Influence of cracks on nonlinear motion of high-temperature superconducting magnetic levitation system
The magnetic levitation system of a high-temperature superconductor (HTSC) has nonlinear vibration under external excitation, in which the HTSC is subjected to a sizable electromagnetic force. The high-temperature superconducting block is a brittle material, which will crack when subject to heavy pr...
Saved in:
Published in | AIP advances Vol. 13; no. 10; pp. 105232 - 105232-7 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.10.2023
AIP Publishing LLC |
Subjects | |
Online Access | Get full text |
ISSN | 2158-3226 2158-3226 |
DOI | 10.1063/5.0171548 |
Cover
Abstract | The magnetic levitation system of a high-temperature superconductor (HTSC) has nonlinear vibration under external excitation, in which the HTSC is subjected to a sizable electromagnetic force. The high-temperature superconducting block is a brittle material, which will crack when subject to heavy pressure. Microfracture of superconductors is inevitable, especially in superconducting magnetic levitation systems. Our paper studies the fracture behavior of a YBaCuO superconducting magnetic levitation system under a large electromagnetic force based on nonlinear bifurcated motions. The E − J constitutive model and the current vector T method are applied to obtain the electromagnetic force of the bulk superconductor during vibration. We analyze the effects of five lengths of the central crack on vibration displacements, the electric field distribution, and the electromagnetic force of superconductors. Without damages, the system does not have apparent bifurcation motion. For the inner cracks, the system has obvious bifurcation motions. The results show that the cracks have a meaningful influence on the nonlinear vibration of the superconducting magnetic levitation system. The displacement of the suspended permanent magnet in bifurcation motion increases with the increase in the crack length, and the collision occurs when the crack length reaches 15 mm. |
---|---|
AbstractList | The magnetic levitation system of a high-temperature superconductor (HTSC) has nonlinear vibration under external excitation, in which the HTSC is subjected to a sizable electromagnetic force. The high-temperature superconducting block is a brittle material, which will crack when subject to heavy pressure. Microfracture of superconductors is inevitable, especially in superconducting magnetic levitation systems. Our paper studies the fracture behavior of a YBaCuO superconducting magnetic levitation system under a large electromagnetic force based on nonlinear bifurcated motions. The E − J constitutive model and the current vector T method are applied to obtain the electromagnetic force of the bulk superconductor during vibration. We analyze the effects of five lengths of the central crack on vibration displacements, the electric field distribution, and the electromagnetic force of superconductors. Without damages, the system does not have apparent bifurcation motion. For the inner cracks, the system has obvious bifurcation motions. The results show that the cracks have a meaningful influence on the nonlinear vibration of the superconducting magnetic levitation system. The displacement of the suspended permanent magnet in bifurcation motion increases with the increase in the crack length, and the collision occurs when the crack length reaches 15 mm. The magnetic levitation system of a high-temperature superconductor (HTSC) has nonlinear vibration under external excitation, in which the HTSC is subjected to a sizable electromagnetic force. The high-temperature superconducting block is a brittle material, which will crack when subject to heavy pressure. Microfracture of superconductors is inevitable, especially in superconducting magnetic levitation systems. Our paper studies the fracture behavior of a YBaCuO superconducting magnetic levitation system under a large electromagnetic force based on nonlinear bifurcated motions. The E − J constitutive model and the current vector T method are applied to obtain the electromagnetic force of the bulk superconductor during vibration. We analyze the effects of five lengths of the central crack on vibration displacements, the electric field distribution, and the electromagnetic force of superconductors. Without damages, the system does not have apparent bifurcation motion. For the inner cracks, the system has obvious bifurcation motions. The results show that the cracks have a meaningful influence on the nonlinear vibration of the superconducting magnetic levitation system. The displacement of the suspended permanent magnet in bifurcation motion increases with the increase in the crack length, and the collision occurs when the crack length reaches 15 mm. |
Author | Li, Hui Huang, Liao-Liao Huang, Yi |
Author_xml | – sequence: 1 givenname: Hui surname: Li fullname: Li, Hui organization: College of Mathematics and Physics, Guangxi Minzu University, Nanning 530006, People’s Republic of China – sequence: 2 givenname: Liao-Liao surname: Huang fullname: Huang, Liao-Liao organization: College of Mathematics and Physics, Guangxi Minzu University, Nanning 530006, People’s Republic of China – sequence: 3 givenname: Yi surname: Huang fullname: Huang, Yi organization: College of Mathematics and Physics, Guangxi Minzu University, Nanning 530006, People’s Republic of China |
BookMark | eNp9kUtLxDAQx4Mo-Dz4DQqeFLrm2aZHER8LC170HNJkUrt2kzVpBb-90S7iyVxmMvnNP_M4Rvs-eEDonOAFwRW7FgtMaiK43ENHlAhZMkqr_T_-ITpLaY3z4Q3Bkh8ht_RumMAbKIIrTNTmLRXBF1l56D3oWGzC2OdAfn3tu9dyhM0Woh6nCEWasmuCt5MZe98VG915GHtTDPDRj_onL32mnHKKDpweEpzt7Al6ub97vn0sV08Py9ubVWmYYGPJhJOEC9ZAy6SpbAsVzhdK6xZqQR24VgKVVtrcKLNOWts02hCgmGNua3aClrOuDXqttrHf6Pipgu7VTyDETumYKxxAEUkYZ6zSvDFc16yRrqGiMpTXllrBstbFrLWN4X2CNKp1mKLP5SsqJcF5nlxm6nKmTAwpRXC_vxKsvreihNptJbNXM5vMbjz_wF_ur432 |
CODEN | AAIDBI |
Cites_doi | 10.1109/tasc.2007.902104 10.1088/0953-2048/21/9/095010 10.1016/s0921-4534(03)01000-1 10.1016/0375-9601(94)90140-6 10.1016/j.isci.2021.102541 10.1016/j.physc.2005.01.041 10.1109/tasc.2016.2555921 10.1088/1361-6668/ab63bd 10.1088/0953-2048/11/10/062 10.1088/0953-2048/16/9/301 10.1103/physrevlett.61.1658 10.1016/j.physc.2010.05.065 10.1109/tasc.2007.902105 10.1088/0953-2048/5/4/001 10.1016/s0921-4534(03)00996-1 10.1109/tasc.2016.2519417 10.1088/0953-2048/17/11/r01 10.1103/physrevlett.68.1908 10.1016/j.ijengsci.2010.12.003 10.1016/0921-4534(95)00398-3 10.1063/1.5063893 10.1103/physrevb.60.9690 10.1007/s10909-020-02491-6 10.1007/s00419-006-0020-1 10.1016/s0375-9601(97)00305-8 10.1016/s0921-4534(02)01810-5 10.1109/mcse.2019.2902452 10.1088/0953-2048/21/11/115008 10.1103/revmodphys.66.1125 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M DOA |
DOI | 10.1063/5.0171548 |
DatabaseName | AIP Open Access CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: AJDQP name: AIP Open Access url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2158-3226 |
EndPage | 105232-7 |
ExternalDocumentID | oai_doaj_org_article_18134336a49c4a7398f9256c247d2d53 10_1063_5_0171548 adv |
GrantInformation_xml | – fundername: National College Students Innovation and Entrepreneurship Training Program grantid: S202210608123 funderid: https://doi.org/10.13039/501100013254 – fundername: Key State Laboratory of Superhard Materials grantid: 202107 funderid: https://doi.org/10.13039/501100011233 – fundername: Natural Science Foundation of Guangxi Province grantid: Guangxi Science AD20238045 funderid: https://doi.org/10.13039/501100004607 |
GroupedDBID | 5VS 61. AAFWJ ABFTF ACGFO ADBBV ADCTM AEGXH AENEX AFPKN AGKCL AGLKD AHSDT AIAGR AJDQP ALMA_UNASSIGNED_HOLDINGS BCNDV EBS FRP GROUPED_DOAJ HH5 KQ8 M~E OK1 RIP RNS RQS AAYXX ABJGX ADMLS AKSGC CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c353t-35f814539eb38c6dbe6039e227be752fefb8e28d8d0173df8dd99ac1e20404d73 |
IEDL.DBID | AJDQP |
ISSN | 2158-3226 |
IngestDate | Wed Aug 27 01:25:13 EDT 2025 Mon Jun 30 03:54:38 EDT 2025 Thu Jul 03 08:21:56 EDT 2025 Fri Jun 21 00:17:12 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-35f814539eb38c6dbe6039e227be752fefb8e28d8d0173df8dd99ac1e20404d73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3189-8314 0000-0002-2885-7765 |
OpenAccessLink | http://dx.doi.org/10.1063/5.0171548 |
PQID | 2881022648 |
PQPubID | 2050671 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_18134336a49c4a7398f9256c247d2d53 crossref_primary_10_1063_5_0171548 scitation_primary_10_1063_5_0171548 proquest_journals_2881022648 |
PublicationCentury | 2000 |
PublicationDate | 20231001 2023-10-01 |
PublicationDateYYYYMMDD | 2023-10-01 |
PublicationDate_xml | – month: 10 year: 2023 text: 20231001 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | AIP advances |
PublicationYear | 2023 |
Publisher | American Institute of Physics AIP Publishing LLC |
Publisher_xml | – name: American Institute of Physics – name: AIP Publishing LLC |
References | Yao, Ma (c5) 2021; 24 Bernstein, Noudem (c29) 2020; 33 Johansen, Bratsberg, Lothe (c10) 1998; 11 Tinkham (c2) 1988; 61 Tomita, Murakami (c8) 2003; 392-396 Gou, Zheng, Zhou (c23) 2007; 17 Deng, Li, Wang, Li, Zheng (c25) 2019; 21 Hikihara, Moon (c22) 1994; 191 Tomita, Murakami (c7) 2002; 378-381 Gao, Zhou (c19) 2008; 21 Osamura, Sugano, Matsumoto (c14) 2003; 16 Chen, Yong, Zhou (c18) 2019; 125 Huang, Qin, Ma (c21) 2020; 201 Braunisch, Knauf, Kataev, Neuhausen, Grütz, Kock, Roden, Khomskii, Wohlleben (c3) 1992; 68 Ceniga (c16) 2011; 49 Yong, Zhou (c17) 2006; 76 Ren, Weinstein, Liu, Sawh, Foster (c9) 1995; 251 Hikihara, Fujinami, Moon (c26) 1997; 231 Murakami (c1) 1992; 5 Zhuo, Zhang, Gou (c24) 2016; 26 Gou, Zheng, Zhou (c28) 2007; 17 Deng, Zhang, Zheng, Ren, Jiang, Zheng, Zhang, Gao, Lin, Song, Deng (c20) 2016; 26 Okudera, Murakami, Katagiri, Kasaba, Shoji, Noto, Sakai, Murakami (c13) 2003; 392-396 Blatter, Feigel’man, Geshkenbein, Larkin, Vinokur (c4) 1994; 66 Diko, Chaud, Antal, Kaňuchová, Šefčíková, Kováč (c6) 2008; 21 Diko (c27) 2004; 17 Wongsatanawarid, Seki, Kobayashi, Murakami (c12) 2010; 470 Murakami, Katagiri, Kan, Miyata, Shoji, Noto, Iwamoto, Mito (c15) 2005; 426-431 Johansen (c11) 1999; 60 (2023102414141595700_c20) 2016; 26 (2023102414141595700_c22) 1994; 191 (2023102414141595700_c11) 1999; 60 (2023102414141595700_c16) 2011; 49 (2023102414141595700_c23) 2007; 17 (2023102414141595700_c5) 2021; 24 (2023102414141595700_c2) 1988; 61 (2023102414141595700_c18) 2019; 125 (2023102414141595700_c9) 1995; 251 (2023102414141595700_c28) 2007; 17 (2023102414141595700_c19) 2008; 21 (2023102414141595700_c17) 2006; 76 (2023102414141595700_c13) 2003; 392-396 (2023102414141595700_c1) 1992; 5 (2023102414141595700_c25) 2019; 21 (2023102414141595700_c14) 2003; 16 (2023102414141595700_c27) 2004; 17 (2023102414141595700_c6) 2008; 21 (2023102414141595700_c12) 2010; 470 (2023102414141595700_c21) 2020; 201 (2023102414141595700_c7) 2002; 378-381 (2023102414141595700_c15) 2005; 426-431 (2023102414141595700_c8) 2003; 392-396 (2023102414141595700_c4) 1994; 66 (2023102414141595700_c24) 2016; 26 (2023102414141595700_c29) 2020; 33 (2023102414141595700_c3) 1992; 68 (2023102414141595700_c10) 1998; 11 (2023102414141595700_c26) 1997; 231 |
References_xml | – volume: 49 start-page: 354 year: 2011 ident: c16 publication-title: Int. J. Eng. Sci. – volume: 17 start-page: 3795 year: 2007 ident: c23 publication-title: IEEE Trans. Appl. Supercond. – volume: 16 start-page: 971 year: 2003 ident: c14 publication-title: Supercond. Sci. Technol. – volume: 17 start-page: 3803 year: 2007 ident: c28 publication-title: IEEE Trans. Appl. Supercond. – volume: 251 start-page: 15 year: 1995 ident: c9 publication-title: Physica C – volume: 201 start-page: 285 year: 2020 ident: c21 publication-title: J. Low Temp. Phys. – volume: 33 start-page: 033001 year: 2020 ident: c29 publication-title: Supercond. Sci. Technol. – volume: 26 start-page: 3600406 year: 2016 ident: c24 publication-title: IEEE Trans. Appl. Supercond. – volume: 470 start-page: 1167 year: 2010 ident: c12 publication-title: Physica C – volume: 392-396 start-page: 628 year: 2003 ident: c13 publication-title: Physica C – volume: 17 start-page: R45 year: 2004 ident: c27 publication-title: Supercond. Sci. Technol. – volume: 392-396 start-page: 562 year: 2003 ident: c8 publication-title: Physica C – volume: 76 start-page: 497 year: 2006 ident: c17 publication-title: Arch. Appl. Mech. – volume: 191 start-page: 279 year: 1994 ident: c22 publication-title: Phys. Lett. A – volume: 378-381 start-page: 842 year: 2002 ident: c7 publication-title: Physica C – volume: 125 start-page: 103901 year: 2019 ident: c18 publication-title: J. Appl. Phys. – volume: 231 start-page: 217 year: 1997 ident: c26 publication-title: Phys. Lett. A – volume: 5 start-page: 185 year: 1992 ident: c1 publication-title: Supercond. Sci. Technol. – volume: 11 start-page: 1186 year: 1998 ident: c10 publication-title: Supercond. Sci. Technol. – volume: 21 start-page: 60 year: 2019 ident: c25 publication-title: Comput. Sci. Eng. – volume: 68 start-page: 1908 year: 1992 ident: c3 publication-title: Phys. Rev. Lett. – volume: 21 start-page: 095010 year: 2008 ident: c19 publication-title: Supercond. Sci. Technol. – volume: 24 start-page: 102541 year: 2021 ident: c5 publication-title: iScience – volume: 21 start-page: 115008 year: 2008 ident: c6 publication-title: Supercond. Sci. Technol. – volume: 60 start-page: 9690 year: 1999 ident: c11 publication-title: Phys. Rev. B – volume: 61 start-page: 1658 year: 1988 ident: c2 publication-title: Phys. Rev. Lett. – volume: 426-431 start-page: 644 year: 2005 ident: c15 publication-title: Physica C – volume: 66 start-page: 1125 year: 1994 ident: c4 publication-title: Rev. Mod. Phys. – volume: 26 start-page: 3602408 year: 2016 ident: c20 publication-title: IEEE Trans. Appl. Supercond. – volume: 17 start-page: 3795 year: 2007 ident: 2023102414141595700_c23 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2007.902104 – volume: 21 start-page: 095010 year: 2008 ident: 2023102414141595700_c19 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/21/9/095010 – volume: 392-396 start-page: 562 year: 2003 ident: 2023102414141595700_c8 publication-title: Physica C doi: 10.1016/s0921-4534(03)01000-1 – volume: 191 start-page: 279 year: 1994 ident: 2023102414141595700_c22 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(94)90140-6 – volume: 24 start-page: 102541 year: 2021 ident: 2023102414141595700_c5 publication-title: iScience doi: 10.1016/j.isci.2021.102541 – volume: 426-431 start-page: 644 year: 2005 ident: 2023102414141595700_c15 publication-title: Physica C doi: 10.1016/j.physc.2005.01.041 – volume: 26 start-page: 3602408 year: 2016 ident: 2023102414141595700_c20 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2016.2555921 – volume: 33 start-page: 033001 year: 2020 ident: 2023102414141595700_c29 publication-title: Supercond. Sci. Technol. doi: 10.1088/1361-6668/ab63bd – volume: 11 start-page: 1186 year: 1998 ident: 2023102414141595700_c10 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/11/10/062 – volume: 16 start-page: 971 year: 2003 ident: 2023102414141595700_c14 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/16/9/301 – volume: 61 start-page: 1658 year: 1988 ident: 2023102414141595700_c2 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.61.1658 – volume: 470 start-page: 1167 year: 2010 ident: 2023102414141595700_c12 publication-title: Physica C doi: 10.1016/j.physc.2010.05.065 – volume: 17 start-page: 3803 year: 2007 ident: 2023102414141595700_c28 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2007.902105 – volume: 5 start-page: 185 year: 1992 ident: 2023102414141595700_c1 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/5/4/001 – volume: 392-396 start-page: 628 year: 2003 ident: 2023102414141595700_c13 publication-title: Physica C doi: 10.1016/s0921-4534(03)00996-1 – volume: 26 start-page: 3600406 year: 2016 ident: 2023102414141595700_c24 publication-title: IEEE Trans. Appl. Supercond. doi: 10.1109/tasc.2016.2519417 – volume: 17 start-page: R45 year: 2004 ident: 2023102414141595700_c27 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/17/11/r01 – volume: 68 start-page: 1908 year: 1992 ident: 2023102414141595700_c3 publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.68.1908 – volume: 49 start-page: 354 year: 2011 ident: 2023102414141595700_c16 publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2010.12.003 – volume: 251 start-page: 15 year: 1995 ident: 2023102414141595700_c9 publication-title: Physica C doi: 10.1016/0921-4534(95)00398-3 – volume: 125 start-page: 103901 year: 2019 ident: 2023102414141595700_c18 publication-title: J. Appl. Phys. doi: 10.1063/1.5063893 – volume: 60 start-page: 9690 year: 1999 ident: 2023102414141595700_c11 publication-title: Phys. Rev. B doi: 10.1103/physrevb.60.9690 – volume: 201 start-page: 285 year: 2020 ident: 2023102414141595700_c21 publication-title: J. Low Temp. Phys. doi: 10.1007/s10909-020-02491-6 – volume: 76 start-page: 497 year: 2006 ident: 2023102414141595700_c17 publication-title: Arch. Appl. Mech. doi: 10.1007/s00419-006-0020-1 – volume: 231 start-page: 217 year: 1997 ident: 2023102414141595700_c26 publication-title: Phys. Lett. A doi: 10.1016/s0375-9601(97)00305-8 – volume: 378-381 start-page: 842 year: 2002 ident: 2023102414141595700_c7 publication-title: Physica C doi: 10.1016/s0921-4534(02)01810-5 – volume: 21 start-page: 60 year: 2019 ident: 2023102414141595700_c25 publication-title: Comput. Sci. Eng. doi: 10.1109/mcse.2019.2902452 – volume: 21 start-page: 115008 year: 2008 ident: 2023102414141595700_c6 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/21/11/115008 – volume: 66 start-page: 1125 year: 1994 ident: 2023102414141595700_c4 publication-title: Rev. Mod. Phys. doi: 10.1103/revmodphys.66.1125 |
SSID | ssj0000491084 |
Score | 2.3028824 |
Snippet | The magnetic levitation system of a high-temperature superconductor (HTSC) has nonlinear vibration under external excitation, in which the HTSC is subjected to... |
SourceID | doaj proquest crossref scitation |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 105232 |
SubjectTerms | Bifurcations Brittle materials Constitutive models Cracking (fracturing) Cracks Displacement Electric fields Electromagnetic forces High temperature superconductors Magnetic levitation Magnetic levitation systems Microfracture Permanent magnets Superconductivity Vibration analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHoRn1itsqjX0CSz2cdRxVIFPVnoLWz2IQim0sf_dyeblPYgXrzlBRm-yeab2d35hpA7l1YKskwnKvyAE4ZTVtJVMvGGgfdKOQCsHX594-MJe5kW041WX7gnLMoDR-CGgYGAAXDNlGFagJJeBZo2ORM2t0Wj8xlobCOZ-oxxb5ZK1kkJcRiiOqfA-HyLgBqd_q3gci8wT1wE3-CZ0SE5aANEeh8NOyI7rj4mu81GTbM4If656ypCZ56aOZbI01lN6yh5oec09uXBuyhFnKD2VCucTBercBgSYNR4DZRFv_RHjUWMFGvMozk0Sjufksno6f1xnLS9EhIDBSwTKLzMWAEqJMfScFs5noaTPBeVE0Xuna-ky6WVNsAA1ktrldImc3kYxcwKOCO9YKk7J5Q5SG0qhNDaskxqWTiEm3MTkj9lqz656QAsv6MkRtksZXMoi7JFuU8eENr1A6hi3VwIvi1b35Z_-bZPBp1jynZoLcpcSsxSOb7jdu2s3y25-A9LLsk-9pmPu_gGpLecr9xViEaW1XXz4f0AkmTbUw priority: 102 providerName: Directory of Open Access Journals |
Title | Influence of cracks on nonlinear motion of high-temperature superconducting magnetic levitation system |
URI | http://dx.doi.org/10.1063/5.0171548 https://www.proquest.com/docview/2881022648 https://doaj.org/article/18134336a49c4a7398f9256c247d2d53 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2158-3226 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000491084 issn: 2158-3226 databaseCode: HH5 dateStart: 20110101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVABJ databaseName: AIP Open Access customDbUrl: eissn: 2158-3226 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000491084 issn: 2158-3226 databaseCode: AJDQP dateStart: 20110301 isFulltext: true titleUrlDefault: https://publishing.aip.org/librarians/open-access-policy providerName: American Institute of Physics – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2158-3226 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000491084 issn: 2158-3226 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2158-3226 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000491084 issn: 2158-3226 databaseCode: KQ8 dateStart: 20050101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2158-3226 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000491084 issn: 2158-3226 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2158-3226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000491084 issn: 2158-3226 databaseCode: ADMLS dateStart: 20131201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2158-3226 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000491084 issn: 2158-3226 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50RfQiPnF9LEG9FttMmsfRJyoqigreSpqHJ1fZXf-_k7a76EHw1kdKwkym802S-QbgKOS1waKwmaEfcCbSkpUOtc6iExijMQEx5Q7f3curF3HzWr7OweEfO_gSjxOtpkrAeh4WOJmu7sHCyc3548NsKYVAbpFrMeUN-vnNL2_TkPL_QpJL5GbaHe8fTuVyFVY6NMhOWvWtwVwYrsNicyrTjTcgXk9LiLCPyNwo5cOzjyEbtvwWdsTaIjzpbeIdzhLRVMeSzMZfdEnRbiJ0Jf_E3u3bMGUsspRQ3g6HtTzOm_ByefF8dpV1hREyhyVOMiyjLkSJhiJh7aSvg8zphnNVB1XyGGKtA9deexID-qi9N8a6InAyWeEVbkGPRhq2gYmAuc-VUtZ6UWiryyAdF1I6ivSMr_twMBVg9dnyX1TNvrXEqqw6KffhNIl21iBRVjcPSI9VZwEVQQkUiNIK44RVaHQ0hLeoM-W5L7EPe1PFVJ0djSuudQpJZerjcKasv0ey869Wu7Ccqsa3Z_L2oDcZfYV9whaTekBz6_zu9mnQzbFBE6N_A3OkzXg |
linkProvider | American Institute of Physics |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaUAWXir7EUmittteUJOP4caQPtFBArQQSN8vxAyHBstoHv5-ZtXcLh0q9JbEjj2bizDe25xvGvsS6N9A0rjL4A64ELVnp2OsqeQEpGRMBKHf49EwOL8TxZXdZzuZQLgwKMf3qrseZIjjc7xcFVjeIOefjv4QDEvaJcFMR5H7O1pWsFcZe6wfHP_78Xi2yIPxtai2WjEKP33nihxZ0_U8w5gY6oLwX_sjdHG6xlwUn8oMs1yv2LI5esxeL85p--oalo2VxEX6XuJ9Qpjy_G_FRZr5wE57L81ArMRJXREFV-JP5dI6XGAcT1St6Ln7rrkaUy8gp1TyLwzPD81t2cfjz_PuwKiUTKg8dzCrokm5EBwZjZO1l6KOs8aZtVR9V16aYeh1bHXRANUBIOgRjnG9ii5NZBAXv2BpKGrcZFxHqgEpVzgXRaKe7KH0rpPQYA5rQD9inpQLtODNj2MWOtgTb2aLlAftGql11IDLrxQM0ry2mtQgyQABIJ4wXToHRySASw8FUaEMHA7a7NIwtM2xqW60pWJU0xueVsf4tyc5_9frINobnpyf25Ojs13u2SbXl88m9XbY2m8zjHiKQWf-hfGcPElXX8w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+cracks+on+nonlinear+motion+of+high-temperature+superconducting+magnetic+levitation+system&rft.jtitle=AIP+advances&rft.au=Li%2C+Hui&rft.au=Liao-Liao%2C+Huang&rft.au=Huang%2C+Yi&rft.date=2023-10-01&rft.pub=American+Institute+of+Physics&rft.eissn=2158-3226&rft.volume=13&rft.issue=10&rft_id=info:doi/10.1063%2F5.0171548&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3226&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3226&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3226&client=summon |