A detection method of typical toxic mixed red tide algae in Qinhuangdao based on three-dimensional fluorescence spectroscopy

[Display omitted] •PCA-GA-SVM is used for identification of typical toxic red tide algae.•Dominant algal species in mixed red tide are identified in Qinhuangdao sea area.•The classification of typical toxic red tide algae in Qinhuangdao.•Such a procedure is green and environment-friendly. Red tides...

Full description

Saved in:
Bibliographic Details
Published inSpectrochimica acta. Part A, Molecular and biomolecular spectroscopy Vol. 298; p. 122704
Main Authors Wang, Si-yuan, Bi, Wei-hong, Li, Xin-yu, Zhang, Bao-jun, Fu, Guang-wei, Jin, Wa, Jiang, Tian-jiu, Zhao, Ji, Shi, Wei-jie, Zhang, Yong-feng
Format Journal Article
LanguageEnglish
Published England Elsevier B.V 05.10.2023
Subjects
Online AccessGet full text
ISSN1386-1425
1873-3557
DOI10.1016/j.saa.2023.122704

Cover

Abstract [Display omitted] •PCA-GA-SVM is used for identification of typical toxic red tide algae.•Dominant algal species in mixed red tide are identified in Qinhuangdao sea area.•The classification of typical toxic red tide algae in Qinhuangdao.•Such a procedure is green and environment-friendly. Red tides occur every year in the Qinhuangdao sea area of China, including a variety of toxic algae and non-toxic algae. Toxic red tide algae have caused great damage to the marine aquaculture industry in China and seriously endangered human health, but most of non-toxic algae are important bait for marine plankton. Therefore, it is very important to identify the type of mixed red tide algae in Qinhuangdao sea area. In this paper, three-dimensional fluorescence spectroscopy and chemometrics were applied to the identification of typical toxic mixed red tide algae in Qinhuangdao. Firstly, the three-dimensional fluorescence spectrum data of typical mixed red tide algae in Qinhuangdao sea area were measured by f-7000 fluorescence spectrometer, and the contour map of algae samples was obtained. Secondly, the contour spectrum analysis is carried out to find the excitation wavelength of the peak position of the three-dimensional fluorescence spectrum and form the new three-dimensional fluorescence spectrum data selected by the feature interval. Then, the new three-dimensional fluorescence spectrum data are extracted by principal component analysis (PCA). Finally, the feature extraction data and the data without feature extraction are used as the input of the genetic optimization support vector machine (GA-SVM) and particle swarm optimization support vector machine (PSO-SVM) classification models, respectively, to obtain the classification model of mixed red tide algae, and the two feature extraction analysis methods and two classification algorithms are compared. The results show that the classification accuracy of the test set using the principal component feature extraction and GA-SVM classification method is 92.97 %, when the excitation wavelengths are 420 nm, 440 nm, 480 nm, 500 nm and 580 nm, and the emission wavelengths are 650–750 nm. Therefore, it is feasible and effective to apply the three-dimensional fluorescence spectrum characteristics and genetic optimization support vector machine classification method to the identification of toxic mixed red tide algae in Qinhuangdao sea area.
AbstractList Red tides occur every year in the Qinhuangdao sea area of China, including a variety of toxic algae and non-toxic algae. Toxic red tide algae have caused great damage to the marine aquaculture industry in China and seriously endangered human health, but most of non-toxic algae are important bait for marine plankton. Therefore, it is very important to identify the type of mixed red tide algae in Qinhuangdao sea area. In this paper, three-dimensional fluorescence spectroscopy and chemometrics were applied to the identification of typical toxic mixed red tide algae in Qinhuangdao. Firstly, the three-dimensional fluorescence spectrum data of typical mixed red tide algae in Qinhuangdao sea area were measured by f-7000 fluorescence spectrometer, and the contour map of algae samples was obtained. Secondly, the contour spectrum analysis is carried out to find the excitation wavelength of the peak position of the three-dimensional fluorescence spectrum and form the new three-dimensional fluorescence spectrum data selected by the feature interval. Then, the new three-dimensional fluorescence spectrum data are extracted by principal component analysis (PCA). Finally, the feature extraction data and the data without feature extraction are used as the input of the genetic optimization support vector machine (GA-SVM) and particle swarm optimization support vector machine (PSO-SVM) classification models, respectively, to obtain the classification model of mixed red tide algae, and the two feature extraction analysis methods and two classification algorithms are compared. The results show that the classification accuracy of the test set using the principal component feature extraction and GA-SVM classification method is 92.97 %, when the excitation wavelengths are 420 nm, 440 nm, 480 nm, 500 nm and 580 nm, and the emission wavelengths are 650-750 nm. Therefore, it is feasible and effective to apply the three-dimensional fluorescence spectrum characteristics and genetic optimization support vector machine classification method to the identification of toxic mixed red tide algae in Qinhuangdao sea area.
[Display omitted] •PCA-GA-SVM is used for identification of typical toxic red tide algae.•Dominant algal species in mixed red tide are identified in Qinhuangdao sea area.•The classification of typical toxic red tide algae in Qinhuangdao.•Such a procedure is green and environment-friendly. Red tides occur every year in the Qinhuangdao sea area of China, including a variety of toxic algae and non-toxic algae. Toxic red tide algae have caused great damage to the marine aquaculture industry in China and seriously endangered human health, but most of non-toxic algae are important bait for marine plankton. Therefore, it is very important to identify the type of mixed red tide algae in Qinhuangdao sea area. In this paper, three-dimensional fluorescence spectroscopy and chemometrics were applied to the identification of typical toxic mixed red tide algae in Qinhuangdao. Firstly, the three-dimensional fluorescence spectrum data of typical mixed red tide algae in Qinhuangdao sea area were measured by f-7000 fluorescence spectrometer, and the contour map of algae samples was obtained. Secondly, the contour spectrum analysis is carried out to find the excitation wavelength of the peak position of the three-dimensional fluorescence spectrum and form the new three-dimensional fluorescence spectrum data selected by the feature interval. Then, the new three-dimensional fluorescence spectrum data are extracted by principal component analysis (PCA). Finally, the feature extraction data and the data without feature extraction are used as the input of the genetic optimization support vector machine (GA-SVM) and particle swarm optimization support vector machine (PSO-SVM) classification models, respectively, to obtain the classification model of mixed red tide algae, and the two feature extraction analysis methods and two classification algorithms are compared. The results show that the classification accuracy of the test set using the principal component feature extraction and GA-SVM classification method is 92.97 %, when the excitation wavelengths are 420 nm, 440 nm, 480 nm, 500 nm and 580 nm, and the emission wavelengths are 650–750 nm. Therefore, it is feasible and effective to apply the three-dimensional fluorescence spectrum characteristics and genetic optimization support vector machine classification method to the identification of toxic mixed red tide algae in Qinhuangdao sea area.
ArticleNumber 122704
Author Jin, Wa
Jiang, Tian-jiu
Li, Xin-yu
Shi, Wei-jie
Zhang, Bao-jun
Bi, Wei-hong
Zhao, Ji
Zhang, Yong-feng
Wang, Si-yuan
Fu, Guang-wei
Author_xml – sequence: 1
  givenname: Si-yuan
  surname: Wang
  fullname: Wang, Si-yuan
  organization: School of Information Science and Engineering, Yanshan University, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Qinhuangdao, 066004, China
– sequence: 2
  givenname: Wei-hong
  surname: Bi
  fullname: Bi, Wei-hong
  email: bwhong@ysu.edu.cn
  organization: School of Information Science and Engineering, Yanshan University, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Qinhuangdao, 066004, China
– sequence: 3
  givenname: Xin-yu
  surname: Li
  fullname: Li, Xin-yu
  organization: School of Information Science and Engineering, Yanshan University, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Qinhuangdao, 066004, China
– sequence: 4
  givenname: Bao-jun
  surname: Zhang
  fullname: Zhang, Bao-jun
  organization: School of Information Science and Engineering, Yanshan University, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Qinhuangdao, 066004, China
– sequence: 5
  givenname: Guang-wei
  surname: Fu
  fullname: Fu, Guang-wei
  organization: School of Information Science and Engineering, Yanshan University, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Qinhuangdao, 066004, China
– sequence: 6
  givenname: Wa
  surname: Jin
  fullname: Jin, Wa
  organization: School of Information Science and Engineering, Yanshan University, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Qinhuangdao, 066004, China
– sequence: 7
  givenname: Tian-jiu
  surname: Jiang
  fullname: Jiang, Tian-jiu
  organization: Research Center for Harmful Algae and marine biology, Jinan University, Guangzhou ,510632, China
– sequence: 8
  givenname: Ji
  surname: Zhao
  fullname: Zhao, Ji
  organization: Protection center of Qinhuangdao National Aquatic germplasm resources reserve, Qinhuangdao, 066100, China
– sequence: 9
  givenname: Wei-jie
  surname: Shi
  fullname: Shi, Wei-jie
  organization: Marine Environmental Monitoring Central Station of Qinhuangdao, SOA, Qinhuangdao 066002, China
– sequence: 10
  givenname: Yong-feng
  surname: Zhang
  fullname: Zhang, Yong-feng
  organization: Marine Environmental Monitoring Central Station of Qinhuangdao, SOA, Qinhuangdao 066002, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37120954$$D View this record in MEDLINE/PubMed
BookMark eNp9kMtqGzEUhkVwya15gGyKXmBcXWc8dBVMkxQCpZC90BydiWVmRoMkFxv68JVx0kUXXggJ9H__kb4bspjChITcc7bkjNdft8tk7VIwIZdciIapC3LNV42spNbNopzlqq64EvqK3KS0ZYzxlWCX5Eo2XLBWq2vy54E6zAjZh4mOmDfB0dDTfJg92IHmsPdAR79HR2NZ2TukdnizSP1Ef_lps7PTm7OBdjaV-1KSNxGxcn7EKZXSUtIPuxAxAU6ANM1lWAwJwnz4TD71dkh4977fktfH76_r5-rl59OP9cNLBVLLXCmpHci673Wj27rWfbsCVJ3uWsehbUVnOVMNCKg7rjvWg0IFtnFc8lYJK2_Jl1PtvOtGdGaOfrTxYD4slAA_BaA8LEXs_0U4M0fTZmuKaXM0bU6mC9P8x4DP9qgxR-uHs-S3E4nly789RpPAH904H4sb44I_Q_8FKXOZwQ
CitedBy_id crossref_primary_10_1016_j_watres_2025_123281
crossref_primary_10_1016_j_ijbiomac_2025_141758
crossref_primary_10_1016_j_fbio_2024_105324
crossref_primary_10_1007_s11356_024_35841_y
crossref_primary_10_1016_j_saa_2023_123304
crossref_primary_10_3389_fmars_2024_1434225
crossref_primary_10_1016_j_measurement_2024_115177
crossref_primary_10_1088_1361_6501_ad3a87
Cites_doi 10.1016/j.asoc.2021.107541
10.1016/j.csr.2016.04.006
10.1016/j.ecoenv.2018.04.043
10.1016/j.chemosphere.2020.125819
10.1364/OE.26.00A251
10.1016/j.anucene.2022.109138
10.1023/A:1016026607048
10.1016/j.hal.2019.05.011
10.1016/j.istruc.2022.08.089
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1016/j.saa.2023.122704
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1873-3557
ExternalDocumentID 37120954
10_1016_j_saa_2023_122704
S138614252300389X
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABMAC
ABYKQ
ACDAQ
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCB
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSZ
T5K
WH7
XPP
ZMT
~G-
1RT
53G
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
HZ~
M36
R2-
UHS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
ID FETCH-LOGICAL-c353t-435dc36ff5759665f98ce4b5b9d1c992ba1047c2c6b15b0fc4e4ca7d131942a3
IEDL.DBID .~1
ISSN 1386-1425
IngestDate Thu Jan 02 22:52:28 EST 2025
Thu Apr 24 23:07:53 EDT 2025
Wed Oct 29 21:07:56 EDT 2025
Fri Feb 23 02:35:37 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Toxic mixed red tide
PSO-GA-SVM
Three-dimensional fluorescence spectroscopy
Qinghuangdao
Language English
License Copyright © 2023 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-435dc36ff5759665f98ce4b5b9d1c992ba1047c2c6b15b0fc4e4ca7d131942a3
PMID 37120954
ParticipantIDs pubmed_primary_37120954
crossref_primary_10_1016_j_saa_2023_122704
crossref_citationtrail_10_1016_j_saa_2023_122704
elsevier_sciencedirect_doi_10_1016_j_saa_2023_122704
PublicationCentury 2000
PublicationDate 2023-10-05
PublicationDateYYYYMMDD 2023-10-05
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-05
  day: 05
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy
PublicationTitleAlternate Spectrochim Acta A Mol Biomol Spectrosc
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhao, Zhang, Yin, Yang, Hu, Chen, Liu, Liu (b0050) 2018; 26
Casasanta, Falcini, Garra (b0095) 2022; 432
Si-yuan, Xin-yu, Yu, Si-yu, Wei-hong, Tian-jiu (b0065) 2021; 261
Zhou, Hou (b0090) 2022; 173
Qingsong Xiong, Haibei Xiong, Qingzhao Kong, Xiangyong Ni, Ying Li, Cheng Yuan. Machine learning-driven seismic failure mode identification of reinforced concrete shear walls based on PCA feature extraction,J.Structures,44 2022:1429-1442.
Xi-hui, Chun-ying, Yun-fang (b0045) 2005; 5
Beutler, Wiltshire, Meyer, Moldaenke, Lüring, Meyerhöfer, Hansenl, Dau (b0040) 2002; 72
Si-yuan, Wei-hong, Wen-yu, Xin-yu, Bao-jun, Guang-wei, Tian-jiu (b0070) 2022; 268
Li, Li, Ma, Wang (b0100) 2022; 156
HUAN Qing-liu, HUANG Xiang, WU Ni, JIANG Tao, JIANG Tian-jiu Identification of ichthyotoxic Microalgal Species and Its Hemolytic Activity by Three-Dimensional Fluorescence spectra, J . Spectroscopy and Spectral Analysis, 33 2 2013:399-403.
Huang, Liang, Pan, Xie, Jiang, Jiang (b0035) 2020; 247
Song, Wang, Yue, Zhang (b0015) 2016; 122
Yao, Lei, Zhao, Wang, Chen (b0030) 2019; 86
Ren-Cheng, Zhang, Liu, Chen, Geng, Dai, Lin, Tang, Kong, Yan, Zhou (b0020) 2021; 103
Zhang, Ren-Cheng, Zhao, Kong, Chen, Niu, Xiang (b0025) 2021; 109
Dechun, Ma, Kong, Guo, Miao, Xiuli (b0075) 2022; 184
Cui, Xinxin, Dong, Cen, Cao, Pan, Songhui, Linjian (b0010) 2018; 159
Li, Gao, Song, Shang, Jiang (b0005) 2019; 227
Huang, Liu, Zhang, Mi, Tong, Xiao, Shuai (b0080) 2021; 109
Estran, Souchaud, Abitbol (b0105) 2022; 203
Su rongguo, Liang shengkang, Hu xupeng, Wang xiulin. Discrimination of 6 toxic red tide alage occurred in East China Sea by 3D dimensional fluorescence, J . Marine Environmental Science, 3 2008:265-268.
Zhao (10.1016/j.saa.2023.122704_b0050) 2018; 26
Estran (10.1016/j.saa.2023.122704_b0105) 2022; 203
Xi-hui (10.1016/j.saa.2023.122704_b0045) 2005; 5
10.1016/j.saa.2023.122704_b0060
Dechun (10.1016/j.saa.2023.122704_b0075) 2022; 184
Si-yuan (10.1016/j.saa.2023.122704_b0070) 2022; 268
10.1016/j.saa.2023.122704_b0085
Beutler (10.1016/j.saa.2023.122704_b0040) 2002; 72
Cui (10.1016/j.saa.2023.122704_b0010) 2018; 159
Si-yuan (10.1016/j.saa.2023.122704_b0065) 2021; 261
Li (10.1016/j.saa.2023.122704_b0100) 2022; 156
Zhou (10.1016/j.saa.2023.122704_b0090) 2022; 173
Huang (10.1016/j.saa.2023.122704_b0035) 2020; 247
Casasanta (10.1016/j.saa.2023.122704_b0095) 2022; 432
Song (10.1016/j.saa.2023.122704_b0015) 2016; 122
Ren-Cheng (10.1016/j.saa.2023.122704_b0020) 2021; 103
Huang (10.1016/j.saa.2023.122704_b0080) 2021; 109
10.1016/j.saa.2023.122704_b0055
Li (10.1016/j.saa.2023.122704_b0005) 2019; 227
Yao (10.1016/j.saa.2023.122704_b0030) 2019; 86
Zhang (10.1016/j.saa.2023.122704_b0025) 2021; 109
References_xml – volume: 103
  year: 2021
  ident: b0020
  article-title: The dinoflagellate Alexandrium catenella producing only carbamate toxins may account for the seafood poisonings in Qinhuangdao, China
  publication-title: J. Harmful Algae
– volume: 26
  year: 2018
  ident: b0050
  article-title: Online analysis of algae in water by discrete three-dimensional fluorescence spectroscopy
  publication-title: J. Optics express
– volume: 268
  year: 2022
  ident: b0070
  article-title: Identification of ichthyotoxic red tide algae based on three-dimensional fluorescence spectra and particle swarm optimization support vector machine
  publication-title: J. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
– volume: 247
  year: 2020
  ident: b0035
  article-title: Hemolytic and cytotoxic activity from cultures of Aureococcus anophagefferens—a causative species of brown tides in the north-western Bohai Sea, China
  publication-title: J. Chemosphere
– volume: 72
  start-page: 39
  year: 2002
  end-page: 53
  ident: b0040
  article-title: A fluorometric method for the differentiation of algal populations in vivo, and in situ
  publication-title: J. Photosynthesis Res.
– reference: Su rongguo, Liang shengkang, Hu xupeng, Wang xiulin. Discrimination of 6 toxic red tide alage occurred in East China Sea by 3D dimensional fluorescence, J . Marine Environmental Science, 3 2008:265-268.
– volume: 173
  year: 2022
  ident: b0090
  article-title: Implementation of fault isolation for molten salt reactor using PCA and contribution analysis
  publication-title: J. Annals of Nuclear Energy
– volume: 432
  year: 2022
  ident: b0095
  article-title: Beer-Lambert law in photochemistry: a new approach
  publication-title: J. J. Photochem. Photobiol. A: Chem.
– volume: 122
  start-page: 77
  year: 2016
  end-page: 84
  ident: b0015
  article-title: Temporal and spatial characteristics of harmful algal blooms in the Bohai Sea during 1952–2014
  publication-title: J. Continental Shelf Res.
– volume: 86
  start-page: 106
  year: 2019
  end-page: 118
  ident: b0030
  article-title: Spatial-temporal variation of Aureococcus anophagefferens blooms in relation to environmental factors in the coastal waters of Qinhuangdao, China
  publication-title: J. Harmful Algae
– volume: 203
  start-page: 17506
  year: 2022
  ident: b0105
  article-title: Using a genetic algorithm to optimize an expert credit rating model
  publication-title: J. Expert Syst. Applications
– volume: 227
  year: 2019
  ident: b0005
  article-title: Characteristics and influence of green tide drift and dissipation in Shandong Rongcheng coastal water based on remote sensing
  publication-title: J. Estuarine, Coastal and Shelf Sci.
– volume: 159
  start-page: 85
  year: 2018
  end-page: 93
  ident: b0010
  article-title: Relationship between phytoplankton community succession and environmental parameters in Qinhuangdao coastal areas, China: a region with recurrent brown tide outbreaks
  publication-title: J. Ecotoxicol. Environ. Safety
– volume: 184
  start-page: 614
  year: 2022
  end-page: 626
  ident: b0075
  article-title: Support vector regression with heuristic optimization algorithms for predicting the ground surface displacement induced by EPB shield tunneling
  publication-title: J. Gondwana Res.
– reference: Qingsong Xiong, Haibei Xiong, Qingzhao Kong, Xiangyong Ni, Ying Li, Cheng Yuan. Machine learning-driven seismic failure mode identification of reinforced concrete shear walls based on PCA feature extraction,J.Structures,44 2022:1429-1442.
– volume: 109
  year: 2021
  ident: b0025
  article-title: Distribution of Aureococcus anophagefferens in relation to environmental factors and implications for brown tide seed sources in Qinhuangdao coastal waters, China
  publication-title: J. Harmful Algae
– reference: HUAN Qing-liu, HUANG Xiang, WU Ni, JIANG Tao, JIANG Tian-jiu Identification of ichthyotoxic Microalgal Species and Its Hemolytic Activity by Three-Dimensional Fluorescence spectra, J . Spectroscopy and Spectral Analysis, 33 2 2013:399-403.
– volume: 109
  year: 2021
  ident: b0080
  article-title: Railway dangerous goods transportation system risk identification: comparisons among SVM, PSO-SVM, GA-SVM and GS-SVM
  publication-title: J. Appl. Soft Comput.
– volume: 5
  start-page: 581
  year: 2005
  end-page: 584
  ident: b0045
  article-title: Studies on the algorithm and identification of three dimensional fluorescence spectroscopy of algae
  publication-title: J. China Environ. Sci.
– volume: 261
  year: 2021
  ident: b0065
  article-title: Identification of paralytic shellfish poison producing algae based on three-dimensional fluorescence spectra and quaternion principal component analysis
  publication-title: J. Spectrochimica Acta Part A: Mol. Biomol. Spectroscopy
– volume: 156
  year: 2022
  ident: b0100
  article-title: Two-phase flow patterns identification in porous media using feature extraction and SVM
  publication-title: J. Int. J. Multiphase Flow
– volume: 261
  year: 2021
  ident: 10.1016/j.saa.2023.122704_b0065
  article-title: Identification of paralytic shellfish poison producing algae based on three-dimensional fluorescence spectra and quaternion principal component analysis
  publication-title: J. Spectrochimica Acta Part A: Mol. Biomol. Spectroscopy
– volume: 109
  year: 2021
  ident: 10.1016/j.saa.2023.122704_b0080
  article-title: Railway dangerous goods transportation system risk identification: comparisons among SVM, PSO-SVM, GA-SVM and GS-SVM
  publication-title: J. Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107541
– volume: 268
  year: 2022
  ident: 10.1016/j.saa.2023.122704_b0070
  article-title: Identification of ichthyotoxic red tide algae based on three-dimensional fluorescence spectra and particle swarm optimization support vector machine
  publication-title: J. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
– volume: 122
  start-page: 77
  year: 2016
  ident: 10.1016/j.saa.2023.122704_b0015
  article-title: Temporal and spatial characteristics of harmful algal blooms in the Bohai Sea during 1952–2014
  publication-title: J. Continental Shelf Res.
  doi: 10.1016/j.csr.2016.04.006
– volume: 432
  year: 2022
  ident: 10.1016/j.saa.2023.122704_b0095
  article-title: Beer-Lambert law in photochemistry: a new approach
  publication-title: J. J. Photochem. Photobiol. A: Chem.
– volume: 159
  start-page: 85
  year: 2018
  ident: 10.1016/j.saa.2023.122704_b0010
  article-title: Relationship between phytoplankton community succession and environmental parameters in Qinhuangdao coastal areas, China: a region with recurrent brown tide outbreaks
  publication-title: J. Ecotoxicol. Environ. Safety
  doi: 10.1016/j.ecoenv.2018.04.043
– volume: 109
  year: 2021
  ident: 10.1016/j.saa.2023.122704_b0025
  article-title: Distribution of Aureococcus anophagefferens in relation to environmental factors and implications for brown tide seed sources in Qinhuangdao coastal waters, China
  publication-title: J. Harmful Algae
– volume: 5
  start-page: 581
  year: 2005
  ident: 10.1016/j.saa.2023.122704_b0045
  article-title: Studies on the algorithm and identification of three dimensional fluorescence spectroscopy of algae
  publication-title: J. China Environ. Sci.
– ident: 10.1016/j.saa.2023.122704_b0055
– volume: 103
  year: 2021
  ident: 10.1016/j.saa.2023.122704_b0020
  article-title: The dinoflagellate Alexandrium catenella producing only carbamate toxins may account for the seafood poisonings in Qinhuangdao, China
  publication-title: J. Harmful Algae
– volume: 156
  year: 2022
  ident: 10.1016/j.saa.2023.122704_b0100
  article-title: Two-phase flow patterns identification in porous media using feature extraction and SVM
  publication-title: J. Int. J. Multiphase Flow
– volume: 203
  start-page: 17506
  year: 2022
  ident: 10.1016/j.saa.2023.122704_b0105
  article-title: Using a genetic algorithm to optimize an expert credit rating model
  publication-title: J. Expert Syst. Applications
– volume: 247
  year: 2020
  ident: 10.1016/j.saa.2023.122704_b0035
  article-title: Hemolytic and cytotoxic activity from cultures of Aureococcus anophagefferens—a causative species of brown tides in the north-western Bohai Sea, China
  publication-title: J. Chemosphere
  doi: 10.1016/j.chemosphere.2020.125819
– volume: 227
  year: 2019
  ident: 10.1016/j.saa.2023.122704_b0005
  article-title: Characteristics and influence of green tide drift and dissipation in Shandong Rongcheng coastal water based on remote sensing
  publication-title: J. Estuarine, Coastal and Shelf Sci.
– volume: 26
  issue: 6
  year: 2018
  ident: 10.1016/j.saa.2023.122704_b0050
  article-title: Online analysis of algae in water by discrete three-dimensional fluorescence spectroscopy
  publication-title: J. Optics express
  doi: 10.1364/OE.26.00A251
– volume: 184
  start-page: 614
  year: 2022
  ident: 10.1016/j.saa.2023.122704_b0075
  article-title: Support vector regression with heuristic optimization algorithms for predicting the ground surface displacement induced by EPB shield tunneling
  publication-title: J. Gondwana Res.
– volume: 173
  year: 2022
  ident: 10.1016/j.saa.2023.122704_b0090
  article-title: Implementation of fault isolation for molten salt reactor using PCA and contribution analysis
  publication-title: J. Annals of Nuclear Energy
  doi: 10.1016/j.anucene.2022.109138
– volume: 72
  start-page: 39
  issue: 1
  year: 2002
  ident: 10.1016/j.saa.2023.122704_b0040
  article-title: A fluorometric method for the differentiation of algal populations in vivo, and in situ
  publication-title: J. Photosynthesis Res.
  doi: 10.1023/A:1016026607048
– ident: 10.1016/j.saa.2023.122704_b0060
– volume: 86
  start-page: 106
  year: 2019
  ident: 10.1016/j.saa.2023.122704_b0030
  article-title: Spatial-temporal variation of Aureococcus anophagefferens blooms in relation to environmental factors in the coastal waters of Qinhuangdao, China
  publication-title: J. Harmful Algae
  doi: 10.1016/j.hal.2019.05.011
– ident: 10.1016/j.saa.2023.122704_b0085
  doi: 10.1016/j.istruc.2022.08.089
SSID ssj0001820
Score 2.4415066
Snippet [Display omitted] •PCA-GA-SVM is used for identification of typical toxic red tide algae.•Dominant algal species in mixed red tide are identified in...
Red tides occur every year in the Qinhuangdao sea area of China, including a variety of toxic algae and non-toxic algae. Toxic red tide algae have caused great...
SourceID pubmed
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 122704
SubjectTerms Algorithms
Harmful Algal Bloom
Humans
Principal Component Analysis
PSO-GA-SVM
Qinghuangdao
Spectrometry, Fluorescence - methods
Support Vector Machine
Three-dimensional fluorescence spectroscopy
Toxic mixed red tide
Title A detection method of typical toxic mixed red tide algae in Qinhuangdao based on three-dimensional fluorescence spectroscopy
URI https://dx.doi.org/10.1016/j.saa.2023.122704
https://www.ncbi.nlm.nih.gov/pubmed/37120954
Volume 298
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-3557
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001820
  issn: 1386-1425
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-3557
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001820
  issn: 1386-1425
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-3557
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001820
  issn: 1386-1425
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-3557
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001820
  issn: 1386-1425
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwGLWmIcQuExswukHlAyektI39OT-OVcXUgahADKm3yD8hU0mqNpU2adrfPn9OMuDADhxycGQnkZ_tz0ne9x4h74wHVSuQkUuEiACnVDbJIEoZBykFwMQGtsUimX-Hj0ux3COzPhcGaZXd2t-u6WG17s6Mu94cr8ty_C3mmY8tDD9rokrcEjPYIUUXg9Hdb5oHCpSHl64sibB2_2czcLy2EqWHGB_FjKWdV9u_Y9Mfgef8OTnsdox02j7UEdmz1TF5NuuN2o7J08Di1NsX5HZKjW0CuaqirTc0rR1tbtYIBW3q61LTX-W1NXTjj6Y0lmIuh6VlRb-W1c-drH4YWVOMbb5pRRsPtY0MWgC08h3UrXb1JmhAaUtDnibqYdbrm5fk8vzD5WwedfYKkeaCN5HfKBnNE-fQozNJhMszbUEJlZtY5zlTEmUcNNOJioWaOA0WtExN7GctMMlfkf2qruxrQjEZxHlkpXQJpJLnBnKwqcqViZnLzIBM-n4tdCc9jg4Yq6LnmF0VHooCoShaKAbk_UOTdau78Vhl6MEq_ho8hY8LjzU7aYF9uANPMZVYwOn_XfCMHGApcP3EG7LfbHb2rd-zNGoYBuWQPJlefJovfGnx5fM9Fcnrhg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qRahsEJRXeXrBCimdiX2dx7IaUQ1QKiEGaXaRnxBUktE0I7US6rfX10lauqALFtkkdhL52L52cu45AO9sANVoVInPpEyQhlQxLTDJuUClJOLURbbFcTb_jp-WcrkFszEXhmiVw9zfz-lxth7OTIbWnKzqevItFUWILZw-a5JK3PIO3EXJc9qB7V9c8zxIoTzuuoosoeLjr81I8jpVpD3ExX7KeT6Ytf07OP0VeQ4fwoNhycgO-rd6BFuu2YWd2ejUtgv3Io3TnD6GPwfMui6yqxrWm0Oz1rPufEVYsK49qw37XZ85y9bh6GrrGCVzOFY37Gvd_Nyo5odVLaPgFqo2rAtYu8SSB0Cv38H8yaZdRxEo41hM1CRBzHZ1_gQWhx8Ws3ky-CskRkjRJWGlZI3IvCeTziyTviyMQy11aVNTllwr0nEw3GQ6lXrqDTo0KrdpGLbIlXgK203buOfAKBvEB2iV8hnmSpQWS3S5LrVNuS_sHkzHdq3MoD1OFhgn1Ugy-1UFKCqCouqh2IP3V1VWvfDGbYVxBKu60XuqEBhuq_asB_bqCSKnXGKJL_7vhm9hZ774clQdfTz-_BLu05VI_JOvYLtbb9zrsIDp9JvYQS8BDnjsDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+detection+method+of+typical+toxic+mixed+red+tide+algae+in+Qinhuangdao+based+on+three-dimensional+fluorescence+spectroscopy&rft.jtitle=Spectrochimica+acta.+Part+A%2C+Molecular+and+biomolecular+spectroscopy&rft.au=Wang%2C+Si-yuan&rft.au=Bi%2C+Wei-hong&rft.au=Li%2C+Xin-yu&rft.au=Zhang%2C+Bao-jun&rft.date=2023-10-05&rft.pub=Elsevier+B.V&rft.issn=1386-1425&rft.volume=298&rft_id=info:doi/10.1016%2Fj.saa.2023.122704&rft.externalDocID=S138614252300389X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-1425&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-1425&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-1425&client=summon