A Simple Method of Predicting Autumn Leaf Coloring Date Using Machine Learning with Spring Leaf Unfolding Date
Predicting plant phenology is considered the foundational for the forecast of ecosystem function and dynamics from species level to global level. However, the exact prediction of plant phenology remains limited because of the challenges associated with adding exact environmental and physiological cu...
Saved in:
Published in | Asia-Pacific journal of atmospheric sciences Vol. 58; no. 2; pp. 219 - 226 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
Korean Meteorological Society
01.05.2022
Springer Nature B.V 한국기상학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1976-7633 1976-7951 |
DOI | 10.1007/s13143-021-00251-4 |
Cover
Abstract | Predicting plant phenology is considered the foundational for the forecast of ecosystem function and dynamics from species level to global level. However, the exact prediction of plant phenology remains limited because of the challenges associated with adding exact environmental and physiological cues to numerical models. In this study, we developed a simple data-based prediction model for leaf coloring dates of temperate deciduous trees by applying machine learning to datasets obtained from the newly established South Korean national-scale phenology network (NPN). Ground observations of spring leaf unfolding dates for 2009–2018 obtained from NPN together with data on the environmental drivers of leaf coloring (summer mean temperature, altitude) were utilized for the model. The model can be evaluated to have simulated the characteristics of observed leaf coloring dates relatively accurate, with only a two-day difference between the average observed and predicted leaf coloring dates. In addition, the model yielded an RMSE value of approximately 7 days, which is within the acceptable error criteria when compared to the sampling frequency, despite the use of only three input variables. Data-based machine learning using existing spring leaf unfolding data as an input help us predict autumn phenology better, even without precise species-specific physiological knowledge on leaf coloring mechanisms. Consequently, a phenology network across the globe based on steady observations will be favorable datasets for a phenology prediction model that can be applied widely. |
---|---|
AbstractList | Predicting plant phenology is considered the foundational for the forecast of ecosystem function and dynamics from species level to global level. However, the exact prediction of plant phenology remains limited because of the challenges associated with adding exact environmental and physiological cues to numerical models. In this study, we developed a simple data-based prediction model for leaf coloring dates of temperate deciduous trees by applying machine learning to datasets obtained from the newly established South Korean national-scale phenology network (NPN). Ground observations of spring leaf unfolding dates for 2009–2018 obtained from NPN together with data on the environmental drivers of leaf coloring (summer mean temperature, altitude) were utilized for the model. The model can be evaluated to have simulated the characteristics of observed leaf coloring dates relatively accurate, with only a two-day difference between the average observed and predicted leaf coloring dates. In addition, the model yielded an RMSE value of approximately 7 days, which is within the acceptable error criteria when compared to the sampling frequency, despite the use of only three input variables. Data-based machine learning using existing spring leaf unfolding data as an input help us predict autumn phenology better, even without precise species-specific physiological knowledge on leaf coloring mechanisms. Consequently, a phenology network across the globe based on steady observations will be favorable datasets for a phenology prediction model that can be applied widely. Predicting plant phenology is considered the foundational for the forecast of ecosystem function and dynamics from species level to global level. However, the exact prediction of plant phenology remains limited because of the challenges associated with adding exact environmental and physiological cues to numerical models. In this study, we developed a simple data-based prediction model for leaf coloring dates of temperate deciduous trees by applying machine learning to datasets obtained from the newly established South Korean national-scale phenology network (NPN). Ground observations of spring leaf unfolding dates for 2009–2018 obtained from NPN together with data on the environmental drivers of leaf coloring (summer mean temperature, altitude) were utilized for the model. The model can be evaluated to have simulated the characteristics of observed leaf coloring dates relatively accurate, with only a two-day difference between the average observed and predicted leaf coloring dates. In addition, the model yielded an RMSE value of approximately 7 days, which is within the acceptable error criteria when compared to the sampling frequency, despite the use of only three input variables. Data-based machine learning using existing spring leaf unfolding data as an input help us predict autumn phenology better, even without precise species-specific physiological knowledge on leaf coloring mechanisms. Consequently, a phenology network across the globe based on steady observations will be favorable datasets for a phenology prediction model that can be applied widely. KCI Citation Count: 0 |
Author | Lee, Sehyun Kim, Jongho Park, Chang-Eui Jeong, Sujong |
Author_xml | – sequence: 1 givenname: Sehyun surname: Lee fullname: Lee, Sehyun organization: Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University – sequence: 2 givenname: Sujong orcidid: 0000-0003-4586-4534 surname: Jeong fullname: Jeong, Sujong email: sujong@snu.ac.kr organization: Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Environmental Planning Institute, Seoul National University – sequence: 3 givenname: Chang-Eui surname: Park fullname: Park, Chang-Eui organization: Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Environmental Planning Institute, Seoul National University – sequence: 4 givenname: Jongho surname: Kim fullname: Kim, Jongho organization: Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002841679$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kU1LAzEQhoNUsFb_gKeAJw-r-dzdHEv9KlQUteeQZrM2uk1qkiL-e_dDETx4mmF4nmGY9xCMnHcGgBOMzjFCxUXEFDOaIYIzhAjHGdsDYyyKPCsEx6OfPqf0ABzH-IpaCmEiCB4DN4VPdrNtDLwzae0r6Gv4EExldbLuBU53abdxcGFUDWe-8aEbXqpk4DJ27Z3Sa-tMBwTXDT5sWsOnbc_11tLVvql-tCOwX6smmuPvOgHL66vn2W22uL-Zz6aLTFNOU8a5LmuNcsFKwhU2FStXSoiiLHOhCdMkN4QWnGNeCFzWaCUYE0RQwipB8xWmE3A27HWhlm_aSq9sX1-8fAty-vg8l-0-TpBo2dOB3Qb_vjMxyVe_C649T5KcElyyIkctVQ6UDj7GYGqpbVLJepeCso3ESHZhyCEM2YYh-zAka1XyR23_s1Hh83-JDlLsn2nC71X_WF842Jq7 |
CitedBy_id | crossref_primary_10_3390_f16010174 crossref_primary_10_3390_f13071099 crossref_primary_10_1016_j_agrformet_2023_109623 |
Cites_doi | 10.1126/science.abd8911 10.1007/s11430-019-9622-2 10.1038/nature06444 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2 10.1023/A:1010933404324 10.1111/gcb.12890 10.1111/geb.12206 10.1029/2006GB002888 10.1111/gcb.13311 10.1007/s00484-018-1534-2 10.1371/journal.pone.0057373 10.1111/j.1365-2486.2011.02397.x 10.5194/bg-13-3305-2016 10.1111/j.1365-2486.2011.02562.x 10.1038/s41558-020-0852-7 10.1088/1748-9326/8/2/024027 10.1073/pnas.1321727111 10.1080/17538947.2012.748848 10.1016/j.agrformet.2008.11.014 10.1038/nrm1358 10.1111/gcb.14021 10.1126/science.1186473 10.1007/s00484-011-0494-6 10.1007/978-1-4614-6849-3 10.1088/1748-9326/abe2cf 10.1007/s00484-010-0305-5 10.1007/s00484-020-01953-6 10.1146/annurev.arplant.57.032905.105316 |
ContentType | Journal Article |
Copyright | Korean Meteorological Society and Springer Nature B.V. 2021 Korean Meteorological Society and Springer Nature B.V. 2021. |
Copyright_xml | – notice: Korean Meteorological Society and Springer Nature B.V. 2021 – notice: Korean Meteorological Society and Springer Nature B.V. 2021. |
DBID | AAYXX CITATION 7TG 7TN F1W H96 KL. L.G ACYCR |
DOI | 10.1007/s13143-021-00251-4 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Korean Citation Index |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1976-7951 |
EndPage | 226 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9975209 10_1007_s13143_021_00251_4 |
GroupedDBID | -EM 06D 0R~ 0VY 1N0 203 2KG 2VQ 30V 4.4 406 408 40D 67M 67Z 8TC 96X 9ZL AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BGNMA CSCUP DBRKI DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GW5 H13 HF~ HMJXF HRMNR HVGLF HZ~ I0C IKXTQ IWAJR IXD J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O9J P2P PT4 R9I RLLFE ROL RSV S1Z S27 S3B SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TDB TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE AFDZB AFOHR AHPBZ ATHPR AYFIA CITATION 7TG 7TN ABRTQ F1W H96 KL. L.G AAFGU AAPBV AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AKQUC Z83 |
ID | FETCH-LOGICAL-c353t-55c8fc0694825a1ed48ba9978869c24c26e23755157918f0b944929324d936b13 |
IEDL.DBID | U2A |
ISSN | 1976-7633 |
IngestDate | Tue Nov 21 21:46:33 EST 2023 Wed Sep 17 23:55:47 EDT 2025 Tue Jul 01 02:10:26 EDT 2025 Thu Apr 24 23:00:10 EDT 2025 Fri Feb 21 02:47:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Spring leaf unfolding Plant phenology Autumn leaf coloring date Machine learning Prediction model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-55c8fc0694825a1ed48ba9978869c24c26e23755157918f0b944929324d936b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4586-4534 |
PQID | 2632184760 |
PQPubID | 2044292 |
PageCount | 8 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9975209 proquest_journals_2632184760 crossref_citationtrail_10_1007_s13143_021_00251_4 crossref_primary_10_1007_s13143_021_00251_4 springer_journals_10_1007_s13143_021_00251_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-01 |
PublicationDateYYYYMMDD | 2022-05-01 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | Asia-Pacific journal of atmospheric sciences |
PublicationTitleAbbrev | Asia-Pacific J Atmos Sci |
PublicationYear | 2022 |
Publisher | Korean Meteorological Society Springer Nature B.V 한국기상학회 |
Publisher_xml | – name: Korean Meteorological Society – name: Springer Nature B.V – name: 한국기상학회 |
References | Jeong, Ho, Gim, Brown (CR12) 2011; 17 Jeong (CR14) 2020; 10 Fu, Li, Zhou, Geng, Guo, Zhang (CR10) 2020; 63 Piao, Friedlingstein, Ciais, Viovy, Demarty (CR24) 2007; 21 CR19 CR18 Keenan, Richardson (CR15) 2015; 21 CR17 CR16 CR11 Rodriguez-Galiano, Sanchez-Castillo, Dash, Atkinson, Ojeda-Zujar (CR29) 2016; 13 Archetti, Richardson, O’Keefe, Delpierre (CR1) 2013; 8 Richardson, Anderson, Arain, Barr, Bohrer, Chen, Chen, Ciais, Davis, Desai, Dietze, Dragoni, Garrity, Gough, Grant, Hollinger, Margolis, McCaughey, Migliavacca, Monson, Munger, Poulter, Raczka, Ricciuto, Sahoo, Schaefer, Tian, Vargas, Verbeeck, Xiao, Xue (CR27) 2012; 18 Zani, Crowther, Mo, Renner, Zohner (CR31) 2020; 370 Liu, Fu, Zhu, Liu, Liu, Huang, Janssens, Piao (CR20) 2016; 22 CR3 CR6 Breiman (CR2) 2001; 45 CR8 CR7 CR28 Czernecki, Nowosad, Jabłońska (CR4) 2018; 62 CR9 Piao, Ciais, Friedlingstein, Peylin, Reichstein, Luyssaert, Margolis, Fang, Barr, Chen, Grelle, Hollinger, Laurila, Lindroth, Richardson, Vesala (CR25) 2008; 451 CR26 Rudin, Radin (CR30) 2019; 1 CR23 CR22 CR21 De’Ath, Fabricius (CR5) 2000; 81 Jeong, Medvigy (CR13) 2014; 23 TF Keenan (251_CR15) 2015; 21 S Piao (251_CR24) 2007; 21 AD Richardson (251_CR27) 2012; 18 SJ Jeong (251_CR12) 2011; 17 C Rudin (251_CR30) 2019; 1 S Piao (251_CR25) 2008; 451 VF Rodriguez-Galiano (251_CR29) 2016; 13 M Archetti (251_CR1) 2013; 8 Y Fu (251_CR10) 2020; 63 251_CR26 251_CR28 251_CR22 251_CR23 G De’Ath (251_CR5) 2000; 81 251_CR21 S Jeong (251_CR14) 2020; 10 B Czernecki (251_CR4) 2018; 62 D Zani (251_CR31) 2020; 370 251_CR7 251_CR6 251_CR3 251_CR19 L Breiman (251_CR2) 2001; 45 251_CR16 251_CR17 251_CR18 251_CR11 SJ Jeong (251_CR13) 2014; 23 251_CR9 Q Liu (251_CR20) 2016; 22 251_CR8 |
References_xml | – volume: 370 start-page: 1066 issue: 6520 year: 2020 end-page: 1071 ident: CR31 article-title: Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees publication-title: Science doi: 10.1126/science.abd8911 – ident: CR22 – ident: CR18 – volume: 63 start-page: 1237 issue: 9 year: 2020 end-page: 1247 ident: CR10 article-title: Progress in plant phenology modeling under global climate change publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-019-9622-2 – ident: CR16 – volume: 451 start-page: 49 issue: 7174 year: 2008 end-page: 52 ident: CR25 article-title: Net carbon dioxide losses of northern ecosystems in response to autumn warming publication-title: Nature doi: 10.1038/nature06444 – volume: 81 start-page: 3178 issue: 11 year: 2000 end-page: 3192 ident: CR5 article-title: Classification and regression trees: A powerful yet simple technique for ecological data analysis publication-title: Ecology doi: 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2 – ident: CR6 – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: CR2 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – ident: CR8 – volume: 21 start-page: 2634 issue: 7 year: 2015 end-page: 2641 ident: CR15 article-title: The timing of autumn senescence is affected by the timing of spring phenology: Implications for predictive models publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12890 – volume: 23 start-page: 1245 issue: 11 year: 2014 end-page: 1254 ident: CR13 article-title: Macroscale prediction of autumn leaf coloration throughout the continental United States publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.12206 – ident: CR23 – ident: CR21 – volume: 1 start-page: 1 issue: 2 year: 2019 end-page: 9 ident: CR30 article-title: Why are we using black box models in ai when we don’t need to? A lesson from an explainable AI competition publication-title: Harv. Data Sci. Rev. – volume: 21 start-page: 1 issue: 3 year: 2007 end-page: 11 ident: CR24 article-title: Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2006GB002888 – ident: CR19 – ident: CR3 – ident: CR17 – ident: CR11 – volume: 22 start-page: 3702 issue: 11 year: 2016 end-page: 3711 ident: CR20 article-title: Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13311 – ident: CR9 – volume: 62 start-page: 1297 issue: 7 year: 2018 end-page: 1309 ident: CR4 article-title: Machine learning modeling of plant phenology based on coupling satellite and gridded meteorological dataset publication-title: Int. J. Biometeorol doi: 10.1007/s00484-018-1534-2 – volume: 8 start-page: e57373 issue: 3 year: 2013 ident: CR1 article-title: Predicting Climate Change Impacts on the Amount and Duration of Autumn Colors in a New England Forest publication-title: PLoS ONE doi: 10.1371/journal.pone.0057373 – ident: CR7 – volume: 17 start-page: 2385 issue: 7 year: 2011 end-page: 2399 ident: CR12 article-title: Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008 publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2011.02397.x – ident: CR28 – ident: CR26 – volume: 13 start-page: 3305 issue: 11 year: 2016 end-page: 3317 ident: CR29 article-title: Modelling interannual variation in the spring and autumn land surface phenology of the European forest publication-title: Biogeosciences doi: 10.5194/bg-13-3305-2016 – volume: 18 start-page: 566 issue: 2 year: 2012 end-page: 584 ident: CR27 article-title: Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synthesis publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2011.02562.x – volume: 10 start-page: 712 year: 2020 end-page: 713 ident: CR14 article-title: Autumn greening in a warming climate publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-020-0852-7 – ident: 251_CR3 doi: 10.1088/1748-9326/8/2/024027 – ident: 251_CR8 doi: 10.1073/pnas.1321727111 – ident: 251_CR28 doi: 10.1080/17538947.2012.748848 – volume: 23 start-page: 1245 issue: 11 year: 2014 ident: 251_CR13 publication-title: Glob. Ecol. Biogeogr. doi: 10.1111/geb.12206 – ident: 251_CR6 doi: 10.1016/j.agrformet.2008.11.014 – ident: 251_CR18 doi: 10.1038/nrm1358 – ident: 251_CR11 – volume: 62 start-page: 1297 issue: 7 year: 2018 ident: 251_CR4 publication-title: Int. J. Biometeorol doi: 10.1007/s00484-018-1534-2 – ident: 251_CR9 doi: 10.1111/gcb.14021 – volume: 63 start-page: 1237 issue: 9 year: 2020 ident: 251_CR10 publication-title: Sci. China Earth Sci. doi: 10.1007/s11430-019-9622-2 – volume: 17 start-page: 2385 issue: 7 year: 2011 ident: 251_CR12 publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2011.02397.x – ident: 251_CR16 doi: 10.1126/science.1186473 – ident: 251_CR7 doi: 10.1007/s00484-011-0494-6 – volume: 1 start-page: 1 issue: 2 year: 2019 ident: 251_CR30 publication-title: Harv. Data Sci. Rev. – ident: 251_CR17 doi: 10.1007/978-1-4614-6849-3 – ident: 251_CR21 – volume: 18 start-page: 566 issue: 2 year: 2012 ident: 251_CR27 publication-title: Glob. Chang. Biol. doi: 10.1111/j.1365-2486.2011.02562.x – ident: 251_CR23 doi: 10.1088/1748-9326/abe2cf – volume: 451 start-page: 49 issue: 7174 year: 2008 ident: 251_CR25 publication-title: Nature doi: 10.1038/nature06444 – ident: 251_CR19 doi: 10.1007/s00484-010-0305-5 – volume: 22 start-page: 3702 issue: 11 year: 2016 ident: 251_CR20 publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.13311 – volume: 81 start-page: 3178 issue: 11 year: 2000 ident: 251_CR5 publication-title: Ecology doi: 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2 – volume: 21 start-page: 1 issue: 3 year: 2007 ident: 251_CR24 publication-title: Glob. Biogeochem. Cycles doi: 10.1029/2006GB002888 – volume: 45 start-page: 5 year: 2001 ident: 251_CR2 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 370 start-page: 1066 issue: 6520 year: 2020 ident: 251_CR31 publication-title: Science doi: 10.1126/science.abd8911 – volume: 10 start-page: 712 year: 2020 ident: 251_CR14 publication-title: Nat. Clim. Chang. doi: 10.1038/s41558-020-0852-7 – ident: 251_CR22 doi: 10.1007/s00484-020-01953-6 – volume: 13 start-page: 3305 issue: 11 year: 2016 ident: 251_CR29 publication-title: Biogeosciences doi: 10.5194/bg-13-3305-2016 – volume: 8 start-page: e57373 issue: 3 year: 2013 ident: 251_CR1 publication-title: PLoS ONE doi: 10.1371/journal.pone.0057373 – volume: 21 start-page: 2634 issue: 7 year: 2015 ident: 251_CR15 publication-title: Glob. Chang. Biol. doi: 10.1111/gcb.12890 – ident: 251_CR26 doi: 10.1146/annurev.arplant.57.032905.105316 |
SSID | ssj0002012921 ssib033405554 ssib060165787 |
Score | 2.2650013 |
Snippet | Predicting plant phenology is considered the foundational for the forecast of ecosystem function and dynamics from species level to global level. However, the... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 219 |
SubjectTerms | Atmospheric Sciences Autumn Climatology Deciduous trees Earth and Environmental Science Earth Sciences Ecological function Geophysics/Geodesy Leaves Machine learning Mathematical models Mean temperatures Modelling Numerical models Original Article Phenology Physiology Plant phenology Prediction models Spring 대기과학 |
Title | A Simple Method of Predicting Autumn Leaf Coloring Date Using Machine Learning with Spring Leaf Unfolding Date |
URI | https://link.springer.com/article/10.1007/s13143-021-00251-4 https://www.proquest.com/docview/2632184760 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002841679 |
Volume | 58 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Asia-Pacific Journal of Atmospheric Sciences, 2022, 58(2), , pp.219-226 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8ELl6MRo0oksZ40yZj7b6OC4L4gTFREjw1W9cRgg4D4__3vW6DYNTE0w5rt-y9du_3vn4l5FLFfpyAJWJujGlGHScsAjPFHA3GS6dWYplUzPDJHYzE_dgZl01hy6ravUpJmj_1ptmNg21nWFJggDETNdJwkE8KVvHIDqtVxLlAEiuxjrTYGGspGrDA9jLYULzsnvn5sVsWqpYt0i3w-S1fasxQf5_slfiRhoXCD8iOzg5JFtKXKdL80qE5EJrOU_q8wBQMFjXTcJWvPjL6qKOUdudFyR29AZBJTcEAHZqCSk1LrtUJxeAsLUJ-xawRLEOTpTLTjsio33vtDlh5kAJT3OE5cxzlpwpbXMEfjDo6EX4cBeA_-m6gbKFsV9vcA-zkeEHHT604EAJgE2CtJOBu3OHHpJ7NM31CKA8SRGReJGCM42EWUfuWFtpLwDlJVJN0KuFJVbKM42EX73LDj4wClyBwaQQuRZNcred8Fhwbf46-AJ3ImZpKpMbG62QuZwsJDsCdhK_Cwp4maVUqk-WmXEqkpgeH1nOtJrmu1Li5_fsrT_83_Izs2tgkYcoiW6SeL1b6HKBLHrdJI7x9e-i1zYr9AngY3r8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA5uPuiLKCpOpwbxTQNdk_56HNOx6ToEN9hbaNN0jGknW_f_e5e2G4oKPvWhSUvvkt53d99dCLlVsR8nYImYG2OaUccJi8BMMUeD8dKplVgmFRMO3d5YPE2cSVkUtqrY7lVK0vypt8VuHGw7Q0qBAcZM1MguphnR5Rrb7WoVcS6wiZXYRFpsjLUUBVhgexlsKF5Wz_z82C8WqpYt0y_g81u-1Jih7iE5KPEjbRcKPyI7OjsmWZu-zrDNLw3NgdB0kdKXJaZgkNRM2-t8_Z7RgY5S2lkUlDv6ACCTGsIADQ2hUtOy1-qUYnCWFiG_YtYYlqHJUplpJ2TcfRx1eqw8SIEp7vCcOY7yU4UlruAPRi2dCD-OAvAffTdQtlC2q23uAXZyvKDlp1YcCAGwCbBWEnA3bvFTUs8WmT4jlAcJIjIvEjDG8TCLqH1LC-0l4JwkqkFalfCkKruM42EXb3LbHxkFLkHg0ghciga528z5KHps_Dn6BnQi52omsTU2XqcLOV9KcAD6Er4KiT0N0qxUJstNuZLYmh4cWs-1GuS-UuP29u-vPP_f8Guy1xuFAznoD58vyL6NBROGItkk9Xy51pcAY_L4yqzaT_Qi4A4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6VIFW9UKq2aiCFVdVbu-B4169jFAhQCEJqI9HTyvtwhAIOCs6lv74za5sAapGqnnzwrq192PPNzDffAnw2OtUWLRGPNaUZnbY8RzPFI4fGyxWBDXwqZnweH0_kt8vo8kEVv2e7tynJuqaBVJrKav_WFvurwjeBdp4TvcCDZC7XYF3SGRIdWB8c_Tw9bPeUEJIkreR93CWkyEtdjoWWmOPnJZpamj8_-JG9WisXxSMo-iR76o3S6DXk7XBqLspsb1npPfPridLj_4x3EzYaxMoG9RZ7Ay9c-RbKAft-RcLCbOyPoGbzgl0sKOlDNGo2WFbLm5Kdubxgw3lN8mMHCGuZpyiwsadwOtaou04ZhYNZHWSse01w4_u8mO_2Diajwx_DY94c3cCNiETFo8ikhaGiWvRA876zMtV5hh5rGmcmlCaMXSgSRGtRkvXTItCZlAjUEN3ZTMS6L95Dp5yX7gMwkVnCgEkusU2UUN7SpYGTLrHoDlnThX67QMo0uuZ0vMa1Wiky0-wpnD3lZ0_JLny573Nbq3o82_oTrruamStFYtx0nc7VbKHQ5ThROCqiEnWh124L1fwG7hSJ4aMLncRBF762q7y6_fdXbv1b8114eXEwUmcn56fb8CqkCg3PyexBp1os3UfETZXeaT6N3x-cBeQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Simple+Method+of+Predicting+Autumn+Leaf+Coloring+Date+Using+Machine+Learning+with+Spring+Leaf+Unfolding+Date&rft.jtitle=Asia-Pacific+journal+of+atmospheric+sciences&rft.au=Lee%2C+Sehyun&rft.au=Jeong%2C+Sujong&rft.au=Park%2C+Chang-Eui&rft.au=Kim%2C+Jongho&rft.date=2022-05-01&rft.issn=1976-7633&rft.eissn=1976-7951&rft.volume=58&rft.issue=2&rft.spage=219&rft.epage=226&rft_id=info:doi/10.1007%2Fs13143-021-00251-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13143_021_00251_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1976-7633&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1976-7633&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1976-7633&client=summon |