A cross-lingual approach to automatic ICD-10 coding of death certificates by exploring machine translation
[Display omitted] •Clinical diagnoses are usually sparse and biased, implying reduced interoperability.•This paper proposes a cross-lingual approach based on exploiting foreign language data.•Translations provide lexical diversity, but subject to mistakes and nuance losses.•Large amounts of translat...
Saved in:
| Published in | Journal of biomedical informatics Vol. 94; p. 103207 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.06.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1532-0464 1532-0480 1532-0480 |
| DOI | 10.1016/j.jbi.2019.103207 |
Cover
| Abstract | [Display omitted]
•Clinical diagnoses are usually sparse and biased, implying reduced interoperability.•This paper proposes a cross-lingual approach based on exploiting foreign language data.•Translations provide lexical diversity, but subject to mistakes and nuance losses.•Large amounts of translated data can be used for improving Machine Learninig methods.
Automatic ICD-10 coding is an unresolved challenge in terms of Machine Learning tasks. Despite hospitals generating an enormous amount of clinical documents, data is considerably sparse, associated with a very skewed and unbalanced code distribution, what entails reduced interoperability. In addition, in some languages the availability of coded documents is very limited. This paper proposes a cross-lingual approach based on Machine Translation methods to code death certificates with ICD-10 using supervised learning. The aim of this approach is to increase the availability of coded documents by combining collections of different languages, which may also contribute to reduce their possible bias in the ICD distribution, i.e. to avoid the promotion of a subset of codes due to service or environmental factors. A significant improvement in system performance is achieved for those labels with few occurrences. |
|---|---|
| AbstractList | [Display omitted]
•Clinical diagnoses are usually sparse and biased, implying reduced interoperability.•This paper proposes a cross-lingual approach based on exploiting foreign language data.•Translations provide lexical diversity, but subject to mistakes and nuance losses.•Large amounts of translated data can be used for improving Machine Learninig methods.
Automatic ICD-10 coding is an unresolved challenge in terms of Machine Learning tasks. Despite hospitals generating an enormous amount of clinical documents, data is considerably sparse, associated with a very skewed and unbalanced code distribution, what entails reduced interoperability. In addition, in some languages the availability of coded documents is very limited. This paper proposes a cross-lingual approach based on Machine Translation methods to code death certificates with ICD-10 using supervised learning. The aim of this approach is to increase the availability of coded documents by combining collections of different languages, which may also contribute to reduce their possible bias in the ICD distribution, i.e. to avoid the promotion of a subset of codes due to service or environmental factors. A significant improvement in system performance is achieved for those labels with few occurrences. Automatic ICD-10 coding is an unresolved challenge in terms of Machine Learning tasks. Despite hospitals generating an enormous amount of clinical documents, data is considerably sparse, associated with a very skewed and unbalanced code distribution, what entails reduced interoperability. In addition, in some languages the availability of coded documents is very limited. This paper proposes a cross-lingual approach based on Machine Translation methods to code death certificates with ICD-10 using supervised learning. The aim of this approach is to increase the availability of coded documents by combining collections of different languages, which may also contribute to reduce their possible bias in the ICD distribution, i.e. to avoid the promotion of a subset of codes due to service or environmental factors. A significant improvement in system performance is achieved for those labels with few occurrences. Automatic ICD-10 coding is an unresolved challenge in terms of Machine Learning tasks. Despite hospitals generating an enormous amount of clinical documents, data is considerably sparse, associated with a very skewed and unbalanced code distribution, what entails reduced interoperability. In addition, in some languages the availability of coded documents is very limited. This paper proposes a cross-lingual approach based on Machine Translation methods to code death certificates with ICD-10 using supervised learning. The aim of this approach is to increase the availability of coded documents by combining collections of different languages, which may also contribute to reduce their possible bias in the ICD distribution, i.e. to avoid the promotion of a subset of codes due to service or environmental factors. A significant improvement in system performance is achieved for those labels with few occurrences.Automatic ICD-10 coding is an unresolved challenge in terms of Machine Learning tasks. Despite hospitals generating an enormous amount of clinical documents, data is considerably sparse, associated with a very skewed and unbalanced code distribution, what entails reduced interoperability. In addition, in some languages the availability of coded documents is very limited. This paper proposes a cross-lingual approach based on Machine Translation methods to code death certificates with ICD-10 using supervised learning. The aim of this approach is to increase the availability of coded documents by combining collections of different languages, which may also contribute to reduce their possible bias in the ICD distribution, i.e. to avoid the promotion of a subset of codes due to service or environmental factors. A significant improvement in system performance is achieved for those labels with few occurrences. |
| ArticleNumber | 103207 |
| Author | Martínez, Raquel Almagro, Mario Montalvo, Soto Fresno, Víctor |
| Author_xml | – sequence: 1 givenname: Mario orcidid: 0000-0003-4339-2959 surname: Almagro fullname: Almagro, Mario email: malmagro@lsi.uned.es organization: Department of Computer Languages and Systems, Universidad Nacional de Educación a Distancia (UNED), Madrid 28040, Spain – sequence: 2 givenname: Raquel surname: Martínez fullname: Martínez, Raquel email: raquel@lsi.uned.es organization: Department of Computer Languages and Systems, Universidad Nacional de Educación a Distancia (UNED), Madrid 28040, Spain – sequence: 3 givenname: Soto surname: Montalvo fullname: Montalvo, Soto email: soto.montalvo@urjc.es organization: Department of Computer Science, URJC, Madrid 28933, Spain – sequence: 4 givenname: Víctor surname: Fresno fullname: Fresno, Víctor email: vfresno@lsi.uned.es organization: Department of Computer Languages and Systems, Universidad Nacional de Educación a Distancia (UNED), Madrid 28040, Spain |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31077817$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU1v3CAURVGUKF_tD-imYtmNpzxjG1tdRdM2iRQpm3aN4Pm5wbLNFHCV_PsymTSLLrICpHOvxLkX7HjxCzH2AcQGBDSfx81o3aYU0OW3LIU6YudQy7IQVSuOX-9NdcYuYhyFAKjr5pSdSRBKtaDO2XjFMfgYi8ktv1YzcbPbBW_wgSfPzZr8bJJDfrv9WoDg6PuMcT_wnkx64EghucGhSRS5feL0uJt82CNzrnAL8RTMEqfc4Zd37GQwU6T3L-cl-_n924_tTXF3f327vborUNYyFa1oOiitAUUCB9UIEHboTdWjbbuqwqGTylYE2EigBpS1BC3VorUSFRklL9mnQ2_-yO-VYtKzi0jTZBbya9RlKaGTZVW1Gf34gq52pl7vgptNeNL__GQADsCzpEDDKwJC7zfQo84b6P0G-rBBzqj_MujSs4Esw01vJr8ckpT1_HEUdERHC1LvAmHSvXdvpP8CedagWg |
| CitedBy_id | crossref_primary_10_3390_info15100585 crossref_primary_10_1109_ACCESS_2020_2997241 crossref_primary_10_1212_WNL_0000000000207967 crossref_primary_10_1109_TKDE_2022_3148267 crossref_primary_10_1002_hpm_3045 crossref_primary_10_1016_j_ijmedinf_2021_104543 crossref_primary_10_1016_j_ijmedinf_2021_104676 crossref_primary_10_1016_j_artmed_2021_102177 crossref_primary_10_1016_j_csl_2023_101582 crossref_primary_10_1055_s_0041_1726522 crossref_primary_10_1186_s12911_020_1085_4 |
| Cites_doi | 10.1055/s-0038-1634005 10.1186/s12911-016-0269-4 10.1016/j.jbi.2016.07.017 10.1371/journal.pone.0173410 10.1016/S1386-5056(02)00058-8 10.1016/j.artmed.2015.05.007 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Inc. Copyright © 2019 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier Inc. – notice: Copyright © 2019 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION NPM 7X8 |
| DOI | 10.1016/j.jbi.2019.103207 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Public Health |
| EISSN | 1532-0480 |
| ExternalDocumentID | 31077817 10_1016_j_jbi_2019_103207 S153204641930125X |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- --K --M -~X .DC .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAWTL AAXUO AAYFN ABBOA ABBQC ABFRF ABJNI ABLVK ABMAC ABMZM ABVKL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEXQZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BAWUL BKOJK BLXMC BNPGV CAG COF CS3 DIK DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM LCYCR LG5 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSV SSZ T5K UAP UHS UNMZH XPP ZGI ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 0SF NPM 7X8 |
| ID | FETCH-LOGICAL-c353t-806912ba17e0cf76010bfda4dcb8944cf937b4e1c631e617bbe18e508b3c7ea73 |
| IEDL.DBID | .~1 |
| ISSN | 1532-0464 1532-0480 |
| IngestDate | Sat Sep 27 19:52:05 EDT 2025 Wed Feb 19 02:30:37 EST 2025 Wed Oct 29 21:13:17 EDT 2025 Thu Apr 24 23:10:50 EDT 2025 Fri Feb 23 02:34:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cross-lingual approach Text mining Machine translation Electronic health records ICD-10 coding |
| Language | English |
| License | Copyright © 2019 Elsevier Inc. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c353t-806912ba17e0cf76010bfda4dcb8944cf937b4e1c631e617bbe18e508b3c7ea73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-4339-2959 |
| PMID | 31077817 |
| PQID | 2231932448 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2231932448 pubmed_primary_31077817 crossref_primary_10_1016_j_jbi_2019_103207 crossref_citationtrail_10_1016_j_jbi_2019_103207 elsevier_sciencedirect_doi_10_1016_j_jbi_2019_103207 |
| PublicationCentury | 2000 |
| PublicationDate | June 2019 2019-06-00 20190601 |
| PublicationDateYYYYMMDD | 2019-06-01 |
| PublicationDate_xml | – month: 06 year: 2019 text: June 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of biomedical informatics |
| PublicationTitleAlternate | J Biomed Inform |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Carpuat (b0010) 2013; vol. 2 Thomas, Bobić, Leser, Hofmann-Apitius, Klinger (b0060) 2012 M. Li, C. Xu, T. Wei, D. Bao, N. Lu, J. Yang, Ecnu at 2018 ehealth task1 multilingual information extraction, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2018. Mayhew, Tsai, Roth (b0015) 2017 Feng, Feng, Qin, Feng, Liu (b0020) 2018 R. Bounaama, M. El Amine Abderrahim, Tlemcen university at celf ehealth 2018 team techno: multilingual information extraction-icd10 coding, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2018. Chiaramello, Pinciroli, Bonalumi, Caroli, Tognola (b0190) 2016; 63 P. López-Úbeda, M. Diaz-Galiano, M. Martin-Valdivia, L.A. Urena-López, Machine learning to detect icd10 codes in causes of death, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2018. N. Perez, M. Cuadros, G. Rigau, Biomedical term normalization of ehrs with umls, in: Proceedings of the Eleventh International Conference on Language Resources and Evaluation. Z. Miftakhutdinov, E. Tutubalina, Kfu at clef ehealth 2017 task 1: Icd-10 coding of english death certificates with recurrent neural networks, in: CLEF 2017 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2017. Carrero, Cortizo, Gómez, De Buenaga (b0180) 2008 L.-M. Ho-Dac, C. Fabre, A. Birski, I. Boudraa, A. Bourriot, M. Cassier, L. Delvenne, C. Garcia-Gonzalez, E.-B. Kang, E. Piccinini et al., Litl at clef ehealth2017: automatic classication of death reports, in: CLEF 2017 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2017. J. Seva, M. Kittner, R. Roller, U. Leser, Multi-lingual icd-10 coding using a hybrid rule-based and supervised classification approach at clef ehealth 2017, in: CLEF 2017 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2017. Attardi, Buzzelli, Sartiano (b0165) 2013 Jatunarapit, Piromsopa, Charoeanlap (b0135) 2016 J. Ševa, M. Sänger, U. Leser, Wbi at clef ehealth 2018 task 1: Language-independent icd-10 coding using multi-lingual embeddings and recurrent neural networks, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2018. A. Névéol, A. Robert, R. Anderson, K.B. Cohen, C. Grouin, T. Lavergne, G. Rey, C. Rondet, P. Zweigenbaum, Clef ehealth 2017 multilingual information extraction task overview: Icd10 coding of death certificates in english and french, in: CLEF 2017 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, vol. 1866, 2017. Accuosto, Saggion (b0170) 2018; 61 A. Névéol, A. Robert, F. Grippo, C. Morgand, C. Orsi, L. Pelikán, L. Ramadier, G. Rey, P. Zweigenbaum, Clef ehealth 2018 multilingual information extraction task overview: Icd10 coding of death certificates in french, hungarian and italian, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, vol. 2125, 2018. J. Ive, N. Viani, D. Chandran, A. Bittar, S. Velupillai, Kcl-health-nlp@ clef ehealth 2018 task 1: Icd-10 coding of french and italian death certificates with character-level convolutional neural networks, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, vol. 2125, CEUR-WS, 2018. Volk, Ripplinger, Vintar, Buitelaar, Raileanu, Sacaleanu (b0150) 2002; 67 Rebholz-Schuhmann, Clematide, Rinaldi, Kafkas, van Mulligen, Bui, Hellrich, Lewin, Milward, Poprat (b0160) 2013 Lefever, Hoste (b0005) 2013; vol. 2 C. Cabot, L.F. Soualmia, S.J. Darmoni, Sibm at clef ehealth evaluation lab 2017: multilingual information extraction with cim-ind, in: CLEF 2017 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2017. P. Zweigenbaum, T. Lavergne, Multiple methods for multi-class, multi-label icd-10 coding of multi-granularity, multilingual death certificates, in: CLEF 2017 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2017. J. Gobeill, P. Ruch, Instance-based learning for icd10 categorization, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2018. A. Atutxa, A. Casillas, N. Ezeiza, I. Goenaga, V. Fresno, K. Gojenola, R. Martinez, M. Oronoz, O. Perez-de Vinaspre, Ixamed at clef ehealth 2018 task 1: Icd10 coding with a sequence-to-sequence approach, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2018. Markó, Schulz, Hahn (b0175) 2005; 44 M. Lamy, R. Pereira, J.C. Ferreira, F. Melo, I. Velez, Extracting clinical knowledge from electronic medical records, IAENG Int. J. Comput. Sci. 45(3). Ning, Yu, Zhang (b0070) 2016; 16 Duarte, Martins, Pinto, Silva (b0100) 2017 Chen, Lu, Li (b0065) 2017; 12 S. Cossin, V. Jouhet, F. Mougin, G. Diallo, F. Thiessard, Iam at clef ehealth 2018: concept annotation and coding in french death certificates, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2018. E.M. Van Mulligen, Z. Afzal, S. Akhondi, D. Dang, J. Kors, Erasmus mc at clef ehealth 2016: concept recognition and coding in french texts, in: CLEF 2017 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2016. Horbach, Stennmanns, Zesch (b0195) 2018 M. Almagro, S. Montalvo, A.D. de Ilarraza, A. Pérez, Mamtra-med at clef ehealth 2018: a combination of information retrieval techniques and neural networks for icd-10 coding of death certificates, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, vol. 2125, 2018. Korkontzelos, Piliouras, Dowsey, Ananiadou (b0055) 2015; 65 A. Névéol, K.B. Cohen, C. Grouin, T. Hamon, T. Lavergne, L. Kelly, L. Goeuriot, G. Rey, A. Robert, X. Tannier et al., Clinical information extraction at the clef ehealth evaluation lab 2016, in: CLEF 2016 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, vol. 1609, 2016, p. 28. S. Jeblee, A. Budhkar, S. Milic, J. Pinto, C. Pou-Prom, K. Vishnubhotla, G. Hirst, F. Rudzicz, Toronto cl at clef 2018 ehealth task 1: multi-lingual icd-10 coding using an ensemble of recurrent and convolutional neural networks, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2018. M. Ebersbach, R. Herms, M. Eibl, Fusion methods for icd10 code classification of death certificates in multilingual corpora, in: CLEF 2017 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2017. Thomas (10.1016/j.jbi.2019.103207_b0060) 2012 Horbach (10.1016/j.jbi.2019.103207_b0195) 2018 Mayhew (10.1016/j.jbi.2019.103207_b0015) 2017 10.1016/j.jbi.2019.103207_b0090 Markó (10.1016/j.jbi.2019.103207_b0175) 2005; 44 10.1016/j.jbi.2019.103207_b0050 10.1016/j.jbi.2019.103207_b0095 10.1016/j.jbi.2019.103207_b0030 10.1016/j.jbi.2019.103207_b0075 10.1016/j.jbi.2019.103207_b0130 Attardi (10.1016/j.jbi.2019.103207_b0165) 2013 10.1016/j.jbi.2019.103207_b0110 10.1016/j.jbi.2019.103207_b0155 10.1016/j.jbi.2019.103207_b0035 10.1016/j.jbi.2019.103207_b0115 Carpuat (10.1016/j.jbi.2019.103207_b0010) 2013; vol. 2 Jatunarapit (10.1016/j.jbi.2019.103207_b0135) 2016 Ning (10.1016/j.jbi.2019.103207_b0070) 2016; 16 Lefever (10.1016/j.jbi.2019.103207_b0005) 2013; vol. 2 Accuosto (10.1016/j.jbi.2019.103207_b0170) 2018; 61 10.1016/j.jbi.2019.103207_b0080 Rebholz-Schuhmann (10.1016/j.jbi.2019.103207_b0160) 2013 10.1016/j.jbi.2019.103207_b0040 10.1016/j.jbi.2019.103207_b0085 10.1016/j.jbi.2019.103207_b0140 10.1016/j.jbi.2019.103207_b0185 10.1016/j.jbi.2019.103207_b0120 Carrero (10.1016/j.jbi.2019.103207_b0180) 2008 10.1016/j.jbi.2019.103207_b0045 Volk (10.1016/j.jbi.2019.103207_b0150) 2002; 67 10.1016/j.jbi.2019.103207_b0145 10.1016/j.jbi.2019.103207_b0200 10.1016/j.jbi.2019.103207_b0025 Feng (10.1016/j.jbi.2019.103207_b0020) 2018 10.1016/j.jbi.2019.103207_b0125 Korkontzelos (10.1016/j.jbi.2019.103207_b0055) 2015; 65 Chen (10.1016/j.jbi.2019.103207_b0065) 2017; 12 10.1016/j.jbi.2019.103207_b0105 Chiaramello (10.1016/j.jbi.2019.103207_b0190) 2016; 63 Duarte (10.1016/j.jbi.2019.103207_b0100) 2017 |
| References_xml | – reference: P. Zweigenbaum, T. Lavergne, Multiple methods for multi-class, multi-label icd-10 coding of multi-granularity, multilingual death certificates, in: CLEF 2017 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2017. – volume: 63 start-page: 22 year: 2016 end-page: 32 ident: b0190 article-title: Use of off-the-shelf information extraction algorithms in clinical informatics: a feasibility study of metamap annotation of italian medical notes publication-title: J. Biomed. Inform. – start-page: 410 year: 2018 end-page: 419 ident: b0195 article-title: Cross-lingual content scoring publication-title: Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications – volume: 65 start-page: 145 year: 2015 end-page: 153 ident: b0055 article-title: Boosting drug named entity recognition using an aggregate classifier publication-title: Artif. Intell. Med. – reference: J. Ševa, M. Sänger, U. Leser, Wbi at clef ehealth 2018 task 1: Language-independent icd-10 coding using multi-lingual embeddings and recurrent neural networks, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2018. – reference: J. Gobeill, P. Ruch, Instance-based learning for icd10 categorization, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2018. – volume: 44 start-page: 537 year: 2005 end-page: 545 ident: b0175 article-title: Morphosaurus publication-title: Meth. Inform. Med. – volume: 12 year: 2017 ident: b0065 article-title: Automatic icd-10 coding algorithm using an improved longest common subsequence based on semantic similarity publication-title: PloS One – reference: R. Bounaama, M. El Amine Abderrahim, Tlemcen university at celf ehealth 2018 team techno: multilingual information extraction-icd10 coding, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2018. – start-page: 1 year: 2016 end-page: 6 ident: b0135 article-title: Development of thai text-mining model for classifying icd-10 tm publication-title: Proceedings of the 8th International Conference on Electronics, Computers and Artificial Intelligence (ECAI) – reference: N. Perez, M. Cuadros, G. Rigau, Biomedical term normalization of ehrs with umls, in: Proceedings of the Eleventh International Conference on Language Resources and Evaluation. – reference: M. Almagro, S. Montalvo, A.D. de Ilarraza, A. Pérez, Mamtra-med at clef ehealth 2018: a combination of information retrieval techniques and neural networks for icd-10 coding of death certificates, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, vol. 2125, 2018. – reference: C. Cabot, L.F. Soualmia, S.J. Darmoni, Sibm at clef ehealth evaluation lab 2017: multilingual information extraction with cim-ind, in: CLEF 2017 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2017. – start-page: 2536 year: 2017 end-page: 2545 ident: b0015 article-title: Cheap translation for cross-lingual named entity recognition publication-title: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing – start-page: 353 year: 2013 end-page: 367 ident: b0160 article-title: Entity recognition in parallel multi-lingual biomedical corpora: the clef-er laboratory overview publication-title: International Conference of the Cross-Language Evaluation Forum for European Languages – reference: A. Névéol, A. Robert, F. Grippo, C. Morgand, C. Orsi, L. Pelikán, L. Ramadier, G. Rey, P. Zweigenbaum, Clef ehealth 2018 multilingual information extraction task overview: Icd10 coding of death certificates in french, hungarian and italian, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, vol. 2125, 2018. – reference: L.-M. Ho-Dac, C. Fabre, A. Birski, I. Boudraa, A. Bourriot, M. Cassier, L. Delvenne, C. Garcia-Gonzalez, E.-B. Kang, E. Piccinini et al., Litl at clef ehealth2017: automatic classication of death reports, in: CLEF 2017 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2017. – reference: P. López-Úbeda, M. Diaz-Galiano, M. Martin-Valdivia, L.A. Urena-López, Machine learning to detect icd10 codes in causes of death, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2018. – start-page: 4071 year: 2018 end-page: 4077 ident: b0020 article-title: Improving low resource named entity recognition using cross-lingual knowledge transfer publication-title: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI) – volume: 61 start-page: 57 year: 2018 end-page: 64 ident: b0170 article-title: Improving the accessibility of biomedical texts by semantic enrichment and definition expansion publication-title: Procesam. Leng. Nat. – reference: M. Li, C. Xu, T. Wei, D. Bao, N. Lu, J. Yang, Ecnu at 2018 ehealth task1 multilingual information extraction, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2018. – volume: vol. 2 start-page: 188 year: 2013 end-page: 192 ident: b0010 article-title: Nrc: a machine translation approach to cross-lingual word sense disambiguation (semeval-2013 task 10) publication-title: Second Joint Conference on Lexical and Computational Semantics (* SEM) – reference: M. Ebersbach, R. Herms, M. Eibl, Fusion methods for icd10 code classification of death certificates in multilingual corpora, in: CLEF 2017 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2017. – reference: J. Seva, M. Kittner, R. Roller, U. Leser, Multi-lingual icd-10 coding using a hybrid rule-based and supervised classification approach at clef ehealth 2017, in: CLEF 2017 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2017. – year: 2013 ident: b0165 article-title: Machine translation for entity recognition across languages in biomedical documents publication-title: CLEF 2013 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS – reference: A. Névéol, K.B. Cohen, C. Grouin, T. Hamon, T. Lavergne, L. Kelly, L. Goeuriot, G. Rey, A. Robert, X. Tannier et al., Clinical information extraction at the clef ehealth evaluation lab 2016, in: CLEF 2016 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, vol. 1609, 2016, p. 28. – volume: vol. 2 start-page: 158 year: 2013 end-page: 166 ident: b0005 article-title: Semeval-2013 task 10: cross-lingual word sense disambiguation publication-title: Second Joint Conference on Lexical and Computational Semantics (* SEM) – reference: M. Lamy, R. Pereira, J.C. Ferreira, F. Melo, I. Velez, Extracting clinical knowledge from electronic medical records, IAENG Int. J. Comput. Sci. 45(3). – reference: A. Névéol, A. Robert, R. Anderson, K.B. Cohen, C. Grouin, T. Lavergne, G. Rey, C. Rondet, P. Zweigenbaum, Clef ehealth 2017 multilingual information extraction task overview: Icd10 coding of death certificates in english and french, in: CLEF 2017 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, vol. 1866, 2017. – volume: 16 start-page: 30 year: 2016 ident: b0070 article-title: A hierarchical method to automatically encode chinese diagnoses through semantic similarity estimation publication-title: BMC Med. Inform. Decis. Mak. – start-page: 1465 year: 2008 end-page: 1466 ident: b0180 article-title: In the development of a spanish metamap publication-title: Proceedings of the 17th ACM Conference on Information and Knowledge Management – reference: J. Ive, N. Viani, D. Chandran, A. Bittar, S. Velupillai, Kcl-health-nlp@ clef ehealth 2018 task 1: Icd-10 coding of french and italian death certificates with character-level convolutional neural networks, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, vol. 2125, CEUR-WS, 2018. – reference: S. Cossin, V. Jouhet, F. Mougin, G. Diallo, F. Thiessard, Iam at clef ehealth 2018: concept annotation and coding in french death certificates, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2018. – reference: Z. Miftakhutdinov, E. Tutubalina, Kfu at clef ehealth 2017 task 1: Icd-10 coding of english death certificates with recurrent neural networks, in: CLEF 2017 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2017. – reference: S. Jeblee, A. Budhkar, S. Milic, J. Pinto, C. Pou-Prom, K. Vishnubhotla, G. Hirst, F. Rudzicz, Toronto cl at clef 2018 ehealth task 1: multi-lingual icd-10 coding using an ensemble of recurrent and convolutional neural networks, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2018. – volume: 67 start-page: 97 year: 2002 end-page: 112 ident: b0150 article-title: Semantic annotation for concept-based cross-language medical information retrieval publication-title: Int. J. Med. Inform. – start-page: 137 year: 2017 end-page: 149 ident: b0100 article-title: A deep learning method for icd-10 coding of free-text death certificates publication-title: Portuguese Conference on Artificial Intelligence – reference: A. Atutxa, A. Casillas, N. Ezeiza, I. Goenaga, V. Fresno, K. Gojenola, R. Martinez, M. Oronoz, O. Perez-de Vinaspre, Ixamed at clef ehealth 2018 task 1: Icd10 coding with a sequence-to-sequence approach, in: CLEF 2018 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2018. – year: 2012 ident: b0060 article-title: Weakly labeled corpora as silver standard for drug-drug and protein-protein interaction publication-title: Proceedings of the Workshop on Building and Evaluating Resources for Biomedical Text Mining (BioTxtM) on Language Resources and Evaluation Conference (LREC) – reference: E.M. Van Mulligen, Z. Afzal, S. Akhondi, D. Dang, J. Kors, Erasmus mc at clef ehealth 2016: concept recognition and coding in french texts, in: CLEF 2017 Evaluation Labs and Workshop: Online Working Notes, CEUR-WS, 2016. – ident: 10.1016/j.jbi.2019.103207_b0200 – ident: 10.1016/j.jbi.2019.103207_b0080 – ident: 10.1016/j.jbi.2019.103207_b0185 – ident: 10.1016/j.jbi.2019.103207_b0030 – ident: 10.1016/j.jbi.2019.103207_b0145 – ident: 10.1016/j.jbi.2019.103207_b0120 – volume: 44 start-page: 537 issue: 4 year: 2005 ident: 10.1016/j.jbi.2019.103207_b0175 article-title: Morphosaurus publication-title: Meth. Inform. Med. doi: 10.1055/s-0038-1634005 – start-page: 1 year: 2016 ident: 10.1016/j.jbi.2019.103207_b0135 article-title: Development of thai text-mining model for classifying icd-10 tm – volume: vol. 2 start-page: 158 year: 2013 ident: 10.1016/j.jbi.2019.103207_b0005 article-title: Semeval-2013 task 10: cross-lingual word sense disambiguation – ident: 10.1016/j.jbi.2019.103207_b0125 – start-page: 410 year: 2018 ident: 10.1016/j.jbi.2019.103207_b0195 article-title: Cross-lingual content scoring – ident: 10.1016/j.jbi.2019.103207_b0040 – ident: 10.1016/j.jbi.2019.103207_b0155 – ident: 10.1016/j.jbi.2019.103207_b0050 – year: 2013 ident: 10.1016/j.jbi.2019.103207_b0165 article-title: Machine translation for entity recognition across languages in biomedical documents – ident: 10.1016/j.jbi.2019.103207_b0075 – volume: 16 start-page: 30 issue: 1 year: 2016 ident: 10.1016/j.jbi.2019.103207_b0070 article-title: A hierarchical method to automatically encode chinese diagnoses through semantic similarity estimation publication-title: BMC Med. Inform. Decis. Mak. doi: 10.1186/s12911-016-0269-4 – ident: 10.1016/j.jbi.2019.103207_b0090 – ident: 10.1016/j.jbi.2019.103207_b0130 – volume: 63 start-page: 22 year: 2016 ident: 10.1016/j.jbi.2019.103207_b0190 article-title: Use of off-the-shelf information extraction algorithms in clinical informatics: a feasibility study of metamap annotation of italian medical notes publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2016.07.017 – ident: 10.1016/j.jbi.2019.103207_b0115 – ident: 10.1016/j.jbi.2019.103207_b0140 – ident: 10.1016/j.jbi.2019.103207_b0035 – start-page: 353 year: 2013 ident: 10.1016/j.jbi.2019.103207_b0160 article-title: Entity recognition in parallel multi-lingual biomedical corpora: the clef-er laboratory overview – ident: 10.1016/j.jbi.2019.103207_b0025 – start-page: 2536 year: 2017 ident: 10.1016/j.jbi.2019.103207_b0015 article-title: Cheap translation for cross-lingual named entity recognition – ident: 10.1016/j.jbi.2019.103207_b0085 – start-page: 137 year: 2017 ident: 10.1016/j.jbi.2019.103207_b0100 article-title: A deep learning method for icd-10 coding of free-text death certificates – ident: 10.1016/j.jbi.2019.103207_b0105 – volume: vol. 2 start-page: 188 year: 2013 ident: 10.1016/j.jbi.2019.103207_b0010 article-title: Nrc: a machine translation approach to cross-lingual word sense disambiguation (semeval-2013 task 10) – ident: 10.1016/j.jbi.2019.103207_b0045 – volume: 12 issue: 3 year: 2017 ident: 10.1016/j.jbi.2019.103207_b0065 article-title: Automatic icd-10 coding algorithm using an improved longest common subsequence based on semantic similarity publication-title: PloS One doi: 10.1371/journal.pone.0173410 – start-page: 4071 year: 2018 ident: 10.1016/j.jbi.2019.103207_b0020 article-title: Improving low resource named entity recognition using cross-lingual knowledge transfer – year: 2012 ident: 10.1016/j.jbi.2019.103207_b0060 article-title: Weakly labeled corpora as silver standard for drug-drug and protein-protein interaction – ident: 10.1016/j.jbi.2019.103207_b0095 – volume: 67 start-page: 97 issue: 1–3 year: 2002 ident: 10.1016/j.jbi.2019.103207_b0150 article-title: Semantic annotation for concept-based cross-language medical information retrieval publication-title: Int. J. Med. Inform. doi: 10.1016/S1386-5056(02)00058-8 – volume: 61 start-page: 57 year: 2018 ident: 10.1016/j.jbi.2019.103207_b0170 article-title: Improving the accessibility of biomedical texts by semantic enrichment and definition expansion publication-title: Procesam. Leng. Nat. – ident: 10.1016/j.jbi.2019.103207_b0110 – volume: 65 start-page: 145 issue: 2 year: 2015 ident: 10.1016/j.jbi.2019.103207_b0055 article-title: Boosting drug named entity recognition using an aggregate classifier publication-title: Artif. Intell. Med. doi: 10.1016/j.artmed.2015.05.007 – start-page: 1465 year: 2008 ident: 10.1016/j.jbi.2019.103207_b0180 article-title: In the development of a spanish metamap |
| SSID | ssj0011556 |
| Score | 2.2976108 |
| Snippet | [Display omitted]
•Clinical diagnoses are usually sparse and biased, implying reduced interoperability.•This paper proposes a cross-lingual approach based on... Automatic ICD-10 coding is an unresolved challenge in terms of Machine Learning tasks. Despite hospitals generating an enormous amount of clinical documents,... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 103207 |
| SubjectTerms | Cross-lingual approach Electronic health records ICD-10 coding Machine translation Text mining |
| Title | A cross-lingual approach to automatic ICD-10 coding of death certificates by exploring machine translation |
| URI | https://dx.doi.org/10.1016/j.jbi.2019.103207 https://www.ncbi.nlm.nih.gov/pubmed/31077817 https://www.proquest.com/docview/2231932448 |
| Volume | 94 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1532-0480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0464 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Journals customDbUrl: eissn: 1532-0480 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0464 databaseCode: AIKHN dateStart: 20010201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1532-0480 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0464 databaseCode: ACRLP dateStart: 20010201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1532-0480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0464 databaseCode: .~1 dateStart: 20010201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Free & Delayed Access Titles customDbUrl: eissn: 1532-0480 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0464 databaseCode: IXB dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1532-0480 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0464 databaseCode: DIK dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1532-0480 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011556 issn: 1532-0464 databaseCode: AKRWK dateStart: 20010201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5NQ0JMCEHZoPyYPIknpKx14sTpYylMLWh7GZP6ZuUcW2o1moqlD7zwt3NnJxVIsAdeIjmyY8tn332Ov7sDeOczK2WVIu1v5RLFj7Iu0kTWWGpf-rQK6Xwur4r5jfq8zJcHMOt9YZhW2en-qNODtu7ejLrZHG1Xq9G15JwGqlAEQUjL5kv2YFeasxic_9zTPAjwhAyuXJlpjKq_2QwcrzWumN01YdfzlDPK_t02_Qt7Bht08RSedOBRTOP4nsGB2wzg6LeQggN4eNldlg_gcfwlJ6Kn0XNYT0XoN2EP9B19p48nLtpGVLu2CdFbxWL2kbSmsA1bNdF4UTNKFJYJ2D54zN0J_CFcT94T3wIf04mWzV6k1h3DzcWnr7N50qVaSGyWZy3ZqWIiU6ykdmPrmSczRl9XqrZYTpSynlAMKidtkUlHoAfRydIRuMPMalfp7AQON83GvQQhJ1iVhca08ITOckSPuZJprRV1pb0dwrifZGO7OOScDuPW9ISztSG5GJaLiXIZwvt9k20MwnFfZdVLzvyxkgwZifuanfVSNrTD-Nqk2rhmd2cIQDHKpXPsEF5E8e9HQeBY61LqV__X6Wt4xKVIPXsDh-33nXtLIKfF07CKT-HBdPFlfkWlxfLDLzWs-is |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9tQ4IhhKB8lU8j8YSUtU6cOH2cClMH617YpL5ZOceWWkFTbekDL_zt3NlJBRLsYS95SOzY8tl3P9u_uwP44DMrZZUirW_lEsWPsi7SRNZYal_6tArpfObnxexSfVnkiz2Y9r4wTKvsdH_U6UFbd29G3WiONsvl6JvknAaqUARBSMvmi324o_JU8w7s6NeO50GIJ6Rw5dLMY1T91WYgea1wyfSuCfuep5xS9t_G6X_gMxihk0fwsEOP4jh28DHsufUA7v8RU3AAd-fdbfkAHsQzORFdjZ7A6liEdhN2Qd_Sf_qA4qJtRLVtmxC-VZxOP5HaFLZhsyYaL2qGicIyA9sHl7lrgT-F69l74kcgZDrRst2L3LqncHny-WI6S7pcC4nN8qwlQ1VMZIqV1G5sPRNlxujrStUWy4lS1hOMQeWkLTLpCPUgOlk6QneYWe0qnT2Dg3Wzdi9AyAlWZaExLTzBsxzRY65kWmtFTWlvhzDuB9nYLhA558P4bnrG2cqQXAzLxUS5DOHjrsomRuG4qbDqJWf-mkqGrMRN1d73Uja0xPjepFq7ZnttCEExzKWN7BCeR_HvekHoWOtS6pe3a_Qd3JtdzM_M2en511dwyF8iD-01HLRXW_eGEE-Lb8OM_g0cVfq8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+cross-lingual+approach+to+automatic+ICD-10+coding+of+death+certificates+by+exploring+machine+translation&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Almagro%2C+Mario&rft.au=Mart%C3%ADnez%2C+Raquel&rft.au=Montalvo%2C+Soto&rft.au=Fresno%2C+V%C3%ADctor&rft.date=2019-06-01&rft.issn=1532-0480&rft.eissn=1532-0480&rft.volume=94&rft.spage=103207&rft_id=info:doi/10.1016%2Fj.jbi.2019.103207&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon |