Exploring the Most Effective Information for Satellite-Derived Bathymetry Models in Different Water Qualities

Satellite-derived bathymetry (SDB) is an effective means of obtaining global shallow water depths. However, the effect of inherent optical properties (IOPs) on the accuracy of SDB under different water quality conditions has not been clearly clarified. To enhance the accuracy of machine learning SDB...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 16; no. 13; p. 2371
Main Authors Liu, Zhen, Liu, Hao, Ma, Yue, Ma, Xin, Yang, Jian, Jiang, Yang, Li, Shaohui
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.07.2024
Subjects
Online AccessGet full text
ISSN2072-4292
2072-4292
DOI10.3390/rs16132371

Cover

Abstract Satellite-derived bathymetry (SDB) is an effective means of obtaining global shallow water depths. However, the effect of inherent optical properties (IOPs) on the accuracy of SDB under different water quality conditions has not been clearly clarified. To enhance the accuracy of machine learning SDB models, this study aims to assess the performance improvement of integrating the quasi-analytical algorithm (QAA)-derived IOPs using the Sentinel-2 and ICESat-2 datasets. In different water quality experiments, the results indicate that four SDB models (the Gaussian process regression, neural networks, random forests, and support vector regression) incorporating QAA-IOP parameters equal to or outperform those solely based on the remote sensing reflectance (Rrs) datasets, especially in turbid waters. By analyzing information gains in SDB, the most effective inputs are identified and prioritized under different water qualities. The SDB method incorporating QAA-IOP can achieve an accuracy of 0.85 m, 0.48 m, and 0.74 m in three areas (Wenchang, Laizhou Bay, and the Qilian Islands) with different water quality. Also, we find that incorporating an excessive number of redundant bands into machine learning models not only increases the demand of computing resources but also leads to worse accuracy in SDB. In conclusion, the integration of QAA-IOPs offers promising improvements in obtaining bathymetry and the optimal feature selection should be carefully considered in diverse aquatic environments.
AbstractList Satellite-derived bathymetry (SDB) is an effective means of obtaining global shallow water depths. However, the effect of inherent optical properties (IOPs) on the accuracy of SDB under different water quality conditions has not been clearly clarified. To enhance the accuracy of machine learning SDB models, this study aims to assess the performance improvement of integrating the quasi-analytical algorithm (QAA)-derived IOPs using the Sentinel-2 and ICESat-2 datasets. In different water quality experiments, the results indicate that four SDB models (the Gaussian process regression, neural networks, random forests, and support vector regression) incorporating QAA-IOP parameters equal to or outperform those solely based on the remote sensing reflectance (Rrs) datasets, especially in turbid waters. By analyzing information gains in SDB, the most effective inputs are identified and prioritized under different water qualities. The SDB method incorporating QAA-IOP can achieve an accuracy of 0.85 m, 0.48 m, and 0.74 m in three areas (Wenchang, Laizhou Bay, and the Qilian Islands) with different water quality. Also, we find that incorporating an excessive number of redundant bands into machine learning models not only increases the demand of computing resources but also leads to worse accuracy in SDB. In conclusion, the integration of QAA-IOPs offers promising improvements in obtaining bathymetry and the optimal feature selection should be carefully considered in diverse aquatic environments.
Satellite-derived bathymetry (SDB) is an effective means of obtaining global shallow water depths. However, the effect of inherent optical properties (IOPs) on the accuracy of SDB under different water quality conditions has not been clearly clarified. To enhance the accuracy of machine learning SDB models, this study aims to assess the performance improvement of integrating the quasi-analytical algorithm (QAA)-derived IOPs using the Sentinel-2 and ICESat-2 datasets. In different water quality experiments, the results indicate that four SDB models (the Gaussian process regression, neural networks, random forests, and support vector regression) incorporating QAA-IOP parameters equal to or outperform those solely based on the remote sensing reflectance (Rᵣₛ) datasets, especially in turbid waters. By analyzing information gains in SDB, the most effective inputs are identified and prioritized under different water qualities. The SDB method incorporating QAA-IOP can achieve an accuracy of 0.85 m, 0.48 m, and 0.74 m in three areas (Wenchang, Laizhou Bay, and the Qilian Islands) with different water quality. Also, we find that incorporating an excessive number of redundant bands into machine learning models not only increases the demand of computing resources but also leads to worse accuracy in SDB. In conclusion, the integration of QAA-IOPs offers promising improvements in obtaining bathymetry and the optimal feature selection should be carefully considered in diverse aquatic environments.
Author Liu, Hao
Ma, Yue
Ma, Xin
Yang, Jian
Liu, Zhen
Li, Shaohui
Jiang, Yang
Author_xml – sequence: 1
  givenname: Zhen
  surname: Liu
  fullname: Liu, Zhen
– sequence: 2
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
– sequence: 3
  givenname: Yue
  orcidid: 0000-0003-1241-8650
  surname: Ma
  fullname: Ma, Yue
– sequence: 4
  givenname: Xin
  orcidid: 0000-0002-8159-5039
  surname: Ma
  fullname: Ma, Xin
– sequence: 5
  givenname: Jian
  orcidid: 0000-0001-9691-5595
  surname: Yang
  fullname: Yang, Jian
– sequence: 6
  givenname: Yang
  surname: Jiang
  fullname: Jiang, Yang
– sequence: 7
  givenname: Shaohui
  surname: Li
  fullname: Li, Shaohui
BookMark eNp9kF1rFDEUhgepYK298RcEvBHLaL4mM7nUdtWFFhEVL8PZzEmbZSZZk0x1_73RLSpe9NycQ3jeJ_A-bo5CDNg0Txl9KYSmr1JmigkuevagOea0563kmh_9cz9qTnPe0jpCME3lcTOvfuymmHy4JuUGyVXMhaycQ1v8LZJ1cDHNUHwMpF7kExScJl-wvcBUgZG8gXKzn7Gkfc2OOGXiA7nw1ZAwFPK1BhL5uEANecxPmocOpoynd_uk-fJ29fn8fXv54d36_PVla0UnStspDZprLdyIyEc1OE1766QFCspKBwKYldTBwNwoqaCK4cYOYoObfuCdEyfN-uAdI2zNLvkZ0t5E8Ob3Q0zXBlLxdkLD-67HkQ924IOkcgO6GgZKFXSScTlU19nBtYQd7L_DNP0RMmp-FW_-Fl_p5wd6l-K3BXMxs8-2lgYB45KNYJ1QkstOVvTZf-g2LinUXoygveZKKd1X6sWBsinmnNDd9_tPsl2fOw
Cites_doi 10.1109/JSTARS.2021.3090792
10.3390/rs14143343
10.1016/j.rse.2009.07.008
10.1142/S0218194015400057
10.3390/rs11101155
10.1017/CBO9780511623370
10.1364/AO.37.006329
10.1038/nature12856
10.4319/lom.2011.9.396
10.1080/01431168508948428
10.14710/geoplanning.3.2.117-126
10.1109/BIBE.2014.62
10.1016/j.rse.2021.112667
10.1126/science.1149345
10.1364/OE.409941
10.1016/j.rse.2019.111619
10.1007/s00343-011-9967-z
10.1016/j.scitotenv.2023.161898
10.1016/j.rse.2018.07.014
10.1016/j.rse.2019.111302
10.3390/rs14010133
10.1364/AO.41.005755
10.1080/01431161.2018.1533660
10.1364/OE.444557
10.3390/rs10091362
10.3390/rs13234907
10.1109/LGRS.2020.2987778
10.1016/j.rse.2020.112047
10.1109/JSTARS.2023.3326238
10.1109/TGRS.2019.2951144
10.1364/AO.470464
10.1016/j.isprsjprs.2021.05.012
10.1080/01431161.2017.1421796
10.3390/rs15040931
10.5194/isprs-archives-XLII-3-W10-937-2020
10.3390/rs14143406
10.3390/rs13214303
10.1016/S0004-3702(97)00043-X
10.1109/ACCESS.2020.3009843
10.1016/j.isprsjprs.2019.02.012
10.1364/OE.456094
10.1029/2020GL090629
10.1016/j.rse.2008.12.003
10.1109/TGRS.2018.2814012
10.1016/j.rse.2019.111287
10.1016/j.rse.2019.111249
10.1029/2019EA000658
10.1016/j.isprsjprs.2018.06.015
10.4319/lo.2003.48.1_part_2.0547
10.3390/rs12132069
10.1016/j.rse.2015.08.002
10.1364/AO.38.003831
10.3390/rs11141634
10.1088/1742-6596/2486/1/012039
10.1080/01431160500034086
10.1007/s41976-022-00068-3
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.3390/rs16132371
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_2757ed28c828404ba98258006a541248
10.3390/rs16132371
10_3390_rs16132371
GeographicLocations South China Sea
GeographicLocations_xml – name: South China Sea
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
7S9
L.6
PUEGO
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c353t-569a92993fdee2d68f907cf4ca0a6c4fa3a1c40fa81fd403061ebc83beb7825f3
IEDL.DBID UNPAY
ISSN 2072-4292
IngestDate Fri Oct 03 12:53:41 EDT 2025
Sun Sep 07 11:20:14 EDT 2025
Fri Sep 05 08:11:02 EDT 2025
Fri Jul 25 11:58:48 EDT 2025
Thu Oct 16 04:31:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-569a92993fdee2d68f907cf4ca0a6c4fa3a1c40fa81fd403061ebc83beb7825f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1241-8650
0000-0002-8159-5039
0000-0001-9691-5595
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/rs16132371
PQID 3079266697
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_2757ed28c828404ba98258006a541248
unpaywall_primary_10_3390_rs16132371
proquest_miscellaneous_3153642454
proquest_journals_3079266697
crossref_primary_10_3390_rs16132371
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Kirwan (ref_1) 2013; 504
Misra (ref_22) 2018; 39
ref_58
ref_57
Pitarch (ref_63) 2021; 265
Ekelund (ref_7) 2022; Volume 12272
ref_56
ref_54
ref_53
ref_52
ref_18
Pitarch (ref_45) 2019; 231
ref_16
Duan (ref_21) 2022; 30
Hedley (ref_25) 2009; 113
Brando (ref_2) 2009; 113
Casal (ref_61) 2019; 40
Kutser (ref_60) 2006; 55
Xu (ref_37) 2024; 17
Tozer (ref_8) 2019; 6
Kutser (ref_13) 2020; 240
Lyzenga (ref_14) 1985; 6
ref_20
Liu (ref_17) 2018; 56
Xu (ref_28) 2022; 19
ref_27
Lee (ref_24) 1999; 38
Ma (ref_48) 2019; 232
Huang (ref_65) 2023; 61
Lee (ref_23) 1998; 37
Babbel (ref_31) 2021; 48
Wang (ref_51) 2023; 2486
Chen (ref_30) 2021; 29
Li (ref_39) 2019; 232
Najah (ref_64) 2021; 4
ref_34
ref_33
ref_32
Bird (ref_10) 2018; 142
Chen (ref_38) 2019; 151
Halpern (ref_4) 2008; 319
Albright (ref_29) 2021; 18
Hedley (ref_62) 2005; 26
Manessa (ref_19) 2016; 3
Kohavi (ref_43) 1997; 97
Lee (ref_11) 2002; 41
Stumpf (ref_15) 2003; 48
Wu (ref_40) 2022; 30
Dekker (ref_26) 2011; 9
Ma (ref_35) 2020; 250
Hsu (ref_9) 2021; 178
Zhan (ref_46) 2020; XLII-3-W10
Williamson (ref_47) 2022; 61
ref_41
Caballero (ref_42) 2023; 870
Kurniabudi (ref_66) 2020; 8
Lee (ref_12) 2015; 169
ref_3
Xu (ref_36) 2021; 14
Su (ref_6) 2020; 58
ref_49
ref_5
Qing (ref_44) 2011; 29
Wang (ref_55) 2015; 25
Hedley (ref_59) 2018; 216
References_xml – volume: 14
  start-page: 6677
  year: 2021
  ident: ref_36
  article-title: Deriving Highly Accurate Shallow Water Bathymetry From Sentinel-2 and ICESat-2 Datasets by a Multitemporal Stacking Method
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2021.3090792
– ident: ref_16
  doi: 10.3390/rs14143343
– volume: 113
  start-page: 2527
  year: 2009
  ident: ref_25
  article-title: Efficient Radiative Transfer Model Inversion for Remote Sensing Applications
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.07.008
– volume: 25
  start-page: 93
  year: 2015
  ident: ref_55
  article-title: An Empirical Investigation on Wrapper-Based Feature Selection for Predicting Software Quality
  publication-title: Int. J. Softw. Eng. Knowl. Eng.
  doi: 10.1142/S0218194015400057
– ident: ref_20
  doi: 10.3390/rs11101155
– volume: 61
  start-page: 4204511
  year: 2023
  ident: ref_65
  article-title: An Appraisal of Atmospheric Correction and Inversion Algorithms for Mapping High-Resolution Bathymetry Over Coral Reef Waters
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: Volume 12272
  start-page: 90
  year: 2022
  ident: ref_7
  article-title: Recent Developments in Airborne LiDAR Bathymetry
  publication-title: Proceedings of the Electro-Optical Remote Sensing XVI
– ident: ref_41
  doi: 10.1017/CBO9780511623370
– volume: 55
  start-page: 329
  year: 2006
  ident: ref_60
  article-title: Spectral Library of Macroalgae and Benthic Substrates in Estonian Coastal Waters
  publication-title: Proc. Est. Acad. Sci. Biol. Ecol.
– volume: 37
  start-page: 6329
  year: 1998
  ident: ref_23
  article-title: Hyperspectral Remote Sensing for Shallow Waters I A Semianalytical Model
  publication-title: Appl. Opt.
  doi: 10.1364/AO.37.006329
– volume: 504
  start-page: 53
  year: 2013
  ident: ref_1
  article-title: Tidal Wetland Stability in the Face of Human Impacts and Sea-Level Rise
  publication-title: Nature
  doi: 10.1038/nature12856
– volume: 9
  start-page: 396
  year: 2011
  ident: ref_26
  article-title: Intercomparison of Shallow Water Bathymetry, Hydro-Optics, and Benthos Mapping Techniques in Australian and Caribbean Coastal Environments: Intercomparison of Shallow Water Mapping Methods
  publication-title: Limnol. Oceanogr. Methods
  doi: 10.4319/lom.2011.9.396
– volume: 6
  start-page: 115
  year: 1985
  ident: ref_14
  article-title: Shallow-Water Bathymetry Using Combined Lidar and Passive Multispectral Scanner Data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431168508948428
– volume: 3
  start-page: 117
  year: 2016
  ident: ref_19
  article-title: Satellite-Derived Bathymetry Using Random Forest Algorithm and Worldview-2 Imagery
  publication-title: Geoplanning J. Geomat. Plan.
  doi: 10.14710/geoplanning.3.2.117-126
– ident: ref_54
  doi: 10.1109/BIBE.2014.62
– ident: ref_58
– volume: 265
  start-page: 112667
  year: 2021
  ident: ref_63
  article-title: The QAA-RGB: A Universal Three-Band Absorption and Backscattering Retrieval Algorithm for High Resolution Satellite Sensors. Development and Implementation in ACOLITE
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112667
– volume: 319
  start-page: 948
  year: 2008
  ident: ref_4
  article-title: A Global Map of Human Impact on Marine Ecosystems
  publication-title: Science
  doi: 10.1126/science.1149345
– volume: 29
  start-page: 2411
  year: 2021
  ident: ref_30
  article-title: Refraction Correction and Coordinate Displacement Compensation in Nearshore Bathymetry Using ICESat-2 Lidar Data and Remote-Sensing Images
  publication-title: Opt. Express
  doi: 10.1364/OE.409941
– volume: 240
  start-page: 111619
  year: 2020
  ident: ref_13
  article-title: Remote Sensing of Shallow Waters—A 50 Year Retrospective and Future Directions
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111619
– ident: ref_56
– ident: ref_52
– volume: 29
  start-page: 33
  year: 2011
  ident: ref_44
  article-title: Retrieval of Inherent Optical Properties of the Yellow Sea and East China Sea Using a Quasi-Analytical Algorithm
  publication-title: Chin. J. Oceanol. Limnol.
  doi: 10.1007/s00343-011-9967-z
– volume: 870
  start-page: 161898
  year: 2023
  ident: ref_42
  article-title: Confronting Turbidity, the Major Challenge for Satellite-Derived Coastal Bathymetry
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2023.161898
– volume: 216
  start-page: 598
  year: 2018
  ident: ref_59
  article-title: Coral Reef Applications of Sentinel-2: Coverage, Characteristics, Bathymetry and Benthic Mapping with Comparison to Landsat 8
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.07.014
– volume: 232
  start-page: 111302
  year: 2019
  ident: ref_39
  article-title: Adaptive Bathymetry Estimation for Shallow Coastal Waters Using Planet Dove Satellites
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111302
– ident: ref_32
  doi: 10.3390/rs14010133
– volume: 41
  start-page: 5755
  year: 2002
  ident: ref_11
  article-title: Deriving Inherent Optical Properties from Water Color: A Multiband Quasi-Analytical Algorithm for Optically Deep Waters
  publication-title: Appl. Opt.
  doi: 10.1364/AO.41.005755
– volume: 40
  start-page: 2855
  year: 2019
  ident: ref_61
  article-title: Assessment of Empirical Algorithms for Bathymetry Extraction Using Sentinel-2 Data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1533660
– volume: 30
  start-page: 3238
  year: 2022
  ident: ref_21
  article-title: Satellite-Derived Bathymetry Using Landsat-8 and Sentinel-2A Images: Assessment of Atmospheric Correction Algorithms and Depth Derivation Models in Shallow Waters
  publication-title: Opt. Express
  doi: 10.1364/OE.444557
– ident: ref_5
  doi: 10.3390/rs10091362
– ident: ref_18
  doi: 10.3390/rs13234907
– volume: 18
  start-page: 900
  year: 2021
  ident: ref_29
  article-title: Nearshore Bathymetry From Fusion of Sentinel-2 and ICESat-2 Observations
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.2987778
– volume: 250
  start-page: 112047
  year: 2020
  ident: ref_35
  article-title: Satellite-Derived Bathymetry Using the ICESat-2 Lidar and Sentinel-2 Imagery Datasets
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2020.112047
– volume: 17
  start-page: 1748
  year: 2024
  ident: ref_37
  article-title: Machine Learning Based Estimation of Coastal Bathymetry From ICESat-2 and Sentinel-2 Data
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2023.3326238
– volume: 58
  start-page: 3213
  year: 2020
  ident: ref_6
  article-title: Propagated Uncertainty Models Arising From Device, Environment, and Target for a Small Laser Spot Airborne LiDAR Bathymetry and Its Verification in the South China Sea
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2951144
– volume: 61
  start-page: 9951
  year: 2022
  ident: ref_47
  article-title: Measured IOPs of Jerlov Water Types
  publication-title: Appl. Opt.
  doi: 10.1364/AO.470464
– volume: 178
  start-page: 1
  year: 2021
  ident: ref_9
  article-title: A Semi-Empirical Scheme for Bathymetric Mapping in Shallow Water by ICESat-2 and Sentinel-2: A Case Study in the South China Sea
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.05.012
– ident: ref_53
– volume: 39
  start-page: 4431
  year: 2018
  ident: ref_22
  article-title: Shallow Water Bathymetry Mapping Using Support Vector Machine (SVM) Technique and Multispectral Imagery
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2017.1421796
– ident: ref_49
  doi: 10.3390/rs15040931
– volume: XLII-3-W10
  start-page: 937
  year: 2020
  ident: ref_46
  article-title: Estimation of Optical Properties Using Qaa-V6 Model Based on Modis Data
  publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XLII-3-W10-937-2020
– ident: ref_34
  doi: 10.3390/rs14143406
– ident: ref_33
  doi: 10.3390/rs13214303
– volume: 97
  start-page: 273
  year: 1997
  ident: ref_43
  article-title: Wrappers for Feature Subset Selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
– volume: 8
  start-page: 132911
  year: 2020
  ident: ref_66
  article-title: CICIDS-2017 Dataset Feature Analysis with Information Gain for Anomaly Detection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3009843
– volume: 151
  start-page: 1
  year: 2019
  ident: ref_38
  article-title: A Dual Band Algorithm for Shallow Water Depth Retrieval from High Spatial Resolution Imagery with No Ground Truth
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2019.02.012
– volume: 30
  start-page: 16773
  year: 2022
  ident: ref_40
  article-title: Satellite-Derived Bathymetry Based on Machine Learning Models and an Updated Quasi-Analytical Algorithm Approach
  publication-title: Opt. Express
  doi: 10.1364/OE.456094
– volume: 48
  start-page: e2020GL090629
  year: 2021
  ident: ref_31
  article-title: ICESat-2 Elevation Retrievals in Support of Satellite-Derived Bathymetry for Global Science Applications
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2020GL090629
– volume: 113
  start-page: 755
  year: 2009
  ident: ref_2
  article-title: A Physics Based Retrieval and Quality Assessment of Bathymetry from Suboptimal Hyperspectral Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.12.003
– volume: 56
  start-page: 5334
  year: 2018
  ident: ref_17
  article-title: Deriving Bathymetry From Optical Images With a Localized Neural Network Algorithm
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2814012
– volume: 232
  start-page: 111287
  year: 2019
  ident: ref_48
  article-title: Estimating Water Levels and Volumes of Lakes Dated Back to the 1980s Using Landsat Imagery and Photon-Counting Lidar Datasets
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111287
– volume: 231
  start-page: 111249
  year: 2019
  ident: ref_45
  article-title: Optical Properties of Forel-Ule Water Types Deduced from 15 years of Global Satellite Ocean Color Observations
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111249
– ident: ref_50
– volume: 6
  start-page: 1847
  year: 2019
  ident: ref_8
  article-title: Global Bathymetry and Topography at 15 Arc Sec: SRTM15+
  publication-title: Earth Space Sci.
  doi: 10.1029/2019EA000658
– volume: 142
  start-page: 268
  year: 2018
  ident: ref_10
  article-title: Satellite Derived Photogrammetric Bathymetry
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2018.06.015
– volume: 19
  start-page: 1500305
  year: 2022
  ident: ref_28
  article-title: A Method to Derive Bathymetry for Dynamic Water Bodies Using ICESat-2 and GSWD Data Sets
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 48
  start-page: 547
  year: 2003
  ident: ref_15
  article-title: Determination of Water Depth with High-Resolution Satellite Imagery over Variable Bottom Types
  publication-title: Limnol. Oceanogr.
  doi: 10.4319/lo.2003.48.1_part_2.0547
– ident: ref_3
  doi: 10.3390/rs12132069
– volume: 169
  start-page: 139
  year: 2015
  ident: ref_12
  article-title: Secchi Disk Depth: A New Theory and Mechanistic Model for Underwater Visibility
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2015.08.002
– volume: 38
  start-page: 3831
  year: 1999
  ident: ref_24
  article-title: Hyperspectral Remote Sensing for Shallow Waters: 2 Deriving Bottom Depths and Water Properties by Optimization
  publication-title: Appl. Opt.
  doi: 10.1364/AO.38.003831
– ident: ref_27
  doi: 10.3390/rs11141634
– volume: 2486
  start-page: 012039
  year: 2023
  ident: ref_51
  article-title: Analysis of Characteristics of Tide and Tidal Current in the East China Seas
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/2486/1/012039
– ident: ref_57
– volume: 26
  start-page: 2107
  year: 2005
  ident: ref_62
  article-title: Technical Note: Simple and Robust Removal of Sun Glint for Mapping Shallow-water Benthos
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160500034086
– volume: 4
  start-page: 235
  year: 2021
  ident: ref_64
  article-title: Performance of the Ocean Color Algorithms: QAA, GSM, and GIOP in Inland and Coastal Waters
  publication-title: Remote Sens. Earth Syst. Sci.
  doi: 10.1007/s41976-022-00068-3
SSID ssj0000331904
Score 2.3969197
Snippet Satellite-derived bathymetry (SDB) is an effective means of obtaining global shallow water depths. However, the effect of inherent optical properties (IOPs) on...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2371
SubjectTerms Accuracy
Algorithms
Aquatic environment
Bathymeters
Bathymetry
Coasts
data collection
Datasets
Gaussian process
ICESat-2
Learning algorithms
Machine learning
Neural networks
normal distribution
Optical properties
Parameter identification
Performance assessment
photon-counting lidar
quasi-analytical algorithm (QAA)
reflectance
Regression analysis
Remote sensing
satellite-derived bathymetry
Satellites
Sentinel-2
Shallow water
Software
Support vector machines
Unmanned aerial vehicles
Water depth
Water quality
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLtsLoh-I8CVX5RqRxBPHOQJbhCrRS4vKLRo7Y4G0ZFe7WdD--46TsF0ucOEWJY40mvGM35PtN0KcuBwUJmhiS1DH4DXFVjngvCKAxEFR-nA5-fqXvrqBn7f57Uarr3AmrJcH7h13mhV5QXVmHFMDSMBiyZyGUY7GPDRO7q75JqbcIFNdDVY8tRLo9UgV8_rT-YKxjcpUkb5YgTqh_hfocrRsZrh6wslkY6G53BHbA0KUZ71ln8QHaj6L0dCs_G71RTysz81JRm_yerpoZS9CzJVLDveLgr8lP8nf2GluthSPebI9Ui3PGfStHqidr2TohDZZyPtGjodGKa38yz_MZa-twTT6q7i5_PHn4ioeuibETuWqjXNdImOeUvmaKKu18cx_nQfHIdEOPCpMHSQeTeprCJQhJeuMsmQZLeRe7YqtZtrQnpDMhVRhUk2kS3DOoM2sJoVIhTMJYiS-P3uymvXiGBWTiuDv6r-_I3EenLweEQStuxcc5moIc_VWmCNx-ByiasiyRcX1qWSAocsiEt_Wnzk_wqYHNjRd8hgu6Tps70IkTtahfcXc_fcw90B8zBj99Od6D8VWO1_SEaOX1h53E_UfgZHr2Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb5wwEB6lm0N6qfpUSdPKVXNFAWyMOURVt0kUVcqqahs1N2SboY20gS3LNtp_3zEY0lxyQ2AEmof9jR_fB3BoU8F1pFVoUJShqCSGhltBeYVCRFZkeeUOJ18s5Pml-HKVXu3AYjwL47ZVjn1i31GXjXVz5EcUizkNJjLPPq7-hE41yq2ujhIa2ksrlMc9xdgj2E0cM9YMdueni6_fplmXiFPIRWLgKeVU7x-1a8I8POFZfG9k6gn876HOvU290ttbvVz-NwCdPYUnHjmyT4Orn8EO1s9hz4uY_96-gJtpPx0jVMcumnXHBnJi6tGYP3fk_MDoin3XPRdnh-EJBeFfLNmcwOD2Brt2y5xC2nLNrmt24gVUOvaTXmjZwLlB5fVLuDw7_fH5PPRqCqHlKe_CVOaasFDOqxIxKaWqqC62lbDkKmlFpbmOrYgqreKqFK6UiNFYxQ0aQhFpxV_BrG5qfA2MaiSeqVgiylxYq7RJjESuNWZWRVoH8GG0ZLEaSDMKKjacvYs7ewcwd0aeWjii6_5G0_4qfN4USZZmWCbKUmUoImF0Tv9CIFfq1OlmqwAORhcVPvvWxV2sBPB-ekx54xZDdI3NhtpQVy_dsq8I4HBy7QO_u__wl97A44TwzrCT9wBmXbvBt4RXOvPOB-E_laTsEg
  priority: 102
  providerName: ProQuest
Title Exploring the Most Effective Information for Satellite-Derived Bathymetry Models in Different Water Qualities
URI https://www.proquest.com/docview/3079266697
https://www.proquest.com/docview/3153642454
https://doi.org/10.3390/rs16132371
https://doaj.org/article/2757ed28c828404ba98258006a541248
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: 8FG
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N9mG8wPgSga0ysNeMNHYc57Fd102IVhOjYjxFtnMWiC6d2hRU_nrOTdp9PEw8JUps6eS7s39n-34HcGgTwXWkVWhQFKFwEkPDrSC_QiEiK9LM-eTk0VieTcSny-RyB95vcmFund9zCsc_zhcESXjMfZp4WyaEt1vQnozPe9991bgojUNfb6nmHb3X4c5Ksybkv4Mid5fltV790dPprQVl-BSON6LU90h-HS0rc2T_3mNpfFjWPXjS4EnWqw3gGexg-Rx2m9LmP1Yv4Gp7y44R1mOj2aJiNWUxzXOsyUby2mH0xi70mqGzwnBApvkbC9YniLi6wmq-Yr5u2nTBfpZs0JRVqdg36jBnNRMHBd0vYTI8-Xp8FjY1FkLLE16Ficw0IaSMuwIxLqRyFC1bJywpUFrhNNddKyKnVdcVwgcYXTRWcYOGsEXi-CtolbMSXwOjyImnqisRZSasVdrERiLXGlOrIq0D-LDRR35dU2nkFIL4octvhi6AvlfVtoWnv15_oJHOG2_K4zRJsYiVpXhRRMLojGQh6Ct14qtpqwD2N4rOG59c5DSbZQRHZJYG8G77m7zJH5HoEmdLakMLgPSHwSKAw62BPCDum_9r9hYex4SG6nu--9Cq5ks8IDRTmQ48UsPTDrR7g9HnC3r2T8bnXzrrvYFOY-r_AAuP9pk
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9rBcEE8RWsCIcoyajR0nOVSIZVttaXeFoBW9BceZFKRtsk2yVPlz_DbGeZVeeustytMZz3i-sT3zAexqT3DlqMCOUSS2SCXaMdeC7AqFcLTww9QkJ88XcnYmvpx75xvwt8-FMdsq-zGxGaiTXJs58j3SxZCciQz9j6sr27BGmdXVnkJDddQKyX5TYqxL7DjG-ppCuHL_aEr9_cF1Dw9OP8_sjmXA1tzjle3JUBFGCHmaILqJDFKKF3UqNP2C1CJVXI21cFIVjNNEGIg9xlgHPMaYvKuXcnrvA9gSXIQU_G1NDhZfvw2zPA4nFXdEWxeV89DZK0rCWNzl_viWJ2wIA26h3NE6W6n6Wi2X_zm8w8fwqEOq7FOrWk9gA7OnMOpI03_Vz-By2L_HCEWyeV5WrC2GTCMo6_KcTL8zOmLfVVP7s0J7Skr_BxM2IfBZX2JV1Mwwsi1L9jtj046wpWI_6IGCtTU-KJx_Dmf3ItcXsJnlGb4ERjEZ94OxRJSh0DpQsRtL5EqhrwNHKQve95KMVm2RjoiCGyPv6EbeFkyMkIc7TGHt5kReXESdnUau7_mYuIGmSFQ4IlYhtYVAtVSe4ekOLNjpuyjqrL2MbnTTgnfDZbJTs_iiMszXdA-5FmmWmYUFu0PX3tHcV3d_6S2MZqfzk-jkaHG8DQ9dwlrtLuId2KyKNb4mrFTFbzqFZPDzvm3gH5FLKmE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlEuiKcIFDCiHKNNYsdJDghRlqWltEKCit5SxxkD0jZZkixV_hq_jnFepZfeeosSJ7HG33i-scczADs6FFx5KnYzFLkrjEQ341qQXqEQnhZRYuzh5MMjuXcsPp2EJxvwdzwLY8Mqxzmxm6jzUts18hlhMSFjIpNoZoawiC_zxdvVb9dWkLI7rWM5jR4iB9iek_tWv9mf01i_DoLFh2_v99yhwoCrecgbN5SJIn6QcJMjBrmMDfmK2ghN3ZdaGMWVr4VnVOybXFh67WOmY55hRpY1NJy-ewNuRjaLuz2lvvg4re94nMDtiT4jKueJN6tqYlc84JF_yQZ2pQIu8dutdbFS7blaLv8zdYu7cGfgqOxdD6p7sIHFfdgayqX_bB_A2RS5x4g_ssOyblifBpnmTjaccLIjzuiKfVVd1s8G3TnB_Q_mbJdoZ3uGTdUyW4ttWbNfBZsPpVoa9p1eqFif3YMc-YdwfC1SfQSbRVngY2DkjfEo9iWiTITWscqCTCJXCiMde0o58GqUZLrq03Ok5NZYeacX8nZg1wp5amFTanc3yupHOmhoGkRhhHkQa_JBhScylVBfiE5LFdoK3bED2-MQpYOe1-kFKh14OT0mDbXbLqrAck1tyKhIu8EsHNiZhvaK7j65-k8v4BYhP_28f3TwFG4HRLL68OFt2GyqNT4jktRkzzs0Mji9bvj_A3YbJ_s
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB2h5QAXSgsVaaFyW66h2dhxnCMfRagSqFJZAado7IzVqksW7WZbLb-e8Sa7BQ6otyhxpJFnxn4je94D2HeZkpigiS2pKlZeU2ylU5xXpFTiVF740Jx8fqHPBurbdXa9Ap8WvTCPzu8ll-NfxhOGJDKVoU18VWeMt3uwOrj4fngTVOOSPI2D3lLLO_rshyc7zZyQ_wmKXJvWdzj7i8Phow3l9BUcL0xp75H8Ppg29sDdP2NpfNnWTdjo8KQ4bAPgNaxQ_QbWOmnzn7MtuF3eshOM9cT5aNKIlrKY1znRdSMF7wh-Ej9wztDZUHzCofmHKnHEEHF2S814JoJu2nAiftXipJNVacQV_zAWLRMHF93bMDj9enl8FncaC7GTmWziTBfICKmQviJKK208V8vOK8cO1E55lNh3KvFo-r5SocDok3VGWrKMLTIv30KvHtW0A4IrJ5mbvibShXLOoE2tJolIuTMJYgSfF_4o71oqjZJLkDB15b-pi-AouGo5ItBfz1_wTJddNpVpnuVUpcZxvagSZbFgWxj6asyCmraJYHfh6LLLyUnJq1nBcEQXeQQfl585m8IRCdY0mvIY3gB0OAxWEewvA-QFc9_937D3sJ4yGmrv-e5CrxlPaY_RTGM_dOH8AGKX8ZA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+Most+Effective+Information+for+Satellite-Derived+Bathymetry+Models+in+Different+Water+Qualities&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Zhen&rft.au=Liu%2C+Hao&rft.au=Ma%2C+Yue&rft.au=Ma%2C+Xin&rft.date=2024-07-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=16&rft.issue=13&rft.spage=2371&rft_id=info:doi/10.3390%2Frs16132371&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs16132371
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon