A Simple Method of Predicting Autumn Leaf Coloring Date Using Machine Learning with Spring Leaf Unfolding Date

Predicting plant phenology is considered the foundational for the forecast of ecosystem function and dynamics from species level to global level. However, the exact prediction of plant phenology remains limited because of the challenges associated with adding exact environmental and physiological cu...

Full description

Saved in:
Bibliographic Details
Published inAsia-Pacific journal of atmospheric sciences Vol. 58; no. 2; pp. 219 - 226
Main Authors Lee, Sehyun, Jeong, Sujong, Park, Chang-Eui, Kim, Jongho
Format Journal Article
LanguageEnglish
Published Seoul Korean Meteorological Society 01.05.2022
Springer Nature B.V
한국기상학회
Subjects
Online AccessGet full text
ISSN1976-7633
1976-7951
DOI10.1007/s13143-021-00251-4

Cover

Abstract Predicting plant phenology is considered the foundational for the forecast of ecosystem function and dynamics from species level to global level. However, the exact prediction of plant phenology remains limited because of the challenges associated with adding exact environmental and physiological cues to numerical models. In this study, we developed a simple data-based prediction model for leaf coloring dates of temperate deciduous trees by applying machine learning to datasets obtained from the newly established South Korean national-scale phenology network (NPN). Ground observations of spring leaf unfolding dates for 2009–2018 obtained from NPN together with data on the environmental drivers of leaf coloring (summer mean temperature, altitude) were utilized for the model. The model can be evaluated to have simulated the characteristics of observed leaf coloring dates relatively accurate, with only a two-day difference between the average observed and predicted leaf coloring dates. In addition, the model yielded an RMSE value of approximately 7 days, which is within the acceptable error criteria when compared to the sampling frequency, despite the use of only three input variables. Data-based machine learning using existing spring leaf unfolding data as an input help us predict autumn phenology better, even without precise species-specific physiological knowledge on leaf coloring mechanisms. Consequently, a phenology network across the globe based on steady observations will be favorable datasets for a phenology prediction model that can be applied widely.
AbstractList Predicting plant phenology is considered the foundational for the forecast of ecosystem function and dynamics from species level to global level. However, the exact prediction of plant phenology remains limited because of the challenges associated with adding exact environmental and physiological cues to numerical models. In this study, we developed a simple data-based prediction model for leaf coloring dates of temperate deciduous trees by applying machine learning to datasets obtained from the newly established South Korean national-scale phenology network (NPN). Ground observations of spring leaf unfolding dates for 2009–2018 obtained from NPN together with data on the environmental drivers of leaf coloring (summer mean temperature, altitude) were utilized for the model. The model can be evaluated to have simulated the characteristics of observed leaf coloring dates relatively accurate, with only a two-day difference between the average observed and predicted leaf coloring dates. In addition, the model yielded an RMSE value of approximately 7 days, which is within the acceptable error criteria when compared to the sampling frequency, despite the use of only three input variables. Data-based machine learning using existing spring leaf unfolding data as an input help us predict autumn phenology better, even without precise species-specific physiological knowledge on leaf coloring mechanisms. Consequently, a phenology network across the globe based on steady observations will be favorable datasets for a phenology prediction model that can be applied widely.
Predicting plant phenology is considered the foundational for the forecast of ecosystem function and dynamics from species level to global level. However, the exact prediction of plant phenology remains limited because of the challenges associated with adding exact environmental and physiological cues to numerical models. In this study, we developed a simple data-based prediction model for leaf coloring dates of temperate deciduous trees by applying machine learning to datasets obtained from the newly established South Korean national-scale phenology network (NPN). Ground observations of spring leaf unfolding dates for 2009–2018 obtained from NPN together with data on the environmental drivers of leaf coloring (summer mean temperature, altitude) were utilized for the model. The model can be evaluated to have simulated the characteristics of observed leaf coloring dates relatively accurate, with only a two-day difference between the average observed and predicted leaf coloring dates. In addition, the model yielded an RMSE value of approximately 7 days, which is within the acceptable error criteria when compared to the sampling frequency, despite the use of only three input variables. Data-based machine learning using existing spring leaf unfolding data as an input help us predict autumn phenology better, even without precise species-specific physiological knowledge on leaf coloring mechanisms. Consequently, a phenology network across the globe based on steady observations will be favorable datasets for a phenology prediction model that can be applied widely. KCI Citation Count: 0
Author Lee, Sehyun
Kim, Jongho
Park, Chang-Eui
Jeong, Sujong
Author_xml – sequence: 1
  givenname: Sehyun
  surname: Lee
  fullname: Lee, Sehyun
  organization: Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University
– sequence: 2
  givenname: Sujong
  orcidid: 0000-0003-4586-4534
  surname: Jeong
  fullname: Jeong, Sujong
  email: sujong@snu.ac.kr
  organization: Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Environmental Planning Institute, Seoul National University
– sequence: 3
  givenname: Chang-Eui
  surname: Park
  fullname: Park, Chang-Eui
  organization: Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Environmental Planning Institute, Seoul National University
– sequence: 4
  givenname: Jongho
  surname: Kim
  fullname: Kim, Jongho
  organization: Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002841679$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kU1LAzEQhoNUsFb_gKeAJw-r-dzdHEv9KlQUteeQZrM2uk1qkiL-e_dDETx4mmF4nmGY9xCMnHcGgBOMzjFCxUXEFDOaIYIzhAjHGdsDYyyKPCsEx6OfPqf0ABzH-IpaCmEiCB4DN4VPdrNtDLwzae0r6Gv4EExldbLuBU53abdxcGFUDWe-8aEbXqpk4DJ27Z3Sa-tMBwTXDT5sWsOnbc_11tLVvql-tCOwX6smmuPvOgHL66vn2W22uL-Zz6aLTFNOU8a5LmuNcsFKwhU2FStXSoiiLHOhCdMkN4QWnGNeCFzWaCUYE0RQwipB8xWmE3A27HWhlm_aSq9sX1-8fAty-vg8l-0-TpBo2dOB3Qb_vjMxyVe_C649T5KcElyyIkctVQ6UDj7GYGqpbVLJepeCso3ESHZhyCEM2YYh-zAka1XyR23_s1Hh83-JDlLsn2nC71X_WF842Jq7
CitedBy_id crossref_primary_10_3390_f16010174
crossref_primary_10_3390_f13071099
crossref_primary_10_1016_j_agrformet_2023_109623
Cites_doi 10.1126/science.abd8911
10.1007/s11430-019-9622-2
10.1038/nature06444
10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
10.1023/A:1010933404324
10.1111/gcb.12890
10.1111/geb.12206
10.1029/2006GB002888
10.1111/gcb.13311
10.1007/s00484-018-1534-2
10.1371/journal.pone.0057373
10.1111/j.1365-2486.2011.02397.x
10.5194/bg-13-3305-2016
10.1111/j.1365-2486.2011.02562.x
10.1038/s41558-020-0852-7
10.1088/1748-9326/8/2/024027
10.1073/pnas.1321727111
10.1080/17538947.2012.748848
10.1016/j.agrformet.2008.11.014
10.1038/nrm1358
10.1111/gcb.14021
10.1126/science.1186473
10.1007/s00484-011-0494-6
10.1007/978-1-4614-6849-3
10.1088/1748-9326/abe2cf
10.1007/s00484-010-0305-5
10.1007/s00484-020-01953-6
10.1146/annurev.arplant.57.032905.105316
ContentType Journal Article
Copyright Korean Meteorological Society and Springer Nature B.V. 2021
Korean Meteorological Society and Springer Nature B.V. 2021.
Copyright_xml – notice: Korean Meteorological Society and Springer Nature B.V. 2021
– notice: Korean Meteorological Society and Springer Nature B.V. 2021.
DBID AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
ACYCR
DOI 10.1007/s13143-021-00251-4
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Korean Citation Index
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
EISSN 1976-7951
EndPage 226
ExternalDocumentID oai_kci_go_kr_ARTI_9975209
10_1007_s13143_021_00251_4
GroupedDBID -EM
06D
0R~
0VY
1N0
203
2KG
2VQ
30V
4.4
406
408
40D
67M
67Z
8TC
96X
9ZL
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BGNMA
CSCUP
DBRKI
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GW5
H13
HF~
HMJXF
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
J0Z
JBSCW
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
P2P
PT4
R9I
RLLFE
ROL
RSV
S1Z
S27
S3B
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TDB
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
AFDZB
AFOHR
AHPBZ
ATHPR
AYFIA
CITATION
7TG
7TN
ABRTQ
F1W
H96
KL.
L.G
AAFGU
AAPBV
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
Z83
ID FETCH-LOGICAL-c353t-55c8fc0694825a1ed48ba9978869c24c26e23755157918f0b944929324d936b13
IEDL.DBID U2A
ISSN 1976-7633
IngestDate Tue Nov 21 21:46:33 EST 2023
Wed Sep 17 23:55:47 EDT 2025
Tue Jul 01 02:10:26 EDT 2025
Thu Apr 24 23:00:10 EDT 2025
Fri Feb 21 02:47:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Spring leaf unfolding
Plant phenology
Autumn leaf coloring date
Machine learning
Prediction model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-55c8fc0694825a1ed48ba9978869c24c26e23755157918f0b944929324d936b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4586-4534
PQID 2632184760
PQPubID 2044292
PageCount 8
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9975209
proquest_journals_2632184760
crossref_citationtrail_10_1007_s13143_021_00251_4
crossref_primary_10_1007_s13143_021_00251_4
springer_journals_10_1007_s13143_021_00251_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-01
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
– name: Heidelberg
PublicationTitle Asia-Pacific journal of atmospheric sciences
PublicationTitleAbbrev Asia-Pacific J Atmos Sci
PublicationYear 2022
Publisher Korean Meteorological Society
Springer Nature B.V
한국기상학회
Publisher_xml – name: Korean Meteorological Society
– name: Springer Nature B.V
– name: 한국기상학회
References Jeong, Ho, Gim, Brown (CR12) 2011; 17
Jeong (CR14) 2020; 10
Fu, Li, Zhou, Geng, Guo, Zhang (CR10) 2020; 63
Piao, Friedlingstein, Ciais, Viovy, Demarty (CR24) 2007; 21
CR19
CR18
Keenan, Richardson (CR15) 2015; 21
CR17
CR16
CR11
Rodriguez-Galiano, Sanchez-Castillo, Dash, Atkinson, Ojeda-Zujar (CR29) 2016; 13
Archetti, Richardson, O’Keefe, Delpierre (CR1) 2013; 8
Richardson, Anderson, Arain, Barr, Bohrer, Chen, Chen, Ciais, Davis, Desai, Dietze, Dragoni, Garrity, Gough, Grant, Hollinger, Margolis, McCaughey, Migliavacca, Monson, Munger, Poulter, Raczka, Ricciuto, Sahoo, Schaefer, Tian, Vargas, Verbeeck, Xiao, Xue (CR27) 2012; 18
Zani, Crowther, Mo, Renner, Zohner (CR31) 2020; 370
Liu, Fu, Zhu, Liu, Liu, Huang, Janssens, Piao (CR20) 2016; 22
CR3
CR6
Breiman (CR2) 2001; 45
CR8
CR7
CR28
Czernecki, Nowosad, Jabłońska (CR4) 2018; 62
CR9
Piao, Ciais, Friedlingstein, Peylin, Reichstein, Luyssaert, Margolis, Fang, Barr, Chen, Grelle, Hollinger, Laurila, Lindroth, Richardson, Vesala (CR25) 2008; 451
CR26
Rudin, Radin (CR30) 2019; 1
CR23
CR22
CR21
De’Ath, Fabricius (CR5) 2000; 81
Jeong, Medvigy (CR13) 2014; 23
TF Keenan (251_CR15) 2015; 21
S Piao (251_CR24) 2007; 21
AD Richardson (251_CR27) 2012; 18
SJ Jeong (251_CR12) 2011; 17
C Rudin (251_CR30) 2019; 1
S Piao (251_CR25) 2008; 451
VF Rodriguez-Galiano (251_CR29) 2016; 13
M Archetti (251_CR1) 2013; 8
Y Fu (251_CR10) 2020; 63
251_CR26
251_CR28
251_CR22
251_CR23
G De’Ath (251_CR5) 2000; 81
251_CR21
S Jeong (251_CR14) 2020; 10
B Czernecki (251_CR4) 2018; 62
D Zani (251_CR31) 2020; 370
251_CR7
251_CR6
251_CR3
251_CR19
L Breiman (251_CR2) 2001; 45
251_CR16
251_CR17
251_CR18
251_CR11
SJ Jeong (251_CR13) 2014; 23
251_CR9
Q Liu (251_CR20) 2016; 22
251_CR8
References_xml – volume: 370
  start-page: 1066
  issue: 6520
  year: 2020
  end-page: 1071
  ident: CR31
  article-title: Increased growing-season productivity drives earlier autumn leaf senescence in temperate trees
  publication-title: Science
  doi: 10.1126/science.abd8911
– ident: CR22
– ident: CR18
– volume: 63
  start-page: 1237
  issue: 9
  year: 2020
  end-page: 1247
  ident: CR10
  article-title: Progress in plant phenology modeling under global climate change
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-019-9622-2
– ident: CR16
– volume: 451
  start-page: 49
  issue: 7174
  year: 2008
  end-page: 52
  ident: CR25
  article-title: Net carbon dioxide losses of northern ecosystems in response to autumn warming
  publication-title: Nature
  doi: 10.1038/nature06444
– volume: 81
  start-page: 3178
  issue: 11
  year: 2000
  end-page: 3192
  ident: CR5
  article-title: Classification and regression trees: A powerful yet simple technique for ecological data analysis
  publication-title: Ecology
  doi: 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
– ident: CR6
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: CR2
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– ident: CR8
– volume: 21
  start-page: 2634
  issue: 7
  year: 2015
  end-page: 2641
  ident: CR15
  article-title: The timing of autumn senescence is affected by the timing of spring phenology: Implications for predictive models
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12890
– volume: 23
  start-page: 1245
  issue: 11
  year: 2014
  end-page: 1254
  ident: CR13
  article-title: Macroscale prediction of autumn leaf coloration throughout the continental United States
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12206
– ident: CR23
– ident: CR21
– volume: 1
  start-page: 1
  issue: 2
  year: 2019
  end-page: 9
  ident: CR30
  article-title: Why are we using black box models in ai when we don’t need to? A lesson from an explainable AI competition
  publication-title: Harv. Data Sci. Rev.
– volume: 21
  start-page: 1
  issue: 3
  year: 2007
  end-page: 11
  ident: CR24
  article-title: Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2006GB002888
– ident: CR19
– ident: CR3
– ident: CR17
– ident: CR11
– volume: 22
  start-page: 3702
  issue: 11
  year: 2016
  end-page: 3711
  ident: CR20
  article-title: Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13311
– ident: CR9
– volume: 62
  start-page: 1297
  issue: 7
  year: 2018
  end-page: 1309
  ident: CR4
  article-title: Machine learning modeling of plant phenology based on coupling satellite and gridded meteorological dataset
  publication-title: Int. J. Biometeorol
  doi: 10.1007/s00484-018-1534-2
– volume: 8
  start-page: e57373
  issue: 3
  year: 2013
  ident: CR1
  article-title: Predicting Climate Change Impacts on the Amount and Duration of Autumn Colors in a New England Forest
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0057373
– ident: CR7
– volume: 17
  start-page: 2385
  issue: 7
  year: 2011
  end-page: 2399
  ident: CR12
  article-title: Phenology shifts at start vs. end of growing season in temperate vegetation over the Northern Hemisphere for the period 1982–2008
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2011.02397.x
– ident: CR28
– ident: CR26
– volume: 13
  start-page: 3305
  issue: 11
  year: 2016
  end-page: 3317
  ident: CR29
  article-title: Modelling interannual variation in the spring and autumn land surface phenology of the European forest
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-3305-2016
– volume: 18
  start-page: 566
  issue: 2
  year: 2012
  end-page: 584
  ident: CR27
  article-title: Terrestrial biosphere models need better representation of vegetation phenology: Results from the North American Carbon Program Site Synthesis
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2011.02562.x
– volume: 10
  start-page: 712
  year: 2020
  end-page: 713
  ident: CR14
  article-title: Autumn greening in a warming climate
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/s41558-020-0852-7
– ident: 251_CR3
  doi: 10.1088/1748-9326/8/2/024027
– ident: 251_CR8
  doi: 10.1073/pnas.1321727111
– ident: 251_CR28
  doi: 10.1080/17538947.2012.748848
– volume: 23
  start-page: 1245
  issue: 11
  year: 2014
  ident: 251_CR13
  publication-title: Glob. Ecol. Biogeogr.
  doi: 10.1111/geb.12206
– ident: 251_CR6
  doi: 10.1016/j.agrformet.2008.11.014
– ident: 251_CR18
  doi: 10.1038/nrm1358
– ident: 251_CR11
– volume: 62
  start-page: 1297
  issue: 7
  year: 2018
  ident: 251_CR4
  publication-title: Int. J. Biometeorol
  doi: 10.1007/s00484-018-1534-2
– ident: 251_CR9
  doi: 10.1111/gcb.14021
– volume: 63
  start-page: 1237
  issue: 9
  year: 2020
  ident: 251_CR10
  publication-title: Sci. China Earth Sci.
  doi: 10.1007/s11430-019-9622-2
– volume: 17
  start-page: 2385
  issue: 7
  year: 2011
  ident: 251_CR12
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2011.02397.x
– ident: 251_CR16
  doi: 10.1126/science.1186473
– ident: 251_CR7
  doi: 10.1007/s00484-011-0494-6
– volume: 1
  start-page: 1
  issue: 2
  year: 2019
  ident: 251_CR30
  publication-title: Harv. Data Sci. Rev.
– ident: 251_CR17
  doi: 10.1007/978-1-4614-6849-3
– ident: 251_CR21
– volume: 18
  start-page: 566
  issue: 2
  year: 2012
  ident: 251_CR27
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/j.1365-2486.2011.02562.x
– ident: 251_CR23
  doi: 10.1088/1748-9326/abe2cf
– volume: 451
  start-page: 49
  issue: 7174
  year: 2008
  ident: 251_CR25
  publication-title: Nature
  doi: 10.1038/nature06444
– ident: 251_CR19
  doi: 10.1007/s00484-010-0305-5
– volume: 22
  start-page: 3702
  issue: 11
  year: 2016
  ident: 251_CR20
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.13311
– volume: 81
  start-page: 3178
  issue: 11
  year: 2000
  ident: 251_CR5
  publication-title: Ecology
  doi: 10.1890/0012-9658(2000)081[3178:CARTAP]2.0.CO;2
– volume: 21
  start-page: 1
  issue: 3
  year: 2007
  ident: 251_CR24
  publication-title: Glob. Biogeochem. Cycles
  doi: 10.1029/2006GB002888
– volume: 45
  start-page: 5
  year: 2001
  ident: 251_CR2
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 370
  start-page: 1066
  issue: 6520
  year: 2020
  ident: 251_CR31
  publication-title: Science
  doi: 10.1126/science.abd8911
– volume: 10
  start-page: 712
  year: 2020
  ident: 251_CR14
  publication-title: Nat. Clim. Chang.
  doi: 10.1038/s41558-020-0852-7
– ident: 251_CR22
  doi: 10.1007/s00484-020-01953-6
– volume: 13
  start-page: 3305
  issue: 11
  year: 2016
  ident: 251_CR29
  publication-title: Biogeosciences
  doi: 10.5194/bg-13-3305-2016
– volume: 8
  start-page: e57373
  issue: 3
  year: 2013
  ident: 251_CR1
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0057373
– volume: 21
  start-page: 2634
  issue: 7
  year: 2015
  ident: 251_CR15
  publication-title: Glob. Chang. Biol.
  doi: 10.1111/gcb.12890
– ident: 251_CR26
  doi: 10.1146/annurev.arplant.57.032905.105316
SSID ssj0002012921
ssib033405554
ssib060165787
Score 2.2650013
Snippet Predicting plant phenology is considered the foundational for the forecast of ecosystem function and dynamics from species level to global level. However, the...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 219
SubjectTerms Atmospheric Sciences
Autumn
Climatology
Deciduous trees
Earth and Environmental Science
Earth Sciences
Ecological function
Geophysics/Geodesy
Leaves
Machine learning
Mathematical models
Mean temperatures
Modelling
Numerical models
Original Article
Phenology
Physiology
Plant phenology
Prediction models
Spring
대기과학
Title A Simple Method of Predicting Autumn Leaf Coloring Date Using Machine Learning with Spring Leaf Unfolding Date
URI https://link.springer.com/article/10.1007/s13143-021-00251-4
https://www.proquest.com/docview/2632184760
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002841679
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Asia-Pacific Journal of Atmospheric Sciences, 2022, 58(2), , pp.219-226
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8ELl6MRo0oksZ40yZj7b6OC4L4gTFREjw1W9cRgg4D4__3vW6DYNTE0w5rt-y9du_3vn4l5FLFfpyAJWJujGlGHScsAjPFHA3GS6dWYplUzPDJHYzE_dgZl01hy6ravUpJmj_1ptmNg21nWFJggDETNdJwkE8KVvHIDqtVxLlAEiuxjrTYGGspGrDA9jLYULzsnvn5sVsWqpYt0i3w-S1fasxQf5_slfiRhoXCD8iOzg5JFtKXKdL80qE5EJrOU_q8wBQMFjXTcJWvPjL6qKOUdudFyR29AZBJTcEAHZqCSk1LrtUJxeAsLUJ-xawRLEOTpTLTjsio33vtDlh5kAJT3OE5cxzlpwpbXMEfjDo6EX4cBeA_-m6gbKFsV9vcA-zkeEHHT604EAJgE2CtJOBu3OHHpJ7NM31CKA8SRGReJGCM42EWUfuWFtpLwDlJVJN0KuFJVbKM42EX73LDj4wClyBwaQQuRZNcred8Fhwbf46-AJ3ImZpKpMbG62QuZwsJDsCdhK_Cwp4maVUqk-WmXEqkpgeH1nOtJrmu1Li5_fsrT_83_Izs2tgkYcoiW6SeL1b6HKBLHrdJI7x9e-i1zYr9AngY3r8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA5uPuiLKCpOpwbxTQNdk_56HNOx6ToEN9hbaNN0jGknW_f_e5e2G4oKPvWhSUvvkt53d99dCLlVsR8nYImYG2OaUccJi8BMMUeD8dKplVgmFRMO3d5YPE2cSVkUtqrY7lVK0vypt8VuHGw7Q0qBAcZM1MguphnR5Rrb7WoVcS6wiZXYRFpsjLUUBVhgexlsKF5Wz_z82C8WqpYt0y_g81u-1Jih7iE5KPEjbRcKPyI7OjsmWZu-zrDNLw3NgdB0kdKXJaZgkNRM2-t8_Z7RgY5S2lkUlDv6ACCTGsIADQ2hUtOy1-qUYnCWFiG_YtYYlqHJUplpJ2TcfRx1eqw8SIEp7vCcOY7yU4UlruAPRi2dCD-OAvAffTdQtlC2q23uAXZyvKDlp1YcCAGwCbBWEnA3bvFTUs8WmT4jlAcJIjIvEjDG8TCLqH1LC-0l4JwkqkFalfCkKruM42EXb3LbHxkFLkHg0ghciga528z5KHps_Dn6BnQi52omsTU2XqcLOV9KcAD6Er4KiT0N0qxUJstNuZLYmh4cWs-1GuS-UuP29u-vPP_f8Guy1xuFAznoD58vyL6NBROGItkk9Xy51pcAY_L4yqzaT_Qi4A4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6VIFW9UKq2aiCFVdVbu-B4169jFAhQCEJqI9HTyvtwhAIOCs6lv74za5sAapGqnnzwrq192PPNzDffAnw2OtUWLRGPNaUZnbY8RzPFI4fGyxWBDXwqZnweH0_kt8vo8kEVv2e7tynJuqaBVJrKav_WFvurwjeBdp4TvcCDZC7XYF3SGRIdWB8c_Tw9bPeUEJIkreR93CWkyEtdjoWWmOPnJZpamj8_-JG9WisXxSMo-iR76o3S6DXk7XBqLspsb1npPfPridLj_4x3EzYaxMoG9RZ7Ay9c-RbKAft-RcLCbOyPoGbzgl0sKOlDNGo2WFbLm5Kdubxgw3lN8mMHCGuZpyiwsadwOtaou04ZhYNZHWSse01w4_u8mO_2Diajwx_DY94c3cCNiETFo8ikhaGiWvRA876zMtV5hh5rGmcmlCaMXSgSRGtRkvXTItCZlAjUEN3ZTMS6L95Dp5yX7gMwkVnCgEkusU2UUN7SpYGTLrHoDlnThX67QMo0uuZ0vMa1Wiky0-wpnD3lZ0_JLny573Nbq3o82_oTrruamStFYtx0nc7VbKHQ5ThROCqiEnWh124L1fwG7hSJ4aMLncRBF762q7y6_fdXbv1b8114eXEwUmcn56fb8CqkCg3PyexBp1os3UfETZXeaT6N3x-cBeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Simple+Method+of+Predicting+Autumn+Leaf+Coloring+Date+Using+Machine+Learning+with+Spring+Leaf+Unfolding+Date&rft.jtitle=Asia-Pacific+journal+of+atmospheric+sciences&rft.au=Lee%2C+Sehyun&rft.au=Jeong%2C+Sujong&rft.au=Park%2C+Chang-Eui&rft.au=Kim%2C+Jongho&rft.date=2022-05-01&rft.issn=1976-7633&rft.eissn=1976-7951&rft.volume=58&rft.issue=2&rft.spage=219&rft.epage=226&rft_id=info:doi/10.1007%2Fs13143-021-00251-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13143_021_00251_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1976-7633&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1976-7633&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1976-7633&client=summon