A robust and efficient stepwise regression method for building sparse polynomial chaos expansions

Polynomial Chaos (PC) expansions are widely used in various engineering fields for quantifying uncertainties arising from uncertain parameters. The computational cost of classical PC solution schemes is unaffordable as the number of deterministic simulations to be calculated grows dramatically with...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 332; pp. 461 - 474
Main Authors Abraham, Simon, Raisee, Mehrdad, Ghorbaniasl, Ghader, Contino, Francesco, Lacor, Chris
Format Journal Article
LanguageEnglish
Published Cambridge Elsevier Inc 01.03.2017
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0021-9991
1090-2716
DOI10.1016/j.jcp.2016.12.015

Cover

Abstract Polynomial Chaos (PC) expansions are widely used in various engineering fields for quantifying uncertainties arising from uncertain parameters. The computational cost of classical PC solution schemes is unaffordable as the number of deterministic simulations to be calculated grows dramatically with the number of stochastic dimension. This considerably restricts the practical use of PC at the industrial level. A common approach to address such problems is to make use of sparse PC expansions. This paper presents a non-intrusive regression-based method for building sparse PC expansions. The most important PC contributions are detected sequentially through an automatic search procedure. The variable selection criterion is based on efficient tools relevant to probabilistic method. Two benchmark analytical functions are used to validate the proposed algorithm. The computational efficiency of the method is then illustrated by a more realistic CFD application, consisting of the non-deterministic flow around a transonic airfoil subject to geometrical uncertainties. To assess the performance of the developed methodology, a detailed comparison is made with the well established LAR-based selection technique. The results show that the developed sparse regression technique is able to identify the most significant PC contributions describing the problem. Moreover, the most important stochastic features are captured at a reduced computational cost compared to the LAR method. The results also demonstrate the superior robustness of the method by repeating the analyses using random experimental designs.
AbstractList Polynomial Chaos (PC) expansions are widely used in various engineering fields for quantifying uncertainties arising from uncertain parameters. The computational cost of classical PC solution schemes is unaffordable as the number of deterministic simulations to be calculated grows dramatically with the number of stochastic dimension. This considerably restricts the practical use of PC at the industrial level. A common approach to address such problems is to make use of sparse PC expansions. This paper presents a non-intrusive regression-based method for building sparse PC expansions. The most important PC contributions are detected sequentially through an automatic search procedure. The variable selection criterion is based on efficient tools relevant to probabilistic method. Two benchmark analytical functions are used to validate the proposed algorithm. The computational efficiency of the method is then illustrated by a more realistic CFD application, consisting of the non-deterministic flow around a transonic airfoil subject to geometrical uncertainties. To assess the performance of the developed methodology, a detailed comparison is made with the well established LAR-based selection technique. The results show that the developed sparse regression technique is able to identify the most significant PC contributions describing the problem. Moreover, the most important stochastic features are captured at a reduced computational cost compared to the LAR method. The results also demonstrate the superior robustness of the method by repeating the analyses using random experimental designs.
Author Ghorbaniasl, Ghader
Raisee, Mehrdad
Abraham, Simon
Lacor, Chris
Contino, Francesco
Author_xml – sequence: 1
  givenname: Simon
  orcidid: 0000-0002-6089-4320
  surname: Abraham
  fullname: Abraham, Simon
  email: Simon.Abraham@ulb.ac.be
  organization: Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering, Research Group Fluid Mechanics and Thermodynamics, Pleinlaan 2, 1050 Brussels, Belgium
– sequence: 2
  givenname: Mehrdad
  surname: Raisee
  fullname: Raisee, Mehrdad
  organization: School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box: 11155-4563, Tehran, Iran
– sequence: 3
  givenname: Ghader
  surname: Ghorbaniasl
  fullname: Ghorbaniasl, Ghader
  organization: Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering, Research Group Fluid Mechanics and Thermodynamics, Pleinlaan 2, 1050 Brussels, Belgium
– sequence: 4
  givenname: Francesco
  orcidid: 0000-0002-8341-4350
  surname: Contino
  fullname: Contino, Francesco
  organization: Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering, Research Group Fluid Mechanics and Thermodynamics, Pleinlaan 2, 1050 Brussels, Belgium
– sequence: 5
  givenname: Chris
  surname: Lacor
  fullname: Lacor, Chris
  organization: Vrije Universiteit Brussel (VUB), Department of Mechanical Engineering, Research Group Fluid Mechanics and Thermodynamics, Pleinlaan 2, 1050 Brussels, Belgium
BackLink https://www.osti.gov/biblio/22622260$$D View this record in Osti.gov
BookMark eNp9kMFq3DAQhkVJoZu0D9CbIGe7I3lXlsgphCYtBHJpz0KWxlkZr-RK2jR5-8psoJBDDoPm8H3Dr_-cnIUYkJCvDFoGTHyb2skuLa9ry3gLbPeBbBgoaHjPxBnZAHDWKKXYJ3Ke8wQAcreVG2KuaYrDMRdqgqM4jt56DIXmgstfn5EmfEyYs4-BHrDso6NjTHQ4-tn58EjzYlKllji_hHjwZqZ2b2Km-LyYsFr5M_k4mjnjl9f3gvy-_f7r5kdz_3D38-b6vrHdriuNEm7AbkTXbV1vBB-l4tIIAcqwoRudsLy3DiVjsFU7QKZkX5lODiDlVpnuglye7sZcvM7WF7R7G0NAWzTngteB_9SS4p8j5qKneEyhBtMcBFOK90pUqj9RNsWcE466njOlfqck42fNQK-t60nX1vXaumZc19aryd6YS_IHk17eda5ODtZ6njymNT0Gi86nNbyL_h37H7CSnO8
CitedBy_id crossref_primary_10_3390_aerospace10121022
crossref_primary_10_1016_j_cma_2019_02_021
crossref_primary_10_1063_5_0144937
crossref_primary_10_1016_j_cma_2023_116498
crossref_primary_10_1063_5_0158821
crossref_primary_10_1007_s12665_018_8028_8
crossref_primary_10_1016_j_apm_2020_02_005
crossref_primary_10_1016_j_engstruct_2020_111786
crossref_primary_10_1016_j_jcp_2018_12_023
crossref_primary_10_1063_5_0069749
crossref_primary_10_1016_j_finel_2021_103533
crossref_primary_10_1051_e3sconf_202123810004
crossref_primary_10_1109_TMTT_2023_3253179
crossref_primary_10_1016_j_amc_2017_11_044
crossref_primary_10_1016_j_jcp_2018_04_025
crossref_primary_10_1016_j_energy_2018_12_046
crossref_primary_10_1109_TMTT_2024_3391346
crossref_primary_10_1016_j_energy_2021_121016
crossref_primary_10_1002_nme_6351
crossref_primary_10_1016_j_apenergy_2019_04_101
crossref_primary_10_1016_j_fuel_2020_117049
crossref_primary_10_1007_s00158_018_2184_z
crossref_primary_10_1016_j_ymssp_2021_107727
crossref_primary_10_1016_j_cma_2022_115078
crossref_primary_10_1007_s00158_022_03475_8
crossref_primary_10_1007_s12666_019_01624_0
crossref_primary_10_1016_j_apm_2024_115746
crossref_primary_10_1016_j_ymssp_2021_108613
crossref_primary_10_1016_j_compstruc_2017_09_002
crossref_primary_10_1016_j_jaecs_2023_100141
crossref_primary_10_1016_j_jcp_2020_109539
crossref_primary_10_1016_j_ress_2019_01_001
crossref_primary_10_1016_j_compstruc_2021_106583
crossref_primary_10_1002_nme_6145
crossref_primary_10_1016_j_jcp_2019_04_014
crossref_primary_10_1016_j_compbiomed_2018_09_006
crossref_primary_10_1016_j_ymssp_2022_110073
crossref_primary_10_1109_ACCESS_2021_3052473
crossref_primary_10_1016_j_strusafe_2019_101905
crossref_primary_10_1007_s00158_018_2062_8
crossref_primary_10_1007_s00158_019_02413_5
crossref_primary_10_1016_j_strusafe_2018_04_001
crossref_primary_10_1016_j_cam_2020_113372
crossref_primary_10_1016_j_jhydrol_2019_123994
crossref_primary_10_1016_j_probengmech_2021_103157
crossref_primary_10_1016_j_strusafe_2022_102223
crossref_primary_10_3390_app131910751
crossref_primary_10_1016_j_cam_2021_113613
crossref_primary_10_1137_20M1315774
crossref_primary_10_33737_jgpps_138902
crossref_primary_10_1115_1_4045177
crossref_primary_10_1140_epjp_s13360_023_04124_9
crossref_primary_10_1007_s00158_020_02730_0
crossref_primary_10_1016_j_oceaneng_2021_109206
crossref_primary_10_21105_joss_04370
crossref_primary_10_1016_j_enconman_2021_114153
crossref_primary_10_1016_j_ymssp_2018_06_044
crossref_primary_10_1007_s00466_023_02301_2
crossref_primary_10_1016_j_ress_2024_110226
crossref_primary_10_1109_TNNLS_2020_3042434
crossref_primary_10_1016_j_jcp_2023_112377
crossref_primary_10_1137_20M1322029
crossref_primary_10_1016_j_apenergy_2022_118694
crossref_primary_10_1590_1413_70542018423006818
crossref_primary_10_1016_j_energy_2020_118798
crossref_primary_10_1016_j_apm_2021_01_012
crossref_primary_10_1016_j_apacoust_2018_04_012
crossref_primary_10_1109_ACCESS_2020_2991669
crossref_primary_10_1016_j_ecolind_2019_105516
crossref_primary_10_1016_j_prime_2022_100059
crossref_primary_10_1016_j_cma_2018_01_009
crossref_primary_10_1016_j_cma_2019_06_034
crossref_primary_10_1016_j_cma_2018_04_025
crossref_primary_10_1016_j_energy_2021_120692
crossref_primary_10_1016_j_jcp_2019_108909
crossref_primary_10_1142_S0219455421500358
crossref_primary_10_1007_s00477_024_02869_y
crossref_primary_10_1007_s11356_019_04555_x
crossref_primary_10_15575_join_v6i2_829
crossref_primary_10_1007_s00158_020_02594_4
crossref_primary_10_1080_00102202_2022_2068953
crossref_primary_10_3390_su141912191
crossref_primary_10_1002_nme_6086
crossref_primary_10_1016_j_atmosenv_2020_117975
crossref_primary_10_1063_5_0200406
crossref_primary_10_1007_s00704_020_03380_4
crossref_primary_10_1016_j_egypro_2017_12_545
Cites_doi 10.1146/annurev.fluid.010908.165248
10.2514/1.2220
10.1137/040613160
10.1016/j.matcom.2009.05.002
10.1016/j.jcp.2010.12.021
10.2307/2371268
10.1016/j.compfluid.2016.08.015
10.1016/j.probengmech.2009.10.003
10.1214/009053604000000067
10.1016/j.crme.2008.02.013
10.1109/MSP.2007.914731
10.1016/j.jcp.2014.09.019
10.1137/S1064827501387826
10.1007/978-3-319-10714-1
10.1016/j.jcp.2011.01.002
10.1007/978-1-4612-3094-6
10.1016/S0010-2180(02)00503-5
10.1109/TIT.2006.871582
10.2514/1.C032698
10.1016/S0021-9991(03)00092-5
10.1002/9780470770801
10.1002/nme.4900
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright Elsevier Science Ltd. Mar 1, 2017
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Mar 1, 2017
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
OTOTI
DOI 10.1016/j.jcp.2016.12.015
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
EndPage 474
ExternalDocumentID 22622260
10_1016_j_jcp_2016_12_015
S0021999116306684
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
AALMO
ABPIF
ABPTK
ABQIS
EFJIC
OTOTI
ID FETCH-LOGICAL-c353t-96dbe3fed34d7a62f8928a6609a1b3fd6c27cde81104950e1987f8938b08849a3
IEDL.DBID .~1
ISSN 0021-9991
IngestDate Fri May 19 00:34:21 EDT 2023
Fri Jul 25 02:57:25 EDT 2025
Wed Oct 01 02:36:38 EDT 2025
Thu Apr 24 23:04:41 EDT 2025
Fri Feb 23 02:17:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Uncertainty quantification
Stepwise regression
Regression-based polynomial chaos
Sparse polynomial chaos expansion
Least angle regression
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-96dbe3fed34d7a62f8928a6609a1b3fd6c27cde81104950e1987f8938b08849a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8341-4350
0000-0002-6089-4320
PQID 2061992796
PQPubID 2047462
PageCount 14
ParticipantIDs osti_scitechconnect_22622260
proquest_journals_2061992796
crossref_citationtrail_10_1016_j_jcp_2016_12_015
crossref_primary_10_1016_j_jcp_2016_12_015
elsevier_sciencedirect_doi_10_1016_j_jcp_2016_12_015
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-03-01
2017-03-00
20170301
PublicationDateYYYYMMDD 2017-03-01
PublicationDate_xml – month: 03
  year: 2017
  text: 2017-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
– name: United States
PublicationTitle Journal of computational physics
PublicationYear 2017
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Donoho (br0210) 2006; 52
Forrester, Sobester, Keane (br0020) 2008
Wiener (br0050) 1938; 60
Blatman, Sudret (br0250) 2008; 336
Loeven, Witteveen, Bijl (br0130) 2007; vol. 6
Kumar, Raisee, Lacor (br0200) 2016; 138
Candès, Wakin (br0220) 2008; 25
Choi, Grandhi, Canfield, Pettit (br0290) 2004; 42
Marelli, Sudret (br0370) 2015
Xiu, Tartakovsky (br0390) 2006; 28
Xiu, Karniadakis (br0070) 2003; 187
Askey, Wilson (br0080) 1985
Najm (br0010) 2009; 41
Lacor, Smirnov (br0090) 2007
D. Kumar, C. Lacor, Heat conduction in a 2D domain with geometrical uncertainty using intrusive polynomial chaos method, in: Proc. of the 9th National Congress on Theoretical and Applied Mechanics, Brussels, Belgium, 2012.
Hosder (br0150) 2012; 3
Xiu, Karniadakis (br0060) 2002; 24
Doostan, Owhadi (br0230) 2011; 230
Ghanem, Spanos (br0380) 1991
Neter, Wasserman, Kutner (br0320) 1985
Reagan, Najm, Ghanem, Knio (br0180) 2003; 132
Draper, Smith (br0300) 2014
Hosder, Walters (br0330) 2010
Berveiller, Sudret, Lemaire (br0190) 2006; 15
De Gennaro, Rowley, Martinelli (br0040) 2015; 52
Smirnov, Lacor (br0100) 2008
Hosder, Walters, Balch (br0340) 2007
Cheng, Sandu (br0030) 2009; 79
Raisee, Kumar, Lacor (br0160) 2015; 103
Efron, Hastie, Johnstone, Tibshirani (br0280) 2004; 32
Fox (br0310) 2016
Pettersson, Iaccarino, Nordström (br0170) 2015
Blatman, Sudret (br0270) 2011; 230
Dinescu, Smirnov, Hirsch, Lacor (br0110) 2010; 2
Eldred, Burkardt (br0140) 2009
Hampton, Doostan (br0240) 2015; 280
Blatman (br0350) 2009
Blatman, Sudret (br0260) 2010; 25
Ishigami, Homma (br0360) 1990
Lacor (10.1016/j.jcp.2016.12.015_br0090) 2007
Loeven (10.1016/j.jcp.2016.12.015_br0130) 2007; vol. 6
Hampton (10.1016/j.jcp.2016.12.015_br0240) 2015; 280
Ghanem (10.1016/j.jcp.2016.12.015_br0380) 1991
Xiu (10.1016/j.jcp.2016.12.015_br0060) 2002; 24
Hosder (10.1016/j.jcp.2016.12.015_br0340) 2007
Dinescu (10.1016/j.jcp.2016.12.015_br0110) 2010; 2
Eldred (10.1016/j.jcp.2016.12.015_br0140) 2009
Fox (10.1016/j.jcp.2016.12.015_br0310) 2016
Marelli (10.1016/j.jcp.2016.12.015_br0370)
Wiener (10.1016/j.jcp.2016.12.015_br0050) 1938; 60
Kumar (10.1016/j.jcp.2016.12.015_br0200) 2016; 138
Efron (10.1016/j.jcp.2016.12.015_br0280) 2004; 32
Neter (10.1016/j.jcp.2016.12.015_br0320) 1985
Hosder (10.1016/j.jcp.2016.12.015_br0330) 2010
Draper (10.1016/j.jcp.2016.12.015_br0300) 2014
Xiu (10.1016/j.jcp.2016.12.015_br0070) 2003; 187
Blatman (10.1016/j.jcp.2016.12.015_br0270) 2011; 230
Ishigami (10.1016/j.jcp.2016.12.015_br0360) 1990
Raisee (10.1016/j.jcp.2016.12.015_br0160) 2015; 103
Donoho (10.1016/j.jcp.2016.12.015_br0210) 2006; 52
Pettersson (10.1016/j.jcp.2016.12.015_br0170) 2015
Najm (10.1016/j.jcp.2016.12.015_br0010) 2009; 41
Cheng (10.1016/j.jcp.2016.12.015_br0030) 2009; 79
Candès (10.1016/j.jcp.2016.12.015_br0220) 2008; 25
Choi (10.1016/j.jcp.2016.12.015_br0290) 2004; 42
Blatman (10.1016/j.jcp.2016.12.015_br0350) 2009
Xiu (10.1016/j.jcp.2016.12.015_br0390) 2006; 28
Askey (10.1016/j.jcp.2016.12.015_br0080) 1985
Blatman (10.1016/j.jcp.2016.12.015_br0260) 2010; 25
Forrester (10.1016/j.jcp.2016.12.015_br0020) 2008
Berveiller (10.1016/j.jcp.2016.12.015_br0190) 2006; 15
Blatman (10.1016/j.jcp.2016.12.015_br0250) 2008; 336
Smirnov (10.1016/j.jcp.2016.12.015_br0100) 2008
De Gennaro (10.1016/j.jcp.2016.12.015_br0040) 2015; 52
Hosder (10.1016/j.jcp.2016.12.015_br0150) 2012; 3
10.1016/j.jcp.2016.12.015_br0120
Doostan (10.1016/j.jcp.2016.12.015_br0230) 2011; 230
Reagan (10.1016/j.jcp.2016.12.015_br0180) 2003; 132
References_xml – year: 1991
  ident: br0380
  article-title: Stochastic Finite Element: A Spectral Approach
– year: 2016
  ident: br0310
  article-title: Applied Regression Analysis and Generalized Linear Models
– volume: 79
  start-page: 3278
  year: 2009
  end-page: 3295
  ident: br0030
  article-title: Efficient uncertainty quantification with the polynomial chaos method for stiff systems
  publication-title: Math. Comput. Simul.
– volume: vol. 6
  start-page: 3845
  year: 2007
  end-page: 3858
  ident: br0130
  article-title: Probabilistic collocation: an efficient non-intrusive approach for arbitrarily distributed parametric uncertainties
  publication-title: Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit
– volume: 25
  start-page: 183
  year: 2010
  end-page: 197
  ident: br0260
  article-title: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis
  publication-title: Probab. Eng. Mech.
– volume: 32
  start-page: 407
  year: 2004
  end-page: 499
  ident: br0280
  article-title: Least angle regression
  publication-title: Ann. Stat.
– year: 2015
  ident: br0370
  article-title: UQLab
– volume: 52
  start-page: 1404
  year: 2015
  end-page: 1411
  ident: br0040
  article-title: Uncertainty quantification for airfoil icing using polynomial chaos expansions
  publication-title: J. Aircr.
– year: 2009
  ident: br0140
  article-title: Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification
  publication-title: Proceedings of the 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition
– volume: 230
  start-page: 2345
  year: 2011
  end-page: 2367
  ident: br0270
  article-title: Adaptive sparse polynomial chaos expansion based on
  publication-title: J. Comput. Phys.
– volume: 41
  start-page: 35
  year: 2009
  end-page: 52
  ident: br0010
  article-title: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics
  publication-title: Annu. Rev. Fluid Mech.
– volume: 28
  start-page: 1167
  year: 2006
  end-page: 1185
  ident: br0390
  article-title: Numerical methods for differential equations in random domains
  publication-title: SIAM J. Sci. Comput.
– year: 2014
  ident: br0300
  article-title: Applied regression analysis
  publication-title: Wiley Ser. Probab. Stat.
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: br0210
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
– volume: 25
  start-page: 21
  year: 2008
  end-page: 30
  ident: br0220
  article-title: An introduction to compressive sampling
  publication-title: IEEE Signal Process. Mag.
– volume: 42
  start-page: 1191
  year: 2004
  end-page: 1198
  ident: br0290
  article-title: Polynomial chaos expansion with Latin Hypercube sampling for estimating response variability
  publication-title: AIAA J.
– year: 2015
  ident: br0170
  article-title: Polynomial Chaos Methods for Hyperbolic Partial Differential Equations
– volume: 15
  start-page: 81
  year: 2006
  end-page: 92
  ident: br0190
  article-title: Stochastic finite element: a non intrusive approach by regression
  publication-title: Rev. Eur. Méc. Numér.
– volume: 60
  start-page: 897
  year: 1938
  end-page: 936
  ident: br0050
  article-title: The homogeneous chaos
  publication-title: Am. J. Math.
– volume: 24
  start-page: 619
  year: 2002
  end-page: 644
  ident: br0060
  article-title: The Wiener–Askey polynomial chaos for stochastic differential equations
  publication-title: SIAM J. Sci. Comput.
– volume: 3
  start-page: 117
  year: 2012
  end-page: 139
  ident: br0150
  article-title: Stochastic response surfaces based on non-intrusive polynomial chaos for uncertainty quantification
  publication-title: Int. J. Math. Model. Numer. Optim.
– volume: 187
  start-page: 137
  year: 2003
  end-page: 167
  ident: br0070
  article-title: Modeling uncertainty in flow simulations via generalized polynomial chaos
  publication-title: J. Comput. Phys.
– volume: 103
  start-page: 293
  year: 2015
  end-page: 312
  ident: br0160
  article-title: A non-intrusive model reduction approach for polynomial chaos expansion using proper orthogonal decomposition
  publication-title: Int. J. Numer. Methods Eng.
– year: 1985
  ident: br0320
  article-title: Applied Linear Regression Models
– year: 2008
  ident: br0020
  article-title: Engineering Design via Surrogate Modelling: A Practical Guide
– volume: 132
  start-page: 545
  year: 2003
  end-page: 555
  ident: br0180
  article-title: Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection
  publication-title: Combust. Flame
– year: 1985
  ident: br0080
  article-title: Some Basic Hypergeometric Orthogonal Polynomials That Generalize Jacobi Polynomials
– year: 2008
  ident: br0100
  article-title: Non-deterministic compressible Navier–Stokes simulations using polynomial chaos
  publication-title: Proc. ECCOMAS Conf.
– reference: D. Kumar, C. Lacor, Heat conduction in a 2D domain with geometrical uncertainty using intrusive polynomial chaos method, in: Proc. of the 9th National Congress on Theoretical and Applied Mechanics, Brussels, Belgium, 2012.
– year: 2007
  ident: br0340
  article-title: Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables
  publication-title: 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference
– volume: 230
  start-page: 3015
  year: 2011
  end-page: 3034
  ident: br0230
  article-title: A non-adapted sparse approximation of PDEs with stochastic inputs
  publication-title: J. Comput. Phys.
– start-page: 398
  year: 1990
  end-page: 403
  ident: br0360
  article-title: An importance quantification technique in uncertainty analysis for computer models
  publication-title: Proc. ISUMA'90, First Int. Symp. Uncertain Mod. An.
– volume: 336
  start-page: 518
  year: 2008
  end-page: 523
  ident: br0250
  article-title: Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach
  publication-title: C. R. Mec.
– start-page: 13
  year: 2007
  ident: br0090
  article-title: Uncertainty propagation in the solution of compressible Navier–Stokes equations using polynomial chaos decomposition
  publication-title: CD Rom Proc. of NATO AVT Symposium
– volume: 2
  start-page: 87
  year: 2010
  end-page: 98
  ident: br0110
  article-title: Assessment of intrusive and non-intrusive non-deterministic CFD methodologies based on polynomial chaos expansions
  publication-title: Int. J. Eng. Syst. Model. Simul.
– volume: 138
  start-page: 67
  year: 2016
  end-page: 82
  ident: br0200
  article-title: An efficient non-intrusive reduced basis model for high dimensional stochastic problems in CFD
  publication-title: Comput. Fluids
– volume: 280
  start-page: 363
  year: 2015
  end-page: 386
  ident: br0240
  article-title: Compressive sampling of polynomial chaos expansions: convergence analysis and sampling strategies
  publication-title: J. Comput. Phys.
– year: 2010
  ident: br0330
  article-title: Non-intrusive polynomial chaos methods for uncertainty quantification in fluid dynamics
  publication-title: 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
– year: 2009
  ident: br0350
  article-title: Adaptive Sparse Polynomial Chaos Expansions for Uncertainty Propagation and Sensitivity Analysis
– start-page: 398
  year: 1990
  ident: 10.1016/j.jcp.2016.12.015_br0360
  article-title: An importance quantification technique in uncertainty analysis for computer models
– volume: 41
  start-page: 35
  issue: 1
  year: 2009
  ident: 10.1016/j.jcp.2016.12.015_br0010
  article-title: Uncertainty quantification and polynomial chaos techniques in computational fluid dynamics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.010908.165248
– year: 2009
  ident: 10.1016/j.jcp.2016.12.015_br0350
– volume: 42
  start-page: 1191
  issue: 6
  year: 2004
  ident: 10.1016/j.jcp.2016.12.015_br0290
  article-title: Polynomial chaos expansion with Latin Hypercube sampling for estimating response variability
  publication-title: AIAA J.
  doi: 10.2514/1.2220
– year: 2014
  ident: 10.1016/j.jcp.2016.12.015_br0300
  article-title: Applied regression analysis
– volume: 28
  start-page: 1167
  issue: 3
  year: 2006
  ident: 10.1016/j.jcp.2016.12.015_br0390
  article-title: Numerical methods for differential equations in random domains
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/040613160
– volume: 79
  start-page: 3278
  issue: 11
  year: 2009
  ident: 10.1016/j.jcp.2016.12.015_br0030
  article-title: Efficient uncertainty quantification with the polynomial chaos method for stiff systems
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2009.05.002
– volume: 230
  start-page: 2345
  year: 2011
  ident: 10.1016/j.jcp.2016.12.015_br0270
  article-title: Adaptive sparse polynomial chaos expansion based on Least Angle Regression
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2010.12.021
– volume: 60
  start-page: 897
  issue: 4
  year: 1938
  ident: 10.1016/j.jcp.2016.12.015_br0050
  article-title: The homogeneous chaos
  publication-title: Am. J. Math.
  doi: 10.2307/2371268
– volume: 138
  start-page: 67
  year: 2016
  ident: 10.1016/j.jcp.2016.12.015_br0200
  article-title: An efficient non-intrusive reduced basis model for high dimensional stochastic problems in CFD
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2016.08.015
– volume: vol. 6
  start-page: 3845
  year: 2007
  ident: 10.1016/j.jcp.2016.12.015_br0130
  article-title: Probabilistic collocation: an efficient non-intrusive approach for arbitrarily distributed parametric uncertainties
– volume: 25
  start-page: 183
  issue: 2
  year: 2010
  ident: 10.1016/j.jcp.2016.12.015_br0260
  article-title: An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis
  publication-title: Probab. Eng. Mech.
  doi: 10.1016/j.probengmech.2009.10.003
– year: 2008
  ident: 10.1016/j.jcp.2016.12.015_br0100
  article-title: Non-deterministic compressible Navier–Stokes simulations using polynomial chaos
– volume: 32
  start-page: 407
  issue: 2
  year: 2004
  ident: 10.1016/j.jcp.2016.12.015_br0280
  article-title: Least angle regression
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000000067
– year: 1985
  ident: 10.1016/j.jcp.2016.12.015_br0320
– volume: 15
  start-page: 81
  issue: 1
  year: 2006
  ident: 10.1016/j.jcp.2016.12.015_br0190
  article-title: Stochastic finite element: a non intrusive approach by regression
  publication-title: Rev. Eur. Méc. Numér.
– volume: 336
  start-page: 518
  year: 2008
  ident: 10.1016/j.jcp.2016.12.015_br0250
  article-title: Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach
  publication-title: C. R. Mec.
  doi: 10.1016/j.crme.2008.02.013
– volume: 25
  start-page: 21
  issue: 2
  year: 2008
  ident: 10.1016/j.jcp.2016.12.015_br0220
  article-title: An introduction to compressive sampling
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2007.914731
– volume: 280
  start-page: 363
  year: 2015
  ident: 10.1016/j.jcp.2016.12.015_br0240
  article-title: Compressive sampling of polynomial chaos expansions: convergence analysis and sampling strategies
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.09.019
– volume: 24
  start-page: 619
  issue: 2
  year: 2002
  ident: 10.1016/j.jcp.2016.12.015_br0060
  article-title: The Wiener–Askey polynomial chaos for stochastic differential equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827501387826
– year: 2010
  ident: 10.1016/j.jcp.2016.12.015_br0330
  article-title: Non-intrusive polynomial chaos methods for uncertainty quantification in fluid dynamics
– volume: 2
  start-page: 87
  issue: 1
  year: 2010
  ident: 10.1016/j.jcp.2016.12.015_br0110
  article-title: Assessment of intrusive and non-intrusive non-deterministic CFD methodologies based on polynomial chaos expansions
  publication-title: Int. J. Eng. Syst. Model. Simul.
– start-page: 13
  year: 2007
  ident: 10.1016/j.jcp.2016.12.015_br0090
  article-title: Uncertainty propagation in the solution of compressible Navier–Stokes equations using polynomial chaos decomposition
– ident: 10.1016/j.jcp.2016.12.015_br0120
– year: 2015
  ident: 10.1016/j.jcp.2016.12.015_br0170
  doi: 10.1007/978-3-319-10714-1
– volume: 230
  start-page: 3015
  issue: 8
  year: 2011
  ident: 10.1016/j.jcp.2016.12.015_br0230
  article-title: A non-adapted sparse approximation of PDEs with stochastic inputs
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.01.002
– year: 1991
  ident: 10.1016/j.jcp.2016.12.015_br0380
  doi: 10.1007/978-1-4612-3094-6
– volume: 132
  start-page: 545
  issue: 3
  year: 2003
  ident: 10.1016/j.jcp.2016.12.015_br0180
  article-title: Uncertainty quantification in reacting-flow simulations through non-intrusive spectral projection
  publication-title: Combust. Flame
  doi: 10.1016/S0010-2180(02)00503-5
– volume: 52
  start-page: 1289
  issue: 4
  year: 2006
  ident: 10.1016/j.jcp.2016.12.015_br0210
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2006.871582
– volume: 52
  start-page: 1404
  issue: 5
  year: 2015
  ident: 10.1016/j.jcp.2016.12.015_br0040
  article-title: Uncertainty quantification for airfoil icing using polynomial chaos expansions
  publication-title: J. Aircr.
  doi: 10.2514/1.C032698
– volume: 187
  start-page: 137
  issue: 1
  year: 2003
  ident: 10.1016/j.jcp.2016.12.015_br0070
  article-title: Modeling uncertainty in flow simulations via generalized polynomial chaos
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(03)00092-5
– year: 2008
  ident: 10.1016/j.jcp.2016.12.015_br0020
  doi: 10.1002/9780470770801
– volume: 3
  start-page: 117
  issue: 1–2
  year: 2012
  ident: 10.1016/j.jcp.2016.12.015_br0150
  article-title: Stochastic response surfaces based on non-intrusive polynomial chaos for uncertainty quantification
  publication-title: Int. J. Math. Model. Numer. Optim.
– ident: 10.1016/j.jcp.2016.12.015_br0370
– year: 2007
  ident: 10.1016/j.jcp.2016.12.015_br0340
  article-title: Efficient sampling for non-intrusive polynomial chaos applications with multiple uncertain input variables
– year: 2009
  ident: 10.1016/j.jcp.2016.12.015_br0140
  article-title: Comparison of non-intrusive polynomial chaos and stochastic collocation methods for uncertainty quantification
– volume: 103
  start-page: 293
  issue: 4
  year: 2015
  ident: 10.1016/j.jcp.2016.12.015_br0160
  article-title: A non-intrusive model reduction approach for polynomial chaos expansion using proper orthogonal decomposition
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.4900
– year: 2016
  ident: 10.1016/j.jcp.2016.12.015_br0310
– year: 1985
  ident: 10.1016/j.jcp.2016.12.015_br0080
SSID ssj0008548
Score 2.5318677
Snippet Polynomial Chaos (PC) expansions are widely used in various engineering fields for quantifying uncertainties arising from uncertain parameters. The...
SourceID osti
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 461
SubjectTerms ALGORITHMS
BENCHMARKS
CAPTURE
CHAOS THEORY
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
COMPARATIVE EVALUATIONS
Computational efficiency
Computational mathematics
Computational physics
Computer simulation
COMPUTERIZED SIMULATION
Computing time
EFFICIENCY
EXPANSION
Least angle regression
Mathematical analysis
MATHEMATICAL SOLUTIONS
Parameter uncertainty
Personal computers
POLYNOMIALS
PROBABILISTIC ESTIMATION
Probabilistic methods
Probability
Regression analysis
Regression-based polynomial chaos
Robustness (mathematics)
Sparse polynomial chaos expansion
Statistical analysis
Stepwise regression
STOCHASTIC PROCESSES
Studies
UNCERTAINTY PRINCIPLE
Uncertainty quantification
Title A robust and efficient stepwise regression method for building sparse polynomial chaos expansions
URI https://dx.doi.org/10.1016/j.jcp.2016.12.015
https://www.proquest.com/docview/2061992796
https://www.osti.gov/biblio/22622260
Volume 332
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AKRWK
  dateStart: 19660801
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6yXrz4Ft_k4Emotk02TY_L4rIqelLwFvKqrki7bFfUi7_dmTZVRPHgoZc2Q8ok-eZr-mWGkCOueSYKH0eSGRZxm-SAg1JH1jvNstjBhfuQV9difMsv7vp3C2TYnYVBWWXA_hbTG7QOd06DN0-nkwme8U3xDH0CjALipsScoJxnWMXg5P1L5iH7vEVjlCJA6-7PZqPxerSYsjIRzY4gVsb9PTb1KlhuP8C6iUCjVbIcqCMdtG-3RhZ8uU5WAo2kYZHWG0QP6Kwyz_Wc6tJR3-SIgNBCYTynL5Pa05m_b9WvJW0LSFNgrtSEAtkUMGYGrabV0xueWYYu7YOuaupfATnQqt4kt6Ozm-E4CpUUIsv6bB7lwhnPCu8Yd5kWaSHzVGoh4lwnhhVO2DSzzkvgAvDBFHvciYA2TBoAIZ5rtkV6ZVX6bUJzBuENvqe9LQzPNDO-4K7I-jyxhUx0ukPizofKhjTjWO3iSXV6skcFblfodpWkCty-Q44_TaZtjo2_GvNuYNS3iaIgBvxlto-DiCaYHNeiighsgHwCQRIxPO4GV4VFXIO5QHFulovd_3W6R5ZSZAGNZG2f9OazZ38AHGZuDptJekgWB-eX4-sPTYPwRw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9wwELW2y6G9lEJbdQsFHzhVSklix3GOCIEWWDiBxM3yV9pFq2SVBEEv_e2dSZxWFYhDD7kkHiUa22-enecZQg645rkofRxJZljEbVIADkodWe80y2MHF-5DXl6J-Q0_v81uJ-R4PAuDssqA_QOm92gd7hwGbx6ul0s845viGfoEGAXETclfkQ2epTmuwL79-qvzkBkf4Bi1CNB8_LXZi7zuLOasTES_JYilcZ8PTtMa5tsTtO5D0Ok78jZwR3o0fN4Wmfhqm2wGHknDLG3fE31Em9rctx3VlaO-TxIBsYVCh64flq2njf8-yF8rOlSQpkBdqQkVsimATAOt1vXqJx5ahlfaH7puqX8E6ECr9gO5OT25Pp5HoZRCZFnGuqgQznhWese4y7VIS1mkUgsRFzoxrHTCprl1XgIZgBVT7HErAtowaQCFeKHZRzKt6sp_IrRgEN9gQe1taXiumfEld2We8cSWMtHpjMSjD5UNecax3MVKjYKyOwVuV-h2laQK3D4jX_-YrIckGy815mPHqH9GioIg8JLZLnYimmB2XIsyIrAB9gkMScTweOxcFWZxC-YC1bl5IT7_30v3yev59eVCLc6uLnbImxQpQa9f2yXTrrn3X4DQdGavH7C_AeMU8dw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+and+efficient+stepwise+regression+method+for+building+sparse+polynomial+chaos+expansions&rft.jtitle=Journal+of+computational+physics&rft.au=Abraham%2C+Simon&rft.au=Raisee%2C+Mehrdad&rft.au=Ghorbaniasl%2C+Ghader&rft.au=Contino%2C+Francesco&rft.date=2017-03-01&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=332&rft_id=info:doi/10.1016%2FJ.JCP.2016.12.015&rft.externalDocID=22622260
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon