A detection method of typical toxic mixed red tide algae in Qinhuangdao based on three-dimensional fluorescence spectroscopy
[Display omitted] •PCA-GA-SVM is used for identification of typical toxic red tide algae.•Dominant algal species in mixed red tide are identified in Qinhuangdao sea area.•The classification of typical toxic red tide algae in Qinhuangdao.•Such a procedure is green and environment-friendly. Red tides...
Saved in:
| Published in | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy Vol. 298; p. 122704 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier B.V
05.10.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1386-1425 1873-3557 |
| DOI | 10.1016/j.saa.2023.122704 |
Cover
| Abstract | [Display omitted]
•PCA-GA-SVM is used for identification of typical toxic red tide algae.•Dominant algal species in mixed red tide are identified in Qinhuangdao sea area.•The classification of typical toxic red tide algae in Qinhuangdao.•Such a procedure is green and environment-friendly.
Red tides occur every year in the Qinhuangdao sea area of China, including a variety of toxic algae and non-toxic algae. Toxic red tide algae have caused great damage to the marine aquaculture industry in China and seriously endangered human health, but most of non-toxic algae are important bait for marine plankton. Therefore, it is very important to identify the type of mixed red tide algae in Qinhuangdao sea area. In this paper, three-dimensional fluorescence spectroscopy and chemometrics were applied to the identification of typical toxic mixed red tide algae in Qinhuangdao. Firstly, the three-dimensional fluorescence spectrum data of typical mixed red tide algae in Qinhuangdao sea area were measured by f-7000 fluorescence spectrometer, and the contour map of algae samples was obtained. Secondly, the contour spectrum analysis is carried out to find the excitation wavelength of the peak position of the three-dimensional fluorescence spectrum and form the new three-dimensional fluorescence spectrum data selected by the feature interval. Then, the new three-dimensional fluorescence spectrum data are extracted by principal component analysis (PCA). Finally, the feature extraction data and the data without feature extraction are used as the input of the genetic optimization support vector machine (GA-SVM) and particle swarm optimization support vector machine (PSO-SVM) classification models, respectively, to obtain the classification model of mixed red tide algae, and the two feature extraction analysis methods and two classification algorithms are compared. The results show that the classification accuracy of the test set using the principal component feature extraction and GA-SVM classification method is 92.97 %, when the excitation wavelengths are 420 nm, 440 nm, 480 nm, 500 nm and 580 nm, and the emission wavelengths are 650–750 nm. Therefore, it is feasible and effective to apply the three-dimensional fluorescence spectrum characteristics and genetic optimization support vector machine classification method to the identification of toxic mixed red tide algae in Qinhuangdao sea area. |
|---|---|
| AbstractList | Red tides occur every year in the Qinhuangdao sea area of China, including a variety of toxic algae and non-toxic algae. Toxic red tide algae have caused great damage to the marine aquaculture industry in China and seriously endangered human health, but most of non-toxic algae are important bait for marine plankton. Therefore, it is very important to identify the type of mixed red tide algae in Qinhuangdao sea area. In this paper, three-dimensional fluorescence spectroscopy and chemometrics were applied to the identification of typical toxic mixed red tide algae in Qinhuangdao. Firstly, the three-dimensional fluorescence spectrum data of typical mixed red tide algae in Qinhuangdao sea area were measured by f-7000 fluorescence spectrometer, and the contour map of algae samples was obtained. Secondly, the contour spectrum analysis is carried out to find the excitation wavelength of the peak position of the three-dimensional fluorescence spectrum and form the new three-dimensional fluorescence spectrum data selected by the feature interval. Then, the new three-dimensional fluorescence spectrum data are extracted by principal component analysis (PCA). Finally, the feature extraction data and the data without feature extraction are used as the input of the genetic optimization support vector machine (GA-SVM) and particle swarm optimization support vector machine (PSO-SVM) classification models, respectively, to obtain the classification model of mixed red tide algae, and the two feature extraction analysis methods and two classification algorithms are compared. The results show that the classification accuracy of the test set using the principal component feature extraction and GA-SVM classification method is 92.97 %, when the excitation wavelengths are 420 nm, 440 nm, 480 nm, 500 nm and 580 nm, and the emission wavelengths are 650-750 nm. Therefore, it is feasible and effective to apply the three-dimensional fluorescence spectrum characteristics and genetic optimization support vector machine classification method to the identification of toxic mixed red tide algae in Qinhuangdao sea area. [Display omitted] •PCA-GA-SVM is used for identification of typical toxic red tide algae.•Dominant algal species in mixed red tide are identified in Qinhuangdao sea area.•The classification of typical toxic red tide algae in Qinhuangdao.•Such a procedure is green and environment-friendly. Red tides occur every year in the Qinhuangdao sea area of China, including a variety of toxic algae and non-toxic algae. Toxic red tide algae have caused great damage to the marine aquaculture industry in China and seriously endangered human health, but most of non-toxic algae are important bait for marine plankton. Therefore, it is very important to identify the type of mixed red tide algae in Qinhuangdao sea area. In this paper, three-dimensional fluorescence spectroscopy and chemometrics were applied to the identification of typical toxic mixed red tide algae in Qinhuangdao. Firstly, the three-dimensional fluorescence spectrum data of typical mixed red tide algae in Qinhuangdao sea area were measured by f-7000 fluorescence spectrometer, and the contour map of algae samples was obtained. Secondly, the contour spectrum analysis is carried out to find the excitation wavelength of the peak position of the three-dimensional fluorescence spectrum and form the new three-dimensional fluorescence spectrum data selected by the feature interval. Then, the new three-dimensional fluorescence spectrum data are extracted by principal component analysis (PCA). Finally, the feature extraction data and the data without feature extraction are used as the input of the genetic optimization support vector machine (GA-SVM) and particle swarm optimization support vector machine (PSO-SVM) classification models, respectively, to obtain the classification model of mixed red tide algae, and the two feature extraction analysis methods and two classification algorithms are compared. The results show that the classification accuracy of the test set using the principal component feature extraction and GA-SVM classification method is 92.97 %, when the excitation wavelengths are 420 nm, 440 nm, 480 nm, 500 nm and 580 nm, and the emission wavelengths are 650–750 nm. Therefore, it is feasible and effective to apply the three-dimensional fluorescence spectrum characteristics and genetic optimization support vector machine classification method to the identification of toxic mixed red tide algae in Qinhuangdao sea area. |
| ArticleNumber | 122704 |
| Author | Jin, Wa Jiang, Tian-jiu Li, Xin-yu Shi, Wei-jie Zhang, Bao-jun Bi, Wei-hong Zhao, Ji Zhang, Yong-feng Wang, Si-yuan Fu, Guang-wei |
| Author_xml | – sequence: 1 givenname: Si-yuan surname: Wang fullname: Wang, Si-yuan organization: School of Information Science and Engineering, Yanshan University, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Qinhuangdao, 066004, China – sequence: 2 givenname: Wei-hong surname: Bi fullname: Bi, Wei-hong email: bwhong@ysu.edu.cn organization: School of Information Science and Engineering, Yanshan University, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Qinhuangdao, 066004, China – sequence: 3 givenname: Xin-yu surname: Li fullname: Li, Xin-yu organization: School of Information Science and Engineering, Yanshan University, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Qinhuangdao, 066004, China – sequence: 4 givenname: Bao-jun surname: Zhang fullname: Zhang, Bao-jun organization: School of Information Science and Engineering, Yanshan University, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Qinhuangdao, 066004, China – sequence: 5 givenname: Guang-wei surname: Fu fullname: Fu, Guang-wei organization: School of Information Science and Engineering, Yanshan University, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Qinhuangdao, 066004, China – sequence: 6 givenname: Wa surname: Jin fullname: Jin, Wa organization: School of Information Science and Engineering, Yanshan University, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Qinhuangdao, 066004, China – sequence: 7 givenname: Tian-jiu surname: Jiang fullname: Jiang, Tian-jiu organization: Research Center for Harmful Algae and marine biology, Jinan University, Guangzhou ,510632, China – sequence: 8 givenname: Ji surname: Zhao fullname: Zhao, Ji organization: Protection center of Qinhuangdao National Aquatic germplasm resources reserve, Qinhuangdao, 066100, China – sequence: 9 givenname: Wei-jie surname: Shi fullname: Shi, Wei-jie organization: Marine Environmental Monitoring Central Station of Qinhuangdao, SOA, Qinhuangdao 066002, China – sequence: 10 givenname: Yong-feng surname: Zhang fullname: Zhang, Yong-feng organization: Marine Environmental Monitoring Central Station of Qinhuangdao, SOA, Qinhuangdao 066002, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37120954$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kMtqGzEUhkVwya15gGyKXmBcXWc8dBVMkxQCpZC90BydiWVmRoMkFxv68JVx0kUXXggJ9H__kb4bspjChITcc7bkjNdft8tk7VIwIZdciIapC3LNV42spNbNopzlqq64EvqK3KS0ZYzxlWCX5Eo2XLBWq2vy54E6zAjZh4mOmDfB0dDTfJg92IHmsPdAR79HR2NZ2TukdnizSP1Ef_lps7PTm7OBdjaV-1KSNxGxcn7EKZXSUtIPuxAxAU6ANM1lWAwJwnz4TD71dkh4977fktfH76_r5-rl59OP9cNLBVLLXCmpHci673Wj27rWfbsCVJ3uWsehbUVnOVMNCKg7rjvWg0IFtnFc8lYJK2_Jl1PtvOtGdGaOfrTxYD4slAA_BaA8LEXs_0U4M0fTZmuKaXM0bU6mC9P8x4DP9qgxR-uHs-S3E4nly789RpPAH904H4sb44I_Q_8FKXOZwQ |
| CitedBy_id | crossref_primary_10_1016_j_watres_2025_123281 crossref_primary_10_1016_j_ijbiomac_2025_141758 crossref_primary_10_1016_j_fbio_2024_105324 crossref_primary_10_1007_s11356_024_35841_y crossref_primary_10_1016_j_saa_2023_123304 crossref_primary_10_3389_fmars_2024_1434225 crossref_primary_10_1016_j_measurement_2024_115177 crossref_primary_10_1088_1361_6501_ad3a87 |
| Cites_doi | 10.1016/j.asoc.2021.107541 10.1016/j.csr.2016.04.006 10.1016/j.ecoenv.2018.04.043 10.1016/j.chemosphere.2020.125819 10.1364/OE.26.00A251 10.1016/j.anucene.2022.109138 10.1023/A:1016026607048 10.1016/j.hal.2019.05.011 10.1016/j.istruc.2022.08.089 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. Copyright © 2023 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright © 2023 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM |
| DOI | 10.1016/j.saa.2023.122704 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
| DatabaseTitleList | MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| EISSN | 1873-3557 |
| ExternalDocumentID | 37120954 10_1016_j_saa_2023_122704 S138614252300389X |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABMAC ABYKQ ACDAQ ACRLP ADBBV ADECG ADEZE AEBSH AEKER AFKWA AFTJW AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCB SDF SDG SDP SES SEW SPC SPCBC SSK SSZ T5K WH7 XPP ZMT ~G- 1RT 53G 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FGOYB HZ~ M36 R2- UHS ~HD CGR CUY CVF ECM EIF NPM |
| ID | FETCH-LOGICAL-c353t-435dc36ff5759665f98ce4b5b9d1c992ba1047c2c6b15b0fc4e4ca7d131942a3 |
| IEDL.DBID | .~1 |
| ISSN | 1386-1425 |
| IngestDate | Thu Jan 02 22:52:28 EST 2025 Thu Apr 24 23:07:53 EDT 2025 Wed Oct 29 21:07:56 EDT 2025 Fri Feb 23 02:35:37 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Toxic mixed red tide PSO-GA-SVM Three-dimensional fluorescence spectroscopy Qinghuangdao |
| Language | English |
| License | Copyright © 2023 Elsevier B.V. All rights reserved. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c353t-435dc36ff5759665f98ce4b5b9d1c992ba1047c2c6b15b0fc4e4ca7d131942a3 |
| PMID | 37120954 |
| ParticipantIDs | pubmed_primary_37120954 crossref_primary_10_1016_j_saa_2023_122704 crossref_citationtrail_10_1016_j_saa_2023_122704 elsevier_sciencedirect_doi_10_1016_j_saa_2023_122704 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-05 |
| PublicationDateYYYYMMDD | 2023-10-05 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy |
| PublicationTitleAlternate | Spectrochim Acta A Mol Biomol Spectrosc |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhao, Zhang, Yin, Yang, Hu, Chen, Liu, Liu (b0050) 2018; 26 Casasanta, Falcini, Garra (b0095) 2022; 432 Si-yuan, Xin-yu, Yu, Si-yu, Wei-hong, Tian-jiu (b0065) 2021; 261 Zhou, Hou (b0090) 2022; 173 Qingsong Xiong, Haibei Xiong, Qingzhao Kong, Xiangyong Ni, Ying Li, Cheng Yuan. Machine learning-driven seismic failure mode identification of reinforced concrete shear walls based on PCA feature extraction,J.Structures,44 2022:1429-1442. Xi-hui, Chun-ying, Yun-fang (b0045) 2005; 5 Beutler, Wiltshire, Meyer, Moldaenke, Lüring, Meyerhöfer, Hansenl, Dau (b0040) 2002; 72 Si-yuan, Wei-hong, Wen-yu, Xin-yu, Bao-jun, Guang-wei, Tian-jiu (b0070) 2022; 268 Li, Li, Ma, Wang (b0100) 2022; 156 HUAN Qing-liu, HUANG Xiang, WU Ni, JIANG Tao, JIANG Tian-jiu Identification of ichthyotoxic Microalgal Species and Its Hemolytic Activity by Three-Dimensional Fluorescence spectra, J . Spectroscopy and Spectral Analysis, 33 2 2013:399-403. Huang, Liang, Pan, Xie, Jiang, Jiang (b0035) 2020; 247 Song, Wang, Yue, Zhang (b0015) 2016; 122 Yao, Lei, Zhao, Wang, Chen (b0030) 2019; 86 Ren-Cheng, Zhang, Liu, Chen, Geng, Dai, Lin, Tang, Kong, Yan, Zhou (b0020) 2021; 103 Zhang, Ren-Cheng, Zhao, Kong, Chen, Niu, Xiang (b0025) 2021; 109 Dechun, Ma, Kong, Guo, Miao, Xiuli (b0075) 2022; 184 Cui, Xinxin, Dong, Cen, Cao, Pan, Songhui, Linjian (b0010) 2018; 159 Li, Gao, Song, Shang, Jiang (b0005) 2019; 227 Huang, Liu, Zhang, Mi, Tong, Xiao, Shuai (b0080) 2021; 109 Estran, Souchaud, Abitbol (b0105) 2022; 203 Su rongguo, Liang shengkang, Hu xupeng, Wang xiulin. Discrimination of 6 toxic red tide alage occurred in East China Sea by 3D dimensional fluorescence, J . Marine Environmental Science, 3 2008:265-268. Zhao (10.1016/j.saa.2023.122704_b0050) 2018; 26 Estran (10.1016/j.saa.2023.122704_b0105) 2022; 203 Xi-hui (10.1016/j.saa.2023.122704_b0045) 2005; 5 10.1016/j.saa.2023.122704_b0060 Dechun (10.1016/j.saa.2023.122704_b0075) 2022; 184 Si-yuan (10.1016/j.saa.2023.122704_b0070) 2022; 268 10.1016/j.saa.2023.122704_b0085 Beutler (10.1016/j.saa.2023.122704_b0040) 2002; 72 Cui (10.1016/j.saa.2023.122704_b0010) 2018; 159 Si-yuan (10.1016/j.saa.2023.122704_b0065) 2021; 261 Li (10.1016/j.saa.2023.122704_b0100) 2022; 156 Zhou (10.1016/j.saa.2023.122704_b0090) 2022; 173 Huang (10.1016/j.saa.2023.122704_b0035) 2020; 247 Casasanta (10.1016/j.saa.2023.122704_b0095) 2022; 432 Song (10.1016/j.saa.2023.122704_b0015) 2016; 122 Ren-Cheng (10.1016/j.saa.2023.122704_b0020) 2021; 103 Huang (10.1016/j.saa.2023.122704_b0080) 2021; 109 10.1016/j.saa.2023.122704_b0055 Li (10.1016/j.saa.2023.122704_b0005) 2019; 227 Yao (10.1016/j.saa.2023.122704_b0030) 2019; 86 Zhang (10.1016/j.saa.2023.122704_b0025) 2021; 109 |
| References_xml | – volume: 103 year: 2021 ident: b0020 article-title: The dinoflagellate Alexandrium catenella producing only carbamate toxins may account for the seafood poisonings in Qinhuangdao, China publication-title: J. Harmful Algae – volume: 26 year: 2018 ident: b0050 article-title: Online analysis of algae in water by discrete three-dimensional fluorescence spectroscopy publication-title: J. Optics express – volume: 268 year: 2022 ident: b0070 article-title: Identification of ichthyotoxic red tide algae based on three-dimensional fluorescence spectra and particle swarm optimization support vector machine publication-title: J. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy – volume: 247 year: 2020 ident: b0035 article-title: Hemolytic and cytotoxic activity from cultures of Aureococcus anophagefferens—a causative species of brown tides in the north-western Bohai Sea, China publication-title: J. Chemosphere – volume: 72 start-page: 39 year: 2002 end-page: 53 ident: b0040 article-title: A fluorometric method for the differentiation of algal populations in vivo, and in situ publication-title: J. Photosynthesis Res. – reference: Su rongguo, Liang shengkang, Hu xupeng, Wang xiulin. Discrimination of 6 toxic red tide alage occurred in East China Sea by 3D dimensional fluorescence, J . Marine Environmental Science, 3 2008:265-268. – volume: 173 year: 2022 ident: b0090 article-title: Implementation of fault isolation for molten salt reactor using PCA and contribution analysis publication-title: J. Annals of Nuclear Energy – volume: 432 year: 2022 ident: b0095 article-title: Beer-Lambert law in photochemistry: a new approach publication-title: J. J. Photochem. Photobiol. A: Chem. – volume: 122 start-page: 77 year: 2016 end-page: 84 ident: b0015 article-title: Temporal and spatial characteristics of harmful algal blooms in the Bohai Sea during 1952–2014 publication-title: J. Continental Shelf Res. – volume: 86 start-page: 106 year: 2019 end-page: 118 ident: b0030 article-title: Spatial-temporal variation of Aureococcus anophagefferens blooms in relation to environmental factors in the coastal waters of Qinhuangdao, China publication-title: J. Harmful Algae – volume: 203 start-page: 17506 year: 2022 ident: b0105 article-title: Using a genetic algorithm to optimize an expert credit rating model publication-title: J. Expert Syst. Applications – volume: 227 year: 2019 ident: b0005 article-title: Characteristics and influence of green tide drift and dissipation in Shandong Rongcheng coastal water based on remote sensing publication-title: J. Estuarine, Coastal and Shelf Sci. – volume: 159 start-page: 85 year: 2018 end-page: 93 ident: b0010 article-title: Relationship between phytoplankton community succession and environmental parameters in Qinhuangdao coastal areas, China: a region with recurrent brown tide outbreaks publication-title: J. Ecotoxicol. Environ. Safety – volume: 184 start-page: 614 year: 2022 end-page: 626 ident: b0075 article-title: Support vector regression with heuristic optimization algorithms for predicting the ground surface displacement induced by EPB shield tunneling publication-title: J. Gondwana Res. – reference: Qingsong Xiong, Haibei Xiong, Qingzhao Kong, Xiangyong Ni, Ying Li, Cheng Yuan. Machine learning-driven seismic failure mode identification of reinforced concrete shear walls based on PCA feature extraction,J.Structures,44 2022:1429-1442. – volume: 109 year: 2021 ident: b0025 article-title: Distribution of Aureococcus anophagefferens in relation to environmental factors and implications for brown tide seed sources in Qinhuangdao coastal waters, China publication-title: J. Harmful Algae – reference: HUAN Qing-liu, HUANG Xiang, WU Ni, JIANG Tao, JIANG Tian-jiu Identification of ichthyotoxic Microalgal Species and Its Hemolytic Activity by Three-Dimensional Fluorescence spectra, J . Spectroscopy and Spectral Analysis, 33 2 2013:399-403. – volume: 109 year: 2021 ident: b0080 article-title: Railway dangerous goods transportation system risk identification: comparisons among SVM, PSO-SVM, GA-SVM and GS-SVM publication-title: J. Appl. Soft Comput. – volume: 5 start-page: 581 year: 2005 end-page: 584 ident: b0045 article-title: Studies on the algorithm and identification of three dimensional fluorescence spectroscopy of algae publication-title: J. China Environ. Sci. – volume: 261 year: 2021 ident: b0065 article-title: Identification of paralytic shellfish poison producing algae based on three-dimensional fluorescence spectra and quaternion principal component analysis publication-title: J. Spectrochimica Acta Part A: Mol. Biomol. Spectroscopy – volume: 156 year: 2022 ident: b0100 article-title: Two-phase flow patterns identification in porous media using feature extraction and SVM publication-title: J. Int. J. Multiphase Flow – volume: 261 year: 2021 ident: 10.1016/j.saa.2023.122704_b0065 article-title: Identification of paralytic shellfish poison producing algae based on three-dimensional fluorescence spectra and quaternion principal component analysis publication-title: J. Spectrochimica Acta Part A: Mol. Biomol. Spectroscopy – volume: 109 year: 2021 ident: 10.1016/j.saa.2023.122704_b0080 article-title: Railway dangerous goods transportation system risk identification: comparisons among SVM, PSO-SVM, GA-SVM and GS-SVM publication-title: J. Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107541 – volume: 268 year: 2022 ident: 10.1016/j.saa.2023.122704_b0070 article-title: Identification of ichthyotoxic red tide algae based on three-dimensional fluorescence spectra and particle swarm optimization support vector machine publication-title: J. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy – volume: 122 start-page: 77 year: 2016 ident: 10.1016/j.saa.2023.122704_b0015 article-title: Temporal and spatial characteristics of harmful algal blooms in the Bohai Sea during 1952–2014 publication-title: J. Continental Shelf Res. doi: 10.1016/j.csr.2016.04.006 – volume: 432 year: 2022 ident: 10.1016/j.saa.2023.122704_b0095 article-title: Beer-Lambert law in photochemistry: a new approach publication-title: J. J. Photochem. Photobiol. A: Chem. – volume: 159 start-page: 85 year: 2018 ident: 10.1016/j.saa.2023.122704_b0010 article-title: Relationship between phytoplankton community succession and environmental parameters in Qinhuangdao coastal areas, China: a region with recurrent brown tide outbreaks publication-title: J. Ecotoxicol. Environ. Safety doi: 10.1016/j.ecoenv.2018.04.043 – volume: 109 year: 2021 ident: 10.1016/j.saa.2023.122704_b0025 article-title: Distribution of Aureococcus anophagefferens in relation to environmental factors and implications for brown tide seed sources in Qinhuangdao coastal waters, China publication-title: J. Harmful Algae – volume: 5 start-page: 581 year: 2005 ident: 10.1016/j.saa.2023.122704_b0045 article-title: Studies on the algorithm and identification of three dimensional fluorescence spectroscopy of algae publication-title: J. China Environ. Sci. – ident: 10.1016/j.saa.2023.122704_b0055 – volume: 103 year: 2021 ident: 10.1016/j.saa.2023.122704_b0020 article-title: The dinoflagellate Alexandrium catenella producing only carbamate toxins may account for the seafood poisonings in Qinhuangdao, China publication-title: J. Harmful Algae – volume: 156 year: 2022 ident: 10.1016/j.saa.2023.122704_b0100 article-title: Two-phase flow patterns identification in porous media using feature extraction and SVM publication-title: J. Int. J. Multiphase Flow – volume: 203 start-page: 17506 year: 2022 ident: 10.1016/j.saa.2023.122704_b0105 article-title: Using a genetic algorithm to optimize an expert credit rating model publication-title: J. Expert Syst. Applications – volume: 247 year: 2020 ident: 10.1016/j.saa.2023.122704_b0035 article-title: Hemolytic and cytotoxic activity from cultures of Aureococcus anophagefferens—a causative species of brown tides in the north-western Bohai Sea, China publication-title: J. Chemosphere doi: 10.1016/j.chemosphere.2020.125819 – volume: 227 year: 2019 ident: 10.1016/j.saa.2023.122704_b0005 article-title: Characteristics and influence of green tide drift and dissipation in Shandong Rongcheng coastal water based on remote sensing publication-title: J. Estuarine, Coastal and Shelf Sci. – volume: 26 issue: 6 year: 2018 ident: 10.1016/j.saa.2023.122704_b0050 article-title: Online analysis of algae in water by discrete three-dimensional fluorescence spectroscopy publication-title: J. Optics express doi: 10.1364/OE.26.00A251 – volume: 184 start-page: 614 year: 2022 ident: 10.1016/j.saa.2023.122704_b0075 article-title: Support vector regression with heuristic optimization algorithms for predicting the ground surface displacement induced by EPB shield tunneling publication-title: J. Gondwana Res. – volume: 173 year: 2022 ident: 10.1016/j.saa.2023.122704_b0090 article-title: Implementation of fault isolation for molten salt reactor using PCA and contribution analysis publication-title: J. Annals of Nuclear Energy doi: 10.1016/j.anucene.2022.109138 – volume: 72 start-page: 39 issue: 1 year: 2002 ident: 10.1016/j.saa.2023.122704_b0040 article-title: A fluorometric method for the differentiation of algal populations in vivo, and in situ publication-title: J. Photosynthesis Res. doi: 10.1023/A:1016026607048 – ident: 10.1016/j.saa.2023.122704_b0060 – volume: 86 start-page: 106 year: 2019 ident: 10.1016/j.saa.2023.122704_b0030 article-title: Spatial-temporal variation of Aureococcus anophagefferens blooms in relation to environmental factors in the coastal waters of Qinhuangdao, China publication-title: J. Harmful Algae doi: 10.1016/j.hal.2019.05.011 – ident: 10.1016/j.saa.2023.122704_b0085 doi: 10.1016/j.istruc.2022.08.089 |
| SSID | ssj0001820 |
| Score | 2.4415066 |
| Snippet | [Display omitted]
•PCA-GA-SVM is used for identification of typical toxic red tide algae.•Dominant algal species in mixed red tide are identified in... Red tides occur every year in the Qinhuangdao sea area of China, including a variety of toxic algae and non-toxic algae. Toxic red tide algae have caused great... |
| SourceID | pubmed crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 122704 |
| SubjectTerms | Algorithms Harmful Algal Bloom Humans Principal Component Analysis PSO-GA-SVM Qinghuangdao Spectrometry, Fluorescence - methods Support Vector Machine Three-dimensional fluorescence spectroscopy Toxic mixed red tide |
| Title | A detection method of typical toxic mixed red tide algae in Qinhuangdao based on three-dimensional fluorescence spectroscopy |
| URI | https://dx.doi.org/10.1016/j.saa.2023.122704 https://www.ncbi.nlm.nih.gov/pubmed/37120954 |
| Volume | 298 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3557 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001820 issn: 1386-1425 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-3557 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001820 issn: 1386-1425 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-3557 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001820 issn: 1386-1425 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-3557 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001820 issn: 1386-1425 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwGLWmIcQuExswukHlAyektI39OT-OVcXUgahADKm3yD8hU0mqNpU2adrfPn9OMuDADhxycGQnkZ_tz0ne9x4h74wHVSuQkUuEiACnVDbJIEoZBykFwMQGtsUimX-Hj0ux3COzPhcGaZXd2t-u6WG17s6Mu94cr8ty_C3mmY8tDD9rokrcEjPYIUUXg9Hdb5oHCpSHl64sibB2_2czcLy2EqWHGB_FjKWdV9u_Y9Mfgef8OTnsdox02j7UEdmz1TF5NuuN2o7J08Di1NsX5HZKjW0CuaqirTc0rR1tbtYIBW3q61LTX-W1NXTjj6Y0lmIuh6VlRb-W1c-drH4YWVOMbb5pRRsPtY0MWgC08h3UrXb1JmhAaUtDnibqYdbrm5fk8vzD5WwedfYKkeaCN5HfKBnNE-fQozNJhMszbUEJlZtY5zlTEmUcNNOJioWaOA0WtExN7GctMMlfkf2qruxrQjEZxHlkpXQJpJLnBnKwqcqViZnLzIBM-n4tdCc9jg4Yq6LnmF0VHooCoShaKAbk_UOTdau78Vhl6MEq_ho8hY8LjzU7aYF9uANPMZVYwOn_XfCMHGApcP3EG7LfbHb2rd-zNGoYBuWQPJlefJovfGnx5fM9Fcnrhg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qRahsEJRXeXrBCimdiX2dx7IaUQ1QKiEGaXaRnxBUktE0I7US6rfX10lauqALFtkkdhL52L52cu45AO9sANVoVInPpEyQhlQxLTDJuUClJOLURbbFcTb_jp-WcrkFszEXhmiVw9zfz-lxth7OTIbWnKzqevItFUWILZw-a5JK3PIO3EXJc9qB7V9c8zxIoTzuuoosoeLjr81I8jpVpD3ExX7KeT6Ytf07OP0VeQ4fwoNhycgO-rd6BFuu2YWd2ejUtgv3Io3TnD6GPwfMui6yqxrWm0Oz1rPufEVYsK49qw37XZ85y9bh6GrrGCVzOFY37Gvd_Nyo5odVLaPgFqo2rAtYu8SSB0Cv38H8yaZdRxEo41hM1CRBzHZ1_gQWhx8Ws3ky-CskRkjRJWGlZI3IvCeTziyTviyMQy11aVNTllwr0nEw3GQ6lXrqDTo0KrdpGLbIlXgK203buOfAKBvEB2iV8hnmSpQWS3S5LrVNuS_sHkzHdq3MoD1OFhgn1Ugy-1UFKCqCouqh2IP3V1VWvfDGbYVxBKu60XuqEBhuq_asB_bqCSKnXGKJL_7vhm9hZ774clQdfTz-_BLu05VI_JOvYLtbb9zrsIDp9JvYQS8BDnjsDw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+detection+method+of+typical+toxic+mixed+red+tide+algae+in+Qinhuangdao+based+on+three-dimensional+fluorescence+spectroscopy&rft.jtitle=Spectrochimica+acta.+Part+A%2C+Molecular+and+biomolecular+spectroscopy&rft.au=Wang%2C+Si-yuan&rft.au=Bi%2C+Wei-hong&rft.au=Li%2C+Xin-yu&rft.au=Zhang%2C+Bao-jun&rft.date=2023-10-05&rft.pub=Elsevier+B.V&rft.issn=1386-1425&rft.volume=298&rft_id=info:doi/10.1016%2Fj.saa.2023.122704&rft.externalDocID=S138614252300389X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-1425&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-1425&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-1425&client=summon |