)00503-5 10.1109/TIT.2006.871582 10.2514/1.C032698 10.1016/S0021-9991(03)00092-5 10.1002/9780470770801 10.1002/nme.4900 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Inc. Copyright Elsevier Science Ltd. Mar 1, 2017 |
| Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Mar 1, 2017 |
| DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D OTOTI |
| DOI | 10.1016/j.jcp.2016.12.015 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional OSTI.GOV |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1090-2716 |
| EndPage | 474 |
| ExternalDocumentID | 22622260 10_1016_j_jcp_2016_12_015 S0021999116306684 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EFKBS FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG T9H UQL WUQ ZY4 ~HD 7SC 7SP 7U5 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D SSH AALMO ABPIF ABPTK ABQIS EFJIC OTOTI |
| ID | FETCH-LOGICAL-c353t-96dbe3fed34d7a62f8928a6609a1b3fd6c27cde81104950e1987f8938b08849a3 |
| IEDL.DBID | .~1 |
| ISSN | 0021-9991 |
| IngestDate | Fri May 19 00:34:21 EDT 2023 Fri Jul 25 02:57:25 EDT 2025 Wed Oct 01 02:36:38 EDT 2025 Thu Apr 24 23:04:41 EDT 2025 Fri Feb 23 02:17:19 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Uncertainty quantification Stepwise regression Regression-based polynomial chaos Sparse polynomial chaos expansion Least angle regression |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c353t-96dbe3fed34d7a62f8928a6609a1b3fd6c27cde81104950e1987f8938b08849a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8341-4350 0000-0002-6089-4320 |
| PQID | 2061992796 |
| PQPubID | 2047462 |
| PageCount | 14 |
| ParticipantIDs | osti_scitechconnect_22622260 proquest_journals_2061992796 crossref_citationtrail_10_1016_j_jcp_2016_12_015 crossref_primary_10_1016_j_jcp_2016_12_015 elsevier_sciencedirect_doi_10_1016_j_jcp_2016_12_015 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-03-01 2017-03-00 20170301 |
| PublicationDateYYYYMMDD | 2017-03-01 |
| PublicationDate_xml | – month: 03 year: 2017 text: 2017-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge – name: United States |
| PublicationTitle | Journal of computational physics |
| PublicationYear | 2017 |
| Publisher | Elsevier Inc Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
| References | Donoho (br0210) 2006; 52 Forrester, Sobester, Keane (br0020) 2008 Wiener (br0050) 1938; 60 Blatman, Sudret (br0250) 2008; 336 Loeven, Witteveen, Bijl (br0130) 2007; vol. 6 Kumar, Raisee, Lacor (br0200) 2016; 138 Candès, Wakin (br0220) 2008; 25 Choi, Grandhi, Canfield, Pettit (br0290) 2004; 42 Marelli, Sudret (br0370) 2015 Xiu, Tartakovsky (br0390) 2006; 28 Xiu, Karniadakis (br0070) 2003; 187 Askey, Wilson (br0080) 1985 Najm (br0010) 2009; 41 Lacor, Smirnov (br0090) 2007 D. Kumar, C. Lacor, Heat conduction in a 2D domain with geometrical uncertainty using intrusive polynomial chaos method, in: Proc. of the 9th National Congress on Theoretical and Applied Mechanics, Brussels, Belgium, 2012. Hosder (br0150) 2012; 3 Xiu, Karniadakis (br0060) 2002; 24 Doostan, Owhadi (br0230) 2011; 230 Ghanem, Spanos (br0380) 1991 Neter, Wasserman, Kutner (br0320) 1985 Reagan, Najm, Ghanem, Knio (br0180) 2003; 132 Draper, Smith (br0300) 2014 Hosder, Walters (br0330) 2010 Berveiller, Sudret, Lemaire (br0190) 2006; 15 De Gennaro, Rowley, Martinelli (br0040) 2015; 52 Smirnov, Lacor (br0100) 2008 Hosder, Walters, Balch (br0340) 2007 Cheng, Sandu (br0030) 2009; 79 Raisee, Kumar, Lacor (br0160) 2015; 103 Efron, Hastie, Johnstone, Tibshirani (br0280) 2004; 32 Fox (br0310) 2016 Pettersson, Iaccarino, Nordström (br0170) 2015 Blatman, Sudret (br0270) 2011; 230 Dinescu, Smirnov, Hirsch, Lacor (br0110) 2010; 2 Eldred, Burkardt (br0140) 2009 Hampton, Doostan (br0240) 2015; 280 Blatman (br0350) 2009 Blatman, Sudret (br0260) 2010; 25 Ishigami, Homma (br0360) 1990 Lacor (10.1016/j.jcp.2016.12.015_br0090) 2007 Loeven (10.1016/j.jcp.2016.12.015_br0130) 2007; vol. 6 Hampton (10.1016/j.jcp.2016.12.015_br0240) 2015; 280 Ghanem (10.1016/j.jcp.2016.12.015_br0380) 1991 Xiu (10.1016/j.jcp.2016.12.015_br0060) 2002; 24 Hosder (10.1016/j.jcp.2016.12.015_br0340) 2007 Dinescu (10.1016/j.jcp.2016.12.015_br0110) 2010; 2 Eldred (10.1016/j.jcp.2016.12.015_br0140) 2009 Fox (10.1016/j.jcp.2016.12.015_br0310) 2016 Marelli (10.1016/j.jcp.2016.12.015_br0370) Wiener (10.1016/j.jcp.2016.12.015_br0050) 1938; 60 Kumar (10.1016/j.jcp.2016.12.015_br0200) 2016; 138 Efron (10.1016/j.jcp.2016.12.015_br0280) 2004; 32 Neter (10.1016/j.jcp.2016.12.015_br0320) 1985 Hosder (10.1016/j.jcp.2016.12.015_br0330) 2010 Draper (10.1016/j.jcp.2016.12.015_br0300) 2014 Xiu (10.1016/j.jcp.2016.12.015_br0070) 2003; 187 Blatman (10.1016/j.jcp.2016.12.015_br0270) 2011; 230 Ishigami (10.1016/j.jcp.2016.12.015_br0360) 1990 Raisee (10.1016/j.jcp.2016.12.015_br0160) 2015; 103 Donoho (10.1016/j.jcp.2016.12.015_br0210) 2006; 52 Pettersson (10.1016/j.jcp.2016.12.015_br0170) 2015 Najm (10.1016/j.jcp.2016.12.015_br0010) 2009; 41 Cheng (10.1016/j.jcp.2016.12.015_br0030) 2009; 79 Candès (10.1016/j.jcp.2016.12.015_br0220) 2008; 25 Choi (10.1016/j.jcp.2016.12.015_br0290) 2004; 42 Blatman (10.1016/j.jcp.2016.12.015_br0350) 2009 Xiu (10.1016/j.jcp.2016.12.015_br0390) 2006; 28 Askey (10.1016/j.jcp.2016.12.015_br0080) 1985 Blatman (10.1016/j.jcp.2016.12.015_br0260) 2010; 25 Forrester (10.1016/j.jcp.2016.12.015_br0020) 2008 Berveiller (10.1016/j.jcp.2016.12.015_br0190) 2006; 15 Blatman (10.1016/j.jcp.2016.12.015_br0250) 2008; 336 Smirnov (10.1016/j.jcp.2016.12.015_br0100) 2008 De Gennaro (10.1016/j.jcp.2016.12.015_br0040) 2015; 52 Hosder (10.1016/j.jcp.2016.12.015_br0150) 2012; 3 10.1016/j.jcp.2016.12.015_br0120 Doostan (10.1016/j.jcp.2016.12.015_br0230) 2011; 230 Reagan (10.1016/j.jcp.2016.12.015_br0180) 2003; 132 |
| References_xml | – year: 1991 ident: br0380 article-title: Stochastic Finite Element: A Spectral Approach – year: 2016 ident: br0310 article-title: Applied Regression Analysis and Generalized Linear Models – volume: 79 start-page: 3278 year: 2009 end-page: 3295 ident: br0030 article-title: Efficient uncertainty quantification with the polynomial chaos method for stiff systems publication-title: Math. Comput. Simul. – volume: vol. 6 start-page: 3845 year: 2007 end-page: 3858 ident: br0130 article-title: Probabilistic collocation: an efficient non-intrusive approach for arbitrarily distributed parametric uncertainties publication-title: Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit – volume: 25 start-page: 183 year: 2010 end-page: 197 ident: br0260 article-title: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis publication-title: Probab. Eng. Mech. – volume: 32 start-page: 407 year: 2004 end-page: 499 ident: br0280 article-title: Least angle regression publication-title: Ann. Stat. – year: 2015 ident: br0370 article-title: UQLab – volume: 52 start-page: 1404 year: 2015 end-page: 1411 ident: br0040 article-title: Uncertainty quantification for airfoil icing using polynomial chaos expansions publication-title: J. Aircr. – year: 2009 ident: br0140 article-title: Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification publication-title: Proceedings of the 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition – volume: 230 start-page: 2345 year: 2011 end-page: 2367 ident: br0270 article-title: Adaptive sparse polynomial chaos expansion based on publication-title: J. Comput. Phys. – volume: 41 start-page: 35 year: 2009 end-page: 52 ident: br0010 article-title: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics publication-title: Annu. Rev. Fluid Mech. – volume: 28 start-page: 1167 year: 2006 end-page: 1185 ident: br0390 article-title: Numerical methods for differential equations in random domains publication-title: SIAM J. Sci. Comput. – year: 2014 ident: br0300 article-title: Applied regression analysis publication-title: Wiley Ser. Probab. Stat. – volume: 52 start-page: 1289 year: 2006 end-page: 1306 ident: br0210 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theory – volume: 25 start-page: 21 year: 2008 end-page: 30 ident: br0220 article-title: An introduction to compressive sampling publication-title: IEEE Signal Process. Mag. – volume: 42 start-page: 1191 year: 2004 end-page: 1198 ident: br0290 article-title: Polynomial chaos expansion with Latin Hypercube sampling for estimating response variability publication-title: AIAA J. – year: 2015 ident: br0170 article-title: Polynomial Chaos Methods for Hyperbolic Partial Differential Equations – volume: 15 start-page: 81 year: 2006 end-page: 92 ident: br0190 article-title: Stochastic finite element: a non intrusive approach by regression publication-title: Rev. Eur. Méc. Numér. – volume: 60 start-page: 897 year: 1938 end-page: 936 ident: br0050 article-title: The homogeneous chaos publication-title: Am. J. Math. – volume: 24 start-page: 619 year: 2002 end-page: 644 ident: br0060 article-title: The Wiener–Askey polynomial chaos for stochastic differential equations publication-title: SIAM J. Sci. Comput. – volume: 3 start-page: 117 year: 2012 end-page: 139 ident: br0150 article-title: Stochastic response surfaces based on non-intrusive polynomial chaos for uncertainty quantification publication-title: Int. J. Math. Model. Numer. Optim. – volume: 187 start-page: 137 year: 2003 end-page: 167 ident: br0070 article-title: Modeling uncertainty in flow simulations via generalized polynomial chaos publication-title: J. Comput. Phys. – volume: 103 start-page: 293 year: 2015 end-page: 312 ident: br0160 article-title: A non-intrusive model reduction approach for polynomial chaos expansion using proper orthogonal decomposition publication-title: Int. J. Numer. Methods Eng. – year: 1985 ident: br0320 article-title: Applied Linear Regression Models – year: 2008 ident: br0020 article-title: Engineering Design via Surrogate Modelling: A Practical Guide – volume: 132 start-page: 545 year: 2003 end-page: 555 ident: br0180 article-title: Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection publication-title: Combust. Flame – year: 1985 ident: br0080 article-title: Some Basic Hypergeometric Orthogonal Polynomials That Generalize Jacobi Polynomials – year: 2008 ident: br0100 article-title: Non-deterministic compressible Navier–Stokes simulations using polynomial chaos publication-title: Proc. ECCOMAS Conf. – reference: D. Kumar, C. Lacor, Heat conduction in a 2D domain with geometrical uncertainty using intrusive polynomial chaos method, in: Proc. of the 9th National Congress on Theoretical and Applied Mechanics, Brussels, Belgium, 2012. – year: 2007 ident: br0340 article-title: Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables publication-title: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference – volume: 230 start-page: 3015 year: 2011 end-page: 3034 ident: br0230 article-title: A non-adapted sparse approximation of PDEs with stochastic inputs publication-title: J. Comput. Phys. – start-page: 398 year: 1990 end-page: 403 ident: br0360 article-title: An importance quantification technique in uncertainty analysis for computer models publication-title: Proc. ISUMA'90, First Int. Symp. Uncertain Mod. An. – volume: 336 start-page: 518 year: 2008 end-page: 523 ident: br0250 article-title: Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach publication-title: C. R. Mec. – start-page: 13 year: 2007 ident: br0090 article-title: Uncertainty propagation in the solution of compressible Navier–Stokes equations using polynomial chaos decomposition publication-title: CD Rom Proc. of NATO AVT Symposium – volume: 2 start-page: 87 year: 2010 end-page: 98 ident: br0110 article-title: Assessment of intrusive and non-intrusive non-deterministic CFD methodologies based on polynomial chaos expansions publication-title: Int. J. Eng. Syst. Model. Simul. – volume: 138 start-page: 67 year: 2016 end-page: 82 ident: br0200 article-title: An efficient non-intrusive reduced basis model for high dimensional stochastic problems in CFD publication-title: Comput. Fluids – volume: 280 start-page: 363 year: 2015 end-page: 386 ident: br0240 article-title: Compressive sampling of polynomial chaos expansions: convergence analysis and sampling strategies publication-title: J. Comput. Phys. – year: 2010 ident: br0330 article-title: Non-intrusive polynomial chaos methods for uncertainty quantification in fluid dynamics publication-title: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition – year: 2009 ident: br0350 article-title: Adaptive Sparse Polynomial Chaos Expansions for Uncertainty Propagation and Sensitivity Analysis – start-page: 398 year: 1990 ident: 10.1016/j.jcp.2016.12.015_br0360 article-title: An importance quantification technique in uncertainty analysis for computer models – volume: 41 start-page: 35 issue: 1 year: 2009 ident: 10.1016/j.jcp.2016.12.015_br0010 article-title: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.010908.165248 – year: 2009 ident: 10.1016/j.jcp.2016.12.015_br0350 – volume: 42 start-page: 1191 issue: 6 year: 2004 ident: 10.1016/j.jcp.2016.12.015_br0290 article-title: Polynomial chaos expansion with Latin Hypercube sampling for estimating response variability publication-title: AIAA J. doi: 10.2514/1.2220 – year: 2014 ident: 10.1016/j.jcp.2016.12.015_br0300 article-title: Applied regression analysis – volume: 28 start-page: 1167 issue: 3 year: 2006 ident: 10.1016/j.jcp.2016.12.015_br0390 article-title: Numerical methods for differential equations in random domains publication-title: SIAM J. Sci. Comput. doi: 10.1137/040613160 – volume: 79 start-page: 3278 issue: 11 year: 2009 ident: 10.1016/j.jcp.2016.12.015_br0030 article-title: Efficient uncertainty quantification with the polynomial chaos method for stiff systems publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2009.05.002 – volume: 230 start-page: 2345 year: 2011 ident: 10.1016/j.jcp.2016.12.015_br0270 article-title: Adaptive sparse polynomial chaos expansion based on Least Angle Regression publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2010.12.021 – volume: 60 start-page: 897 issue: 4 year: 1938 ident: 10.1016/j.jcp.2016.12.015_br0050 article-title: The homogeneous chaos publication-title: Am. J. Math. doi: 10.2307/2371268 – volume: 138 start-page: 67 year: 2016 ident: 10.1016/j.jcp.2016.12.015_br0200 article-title: An efficient non-intrusive reduced basis model for high dimensional stochastic problems in CFD publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2016.08.015 – volume: vol. 6 start-page: 3845 year: 2007 ident: 10.1016/j.jcp.2016.12.015_br0130 article-title: Probabilistic collocation: an efficient non-intrusive approach for arbitrarily distributed parametric uncertainties – volume: 25 start-page: 183 issue: 2 year: 2010 ident: 10.1016/j.jcp.2016.12.015_br0260 article-title: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis publication-title: Probab. Eng. Mech. doi: 10.1016/j.probengmech.2009.10.003 – year: 2008 ident: 10.1016/j.jcp.2016.12.015_br0100 article-title: Non-deterministic compressible Navier–Stokes simulations using polynomial chaos – volume: 32 start-page: 407 issue: 2 year: 2004 ident: 10.1016/j.jcp.2016.12.015_br0280 article-title: Least angle regression publication-title: Ann. Stat. doi: 10.1214/009053604000000067 – year: 1985 ident: 10.1016/j.jcp.2016.12.015_br0320 – volume: 15 start-page: 81 issue: 1 year: 2006 ident: 10.1016/j.jcp.2016.12.015_br0190 article-title: Stochastic finite element: a non intrusive approach by regression publication-title: Rev. Eur. Méc. Numér. – volume: 336 start-page: 518 year: 2008 ident: 10.1016/j.jcp.2016.12.015_br0250 article-title: Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach publication-title: C. R. Mec. doi: 10.1016/j.crme.2008.02.013 – volume: 25 start-page: 21 issue: 2 year: 2008 ident: 10.1016/j.jcp.2016.12.015_br0220 article-title: An introduction to compressive sampling publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2007.914731 – volume: 280 start-page: 363 year: 2015 ident: 10.1016/j.jcp.2016.12.015_br0240 article-title: Compressive sampling of polynomial chaos expansions: convergence analysis and sampling strategies publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.09.019 – volume: 24 start-page: 619 issue: 2 year: 2002 ident: 10.1016/j.jcp.2016.12.015_br0060 article-title: The Wiener–Askey polynomial chaos for stochastic differential equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827501387826 – year: 2010 ident: 10.1016/j.jcp.2016.12.015_br0330 article-title: Non-intrusive polynomial chaos methods for uncertainty quantification in fluid dynamics – volume: 2 start-page: 87 issue: 1 year: 2010 ident: 10.1016/j.jcp.2016.12.015_br0110 article-title: Assessment of intrusive and non-intrusive non-deterministic CFD methodologies based on polynomial chaos expansions publication-title: Int. J. Eng. Syst. Model. Simul. – start-page: 13 year: 2007 ident: 10.1016/j.jcp.2016.12.015_br0090 article-title: Uncertainty propagation in the solution of compressible Navier–Stokes equations using polynomial chaos decomposition – ident: 10.1016/j.jcp.2016.12.015_br0120 – year: 2015 ident: 10.1016/j.jcp.2016.12.015_br0170 doi: 10.1007/978-3-319-10714-1 – volume: 230 start-page: 3015 issue: 8 year: 2011 ident: 10.1016/j.jcp.2016.12.015_br0230 article-title: A non-adapted sparse approximation of PDEs with stochastic inputs publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.01.002 – year: 1991 ident: 10.1016/j.jcp.2016.12.015_br0380 doi: 10.1007/978-1-4612-3094-6 – volume: 132 start-page: 545 issue: 3 year: 2003 ident: 10.1016/j.jcp.2016.12.015_br0180 article-title: Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection publication-title: Combust. Flame doi: 10.1016/S0010-2180(02)00503-5 – volume: 52 start-page: 1289 issue: 4 year: 2006 ident: 10.1016/j.jcp.2016.12.015_br0210 article-title: Compressed sensing publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2006.871582 – volume: 52 start-page: 1404 issue: 5 year: 2015 ident: 10.1016/j.jcp.2016.12.015_br0040 article-title: Uncertainty quantification for airfoil icing using polynomial chaos expansions publication-title: J. Aircr. doi: 10.2514/1.C032698 – volume: 187 start-page: 137 issue: 1 year: 2003 ident: 10.1016/j.jcp.2016.12.015_br0070 article-title: Modeling uncertainty in flow simulations via generalized polynomial chaos publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(03)00092-5 – year: 2008 ident: 10.1016/j.jcp.2016.12.015_br0020 doi: 10.1002/9780470770801 – volume: 3 start-page: 117 issue: 1–2 year: 2012 ident: 10.1016/j.jcp.2016.12.015_br0150 article-title: Stochastic response surfaces based on non-intrusive polynomial chaos for uncertainty quantification publication-title: Int. J. Math. Model. Numer. Optim. – ident: 10.1016/j.jcp.2016.12.015_br0370 – year: 2007 ident: 10.1016/j.jcp.2016.12.015_br0340 article-title: Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables – year: 2009 ident: 10.1016/j.jcp.2016.12.015_br0140 article-title: Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification – volume: 103 start-page: 293 issue: 4 year: 2015 ident: 10.1016/j.jcp.2016.12.015_br0160 article-title: A non-intrusive model reduction approach for polynomial chaos expansion using proper orthogonal decomposition publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.4900 – year: 2016 ident: 10.1016/j.jcp.2016.12.015_br0310 – year: 1985 ident: 10.1016/j.jcp.2016.12.015_br0080 |
| SSID | ssj0008548 |
| Score | 2.5318677 |
| Snippet | Polynomial Chaos (PC) expansions are widely used in various engineering fields for quantifying uncertainties arising from uncertain parameters. The... |
| SourceID | osti proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 461 |
| SubjectTerms | ALGORITHMS BENCHMARKS CAPTURE CHAOS THEORY CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS COMPARATIVE EVALUATIONS Computational efficiency Computational mathematics Computational physics Computer simulation COMPUTERIZED SIMULATION Computing time EFFICIENCY EXPANSION Least angle regression Mathematical analysis MATHEMATICAL SOLUTIONS Parameter uncertainty Personal computers POLYNOMIALS PROBABILISTIC ESTIMATION Probabilistic methods Probability Regression analysis Regression-based polynomial chaos Robustness (mathematics) Sparse polynomial chaos expansion Statistical analysis Stepwise regression STOCHASTIC PROCESSES Studies UNCERTAINTY PRINCIPLE Uncertainty quantification |
| Title | A robust and efficient stepwise regression method for building sparse polynomial chaos expansions |
| URI | https://dx.doi.org/10.1016/j.jcp.2016.12.015 https://www.proquest.com/docview/2061992796 https://www.osti.gov/biblio/22622260 |
| Volume | 332 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1090-2716 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AKRWK dateStart: 19660801 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXrz4Ft_k4Emotk02TY_L4rIqelLwFvKqrki7bFfUi7_dmTZVRPHgoZc2Q8ok-eZr-mWGkCOueSYKH0eSGRZxm-SAg1JH1jvNstjBhfuQV9difMsv7vp3C2TYnYVBWWXA_hbTG7QOd06DN0-nkwme8U3xDH0CjALipsScoJxnWMXg5P1L5iH7vEVjlCJA6-7PZqPxerSYsjIRzY4gVsb9PTb1KlhuP8C6iUCjVbIcqCMdtG-3RhZ8uU5WAo2kYZHWG0QP6Kwyz_Wc6tJR3-SIgNBCYTynL5Pa05m_b9WvJW0LSFNgrtSEAtkUMGYGrabV0xueWYYu7YOuaupfATnQqt4kt6Ozm-E4CpUUIsv6bB7lwhnPCu8Yd5kWaSHzVGoh4lwnhhVO2DSzzkvgAvDBFHvciYA2TBoAIZ5rtkV6ZVX6bUJzBuENvqe9LQzPNDO-4K7I-jyxhUx0ukPizofKhjTjWO3iSXV6skcFblfodpWkCty-Q44_TaZtjo2_GvNuYNS3iaIgBvxlto-DiCaYHNeiighsgHwCQRIxPO4GV4VFXIO5QHFulovd_3W6R5ZSZAGNZG2f9OazZ38AHGZuDptJekgWB-eX4-sPTYPwRw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELW2y6G9lEJbdQsFHzhVSklix3GOCIEWWDiBxM3yV9pFq2SVBEEv_e2dSZxWFYhDD7kkHiUa22-enecZQg645rkofRxJZljEbVIADkodWe80y2MHF-5DXl6J-Q0_v81uJ-R4PAuDssqA_QOm92gd7hwGbx6ul0s845viGfoEGAXETclfkQ2epTmuwL79-qvzkBkf4Bi1CNB8_LXZi7zuLOasTES_JYilcZ8PTtMa5tsTtO5D0Ok78jZwR3o0fN4Wmfhqm2wGHknDLG3fE31Em9rctx3VlaO-TxIBsYVCh64flq2njf8-yF8rOlSQpkBdqQkVsimATAOt1vXqJx5ahlfaH7puqX8E6ECr9gO5OT25Pp5HoZRCZFnGuqgQznhWese4y7VIS1mkUgsRFzoxrHTCprl1XgIZgBVT7HErAtowaQCFeKHZRzKt6sp_IrRgEN9gQe1taXiumfEld2We8cSWMtHpjMSjD5UNecax3MVKjYKyOwVuV-h2laQK3D4jX_-YrIckGy815mPHqH9GioIg8JLZLnYimmB2XIsyIrAB9gkMScTweOxcFWZxC-YC1bl5IT7_30v3yev59eVCLc6uLnbImxQpQa9f2yXTrrn3X4DQdGavH7C_AeMU8dw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+and+efficient+stepwise+regression+method+for+building+sparse+polynomial+chaos+expansions&rft.jtitle=Journal+of+computational+physics&rft.au=Abraham%2C+Simon&rft.au=Raisee%2C+Mehrdad&rft.au=Ghorbaniasl%2C+Ghader&rft.au=Contino%2C+Francesco&rft.date=2017-03-01&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=332&rft_id=info:doi/10.1016%2FJ.JCP.2016.12.015&rft.externalDocID=22622260 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |