Acid-stable capsid structure of Helicobacter pylori bacteriophage KHP30 by single-particle cryoelectron microscopy
The acid-stable capsid structures of Helicobacter pylori phages KHP30 and KHP40 are solved at 2.7 and 3.0 Å resolutions by cryoelectron microscopy, respectively. The capsids have icosahedral T = 9 symmetry and consist of each 540 copies of 2 structural proteins, a major capsid protein, and a cement...
        Saved in:
      
    
          | Published in | Structure (London) Vol. 30; no. 2; pp. 300 - 312.e3 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Ltd
    
        03.02.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0969-2126 1878-4186 1878-4186  | 
| DOI | 10.1016/j.str.2021.09.001 | 
Cover
| Abstract | The acid-stable capsid structures of Helicobacter pylori phages KHP30 and KHP40 are solved at 2.7 and 3.0 Å resolutions by cryoelectron microscopy, respectively. The capsids have icosahedral T = 9 symmetry and consist of each 540 copies of 2 structural proteins, a major capsid protein, and a cement protein. The major capsid proteins form 12 pentagonal capsomeres occupying icosahedral vertexes and 80 hexagonal capsomeres located at icosahedral faces and edges. The major capsid protein has a unique protruding loop extending to the neighboring subunit that stabilizes hexagonal capsomeres. Furthermore, the capsid is decorated with trimeric cement proteins with a jelly roll motif. The cement protein trimer sits on the quasi-three-fold axis formed by three major capsid protein capsomeres, thereby enhancing the particle stability by connecting these capsomeres. Sequence and structure comparisons between the related Helicobacter pylori phages suggest a possible mechanism of phage adaptation to the human gastric environment.
[Display omitted]
•Cryo-EM capsid structures of Helicobacter pylori phages KHP30 and KHP40•Phage capsid structures in T = 9 icosahedral symmetry•Structural insights into particle stability in acid conditions•Possible mechanism of phage adaptation to the human gastric environment
Kamiya et al. solve the capsid structures of Helicobacter pylori phages KHP30 and KHP40 in atomic detail. The structures reveal the capsid stability mechanism in highly acidic conditions. Sequence and structure comparisons between the related phages suggest a possible mechanism of phage adaptation to the human gastric environment. | 
    
|---|---|
| AbstractList | The acid-stable capsid structures of Helicobacter pylori phages KHP30 and KHP40 are solved at 2.7 and 3.0 Å resolutions by cryoelectron microscopy, respectively. The capsids have icosahedral T = 9 symmetry and consist of each 540 copies of 2 structural proteins, a major capsid protein, and a cement protein. The major capsid proteins form 12 pentagonal capsomeres occupying icosahedral vertexes and 80 hexagonal capsomeres located at icosahedral faces and edges. The major capsid protein has a unique protruding loop extending to the neighboring subunit that stabilizes hexagonal capsomeres. Furthermore, the capsid is decorated with trimeric cement proteins with a jelly roll motif. The cement protein trimer sits on the quasi-three-fold axis formed by three major capsid protein capsomeres, thereby enhancing the particle stability by connecting these capsomeres. Sequence and structure comparisons between the related Helicobacter pylori phages suggest a possible mechanism of phage adaptation to the human gastric environment.
[Display omitted]
•Cryo-EM capsid structures of Helicobacter pylori phages KHP30 and KHP40•Phage capsid structures in T = 9 icosahedral symmetry•Structural insights into particle stability in acid conditions•Possible mechanism of phage adaptation to the human gastric environment
Kamiya et al. solve the capsid structures of Helicobacter pylori phages KHP30 and KHP40 in atomic detail. The structures reveal the capsid stability mechanism in highly acidic conditions. Sequence and structure comparisons between the related phages suggest a possible mechanism of phage adaptation to the human gastric environment. The acid-stable capsid structures of Helicobacter pylori phages KHP30 and KHP40 are solved at 2.7 and 3.0 Å resolutions by cryoelectron microscopy, respectively. The capsids have icosahedral T = 9 symmetry and consist of each 540 copies of 2 structural proteins, a major capsid protein, and a cement protein. The major capsid proteins form 12 pentagonal capsomeres occupying icosahedral vertexes and 80 hexagonal capsomeres located at icosahedral faces and edges. The major capsid protein has a unique protruding loop extending to the neighboring subunit that stabilizes hexagonal capsomeres. Furthermore, the capsid is decorated with trimeric cement proteins with a jelly roll motif. The cement protein trimer sits on the quasi-three-fold axis formed by three major capsid protein capsomeres, thereby enhancing the particle stability by connecting these capsomeres. Sequence and structure comparisons between the related Helicobacter pylori phages suggest a possible mechanism of phage adaptation to the human gastric environment.The acid-stable capsid structures of Helicobacter pylori phages KHP30 and KHP40 are solved at 2.7 and 3.0 Å resolutions by cryoelectron microscopy, respectively. The capsids have icosahedral T = 9 symmetry and consist of each 540 copies of 2 structural proteins, a major capsid protein, and a cement protein. The major capsid proteins form 12 pentagonal capsomeres occupying icosahedral vertexes and 80 hexagonal capsomeres located at icosahedral faces and edges. The major capsid protein has a unique protruding loop extending to the neighboring subunit that stabilizes hexagonal capsomeres. Furthermore, the capsid is decorated with trimeric cement proteins with a jelly roll motif. The cement protein trimer sits on the quasi-three-fold axis formed by three major capsid protein capsomeres, thereby enhancing the particle stability by connecting these capsomeres. Sequence and structure comparisons between the related Helicobacter pylori phages suggest a possible mechanism of phage adaptation to the human gastric environment. The acid-stable capsid structures of Helicobacter pylori phages KHP30 and KHP40 are solved at 2.7 and 3.0 Å resolutions by cryoelectron microscopy, respectively. The capsids have icosahedral T = 9 symmetry and consist of each 540 copies of 2 structural proteins, a major capsid protein, and a cement protein. The major capsid proteins form 12 pentagonal capsomeres occupying icosahedral vertexes and 80 hexagonal capsomeres located at icosahedral faces and edges. The major capsid protein has a unique protruding loop extending to the neighboring subunit that stabilizes hexagonal capsomeres. Furthermore, the capsid is decorated with trimeric cement proteins with a jelly roll motif. The cement protein trimer sits on the quasi-three-fold axis formed by three major capsid protein capsomeres, thereby enhancing the particle stability by connecting these capsomeres. Sequence and structure comparisons between the related Helicobacter pylori phages suggest a possible mechanism of phage adaptation to the human gastric environment.  | 
    
| Author | Uchiyama, Jumpei Iwasaki, Kenji Murata, Kazuyoshi Miyazaki, Naoyuki Matsuzaki, Shigenobu Kamiya, Ryosuke  | 
    
| Author_xml | – sequence: 1 givenname: Ryosuke surname: Kamiya fullname: Kamiya, Ryosuke organization: Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8777, Japan – sequence: 2 givenname: Jumpei surname: Uchiyama fullname: Uchiyama, Jumpei organization: Laboratory of Veterinary Microbiology I, School of Veterinary Medicine, Azabu University, Kanagawa 252-5201, Japan – sequence: 3 givenname: Shigenobu surname: Matsuzaki fullname: Matsuzaki, Shigenobu organization: Department of Clinical Laboratory Science, Faculty of Health Sciences, Kochi Gakuen University, Kochi 780-0955, Japan – sequence: 4 givenname: Kazuyoshi orcidid: 0000-0001-9446-3652 surname: Murata fullname: Murata, Kazuyoshi organization: National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan – sequence: 5 givenname: Kenji orcidid: 0000-0002-3808-8904 surname: Iwasaki fullname: Iwasaki, Kenji organization: Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8777, Japan – sequence: 6 givenname: Naoyuki orcidid: 0000-0002-4880-7300 surname: Miyazaki fullname: Miyazaki, Naoyuki email: naomiyazaki@gmail.com organization: Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8777, Japan  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34597601$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kcFu1DAQhi3Uim4LD8AF-cglYWxv4kScqqqwiErlAGfLmUyKV9k42E6lvH29bHvh0NNopO_7pfnnkp1NfiLGPggoBYj6876MKZQSpCihLQHEG7YRjW6KrWjqM7aBtm4LKWR9wS5j3AOArADesgu1rVpdg9iwcI2uL2Ky3Ugc7Rxdz3PogmkJxP3AdzQ69J3FRIHP6-iD46fN-fmPfSD-Y_dTAe9WHt30MFIx25AcHuPC6mkkTMFP_OAw-Ih-Xt-x88GOkd4_zyv2--vtr5tdcXf_7fvN9V2BqlKpaEUDckBS2AkJaoBqW9VW91LTVtmu1Wog1JXSspEZ6aiyA2loCTHfpgZ1xT6dcufg_y4Ukzm4iDSOdiK_RCMr3eg623VGPz6jS3eg3szBHWxYzUtPGdAn4HhEDDQYdMkm56cUrBuNAHP8iNmbXJ45fsRAa-CfKf4zX8Jfc76cHMr1PDoKJqKjCal3Iddpeu9esZ8AnUClSg | 
    
| CitedBy_id | crossref_primary_10_3390_v14112431 crossref_primary_10_1093_femsle_fnae082 crossref_primary_10_1016_j_str_2022_12_012 crossref_primary_10_1038_s41467_022_34972_5  | 
    
| Cites_doi | 10.1073/pnas.1708483114 10.1016/j.jsb.2015.08.008 10.1107/S0907444909042073 10.1073/pnas.0502164102 10.1016/j.jmb.2007.02.075 10.1038/nmeth.4193 10.1016/j.ultramic.2005.11.001 10.1038/nsmb.1473 10.1016/j.jmb.2008.02.059 10.1107/S0907444910007493 10.1128/JVI.79.23.14967-14970.2005 10.1016/j.jsb.2012.09.006 10.1136/gut.2005.083014 10.1002/pro.3235 10.1016/j.jmb.2003.07.013 10.1038/s41467-019-12341-z 10.1126/science.aao7283 10.1128/AEM.03530-12 10.1016/j.str.2014.04.003 10.1016/j.coviro.2019.02.001 10.1016/j.mib.2011.07.028 10.1016/j.jmb.2009.10.007 10.1016/j.str.2019.07.003 10.1073/pnas.1621152114 10.1016/S0092-8674(00)80409-2 10.1073/pnas.1309947110 10.7554/eLife.45345 10.1128/mBio.00239-11 10.1073/pnas.0600421103 10.1016/j.str.2008.05.016 10.1107/S0907444909052925 10.1002/jcc.20084 10.1038/ncomms5165 10.1038/73347 10.1101/SQB.1962.027.001.005 10.1016/S0960-9822(00)80103-7 10.1016/S0304-3991(99)00120-5 10.1016/j.str.2018.04.008 10.1016/j.virol.2015.02.055 10.1038/509S9a 10.1093/nar/22.22.4673 10.1128/JVI.01767-12 10.1016/j.ijmm.2005.06.003 10.1128/JVI.01364-14 10.1038/nrc703 10.1073/pnas.1909645116 10.1073/pnas.0308573100 10.1093/nar/gkg556 10.1126/sciadv.aaw7414 10.1128/JVI.02371-09 10.1038/nature08798 10.1128/JVI.00446-12  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved.  | 
    
| Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved.  | 
    
| DBID | AAYXX CITATION NPM 7X8  | 
    
| DOI | 10.1016/j.str.2021.09.001 | 
    
| DatabaseName | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1878-4186 | 
    
| EndPage | 312.e3 | 
    
| ExternalDocumentID | 34597601 10_1016_j_str_2021_09_001 S0969212621003294  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- --K -DZ 0R~ 123 1RT 1~5 2WC 4.4 457 4G. 5VS 62- 7-5 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACGFS ADBBV ADEZE ADJPV AENEX AEXQZ AFTJW AGKMS AITUG ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ ASPBG AVWKF AZFZN BAWUL CS3 DIK DU5 E3Z EBS EJD F5P FCP FDB FEDTE FIRID HH5 HVGLF IHE IXB J1W JIG LX5 M3Z M41 O-L O9- OK1 P2P RCE RNS ROL RPZ SCP SDG SES SSZ TR2 WQ6 ZA5 ~02 29Q 53G 6TJ AAEDT AAIKJ AAMRU AAQXK AAYWO AAYXX ABDGV ABEFU ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN AEUPX AFFNX AFPUW AGHFR AGQPQ AHHHB AIGII AKAPO AKBMS AKRWK AKYEP APXCP CAG CITATION COF EFKBS FGOYB G-2 HZ~ OZT R2- SEW Y6R ZXP 0SF NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c353t-91802fce3cb1203f05456a7d27e43ab973fec7537282cb1be5afe709ecc9763f3 | 
    
| IEDL.DBID | IXB | 
    
| ISSN | 0969-2126 1878-4186  | 
    
| IngestDate | Wed Oct 01 13:47:58 EDT 2025 Wed Feb 19 02:27:08 EST 2025 Sat Oct 25 05:55:35 EDT 2025 Thu Apr 24 23:01:04 EDT 2025 Fri Feb 23 02:41:28 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | capsid structure near-atomic resolution cryoelectron microscopy Helicobacter pylori bacteriophage single-particle analysis  | 
    
| Language | English | 
    
| License | Copyright © 2021 Elsevier Ltd. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c353t-91802fce3cb1203f05456a7d27e43ab973fec7537282cb1be5afe709ecc9763f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-3808-8904 0000-0001-9446-3652 0000-0002-4880-7300  | 
    
| PMID | 34597601 | 
    
| PQID | 2578762826 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | proquest_miscellaneous_2578762826 pubmed_primary_34597601 crossref_citationtrail_10_1016_j_str_2021_09_001 crossref_primary_10_1016_j_str_2021_09_001 elsevier_sciencedirect_doi_10_1016_j_str_2021_09_001  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-02-03 | 
    
| PublicationDateYYYYMMDD | 2022-02-03 | 
    
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-03 day: 03  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | Structure (London) | 
    
| PublicationTitleAlternate | Structure | 
    
| PublicationYear | 2022 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Zheng, Palovcak, Armache, Verba, Cheng, Agard (bib59) 2017; 14 Adams, Afonine, Bunkóczi, Chen, Davis, Echols, Headd, Hung, Kapral, Grosse-Kunstleve (bib1) 2010; 66 Choi, McPartland, Kaganman, Bowman, Rothman-Denes, Rossmann (bib10) 2008; 378 Casper, Klug (bib5) 1962; 27 Lehours, Vale, Bjursell, Melefors, Advani, Glavas, Guegueniat, Gontier, Lacomme, Alves Matos (bib29) 2011; 2 Uchiyama, Takeuchi, Kato, Takemura-Uchiyama, Ujihara, Daibata, Matsuzaki (bib52) 2012; 86 Baker, Jiang, Rixon, Chiu (bib4) 2005; 79 Qin, Fokine, O'Donnell, Rao, Rossmann (bib40) 2010; 395 Rosenthal, Henderson (bib43) 2003; 333 Baker, Hryc, Zhang, Wu, Jakana, Haase-Pettingell, Afonine, Adams, King, Jiang, Chiu (bib3) 2013; 110 Yang, Forrer, Dauter, Conway, Cheng, Cerritelli, Steven, Pluckthun, Wlodawer (bib57) 2000; 7 Warren, Marshall (bib53) 1983; 1 Hryc, Chen, Afonine, Jakana, Wang, Haase-Pettingell, Jiang, Adams, King, Schmid, Chiu (bib22) 2017; 114 Goddard, Huang, Meng, Pettersen, Couch, Morris, Ferrin (bib15) 2018; 27 Grose, Belnap, Jensen, Mathis, Prince, Merrill, Burnett, Breakwell (bib17) 2014; 88 Luo, Chiou, Yang, Lin (bib32) 2012; 82 Huet, Duda, Boulanger, Conway (bib23) 2019; 116 Sutter, Boehringer, Gutmann, Günther, Prangishvili, Loessner, Stetter, Weber-Ban, Ban (bib49) 2008; 15 Duda, Teschke (bib12) 2019; 36 Solnick, Hansen, Salama, Boonjakuakul, Syvanen (bib45) 2004; 101 Peek, Blaser (bib38) 2002; 2 Emsley, Lohkamp, Scott, Cowtan (bib13) 2010; 66 Odenbreit (bib35) 2005; 295 Matsuzaki, Uchiyama, Takemura-Uchiyama, Daibata (bib33) 2014; 509 Karita, Kouchiyama, Okita, Nakazawa (bib26) 1991; 86 Chen, Arendall, Headd, Keedy, Immormino, Kapral, Murray, Richardson, Richardson (bib8) 2010; 66 Newcomer, Schrad, Gilcrease, Casjens, Feig, Teschke, Alexandrescu, Parent (bib34) 2019; 8 Pettersen, Goddard, Huang, Couch, Greenblatt, Meng, Ferrin (bib39) 2004; 25 Rohou, Grigorieff (bib42) 2015; 192 Yuan, Wang, Zhu, Wang, Gao, Chen, Tang, Wang, Zhang, Liu (bib58) 2018; 360 Wolf, DeRosier, Grigorieff (bib55) 2006; 106 Konturek, Konturek, Brzozowski (bib27) 2009; 60 Stone, Hilbert, Hidalgo, Halloran, Lee, Sontheimer, Kelch (bib47) 2018; 26 Thompson, Higgins, Gibson (bib50) 1994; 22 Hrebík, Štveráková, Škubník, Füzik, Pantůček, Plevka (bib21) 2019; 5 Gouet, Robert, Courcelle (bib16) 2003; 31 Heintschel von Heinegg, Nalik, Schmid (bib19) 1993; 38 Jin, Jiang, Yang, Zhang, Li, Zhou, Ju, Chen, Zhou (bib25) 2019; 27 Harrison (bib18) 2001 Uchiyama, Takeuchi, Kato, Gamoh, Takemura-Uchiyama, Ujihara, Daibata, Matsuzaki (bib51) 2013; 79 Lu, Koeris (bib31) 2011; 14 Stone, Demo, Agnello, Kelch (bib46) 2019; 10 Akita, Chong, Tanaka, Yamashita, Miyazaki, Nakaishi, Suzuki, Namba, Ono, Tsukihara, Nakagawa (bib2) 2007; 368 Ossiboff, Zhou, Lighfoot, Prasad, Parker (bib36) 2010; 84 Suhanovsky, Teschke (bib48) 2015; 479-480 Chen, Sun, Zhang, Fokine, Padilla-Sanchez, Hanein, Jiang, Rossmann, Rao (bib9) 2017; 114 DeRosier (bib11) 2000; 81 Linz, Windsor, McGraw, Hansen, Gajewsk, Tomsho, Hake, Solnick, Schuster, Marshall (bib30) 2014; 5 Rizzo, Suhanovsky, Baker, Fraser, Jones, Rempel, Gross, Chiu, Alexandrescu, Teschke (bib41) 2014; 22 Fokine, Leiman, Shneider, Ahvazi, Boeshans, Steven, Black, Mesyanzhinov, Rossmann (bib14) 2005; 102 Yamaoka, Ojo, Fujimoto, Odenbreit, Haas, Gutierrez, El-Zimaity, Reddy, Arnqvist, Graham (bib56) 2006; 55 Chen, Neill, Estes, Prasad (bib7) 2006; 103 Hendrix (bib20) 1995; 9 Scheres (bib44) 2012; 180 Wikoff, Liljas, Duda, Tsuruta, Hendrix, Johnson (bib54) 2000; 14 Lander, Evilevitch, Jeembaeva, Potter, Carragher, Johnson (bib28) 2008; 16 Paterson, Vogwill, Buckling, Benmayor, Spiers, Thomson, Quail, Smith, Walker, Libberton (bib37) 2010; 464 Cerritelli, Cheng, Rosenberg, McPherson, Booy, Steven (bib6) 1997; 91 Matsuzaki (10.1016/j.str.2021.09.001_bib33) 2014; 509 Hryc (10.1016/j.str.2021.09.001_bib22) 2017; 114 Linz (10.1016/j.str.2021.09.001_bib30) 2014; 5 Choi (10.1016/j.str.2021.09.001_bib10) 2008; 378 Chen (10.1016/j.str.2021.09.001_bib7) 2006; 103 Duda (10.1016/j.str.2021.09.001_bib12) 2019; 36 Lehours (10.1016/j.str.2021.09.001_bib29) 2011; 2 Qin (10.1016/j.str.2021.09.001_bib40) 2010; 395 Adams (10.1016/j.str.2021.09.001_bib1) 2010; 66 Cerritelli (10.1016/j.str.2021.09.001_bib6) 1997; 91 Chen (10.1016/j.str.2021.09.001_bib8) 2010; 66 Peek (10.1016/j.str.2021.09.001_bib38) 2002; 2 Rosenthal (10.1016/j.str.2021.09.001_bib43) 2003; 333 Wikoff (10.1016/j.str.2021.09.001_bib54) 2000; 14 Lander (10.1016/j.str.2021.09.001_bib28) 2008; 16 Rohou (10.1016/j.str.2021.09.001_bib42) 2015; 192 Akita (10.1016/j.str.2021.09.001_bib2) 2007; 368 Baker (10.1016/j.str.2021.09.001_bib4) 2005; 79 Hendrix (10.1016/j.str.2021.09.001_bib20) 1995; 9 Wolf (10.1016/j.str.2021.09.001_bib55) 2006; 106 Sutter (10.1016/j.str.2021.09.001_bib49) 2008; 15 Yang (10.1016/j.str.2021.09.001_bib57) 2000; 7 Warren (10.1016/j.str.2021.09.001_bib53) 1983; 1 Yuan (10.1016/j.str.2021.09.001_bib58) 2018; 360 Goddard (10.1016/j.str.2021.09.001_bib15) 2018; 27 Uchiyama (10.1016/j.str.2021.09.001_bib51) 2013; 79 Konturek (10.1016/j.str.2021.09.001_bib27) 2009; 60 Yamaoka (10.1016/j.str.2021.09.001_bib56) 2006; 55 Stone (10.1016/j.str.2021.09.001_bib46) 2019; 10 Paterson (10.1016/j.str.2021.09.001_bib37) 2010; 464 Lu (10.1016/j.str.2021.09.001_bib31) 2011; 14 Newcomer (10.1016/j.str.2021.09.001_bib34) 2019; 8 Gouet (10.1016/j.str.2021.09.001_bib16) 2003; 31 Karita (10.1016/j.str.2021.09.001_bib26) 1991; 86 Chen (10.1016/j.str.2021.09.001_bib9) 2017; 114 Fokine (10.1016/j.str.2021.09.001_bib14) 2005; 102 Uchiyama (10.1016/j.str.2021.09.001_bib52) 2012; 86 Baker (10.1016/j.str.2021.09.001_bib3) 2013; 110 Thompson (10.1016/j.str.2021.09.001_bib50) 1994; 22 Scheres (10.1016/j.str.2021.09.001_bib44) 2012; 180 Heintschel von Heinegg (10.1016/j.str.2021.09.001_bib19) 1993; 38 Emsley (10.1016/j.str.2021.09.001_bib13) 2010; 66 Casper (10.1016/j.str.2021.09.001_bib5) 1962; 27 Hrebík (10.1016/j.str.2021.09.001_bib21) 2019; 5 Odenbreit (10.1016/j.str.2021.09.001_bib35) 2005; 295 Stone (10.1016/j.str.2021.09.001_bib47) 2018; 26 Zheng (10.1016/j.str.2021.09.001_bib59) 2017; 14 DeRosier (10.1016/j.str.2021.09.001_bib11) 2000; 81 Rizzo (10.1016/j.str.2021.09.001_bib41) 2014; 22 Suhanovsky (10.1016/j.str.2021.09.001_bib48) 2015; 479-480 Huet (10.1016/j.str.2021.09.001_bib23) 2019; 116 Ossiboff (10.1016/j.str.2021.09.001_bib36) 2010; 84 Luo (10.1016/j.str.2021.09.001_bib32) 2012; 82 Jin (10.1016/j.str.2021.09.001_bib25) 2019; 27 Grose (10.1016/j.str.2021.09.001_bib17) 2014; 88 Pettersen (10.1016/j.str.2021.09.001_bib39) 2004; 25 Solnick (10.1016/j.str.2021.09.001_bib45) 2004; 101 Harrison (10.1016/j.str.2021.09.001_bib18) 2001  | 
    
| References_xml | – volume: 36 start-page: 9 year: 2019 end-page: 16 ident: bib12 article-title: The amazing HK97 fold: versatile results of modest differences publication-title: Curr. Opin. Virol. – volume: 27 start-page: 1508 year: 2019 end-page: 1516 ident: bib25 article-title: Capsid structure of a freshwater cyanophage siphoviridae Mic1 publication-title: Structure – volume: 103 start-page: 8048 year: 2006 end-page: 8053 ident: bib7 article-title: X-ray structure of a native calicivirus: structural insights into antigenic diversity and host specificity publication-title: Proc. Natl. Acad. Sci. U S A – volume: 464 start-page: 275 year: 2010 end-page: 278 ident: bib37 article-title: Antagonistic coevolution accelerates molecular evolution publication-title: Nature – volume: 91 start-page: 271 year: 1997 end-page: 280 ident: bib6 article-title: Encapsidated conformation of bacteriophage T7 DNA publication-title: Cell – volume: 79 start-page: 3176 year: 2013 end-page: 3184 ident: bib51 article-title: Characterization of publication-title: Appl. Environ. Microbiol. – volume: 116 start-page: 21037 year: 2019 end-page: 21046 ident: bib23 article-title: Capsid expansion of bacteriophage T5 revealed by high resolution cryoelectron microscopy publication-title: Natl. Acad. Sci. U S A – volume: 14 start-page: 524 year: 2011 end-page: 531 ident: bib31 article-title: The next generation of bacteriophage therapy publication-title: Curr. Opin. Microbiol. – volume: 110 start-page: 12301 year: 2013 end-page: 12306 ident: bib3 article-title: Validated near-atomic resolution structure of bacteriophage epsilon15 derived from cryo-EM and modeling publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 395 start-page: 728 year: 2010 end-page: 741 ident: bib40 article-title: Structure of the small outer capsid protein, Soc: a clamp for stabilizing capsids of T4-like phages publication-title: J. Mol. Biol. – volume: 31 start-page: 3320 year: 2003 end-page: 3323 ident: bib16 article-title: ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins publication-title: Nucl. Acids Res. – volume: 9 start-page: 914 year: 1995 end-page: 917 ident: bib20 article-title: Evolution: the long evolutionary reach of viruses publication-title: Curr. Biol. – volume: 509 start-page: S9 year: 2014 ident: bib33 article-title: The age of the phage publication-title: Nature – volume: 2 start-page: 1 year: 2011 end-page: 11 ident: bib29 article-title: Genome sequencing reveals a phage in publication-title: mBio – volume: 55 start-page: 775 year: 2006 end-page: 781 ident: bib56 article-title: outer membrane proteins and gastroduodenal disease publication-title: Gut – volume: 114 start-page: 3103 year: 2017 end-page: 3108 ident: bib22 article-title: Accurate model annotation of a near-atomic resolution cryo-EM map publication-title: Proc. Natl. Acad. Sci. U S A – volume: 79 start-page: 14967 year: 2005 end-page: 14970 ident: bib4 article-title: Common ancestry of herpesviruses and tailed DNA bacteriophages publication-title: J. Virol. – volume: 81 start-page: 83 year: 2000 end-page: 98 ident: bib11 article-title: Correction of high-resolution data for curvature of the Ewald sphere publication-title: Ultramicroscopy – volume: 378 start-page: 726 year: 2008 end-page: 736 ident: bib10 article-title: Insight into DNA and protein transport in double-stranded DNA viruses: the structure of bacteriophage N4 publication-title: J. Mol. Biol. – volume: 26 start-page: 936 year: 2018 end-page: 947 ident: bib47 article-title: A hyperthermophilic phage decoration protein suggests common evolutionary origin with herpesvirus triplex proteins and an anti-CRISPR protein publication-title: Structure – volume: 88 start-page: 11846 year: 2014 end-page: 11860 ident: bib17 article-title: The genomes, proteomes, and structures of three novel phages that infect the publication-title: J. Viol. – volume: 60 start-page: 3 year: 2009 end-page: 21 ident: bib27 article-title: infection in gastric cancerogenesis publication-title: J. Physiol. Pharmacol. – volume: 38 start-page: 249 year: 1993 ident: bib19 article-title: Characterisation of a publication-title: J. Med. Microbiol. – volume: 102 start-page: 7163 year: 2005 end-page: 7168 ident: bib14 article-title: Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry publication-title: Proc. Natl. Acad. Sci. U S A – volume: 192 start-page: 216 year: 2015 end-page: 221 ident: bib42 article-title: CTFFIND4: fast and accurate defocus estimation from electron micrographs publication-title: J. Struct. Biol. – volume: 66 start-page: 486 year: 2010 end-page: 501 ident: bib13 article-title: Features and development of Coot publication-title: Acta Crystallogr. D – volume: 295 start-page: 317 year: 2005 end-page: 324 ident: bib35 article-title: Adherence properties of publication-title: Int. J. Med. Microbiol. – volume: 180 start-page: 519 year: 2012 end-page: 530 ident: bib44 article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination publication-title: J. Struct. Biol. – volume: 27 start-page: 14 year: 2018 end-page: 25 ident: bib15 article-title: UCSF ChimeraX—meeting modern challenges in visualization and analysis publication-title: Protein Sci. – volume: 333 start-page: 721 year: 2003 end-page: 745 ident: bib43 article-title: Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron microscopy publication-title: J. Mol. Biol. – volume: 66 start-page: 213 year: 2010 end-page: 221 ident: bib1 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D – volume: 1 start-page: 1273 year: 1983 end-page: 1275 ident: bib53 article-title: Unidentified curved bacilli on gastric epithelium in active chronic gastritis publication-title: Lancet – volume: 479-480 start-page: 487 year: 2015 end-page: 497 ident: bib48 article-title: Nature’s favorite building block: deciphering folding and capsid assembly of proteins with the HK97-fold publication-title: Virology – volume: 14 start-page: 331 year: 2017 end-page: 332 ident: bib59 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods – volume: 22 start-page: 4673 year: 1994 end-page: 4680 ident: bib50 article-title: Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice publication-title: Nucleic Acids Res. – volume: 360 start-page: eaa7283 year: 2018 ident: bib58 article-title: Cryo-EM structure of a herpesvirus capsid at 3.1 Å publication-title: Science – volume: 5 start-page: 4165 year: 2014 ident: bib30 article-title: A mutation burst during the acute phase of publication-title: Nat. Commun. – volume: 101 start-page: 2106 year: 2004 end-page: 2111 ident: bib45 article-title: Modification of publication-title: Proc. Natl. Acad. Sci. U S A – volume: 2 start-page: 28 year: 2002 end-page: 37 ident: bib38 article-title: and gastrointestinal tract adenocarcinomas publication-title: Nat. Rev. Cancer – volume: 5 start-page: eaaw7414 year: 2019 ident: bib21 article-title: Structure and genome ejection mechanism of publication-title: Sci. Adv. – volume: 8 start-page: 1 year: 2019 end-page: 27 ident: bib34 article-title: The phage L capsid decoration protein has a novel OB-fold and an unusual capsid binding strategy publication-title: eLife – volume: 14 start-page: 125 year: 2000 end-page: 130 ident: bib54 article-title: Topologically linked protein rings in the bacteriophage HK97 capsid publication-title: Science – volume: 84 start-page: 5550 year: 2010 end-page: 5564 ident: bib36 article-title: Conformational changes in the capsid of a calicivirus upon interaction with its functional receptor publication-title: J. Virol. – volume: 86 start-page: 11400 year: 2012 end-page: 11401 ident: bib52 article-title: Complete genome sequences of two publication-title: J. Viol. – volume: 22 start-page: 830 year: 2014 end-page: 841 ident: bib41 article-title: Multiple functional roles of the accessory I-domain of bacteriophage P22 coat protein revealed by NMR structure and cryo-EM modeling publication-title: Structure – volume: 106 start-page: 376 year: 2006 end-page: 382 ident: bib55 article-title: Ewald sphere correction for single-particle electron microscopy publication-title: Ultramicroscopy – volume: 82 start-page: 8781 year: 2012 end-page: 8792 ident: bib32 article-title: Genome, integration, and transduction of a novel temperate phage of publication-title: J. Virol. – volume: 27 start-page: 1 year: 1962 end-page: 24 ident: bib5 article-title: Physical principles in the construction of regular viruses publication-title: Cold Spring Harb. Symp. Quant. Biol. – volume: 114 start-page: E8184 year: 2017 end-page: E8193 ident: bib9 article-title: Cryo-EM structure of the bacteriophage T4 isometric head at 3.3-Å resolution and its relevance to the assembly of icosahedral viruses publication-title: Proc. Natl. Acad. Sci. U S A – volume: 25 start-page: 1605 year: 2004 end-page: 1612 ident: bib39 article-title: UCSF chimera—a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. – volume: 66 start-page: 12 year: 2010 end-page: 21 ident: bib8 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr. D – volume: 10 start-page: 1 year: 2019 end-page: 13 ident: bib46 article-title: Principles for enhancing virus capsid capacity and stability from a thermophilic virus capsid structure publication-title: Nat. Commun. – start-page: 53 year: 2001 end-page: 85 ident: bib18 article-title: Principles of Virus Structure. Fields Virology – volume: 86 start-page: 1596 year: 1991 end-page: 1603 ident: bib26 article-title: New small animal model for human gastric publication-title: Am. J. Gastroenterol. – volume: 16 start-page: 1399 year: 2008 end-page: 1406 ident: bib28 article-title: Bacteriophage lambda stabilization by auxiliary protein gpD: timing, location, and mechanism of attachment determined by cryo-EM publication-title: Structure – volume: 368 start-page: 1469 year: 2007 end-page: 1483 ident: bib2 article-title: The crystal structure of a virus-like particle from the hyperthermophilic archaeon publication-title: J. Mol. Biol. – volume: 7 start-page: 230 year: 2000 end-page: 237 ident: bib57 article-title: Novel fold and capsid-binding properties of the lambda-phage display platform protein gpD publication-title: Nat. Struct. Biol. – volume: 15 start-page: 939 year: 2008 end-page: 947 ident: bib49 article-title: Structural basis of enzyme encapsulation into a bacterial nanocompartment publication-title: Nat. Struct. Biol. – volume: 114 start-page: E8184 year: 2017 ident: 10.1016/j.str.2021.09.001_bib9 article-title: Cryo-EM structure of the bacteriophage T4 isometric head at 3.3-Å resolution and its relevance to the assembly of icosahedral viruses publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1708483114 – volume: 192 start-page: 216 year: 2015 ident: 10.1016/j.str.2021.09.001_bib42 article-title: CTFFIND4: fast and accurate defocus estimation from electron micrographs publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2015.08.008 – volume: 66 start-page: 12 year: 2010 ident: 10.1016/j.str.2021.09.001_bib8 article-title: MolProbity: all-atom structure validation for macromolecular crystallography publication-title: Acta Crystallogr. D doi: 10.1107/S0907444909042073 – volume: 102 start-page: 7163 year: 2005 ident: 10.1016/j.str.2021.09.001_bib14 article-title: Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0502164102 – volume: 368 start-page: 1469 year: 2007 ident: 10.1016/j.str.2021.09.001_bib2 article-title: The crystal structure of a virus-like particle from the hyperthermophilic archaeon Pyrococcus furiosus provides insight into the evolution of viruses publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2007.02.075 – volume: 14 start-page: 331 year: 2017 ident: 10.1016/j.str.2021.09.001_bib59 article-title: MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy publication-title: Nat. Methods doi: 10.1038/nmeth.4193 – volume: 106 start-page: 376 year: 2006 ident: 10.1016/j.str.2021.09.001_bib55 article-title: Ewald sphere correction for single-particle electron microscopy publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2005.11.001 – volume: 15 start-page: 939 year: 2008 ident: 10.1016/j.str.2021.09.001_bib49 article-title: Structural basis of enzyme encapsulation into a bacterial nanocompartment publication-title: Nat. Struct. Biol. doi: 10.1038/nsmb.1473 – volume: 378 start-page: 726 year: 2008 ident: 10.1016/j.str.2021.09.001_bib10 article-title: Insight into DNA and protein transport in double-stranded DNA viruses: the structure of bacteriophage N4 publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.02.059 – volume: 66 start-page: 486 year: 2010 ident: 10.1016/j.str.2021.09.001_bib13 article-title: Features and development of Coot publication-title: Acta Crystallogr. D doi: 10.1107/S0907444910007493 – volume: 79 start-page: 14967 year: 2005 ident: 10.1016/j.str.2021.09.001_bib4 article-title: Common ancestry of herpesviruses and tailed DNA bacteriophages publication-title: J. Virol. doi: 10.1128/JVI.79.23.14967-14970.2005 – volume: 180 start-page: 519 year: 2012 ident: 10.1016/j.str.2021.09.001_bib44 article-title: RELION: implementation of a Bayesian approach to cryo-EM structure determination publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2012.09.006 – volume: 86 start-page: 1596 year: 1991 ident: 10.1016/j.str.2021.09.001_bib26 article-title: New small animal model for human gastric Helicobacter pylori infection: success in both nude and euthymic mice publication-title: Am. J. Gastroenterol. – volume: 55 start-page: 775 year: 2006 ident: 10.1016/j.str.2021.09.001_bib56 article-title: Helicobacter pylori outer membrane proteins and gastroduodenal disease publication-title: Gut doi: 10.1136/gut.2005.083014 – volume: 27 start-page: 14 year: 2018 ident: 10.1016/j.str.2021.09.001_bib15 article-title: UCSF ChimeraX—meeting modern challenges in visualization and analysis publication-title: Protein Sci. doi: 10.1002/pro.3235 – volume: 333 start-page: 721 year: 2003 ident: 10.1016/j.str.2021.09.001_bib43 article-title: Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron microscopy publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2003.07.013 – volume: 10 start-page: 1 year: 2019 ident: 10.1016/j.str.2021.09.001_bib46 article-title: Principles for enhancing virus capsid capacity and stability from a thermophilic virus capsid structure publication-title: Nat. Commun. doi: 10.1038/s41467-019-12341-z – volume: 360 start-page: eaa7283 year: 2018 ident: 10.1016/j.str.2021.09.001_bib58 article-title: Cryo-EM structure of a herpesvirus capsid at 3.1 Å publication-title: Science doi: 10.1126/science.aao7283 – volume: 1 start-page: 1273 year: 1983 ident: 10.1016/j.str.2021.09.001_bib53 article-title: Unidentified curved bacilli on gastric epithelium in active chronic gastritis publication-title: Lancet – volume: 79 start-page: 3176 year: 2013 ident: 10.1016/j.str.2021.09.001_bib51 article-title: Characterization of Helicobacter pylori bacteriophage KHP30 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.03530-12 – volume: 22 start-page: 830 year: 2014 ident: 10.1016/j.str.2021.09.001_bib41 article-title: Multiple functional roles of the accessory I-domain of bacteriophage P22 coat protein revealed by NMR structure and cryo-EM modeling publication-title: Structure doi: 10.1016/j.str.2014.04.003 – volume: 36 start-page: 9 year: 2019 ident: 10.1016/j.str.2021.09.001_bib12 article-title: The amazing HK97 fold: versatile results of modest differences publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2019.02.001 – volume: 14 start-page: 524 year: 2011 ident: 10.1016/j.str.2021.09.001_bib31 article-title: The next generation of bacteriophage therapy publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2011.07.028 – volume: 38 start-page: 249 year: 1993 ident: 10.1016/j.str.2021.09.001_bib19 article-title: Characterisation of a Helicobacter pylori phage (HP1) publication-title: J. Med. Microbiol. – volume: 395 start-page: 728 year: 2010 ident: 10.1016/j.str.2021.09.001_bib40 article-title: Structure of the small outer capsid protein, Soc: a clamp for stabilizing capsids of T4-like phages publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2009.10.007 – volume: 27 start-page: 1508 year: 2019 ident: 10.1016/j.str.2021.09.001_bib25 article-title: Capsid structure of a freshwater cyanophage siphoviridae Mic1 publication-title: Structure doi: 10.1016/j.str.2019.07.003 – volume: 114 start-page: 3103 year: 2017 ident: 10.1016/j.str.2021.09.001_bib22 article-title: Accurate model annotation of a near-atomic resolution cryo-EM map publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1621152114 – volume: 91 start-page: 271 year: 1997 ident: 10.1016/j.str.2021.09.001_bib6 article-title: Encapsidated conformation of bacteriophage T7 DNA publication-title: Cell doi: 10.1016/S0092-8674(00)80409-2 – volume: 110 start-page: 12301 year: 2013 ident: 10.1016/j.str.2021.09.001_bib3 article-title: Validated near-atomic resolution structure of bacteriophage epsilon15 derived from cryo-EM and modeling publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1309947110 – volume: 8 start-page: 1 year: 2019 ident: 10.1016/j.str.2021.09.001_bib34 article-title: The phage L capsid decoration protein has a novel OB-fold and an unusual capsid binding strategy publication-title: eLife doi: 10.7554/eLife.45345 – volume: 2 start-page: 1 year: 2011 ident: 10.1016/j.str.2021.09.001_bib29 article-title: Genome sequencing reveals a phage in Helicobacter pylori publication-title: mBio doi: 10.1128/mBio.00239-11 – volume: 103 start-page: 8048 year: 2006 ident: 10.1016/j.str.2021.09.001_bib7 article-title: X-ray structure of a native calicivirus: structural insights into antigenic diversity and host specificity publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0600421103 – volume: 16 start-page: 1399 year: 2008 ident: 10.1016/j.str.2021.09.001_bib28 article-title: Bacteriophage lambda stabilization by auxiliary protein gpD: timing, location, and mechanism of attachment determined by cryo-EM publication-title: Structure doi: 10.1016/j.str.2008.05.016 – volume: 14 start-page: 125 year: 2000 ident: 10.1016/j.str.2021.09.001_bib54 article-title: Topologically linked protein rings in the bacteriophage HK97 capsid publication-title: Science – volume: 66 start-page: 213 year: 2010 ident: 10.1016/j.str.2021.09.001_bib1 article-title: PHENIX: a comprehensive Python-based system for macromolecular structure solution publication-title: Acta Crystallogr. D doi: 10.1107/S0907444909052925 – volume: 25 start-page: 1605 year: 2004 ident: 10.1016/j.str.2021.09.001_bib39 article-title: UCSF chimera—a visualization system for exploratory research and analysis publication-title: J. Comput. Chem. doi: 10.1002/jcc.20084 – volume: 5 start-page: 4165 year: 2014 ident: 10.1016/j.str.2021.09.001_bib30 article-title: A mutation burst during the acute phase of Helicobacter pylori infection in humans and rhesus macaques publication-title: Nat. Commun. doi: 10.1038/ncomms5165 – start-page: 53 year: 2001 ident: 10.1016/j.str.2021.09.001_bib18 – volume: 7 start-page: 230 year: 2000 ident: 10.1016/j.str.2021.09.001_bib57 article-title: Novel fold and capsid-binding properties of the lambda-phage display platform protein gpD publication-title: Nat. Struct. Biol. doi: 10.1038/73347 – volume: 27 start-page: 1 year: 1962 ident: 10.1016/j.str.2021.09.001_bib5 article-title: Physical principles in the construction of regular viruses publication-title: Cold Spring Harb. Symp. Quant. Biol. doi: 10.1101/SQB.1962.027.001.005 – volume: 9 start-page: 914 year: 1995 ident: 10.1016/j.str.2021.09.001_bib20 article-title: Evolution: the long evolutionary reach of viruses publication-title: Curr. Biol. doi: 10.1016/S0960-9822(00)80103-7 – volume: 81 start-page: 83 year: 2000 ident: 10.1016/j.str.2021.09.001_bib11 article-title: Correction of high-resolution data for curvature of the Ewald sphere publication-title: Ultramicroscopy doi: 10.1016/S0304-3991(99)00120-5 – volume: 26 start-page: 936 year: 2018 ident: 10.1016/j.str.2021.09.001_bib47 article-title: A hyperthermophilic phage decoration protein suggests common evolutionary origin with herpesvirus triplex proteins and an anti-CRISPR protein publication-title: Structure doi: 10.1016/j.str.2018.04.008 – volume: 60 start-page: 3 year: 2009 ident: 10.1016/j.str.2021.09.001_bib27 article-title: Helicobacter pylori infection in gastric cancerogenesis publication-title: J. Physiol. Pharmacol. – volume: 479-480 start-page: 487 year: 2015 ident: 10.1016/j.str.2021.09.001_bib48 article-title: Nature’s favorite building block: deciphering folding and capsid assembly of proteins with the HK97-fold publication-title: Virology doi: 10.1016/j.virol.2015.02.055 – volume: 509 start-page: S9 year: 2014 ident: 10.1016/j.str.2021.09.001_bib33 article-title: The age of the phage publication-title: Nature doi: 10.1038/509S9a – volume: 22 start-page: 4673 year: 1994 ident: 10.1016/j.str.2021.09.001_bib50 article-title: Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice publication-title: Nucleic Acids Res. doi: 10.1093/nar/22.22.4673 – volume: 86 start-page: 11400 year: 2012 ident: 10.1016/j.str.2021.09.001_bib52 article-title: Complete genome sequences of two Helicobacter pylori bacteriophages isolated from Japanese patients publication-title: J. Viol. doi: 10.1128/JVI.01767-12 – volume: 295 start-page: 317 year: 2005 ident: 10.1016/j.str.2021.09.001_bib35 article-title: Adherence properties of Helicobacter pylori: impact on pathogenesis and adaptation to the host publication-title: Int. J. Med. Microbiol. doi: 10.1016/j.ijmm.2005.06.003 – volume: 88 start-page: 11846 year: 2014 ident: 10.1016/j.str.2021.09.001_bib17 article-title: The genomes, proteomes, and structures of three novel phages that infect the Bacillus cereus group and carry putative virulence factors publication-title: J. Viol. doi: 10.1128/JVI.01364-14 – volume: 2 start-page: 28 year: 2002 ident: 10.1016/j.str.2021.09.001_bib38 article-title: Helicobacter pylori and gastrointestinal tract adenocarcinomas publication-title: Nat. Rev. Cancer doi: 10.1038/nrc703 – volume: 116 start-page: 21037 year: 2019 ident: 10.1016/j.str.2021.09.001_bib23 article-title: Capsid expansion of bacteriophage T5 revealed by high resolution cryoelectron microscopy publication-title: Natl. Acad. Sci. U S A doi: 10.1073/pnas.1909645116 – volume: 101 start-page: 2106 year: 2004 ident: 10.1016/j.str.2021.09.001_bib45 article-title: Modification of Helicobacter pylori outer membrane protein expression during experimental infection of rhesus macaques publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0308573100 – volume: 31 start-page: 3320 year: 2003 ident: 10.1016/j.str.2021.09.001_bib16 article-title: ESPript/ENDscript: extracting and rendering sequence and 3D information from atomic structures of proteins publication-title: Nucl. Acids Res. doi: 10.1093/nar/gkg556 – volume: 5 start-page: eaaw7414 year: 2019 ident: 10.1016/j.str.2021.09.001_bib21 article-title: Structure and genome ejection mechanism of Staphylococcus aureus phage P68 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw7414 – volume: 84 start-page: 5550 year: 2010 ident: 10.1016/j.str.2021.09.001_bib36 article-title: Conformational changes in the capsid of a calicivirus upon interaction with its functional receptor publication-title: J. Virol. doi: 10.1128/JVI.02371-09 – volume: 464 start-page: 275 year: 2010 ident: 10.1016/j.str.2021.09.001_bib37 article-title: Antagonistic coevolution accelerates molecular evolution publication-title: Nature doi: 10.1038/nature08798 – volume: 82 start-page: 8781 year: 2012 ident: 10.1016/j.str.2021.09.001_bib32 article-title: Genome, integration, and transduction of a novel temperate phage of Helicobacter pylori publication-title: J. Virol. doi: 10.1128/JVI.00446-12  | 
    
| SSID | ssj0002500 | 
    
| Score | 2.426125 | 
    
| Snippet | The acid-stable capsid structures of Helicobacter pylori phages KHP30 and KHP40 are solved at 2.7 and 3.0 Å resolutions by cryoelectron microscopy,... The acid-stable capsid structures of Helicobacter pylori phages KHP30 and KHP40 are solved at 2.7 and 3.0 Å resolutions by cryoelectron microscopy,...  | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 300 | 
    
| SubjectTerms | capsid structure cryoelectron microscopy Helicobacter pylori bacteriophage near-atomic resolution single-particle analysis  | 
    
| Title | Acid-stable capsid structure of Helicobacter pylori bacteriophage KHP30 by single-particle cryoelectron microscopy | 
    
| URI | https://dx.doi.org/10.1016/j.str.2021.09.001 https://www.ncbi.nlm.nih.gov/pubmed/34597601 https://www.proquest.com/docview/2578762826  | 
    
| Volume | 30 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1878-4186 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002500 issn: 0969-2126 databaseCode: HH5 dateStart: 19950101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVESC databaseName: ScienceDirect Free and Delayed Access Journal customDbUrl: eissn: 1878-4186 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002500 issn: 0969-2126 databaseCode: IXB dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1878-4186 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0002500 issn: 0969-2126 databaseCode: DIK dateStart: 19950101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-4186 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002500 issn: 0969-2126 databaseCode: AKRWK dateStart: 19930915 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iCF7Et-uLCJ6EumnTbZrjKoq66MEH7i0kaYKVdVt218P-e2f6WPCgB48tE5rOJPNIZr4h5KwnbCYTpwOTaBHEiKydGp8F1oZG2tBpr7E4-eExuX2N74e94RK5amthMK2y0f21Tq-0dfOm23CzW-Z59xmcbwmKN4GghfFIIiYoj1Ns33A3vFxoYzDx1TkLEAdI3d5sVjle0xlCgkbhRY1a-Ztt-s33rGzQzQZZb5xH2q_nt0mW3HiLrNbtJOfbZNK3eRaAu2dGjlpdwkKjNT7s18TRwlOwMSB4UwE00xJD9ZzWT3lRvoNmoQPYxoyaOcUjhJELyoYX1E7mRdsyh35iFh_Ws8x3yOvN9cvVbdD0VAgs7_EZ6LaURd46bk0YMe4ZelBaZJFwMddGCu6dhRBGQCgGJMb1tHeCSZA0OC7c812yPC7Gbp9QaWwIA70ViYnBLdI6TFIrGU8zI6yXHcJabirbAI5j34uRajPLPhQwQaEAFJOYXdch54shZY228Rdx3IpI_VgyCqzBX8NOW3Eq2Ep4P6LHrviaqkp7JfDjSYfs1XJezILHEHlB8Hrwv48ekrUI6yYw3ZsfkWWQvTsGb2ZmTshKf_D0Njiplu03atT13w | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RUFUuiFdhKS2uxAkpXSdO4vWRoqJteVwK0t4s27FF0LKJluWw_56ZPFbqAQ49JrIVZ2Y88409D4DTTLpC5d5ENjcySqmy9siGInIutsrF3gRDyck3t_n4Pv0zySZrcNHnwlBYZaf7W53eaOvuzbCj5rAuy-FfBN8KFW-OTgsXiUo_wEaaITqhLL7Jz5U6RhvfHLTg6IiG91ebTZDX84Jqgibxj7Zs5VvG6S3w2Rihy23Y6tAjO28XuANrfrYLH9t-kss9mJ-7sogQ79mpZ87UKGmsLRD7MvesCgyNDHLeNhWaWU2-esnap7KqH1C1sCvcx5zZJaMzhKmP6o4YzM2XVd8zhz1RGB8ltCz34f7y193FOOqaKkROZGKBym3Ek-C8cDZOuAicIJSRRSJ9KoxVUgTv0IeR6IvhEOszE7zkClmNyEUE8RnWZ9XMHwJT1sU4MTiZ2xRxkTFxPnKKi1FhpQtqALynpnZdxXFqfDHVfWjZo0YiaGKA5orC6wZwtppSt-U23huc9izS_8iMRnPw3rTvPTs17iW6IDEzX70860Z95fjj-QAOWj6vViFSdL3Qez36v4-ewKfx3c21vv59e_UFNhNKoqDYb3EM6ygH_itCm4X91ojuKyBI92I | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acid-stable+capsid+structure+of+Helicobacter+pylori+bacteriophage+KHP30+by+single-particle+cryoelectron+microscopy&rft.jtitle=Structure+%28London%29&rft.au=Kamiya%2C+Ryosuke&rft.au=Uchiyama%2C+Jumpei&rft.au=Matsuzaki%2C+Shigenobu&rft.au=Murata%2C+Kazuyoshi&rft.date=2022-02-03&rft.issn=0969-2126&rft.volume=30&rft.issue=2&rft.spage=300&rft.epage=312.e3&rft_id=info:doi/10.1016%2Fj.str.2021.09.001&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_str_2021_09_001 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-2126&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-2126&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-2126&client=summon |