Exploring the Most Effective Information for Satellite-Derived Bathymetry Models in Different Water Qualities
Satellite-derived bathymetry (SDB) is an effective means of obtaining global shallow water depths. However, the effect of inherent optical properties (IOPs) on the accuracy of SDB under different water quality conditions has not been clearly clarified. To enhance the accuracy of machine learning SDB...
Saved in:
| Published in | Remote sensing (Basel, Switzerland) Vol. 16; no. 13; p. 2371 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.07.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2072-4292 2072-4292 |
| DOI | 10.3390/rs16132371 |
Cover
| Abstract | Satellite-derived bathymetry (SDB) is an effective means of obtaining global shallow water depths. However, the effect of inherent optical properties (IOPs) on the accuracy of SDB under different water quality conditions has not been clearly clarified. To enhance the accuracy of machine learning SDB models, this study aims to assess the performance improvement of integrating the quasi-analytical algorithm (QAA)-derived IOPs using the Sentinel-2 and ICESat-2 datasets. In different water quality experiments, the results indicate that four SDB models (the Gaussian process regression, neural networks, random forests, and support vector regression) incorporating QAA-IOP parameters equal to or outperform those solely based on the remote sensing reflectance (Rrs) datasets, especially in turbid waters. By analyzing information gains in SDB, the most effective inputs are identified and prioritized under different water qualities. The SDB method incorporating QAA-IOP can achieve an accuracy of 0.85 m, 0.48 m, and 0.74 m in three areas (Wenchang, Laizhou Bay, and the Qilian Islands) with different water quality. Also, we find that incorporating an excessive number of redundant bands into machine learning models not only increases the demand of computing resources but also leads to worse accuracy in SDB. In conclusion, the integration of QAA-IOPs offers promising improvements in obtaining bathymetry and the optimal feature selection should be carefully considered in diverse aquatic environments. |
|---|---|
| AbstractList | Satellite-derived bathymetry (SDB) is an effective means of obtaining global shallow water depths. However, the effect of inherent optical properties (IOPs) on the accuracy of SDB under different water quality conditions has not been clearly clarified. To enhance the accuracy of machine learning SDB models, this study aims to assess the performance improvement of integrating the quasi-analytical algorithm (QAA)-derived IOPs using the Sentinel-2 and ICESat-2 datasets. In different water quality experiments, the results indicate that four SDB models (the Gaussian process regression, neural networks, random forests, and support vector regression) incorporating QAA-IOP parameters equal to or outperform those solely based on the remote sensing reflectance (Rrs) datasets, especially in turbid waters. By analyzing information gains in SDB, the most effective inputs are identified and prioritized under different water qualities. The SDB method incorporating QAA-IOP can achieve an accuracy of 0.85 m, 0.48 m, and 0.74 m in three areas (Wenchang, Laizhou Bay, and the Qilian Islands) with different water quality. Also, we find that incorporating an excessive number of redundant bands into machine learning models not only increases the demand of computing resources but also leads to worse accuracy in SDB. In conclusion, the integration of QAA-IOPs offers promising improvements in obtaining bathymetry and the optimal feature selection should be carefully considered in diverse aquatic environments. Satellite-derived bathymetry (SDB) is an effective means of obtaining global shallow water depths. However, the effect of inherent optical properties (IOPs) on the accuracy of SDB under different water quality conditions has not been clearly clarified. To enhance the accuracy of machine learning SDB models, this study aims to assess the performance improvement of integrating the quasi-analytical algorithm (QAA)-derived IOPs using the Sentinel-2 and ICESat-2 datasets. In different water quality experiments, the results indicate that four SDB models (the Gaussian process regression, neural networks, random forests, and support vector regression) incorporating QAA-IOP parameters equal to or outperform those solely based on the remote sensing reflectance (Rᵣₛ) datasets, especially in turbid waters. By analyzing information gains in SDB, the most effective inputs are identified and prioritized under different water qualities. The SDB method incorporating QAA-IOP can achieve an accuracy of 0.85 m, 0.48 m, and 0.74 m in three areas (Wenchang, Laizhou Bay, and the Qilian Islands) with different water quality. Also, we find that incorporating an excessive number of redundant bands into machine learning models not only increases the demand of computing resources but also leads to worse accuracy in SDB. In conclusion, the integration of QAA-IOPs offers promising improvements in obtaining bathymetry and the optimal feature selection should be carefully considered in diverse aquatic environments. |
| Author | Liu, Hao Ma, Yue Ma, Xin Yang, Jian Liu, Zhen Li, Shaohui Jiang, Yang |
| Author_xml | – sequence: 1 givenname: Zhen surname: Liu fullname: Liu, Zhen – sequence: 2 givenname: Hao surname: Liu fullname: Liu, Hao – sequence: 3 givenname: Yue orcidid: 0000-0003-1241-8650 surname: Ma fullname: Ma, Yue – sequence: 4 givenname: Xin orcidid: 0000-0002-8159-5039 surname: Ma fullname: Ma, Xin – sequence: 5 givenname: Jian orcidid: 0000-0001-9691-5595 surname: Yang fullname: Yang, Jian – sequence: 6 givenname: Yang surname: Jiang fullname: Jiang, Yang – sequence: 7 givenname: Shaohui surname: Li fullname: Li, Shaohui |
| BookMark | eNp9kF1rFDEUhgepYK298RcEvBHLaL4mM7nUdtWFFhEVL8PZzEmbZSZZk0x1_73RLSpe9NycQ3jeJ_A-bo5CDNg0Txl9KYSmr1JmigkuevagOea0563kmh_9cz9qTnPe0jpCME3lcTOvfuymmHy4JuUGyVXMhaycQ1v8LZJ1cDHNUHwMpF7kExScJl-wvcBUgZG8gXKzn7Gkfc2OOGXiA7nw1ZAwFPK1BhL5uEANecxPmocOpoynd_uk-fJ29fn8fXv54d36_PVla0UnStspDZprLdyIyEc1OE1766QFCspKBwKYldTBwNwoqaCK4cYOYoObfuCdEyfN-uAdI2zNLvkZ0t5E8Ob3Q0zXBlLxdkLD-67HkQ924IOkcgO6GgZKFXSScTlU19nBtYQd7L_DNP0RMmp-FW_-Fl_p5wd6l-K3BXMxs8-2lgYB45KNYJ1QkstOVvTZf-g2LinUXoygveZKKd1X6sWBsinmnNDd9_tPsl2fOw |
| Cites_doi | 10.1109/JSTARS.2021.3090792 10.3390/rs14143343 10.1016/j.rse.2009.07.008 10.1142/S0218194015400057 10.3390/rs11101155 10.1017/CBO9780511623370 10.1364/AO.37.006329 10.1038/nature12856 10.4319/lom.2011.9.396 10.1080/01431168508948428 10.14710/geoplanning.3.2.117-126 10.1109/BIBE.2014.62 10.1016/j.rse.2021.112667 10.1126/science.1149345 10.1364/OE.409941 10.1016/j.rse.2019.111619 10.1007/s00343-011-9967-z 10.1016/j.scitotenv.2023.161898 10.1016/j.rse.2018.07.014 10.1016/j.rse.2019.111302 10.3390/rs14010133 10.1364/AO.41.005755 10.1080/01431161.2018.1533660 10.1364/OE.444557 10.3390/rs10091362 10.3390/rs13234907 10.1109/LGRS.2020.2987778 10.1016/j.rse.2020.112047 10.1109/JSTARS.2023.3326238 10.1109/TGRS.2019.2951144 10.1364/AO.470464 10.1016/j.isprsjprs.2021.05.012 10.1080/01431161.2017.1421796 10.3390/rs15040931 10.5194/isprs-archives-XLII-3-W10-937-2020 10.3390/rs14143406 10.3390/rs13214303 10.1016/S0004-3702(97)00043-X 10.1109/ACCESS.2020.3009843 10.1016/j.isprsjprs.2019.02.012 10.1364/OE.456094 10.1029/2020GL090629 10.1016/j.rse.2008.12.003 10.1109/TGRS.2018.2814012 10.1016/j.rse.2019.111287 10.1016/j.rse.2019.111249 10.1029/2019EA000658 10.1016/j.isprsjprs.2018.06.015 10.4319/lo.2003.48.1_part_2.0547 10.3390/rs12132069 10.1016/j.rse.2015.08.002 10.1364/AO.38.003831 10.3390/rs11141634 10.1088/1742-6596/2486/1/012039 10.1080/01431160500034086 10.1007/s41976-022-00068-3 |
| ContentType | Journal Article |
| Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.3390/rs16132371 |
| DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection Materials Business File Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef AGRICOLA Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 2072-4292 |
| ExternalDocumentID | oai_doaj_org_article_2757ed28c828404ba98258006a541248 10.3390/rs16132371 10_3390_rs16132371 |
| GeographicLocations | South China Sea |
| GeographicLocations_xml | – name: South China Sea |
| GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PKEHL PQEST PQQKQ PQUKI 7S9 L.6 PUEGO ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c353t-569a92993fdee2d68f907cf4ca0a6c4fa3a1c40fa81fd403061ebc83beb7825f3 |
| IEDL.DBID | UNPAY |
| ISSN | 2072-4292 |
| IngestDate | Fri Oct 03 12:53:41 EDT 2025 Sun Sep 07 11:20:14 EDT 2025 Fri Sep 05 08:11:02 EDT 2025 Fri Jul 25 11:58:48 EDT 2025 Thu Oct 16 04:31:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c353t-569a92993fdee2d68f907cf4ca0a6c4fa3a1c40fa81fd403061ebc83beb7825f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-1241-8650 0000-0002-8159-5039 0000-0001-9691-5595 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3390/rs16132371 |
| PQID | 3079266697 |
| PQPubID | 2032338 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2757ed28c828404ba98258006a541248 unpaywall_primary_10_3390_rs16132371 proquest_miscellaneous_3153642454 proquest_journals_3079266697 crossref_primary_10_3390_rs16132371 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Remote sensing (Basel, Switzerland) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Kirwan (ref_1) 2013; 504 Misra (ref_22) 2018; 39 ref_58 ref_57 Pitarch (ref_63) 2021; 265 Ekelund (ref_7) 2022; Volume 12272 ref_56 ref_54 ref_53 ref_52 ref_18 Pitarch (ref_45) 2019; 231 ref_16 Duan (ref_21) 2022; 30 Hedley (ref_25) 2009; 113 Brando (ref_2) 2009; 113 Casal (ref_61) 2019; 40 Kutser (ref_60) 2006; 55 Xu (ref_37) 2024; 17 Tozer (ref_8) 2019; 6 Kutser (ref_13) 2020; 240 Lyzenga (ref_14) 1985; 6 ref_20 Liu (ref_17) 2018; 56 Xu (ref_28) 2022; 19 ref_27 Lee (ref_24) 1999; 38 Ma (ref_48) 2019; 232 Huang (ref_65) 2023; 61 Lee (ref_23) 1998; 37 Babbel (ref_31) 2021; 48 Wang (ref_51) 2023; 2486 Chen (ref_30) 2021; 29 Li (ref_39) 2019; 232 Najah (ref_64) 2021; 4 ref_34 ref_33 ref_32 Bird (ref_10) 2018; 142 Chen (ref_38) 2019; 151 Halpern (ref_4) 2008; 319 Albright (ref_29) 2021; 18 Hedley (ref_62) 2005; 26 Manessa (ref_19) 2016; 3 Kohavi (ref_43) 1997; 97 Lee (ref_11) 2002; 41 Stumpf (ref_15) 2003; 48 Wu (ref_40) 2022; 30 Dekker (ref_26) 2011; 9 Ma (ref_35) 2020; 250 Hsu (ref_9) 2021; 178 Zhan (ref_46) 2020; XLII-3-W10 Williamson (ref_47) 2022; 61 ref_41 Caballero (ref_42) 2023; 870 Kurniabudi (ref_66) 2020; 8 Lee (ref_12) 2015; 169 ref_3 Xu (ref_36) 2021; 14 Su (ref_6) 2020; 58 ref_49 ref_5 Qing (ref_44) 2011; 29 Wang (ref_55) 2015; 25 Hedley (ref_59) 2018; 216 |
| References_xml | – volume: 14 start-page: 6677 year: 2021 ident: ref_36 article-title: Deriving Highly Accurate Shallow Water Bathymetry From Sentinel-2 and ICESat-2 Datasets by a Multitemporal Stacking Method publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2021.3090792 – ident: ref_16 doi: 10.3390/rs14143343 – volume: 113 start-page: 2527 year: 2009 ident: ref_25 article-title: Efficient Radiative Transfer Model Inversion for Remote Sensing Applications publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2009.07.008 – volume: 25 start-page: 93 year: 2015 ident: ref_55 article-title: An Empirical Investigation on Wrapper-Based Feature Selection for Predicting Software Quality publication-title: Int. J. Softw. Eng. Knowl. Eng. doi: 10.1142/S0218194015400057 – ident: ref_20 doi: 10.3390/rs11101155 – volume: 61 start-page: 4204511 year: 2023 ident: ref_65 article-title: An Appraisal of Atmospheric Correction and Inversion Algorithms for Mapping High-Resolution Bathymetry Over Coral Reef Waters publication-title: IEEE Trans. Geosci. Remote Sens. – volume: Volume 12272 start-page: 90 year: 2022 ident: ref_7 article-title: Recent Developments in Airborne LiDAR Bathymetry publication-title: Proceedings of the Electro-Optical Remote Sensing XVI – ident: ref_41 doi: 10.1017/CBO9780511623370 – volume: 55 start-page: 329 year: 2006 ident: ref_60 article-title: Spectral Library of Macroalgae and Benthic Substrates in Estonian Coastal Waters publication-title: Proc. Est. Acad. Sci. Biol. Ecol. – volume: 37 start-page: 6329 year: 1998 ident: ref_23 article-title: Hyperspectral Remote Sensing for Shallow Waters I A Semianalytical Model publication-title: Appl. Opt. doi: 10.1364/AO.37.006329 – volume: 504 start-page: 53 year: 2013 ident: ref_1 article-title: Tidal Wetland Stability in the Face of Human Impacts and Sea-Level Rise publication-title: Nature doi: 10.1038/nature12856 – volume: 9 start-page: 396 year: 2011 ident: ref_26 article-title: Intercomparison of Shallow Water Bathymetry, Hydro-Optics, and Benthos Mapping Techniques in Australian and Caribbean Coastal Environments: Intercomparison of Shallow Water Mapping Methods publication-title: Limnol. Oceanogr. Methods doi: 10.4319/lom.2011.9.396 – volume: 6 start-page: 115 year: 1985 ident: ref_14 article-title: Shallow-Water Bathymetry Using Combined Lidar and Passive Multispectral Scanner Data publication-title: Int. J. Remote Sens. doi: 10.1080/01431168508948428 – volume: 3 start-page: 117 year: 2016 ident: ref_19 article-title: Satellite-Derived Bathymetry Using Random Forest Algorithm and Worldview-2 Imagery publication-title: Geoplanning J. Geomat. Plan. doi: 10.14710/geoplanning.3.2.117-126 – ident: ref_54 doi: 10.1109/BIBE.2014.62 – ident: ref_58 – volume: 265 start-page: 112667 year: 2021 ident: ref_63 article-title: The QAA-RGB: A Universal Three-Band Absorption and Backscattering Retrieval Algorithm for High Resolution Satellite Sensors. Development and Implementation in ACOLITE publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112667 – volume: 319 start-page: 948 year: 2008 ident: ref_4 article-title: A Global Map of Human Impact on Marine Ecosystems publication-title: Science doi: 10.1126/science.1149345 – volume: 29 start-page: 2411 year: 2021 ident: ref_30 article-title: Refraction Correction and Coordinate Displacement Compensation in Nearshore Bathymetry Using ICESat-2 Lidar Data and Remote-Sensing Images publication-title: Opt. Express doi: 10.1364/OE.409941 – volume: 240 start-page: 111619 year: 2020 ident: ref_13 article-title: Remote Sensing of Shallow Waters—A 50 Year Retrospective and Future Directions publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111619 – ident: ref_56 – ident: ref_52 – volume: 29 start-page: 33 year: 2011 ident: ref_44 article-title: Retrieval of Inherent Optical Properties of the Yellow Sea and East China Sea Using a Quasi-Analytical Algorithm publication-title: Chin. J. Oceanol. Limnol. doi: 10.1007/s00343-011-9967-z – volume: 870 start-page: 161898 year: 2023 ident: ref_42 article-title: Confronting Turbidity, the Major Challenge for Satellite-Derived Coastal Bathymetry publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.161898 – volume: 216 start-page: 598 year: 2018 ident: ref_59 article-title: Coral Reef Applications of Sentinel-2: Coverage, Characteristics, Bathymetry and Benthic Mapping with Comparison to Landsat 8 publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2018.07.014 – volume: 232 start-page: 111302 year: 2019 ident: ref_39 article-title: Adaptive Bathymetry Estimation for Shallow Coastal Waters Using Planet Dove Satellites publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111302 – ident: ref_32 doi: 10.3390/rs14010133 – volume: 41 start-page: 5755 year: 2002 ident: ref_11 article-title: Deriving Inherent Optical Properties from Water Color: A Multiband Quasi-Analytical Algorithm for Optically Deep Waters publication-title: Appl. Opt. doi: 10.1364/AO.41.005755 – volume: 40 start-page: 2855 year: 2019 ident: ref_61 article-title: Assessment of Empirical Algorithms for Bathymetry Extraction Using Sentinel-2 Data publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2018.1533660 – volume: 30 start-page: 3238 year: 2022 ident: ref_21 article-title: Satellite-Derived Bathymetry Using Landsat-8 and Sentinel-2A Images: Assessment of Atmospheric Correction Algorithms and Depth Derivation Models in Shallow Waters publication-title: Opt. Express doi: 10.1364/OE.444557 – ident: ref_5 doi: 10.3390/rs10091362 – ident: ref_18 doi: 10.3390/rs13234907 – volume: 18 start-page: 900 year: 2021 ident: ref_29 article-title: Nearshore Bathymetry From Fusion of Sentinel-2 and ICESat-2 Observations publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.2987778 – volume: 250 start-page: 112047 year: 2020 ident: ref_35 article-title: Satellite-Derived Bathymetry Using the ICESat-2 Lidar and Sentinel-2 Imagery Datasets publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2020.112047 – volume: 17 start-page: 1748 year: 2024 ident: ref_37 article-title: Machine Learning Based Estimation of Coastal Bathymetry From ICESat-2 and Sentinel-2 Data publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2023.3326238 – volume: 58 start-page: 3213 year: 2020 ident: ref_6 article-title: Propagated Uncertainty Models Arising From Device, Environment, and Target for a Small Laser Spot Airborne LiDAR Bathymetry and Its Verification in the South China Sea publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2951144 – volume: 61 start-page: 9951 year: 2022 ident: ref_47 article-title: Measured IOPs of Jerlov Water Types publication-title: Appl. Opt. doi: 10.1364/AO.470464 – volume: 178 start-page: 1 year: 2021 ident: ref_9 article-title: A Semi-Empirical Scheme for Bathymetric Mapping in Shallow Water by ICESat-2 and Sentinel-2: A Case Study in the South China Sea publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.05.012 – ident: ref_53 – volume: 39 start-page: 4431 year: 2018 ident: ref_22 article-title: Shallow Water Bathymetry Mapping Using Support Vector Machine (SVM) Technique and Multispectral Imagery publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2017.1421796 – ident: ref_49 doi: 10.3390/rs15040931 – volume: XLII-3-W10 start-page: 937 year: 2020 ident: ref_46 article-title: Estimation of Optical Properties Using Qaa-V6 Model Based on Modis Data publication-title: Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XLII-3-W10-937-2020 – ident: ref_34 doi: 10.3390/rs14143406 – ident: ref_33 doi: 10.3390/rs13214303 – volume: 97 start-page: 273 year: 1997 ident: ref_43 article-title: Wrappers for Feature Subset Selection publication-title: Artif. Intell. doi: 10.1016/S0004-3702(97)00043-X – volume: 8 start-page: 132911 year: 2020 ident: ref_66 article-title: CICIDS-2017 Dataset Feature Analysis with Information Gain for Anomaly Detection publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3009843 – volume: 151 start-page: 1 year: 2019 ident: ref_38 article-title: A Dual Band Algorithm for Shallow Water Depth Retrieval from High Spatial Resolution Imagery with No Ground Truth publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2019.02.012 – volume: 30 start-page: 16773 year: 2022 ident: ref_40 article-title: Satellite-Derived Bathymetry Based on Machine Learning Models and an Updated Quasi-Analytical Algorithm Approach publication-title: Opt. Express doi: 10.1364/OE.456094 – volume: 48 start-page: e2020GL090629 year: 2021 ident: ref_31 article-title: ICESat-2 Elevation Retrievals in Support of Satellite-Derived Bathymetry for Global Science Applications publication-title: Geophys. Res. Lett. doi: 10.1029/2020GL090629 – volume: 113 start-page: 755 year: 2009 ident: ref_2 article-title: A Physics Based Retrieval and Quality Assessment of Bathymetry from Suboptimal Hyperspectral Data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.12.003 – volume: 56 start-page: 5334 year: 2018 ident: ref_17 article-title: Deriving Bathymetry From Optical Images With a Localized Neural Network Algorithm publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2814012 – volume: 232 start-page: 111287 year: 2019 ident: ref_48 article-title: Estimating Water Levels and Volumes of Lakes Dated Back to the 1980s Using Landsat Imagery and Photon-Counting Lidar Datasets publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111287 – volume: 231 start-page: 111249 year: 2019 ident: ref_45 article-title: Optical Properties of Forel-Ule Water Types Deduced from 15 years of Global Satellite Ocean Color Observations publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2019.111249 – ident: ref_50 – volume: 6 start-page: 1847 year: 2019 ident: ref_8 article-title: Global Bathymetry and Topography at 15 Arc Sec: SRTM15+ publication-title: Earth Space Sci. doi: 10.1029/2019EA000658 – volume: 142 start-page: 268 year: 2018 ident: ref_10 article-title: Satellite Derived Photogrammetric Bathymetry publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2018.06.015 – volume: 19 start-page: 1500305 year: 2022 ident: ref_28 article-title: A Method to Derive Bathymetry for Dynamic Water Bodies Using ICESat-2 and GSWD Data Sets publication-title: IEEE Geosci. Remote Sens. Lett. – volume: 48 start-page: 547 year: 2003 ident: ref_15 article-title: Determination of Water Depth with High-Resolution Satellite Imagery over Variable Bottom Types publication-title: Limnol. Oceanogr. doi: 10.4319/lo.2003.48.1_part_2.0547 – ident: ref_3 doi: 10.3390/rs12132069 – volume: 169 start-page: 139 year: 2015 ident: ref_12 article-title: Secchi Disk Depth: A New Theory and Mechanistic Model for Underwater Visibility publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2015.08.002 – volume: 38 start-page: 3831 year: 1999 ident: ref_24 article-title: Hyperspectral Remote Sensing for Shallow Waters: 2 Deriving Bottom Depths and Water Properties by Optimization publication-title: Appl. Opt. doi: 10.1364/AO.38.003831 – ident: ref_27 doi: 10.3390/rs11141634 – volume: 2486 start-page: 012039 year: 2023 ident: ref_51 article-title: Analysis of Characteristics of Tide and Tidal Current in the East China Seas publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/2486/1/012039 – ident: ref_57 – volume: 26 start-page: 2107 year: 2005 ident: ref_62 article-title: Technical Note: Simple and Robust Removal of Sun Glint for Mapping Shallow-water Benthos publication-title: Int. J. Remote Sens. doi: 10.1080/01431160500034086 – volume: 4 start-page: 235 year: 2021 ident: ref_64 article-title: Performance of the Ocean Color Algorithms: QAA, GSM, and GIOP in Inland and Coastal Waters publication-title: Remote Sens. Earth Syst. Sci. doi: 10.1007/s41976-022-00068-3 |
| SSID | ssj0000331904 |
| Score | 2.3969197 |
| Snippet | Satellite-derived bathymetry (SDB) is an effective means of obtaining global shallow water depths. However, the effect of inherent optical properties (IOPs) on... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 2371 |
| SubjectTerms | Accuracy Algorithms Aquatic environment Bathymeters Bathymetry Coasts data collection Datasets Gaussian process ICESat-2 Learning algorithms Machine learning Neural networks normal distribution Optical properties Parameter identification Performance assessment photon-counting lidar quasi-analytical algorithm (QAA) reflectance Regression analysis Remote sensing satellite-derived bathymetry Satellites Sentinel-2 Shallow water Software Support vector machines Unmanned aerial vehicles Water depth Water quality |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqLtsLoh-I8CVX5RqRxBPHOQJbhCrRS4vKLRo7Y4G0ZFe7WdD--46TsF0ucOEWJY40mvGM35PtN0KcuBwUJmhiS1DH4DXFVjngvCKAxEFR-nA5-fqXvrqBn7f57Uarr3AmrJcH7h13mhV5QXVmHFMDSMBiyZyGUY7GPDRO7q75JqbcIFNdDVY8tRLo9UgV8_rT-YKxjcpUkb5YgTqh_hfocrRsZrh6wslkY6G53BHbA0KUZ71ln8QHaj6L0dCs_G71RTysz81JRm_yerpoZS9CzJVLDveLgr8lP8nf2GluthSPebI9Ui3PGfStHqidr2TohDZZyPtGjodGKa38yz_MZa-twTT6q7i5_PHn4ioeuibETuWqjXNdImOeUvmaKKu18cx_nQfHIdEOPCpMHSQeTeprCJQhJeuMsmQZLeRe7YqtZtrQnpDMhVRhUk2kS3DOoM2sJoVIhTMJYiS-P3uymvXiGBWTiuDv6r-_I3EenLweEQStuxcc5moIc_VWmCNx-ByiasiyRcX1qWSAocsiEt_Wnzk_wqYHNjRd8hgu6Tps70IkTtahfcXc_fcw90B8zBj99Od6D8VWO1_SEaOX1h53E_UfgZHr2Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb5wwEB6lm0N6qfpUSdPKVXNFAWyMOURVt0kUVcqqahs1N2SboY20gS3LNtp_3zEY0lxyQ2AEmof9jR_fB3BoU8F1pFVoUJShqCSGhltBeYVCRFZkeeUOJ18s5Pml-HKVXu3AYjwL47ZVjn1i31GXjXVz5EcUizkNJjLPPq7-hE41yq2ujhIa2ksrlMc9xdgj2E0cM9YMdueni6_fplmXiFPIRWLgKeVU7x-1a8I8POFZfG9k6gn876HOvU290ttbvVz-NwCdPYUnHjmyT4Orn8EO1s9hz4uY_96-gJtpPx0jVMcumnXHBnJi6tGYP3fk_MDoin3XPRdnh-EJBeFfLNmcwOD2Brt2y5xC2nLNrmt24gVUOvaTXmjZwLlB5fVLuDw7_fH5PPRqCqHlKe_CVOaasFDOqxIxKaWqqC62lbDkKmlFpbmOrYgqreKqFK6UiNFYxQ0aQhFpxV_BrG5qfA2MaiSeqVgiylxYq7RJjESuNWZWRVoH8GG0ZLEaSDMKKjacvYs7ewcwd0aeWjii6_5G0_4qfN4USZZmWCbKUmUoImF0Tv9CIFfq1OlmqwAORhcVPvvWxV2sBPB-ekx54xZDdI3NhtpQVy_dsq8I4HBy7QO_u__wl97A44TwzrCT9wBmXbvBt4RXOvPOB-E_laTsEg priority: 102 providerName: ProQuest |
| Title | Exploring the Most Effective Information for Satellite-Derived Bathymetry Models in Different Water Qualities |
| URI | https://www.proquest.com/docview/3079266697 https://www.proquest.com/docview/3153642454 https://doi.org/10.3390/rs16132371 https://doaj.org/article/2757ed28c828404ba98258006a541248 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2072-4292 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331904 issn: 2072-4292 databaseCode: 8FG dateStart: 20090301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N9mG8wPgSga0ysNeMNHYc57Fd102IVhOjYjxFtnMWiC6d2hRU_nrOTdp9PEw8JUps6eS7s39n-34HcGgTwXWkVWhQFKFwEkPDrSC_QiEiK9LM-eTk0VieTcSny-RyB95vcmFund9zCsc_zhcESXjMfZp4WyaEt1vQnozPe9991bgojUNfb6nmHb3X4c5Ksybkv4Mid5fltV790dPprQVl-BSON6LU90h-HS0rc2T_3mNpfFjWPXjS4EnWqw3gGexg-Rx2m9LmP1Yv4Gp7y44R1mOj2aJiNWUxzXOsyUby2mH0xi70mqGzwnBApvkbC9YniLi6wmq-Yr5u2nTBfpZs0JRVqdg36jBnNRMHBd0vYTI8-Xp8FjY1FkLLE16Ficw0IaSMuwIxLqRyFC1bJywpUFrhNNddKyKnVdcVwgcYXTRWcYOGsEXi-CtolbMSXwOjyImnqisRZSasVdrERiLXGlOrIq0D-LDRR35dU2nkFIL4octvhi6AvlfVtoWnv15_oJHOG2_K4zRJsYiVpXhRRMLojGQh6Ct14qtpqwD2N4rOG59c5DSbZQRHZJYG8G77m7zJH5HoEmdLakMLgPSHwSKAw62BPCDum_9r9hYex4SG6nu--9Cq5ks8IDRTmQ48UsPTDrR7g9HnC3r2T8bnXzrrvYFOY-r_AAuP9pk |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9rBcEE8RWsCIcoyajR0nOVSIZVttaXeFoBW9BceZFKRtsk2yVPlz_DbGeZVeeustytMZz3i-sT3zAexqT3DlqMCOUSS2SCXaMdeC7AqFcLTww9QkJ88XcnYmvpx75xvwt8-FMdsq-zGxGaiTXJs58j3SxZCciQz9j6sr27BGmdXVnkJDddQKyX5TYqxL7DjG-ppCuHL_aEr9_cF1Dw9OP8_sjmXA1tzjle3JUBFGCHmaILqJDFKKF3UqNP2C1CJVXI21cFIVjNNEGIg9xlgHPMaYvKuXcnrvA9gSXIQU_G1NDhZfvw2zPA4nFXdEWxeV89DZK0rCWNzl_viWJ2wIA26h3NE6W6n6Wi2X_zm8w8fwqEOq7FOrWk9gA7OnMOpI03_Vz-By2L_HCEWyeV5WrC2GTCMo6_KcTL8zOmLfVVP7s0J7Skr_BxM2IfBZX2JV1Mwwsi1L9jtj046wpWI_6IGCtTU-KJx_Dmf3ItcXsJnlGb4ERjEZ94OxRJSh0DpQsRtL5EqhrwNHKQve95KMVm2RjoiCGyPv6EbeFkyMkIc7TGHt5kReXESdnUau7_mYuIGmSFQ4IlYhtYVAtVSe4ekOLNjpuyjqrL2MbnTTgnfDZbJTs_iiMszXdA-5FmmWmYUFu0PX3tHcV3d_6S2MZqfzk-jkaHG8DQ9dwlrtLuId2KyKNb4mrFTFbzqFZPDzvm3gH5FLKmE |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIlEuiKcIFDCiHKNNYsdJDghRlqWltEKCit5SxxkD0jZZkixV_hq_jnFepZfeeosSJ7HG33i-scczADs6FFx5KnYzFLkrjEQ341qQXqEQnhZRYuzh5MMjuXcsPp2EJxvwdzwLY8Mqxzmxm6jzUts18hlhMSFjIpNoZoawiC_zxdvVb9dWkLI7rWM5jR4iB9iek_tWv9mf01i_DoLFh2_v99yhwoCrecgbN5SJIn6QcJMjBrmMDfmK2ghN3ZdaGMWVr4VnVOybXFh67WOmY55hRpY1NJy-ewNuRjaLuz2lvvg4re94nMDtiT4jKueJN6tqYlc84JF_yQZ2pQIu8dutdbFS7blaLv8zdYu7cGfgqOxdD6p7sIHFfdgayqX_bB_A2RS5x4g_ssOyblifBpnmTjaccLIjzuiKfVVd1s8G3TnB_Q_mbJdoZ3uGTdUyW4ttWbNfBZsPpVoa9p1eqFif3YMc-YdwfC1SfQSbRVngY2DkjfEo9iWiTITWscqCTCJXCiMde0o58GqUZLrq03Ok5NZYeacX8nZg1wp5amFTanc3yupHOmhoGkRhhHkQa_JBhScylVBfiE5LFdoK3bED2-MQpYOe1-kFKh14OT0mDbXbLqrAck1tyKhIu8EsHNiZhvaK7j65-k8v4BYhP_28f3TwFG4HRLL68OFt2GyqNT4jktRkzzs0Mji9bvj_A3YbJ_s |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB2h5QAXSgsVaaFyW66h2dhxnCMfRagSqFJZAado7IzVqksW7WZbLb-e8Sa7BQ6otyhxpJFnxn4je94D2HeZkpigiS2pKlZeU2ylU5xXpFTiVF740Jx8fqHPBurbdXa9Ap8WvTCPzu8ll-NfxhOGJDKVoU18VWeMt3uwOrj4fngTVOOSPI2D3lLLO_rshyc7zZyQ_wmKXJvWdzj7i8Phow3l9BUcL0xp75H8Ppg29sDdP2NpfNnWTdjo8KQ4bAPgNaxQ_QbWOmnzn7MtuF3eshOM9cT5aNKIlrKY1znRdSMF7wh-Ej9wztDZUHzCofmHKnHEEHF2S814JoJu2nAiftXipJNVacQV_zAWLRMHF93bMDj9enl8FncaC7GTmWziTBfICKmQviJKK208V8vOK8cO1E55lNh3KvFo-r5SocDok3VGWrKMLTIv30KvHtW0A4IrJ5mbvibShXLOoE2tJolIuTMJYgSfF_4o71oqjZJLkDB15b-pi-AouGo5ItBfz1_wTJddNpVpnuVUpcZxvagSZbFgWxj6asyCmraJYHfh6LLLyUnJq1nBcEQXeQQfl585m8IRCdY0mvIY3gB0OAxWEewvA-QFc9_937D3sJ4yGmrv-e5CrxlPaY_RTGM_dOH8AGKX8ZA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+the+Most+Effective+Information+for+Satellite-Derived+Bathymetry+Models+in+Different+Water+Qualities&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Liu%2C+Zhen&rft.au=Liu%2C+Hao&rft.au=Ma%2C+Yue&rft.au=Ma%2C+Xin&rft.date=2024-07-01&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=16&rft.issue=13&rft.spage=2371&rft_id=info:doi/10.3390%2Frs16132371&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_rs16132371 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |