Influence of cracks on nonlinear motion of high-temperature superconducting magnetic levitation system

The magnetic levitation system of a high-temperature superconductor (HTSC) has nonlinear vibration under external excitation, in which the HTSC is subjected to a sizable electromagnetic force. The high-temperature superconducting block is a brittle material, which will crack when subject to heavy pr...

Full description

Saved in:
Bibliographic Details
Published inAIP advances Vol. 13; no. 10; pp. 105232 - 105232-7
Main Authors Li, Hui, Huang, Liao-Liao, Huang, Yi
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.10.2023
AIP Publishing LLC
Subjects
Online AccessGet full text
ISSN2158-3226
2158-3226
DOI10.1063/5.0171548

Cover

Abstract The magnetic levitation system of a high-temperature superconductor (HTSC) has nonlinear vibration under external excitation, in which the HTSC is subjected to a sizable electromagnetic force. The high-temperature superconducting block is a brittle material, which will crack when subject to heavy pressure. Microfracture of superconductors is inevitable, especially in superconducting magnetic levitation systems. Our paper studies the fracture behavior of a YBaCuO superconducting magnetic levitation system under a large electromagnetic force based on nonlinear bifurcated motions. The E − J constitutive model and the current vector T method are applied to obtain the electromagnetic force of the bulk superconductor during vibration. We analyze the effects of five lengths of the central crack on vibration displacements, the electric field distribution, and the electromagnetic force of superconductors. Without damages, the system does not have apparent bifurcation motion. For the inner cracks, the system has obvious bifurcation motions. The results show that the cracks have a meaningful influence on the nonlinear vibration of the superconducting magnetic levitation system. The displacement of the suspended permanent magnet in bifurcation motion increases with the increase in the crack length, and the collision occurs when the crack length reaches 15 mm.
AbstractList The magnetic levitation system of a high-temperature superconductor (HTSC) has nonlinear vibration under external excitation, in which the HTSC is subjected to a sizable electromagnetic force. The high-temperature superconducting block is a brittle material, which will crack when subject to heavy pressure. Microfracture of superconductors is inevitable, especially in superconducting magnetic levitation systems. Our paper studies the fracture behavior of a YBaCuO superconducting magnetic levitation system under a large electromagnetic force based on nonlinear bifurcated motions. The E − J constitutive model and the current vector T method are applied to obtain the electromagnetic force of the bulk superconductor during vibration. We analyze the effects of five lengths of the central crack on vibration displacements, the electric field distribution, and the electromagnetic force of superconductors. Without damages, the system does not have apparent bifurcation motion. For the inner cracks, the system has obvious bifurcation motions. The results show that the cracks have a meaningful influence on the nonlinear vibration of the superconducting magnetic levitation system. The displacement of the suspended permanent magnet in bifurcation motion increases with the increase in the crack length, and the collision occurs when the crack length reaches 15 mm.
The magnetic levitation system of a high-temperature superconductor (HTSC) has nonlinear vibration under external excitation, in which the HTSC is subjected to a sizable electromagnetic force. The high-temperature superconducting block is a brittle material, which will crack when subject to heavy pressure. Microfracture of superconductors is inevitable, especially in superconducting magnetic levitation systems. Our paper studies the fracture behavior of a YBaCuO superconducting magnetic levitation system under a large electromagnetic force based on nonlinear bifurcated motions. The E − J constitutive model and the current vector T method are applied to obtain the electromagnetic force of the bulk superconductor during vibration. We analyze the effects of five lengths of the central crack on vibration displacements, the electric field distribution, and the electromagnetic force of superconductors. Without damages, the system does not have apparent bifurcation motion. For the inner cracks, the system has obvious bifurcation motions. The results show that the cracks have a meaningful influence on the nonlinear vibration of the superconducting magnetic levitation system. The displacement of the suspended permanent magnet in bifurcation motion increases with the increase in the crack length, and the collision occurs when the crack length reaches 15 mm.
Author Li, Hui
Huang, Liao-Liao
Huang, Yi
Author_xml – sequence: 1
  givenname: Hui
  surname: Li
  fullname: Li, Hui
  organization: College of Mathematics and Physics, Guangxi Minzu University, Nanning 530006, People’s Republic of China
– sequence: 2
  givenname: Liao-Liao
  surname: Huang
  fullname: Huang, Liao-Liao
  organization: College of Mathematics and Physics, Guangxi Minzu University, Nanning 530006, People’s Republic of China
– sequence: 3
  givenname: Yi
  surname: Huang
  fullname: Huang, Yi
  organization: College of Mathematics and Physics, Guangxi Minzu University, Nanning 530006, People’s Republic of China
BookMark eNp9kUtLxDAQx4Mo-Dz4DQqeFLrm2aZHER8LC170HNJkUrt2kzVpBb-90S7iyVxmMvnNP_M4Rvs-eEDonOAFwRW7FgtMaiK43ENHlAhZMkqr_T_-ITpLaY3z4Q3Bkh8ht_RumMAbKIIrTNTmLRXBF1l56D3oWGzC2OdAfn3tu9dyhM0Woh6nCEWasmuCt5MZe98VG915GHtTDPDRj_onL32mnHKKDpweEpzt7Al6ub97vn0sV08Py9ubVWmYYGPJhJOEC9ZAy6SpbAsVzhdK6xZqQR24VgKVVtrcKLNOWts02hCgmGNua3aClrOuDXqttrHf6Pipgu7VTyDETumYKxxAEUkYZ6zSvDFc16yRrqGiMpTXllrBstbFrLWN4X2CNKp1mKLP5SsqJcF5nlxm6nKmTAwpRXC_vxKsvreihNptJbNXM5vMbjz_wF_ur432
CODEN AAIDBI
Cites_doi 10.1109/tasc.2007.902104
10.1088/0953-2048/21/9/095010
10.1016/s0921-4534(03)01000-1
10.1016/0375-9601(94)90140-6
10.1016/j.isci.2021.102541
10.1016/j.physc.2005.01.041
10.1109/tasc.2016.2555921
10.1088/1361-6668/ab63bd
10.1088/0953-2048/11/10/062
10.1088/0953-2048/16/9/301
10.1103/physrevlett.61.1658
10.1016/j.physc.2010.05.065
10.1109/tasc.2007.902105
10.1088/0953-2048/5/4/001
10.1016/s0921-4534(03)00996-1
10.1109/tasc.2016.2519417
10.1088/0953-2048/17/11/r01
10.1103/physrevlett.68.1908
10.1016/j.ijengsci.2010.12.003
10.1016/0921-4534(95)00398-3
10.1063/1.5063893
10.1103/physrevb.60.9690
10.1007/s10909-020-02491-6
10.1007/s00419-006-0020-1
10.1016/s0375-9601(97)00305-8
10.1016/s0921-4534(02)01810-5
10.1109/mcse.2019.2902452
10.1088/0953-2048/21/11/115008
10.1103/revmodphys.66.1125
ContentType Journal Article
Copyright Author(s)
2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
DBID AJDQP
AAYXX
CITATION
8FD
H8D
L7M
DOA
DOI 10.1063/5.0171548
DatabaseName AIP Open Access
CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef

Technology Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: AJDQP
  name: AIP Open Access
  url: https://publishing.aip.org/librarians/open-access-policy
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2158-3226
EndPage 105232-7
ExternalDocumentID oai_doaj_org_article_18134336a49c4a7398f9256c247d2d53
10_1063_5_0171548
adv
GrantInformation_xml – fundername: National College Students Innovation and Entrepreneurship Training Program
  grantid: S202210608123
  funderid: https://doi.org/10.13039/501100013254
– fundername: Key State Laboratory of Superhard Materials
  grantid: 202107
  funderid: https://doi.org/10.13039/501100011233
– fundername: Natural Science Foundation of Guangxi Province
  grantid: Guangxi Science AD20238045
  funderid: https://doi.org/10.13039/501100004607
GroupedDBID 5VS
61.
AAFWJ
ABFTF
ACGFO
ADBBV
ADCTM
AEGXH
AENEX
AFPKN
AGKCL
AGLKD
AHSDT
AIAGR
AJDQP
ALMA_UNASSIGNED_HOLDINGS
BCNDV
EBS
FRP
GROUPED_DOAJ
HH5
KQ8
M~E
OK1
RIP
RNS
RQS
AAYXX
ABJGX
ADMLS
AKSGC
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c353t-35f814539eb38c6dbe6039e227be752fefb8e28d8d0173df8dd99ac1e20404d73
IEDL.DBID AJDQP
ISSN 2158-3226
IngestDate Wed Aug 27 01:25:13 EDT 2025
Mon Jun 30 03:54:38 EDT 2025
Thu Jul 03 08:21:56 EDT 2025
Fri Jun 21 00:17:12 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-35f814539eb38c6dbe6039e227be752fefb8e28d8d0173df8dd99ac1e20404d73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3189-8314
0000-0002-2885-7765
OpenAccessLink http://dx.doi.org/10.1063/5.0171548
PQID 2881022648
PQPubID 2050671
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_18134336a49c4a7398f9256c247d2d53
crossref_primary_10_1063_5_0171548
scitation_primary_10_1063_5_0171548
proquest_journals_2881022648
PublicationCentury 2000
PublicationDate 20231001
2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 20231001
  day: 01
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle AIP advances
PublicationYear 2023
Publisher American Institute of Physics
AIP Publishing LLC
Publisher_xml – name: American Institute of Physics
– name: AIP Publishing LLC
References Yao, Ma (c5) 2021; 24
Bernstein, Noudem (c29) 2020; 33
Johansen, Bratsberg, Lothe (c10) 1998; 11
Tinkham (c2) 1988; 61
Tomita, Murakami (c8) 2003; 392-396
Gou, Zheng, Zhou (c23) 2007; 17
Deng, Li, Wang, Li, Zheng (c25) 2019; 21
Hikihara, Moon (c22) 1994; 191
Tomita, Murakami (c7) 2002; 378-381
Gao, Zhou (c19) 2008; 21
Osamura, Sugano, Matsumoto (c14) 2003; 16
Chen, Yong, Zhou (c18) 2019; 125
Huang, Qin, Ma (c21) 2020; 201
Braunisch, Knauf, Kataev, Neuhausen, Grütz, Kock, Roden, Khomskii, Wohlleben (c3) 1992; 68
Ceniga (c16) 2011; 49
Yong, Zhou (c17) 2006; 76
Ren, Weinstein, Liu, Sawh, Foster (c9) 1995; 251
Hikihara, Fujinami, Moon (c26) 1997; 231
Murakami (c1) 1992; 5
Zhuo, Zhang, Gou (c24) 2016; 26
Gou, Zheng, Zhou (c28) 2007; 17
Deng, Zhang, Zheng, Ren, Jiang, Zheng, Zhang, Gao, Lin, Song, Deng (c20) 2016; 26
Okudera, Murakami, Katagiri, Kasaba, Shoji, Noto, Sakai, Murakami (c13) 2003; 392-396
Blatter, Feigel’man, Geshkenbein, Larkin, Vinokur (c4) 1994; 66
Diko, Chaud, Antal, Kaňuchová, Šefčíková, Kováč (c6) 2008; 21
Diko (c27) 2004; 17
Wongsatanawarid, Seki, Kobayashi, Murakami (c12) 2010; 470
Murakami, Katagiri, Kan, Miyata, Shoji, Noto, Iwamoto, Mito (c15) 2005; 426-431
Johansen (c11) 1999; 60
(2023102414141595700_c20) 2016; 26
(2023102414141595700_c22) 1994; 191
(2023102414141595700_c11) 1999; 60
(2023102414141595700_c16) 2011; 49
(2023102414141595700_c23) 2007; 17
(2023102414141595700_c5) 2021; 24
(2023102414141595700_c2) 1988; 61
(2023102414141595700_c18) 2019; 125
(2023102414141595700_c9) 1995; 251
(2023102414141595700_c28) 2007; 17
(2023102414141595700_c19) 2008; 21
(2023102414141595700_c17) 2006; 76
(2023102414141595700_c13) 2003; 392-396
(2023102414141595700_c1) 1992; 5
(2023102414141595700_c25) 2019; 21
(2023102414141595700_c14) 2003; 16
(2023102414141595700_c27) 2004; 17
(2023102414141595700_c6) 2008; 21
(2023102414141595700_c12) 2010; 470
(2023102414141595700_c21) 2020; 201
(2023102414141595700_c7) 2002; 378-381
(2023102414141595700_c15) 2005; 426-431
(2023102414141595700_c8) 2003; 392-396
(2023102414141595700_c4) 1994; 66
(2023102414141595700_c24) 2016; 26
(2023102414141595700_c29) 2020; 33
(2023102414141595700_c3) 1992; 68
(2023102414141595700_c10) 1998; 11
(2023102414141595700_c26) 1997; 231
References_xml – volume: 49
  start-page: 354
  year: 2011
  ident: c16
  publication-title: Int. J. Eng. Sci.
– volume: 17
  start-page: 3795
  year: 2007
  ident: c23
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 16
  start-page: 971
  year: 2003
  ident: c14
  publication-title: Supercond. Sci. Technol.
– volume: 17
  start-page: 3803
  year: 2007
  ident: c28
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 251
  start-page: 15
  year: 1995
  ident: c9
  publication-title: Physica C
– volume: 201
  start-page: 285
  year: 2020
  ident: c21
  publication-title: J. Low Temp. Phys.
– volume: 33
  start-page: 033001
  year: 2020
  ident: c29
  publication-title: Supercond. Sci. Technol.
– volume: 26
  start-page: 3600406
  year: 2016
  ident: c24
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 470
  start-page: 1167
  year: 2010
  ident: c12
  publication-title: Physica C
– volume: 392-396
  start-page: 628
  year: 2003
  ident: c13
  publication-title: Physica C
– volume: 17
  start-page: R45
  year: 2004
  ident: c27
  publication-title: Supercond. Sci. Technol.
– volume: 392-396
  start-page: 562
  year: 2003
  ident: c8
  publication-title: Physica C
– volume: 76
  start-page: 497
  year: 2006
  ident: c17
  publication-title: Arch. Appl. Mech.
– volume: 191
  start-page: 279
  year: 1994
  ident: c22
  publication-title: Phys. Lett. A
– volume: 378-381
  start-page: 842
  year: 2002
  ident: c7
  publication-title: Physica C
– volume: 125
  start-page: 103901
  year: 2019
  ident: c18
  publication-title: J. Appl. Phys.
– volume: 231
  start-page: 217
  year: 1997
  ident: c26
  publication-title: Phys. Lett. A
– volume: 5
  start-page: 185
  year: 1992
  ident: c1
  publication-title: Supercond. Sci. Technol.
– volume: 11
  start-page: 1186
  year: 1998
  ident: c10
  publication-title: Supercond. Sci. Technol.
– volume: 21
  start-page: 60
  year: 2019
  ident: c25
  publication-title: Comput. Sci. Eng.
– volume: 68
  start-page: 1908
  year: 1992
  ident: c3
  publication-title: Phys. Rev. Lett.
– volume: 21
  start-page: 095010
  year: 2008
  ident: c19
  publication-title: Supercond. Sci. Technol.
– volume: 24
  start-page: 102541
  year: 2021
  ident: c5
  publication-title: iScience
– volume: 21
  start-page: 115008
  year: 2008
  ident: c6
  publication-title: Supercond. Sci. Technol.
– volume: 60
  start-page: 9690
  year: 1999
  ident: c11
  publication-title: Phys. Rev. B
– volume: 61
  start-page: 1658
  year: 1988
  ident: c2
  publication-title: Phys. Rev. Lett.
– volume: 426-431
  start-page: 644
  year: 2005
  ident: c15
  publication-title: Physica C
– volume: 66
  start-page: 1125
  year: 1994
  ident: c4
  publication-title: Rev. Mod. Phys.
– volume: 26
  start-page: 3602408
  year: 2016
  ident: c20
  publication-title: IEEE Trans. Appl. Supercond.
– volume: 17
  start-page: 3795
  year: 2007
  ident: 2023102414141595700_c23
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2007.902104
– volume: 21
  start-page: 095010
  year: 2008
  ident: 2023102414141595700_c19
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/21/9/095010
– volume: 392-396
  start-page: 562
  year: 2003
  ident: 2023102414141595700_c8
  publication-title: Physica C
  doi: 10.1016/s0921-4534(03)01000-1
– volume: 191
  start-page: 279
  year: 1994
  ident: 2023102414141595700_c22
  publication-title: Phys. Lett. A
  doi: 10.1016/0375-9601(94)90140-6
– volume: 24
  start-page: 102541
  year: 2021
  ident: 2023102414141595700_c5
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102541
– volume: 426-431
  start-page: 644
  year: 2005
  ident: 2023102414141595700_c15
  publication-title: Physica C
  doi: 10.1016/j.physc.2005.01.041
– volume: 26
  start-page: 3602408
  year: 2016
  ident: 2023102414141595700_c20
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2016.2555921
– volume: 33
  start-page: 033001
  year: 2020
  ident: 2023102414141595700_c29
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/1361-6668/ab63bd
– volume: 11
  start-page: 1186
  year: 1998
  ident: 2023102414141595700_c10
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/11/10/062
– volume: 16
  start-page: 971
  year: 2003
  ident: 2023102414141595700_c14
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/16/9/301
– volume: 61
  start-page: 1658
  year: 1988
  ident: 2023102414141595700_c2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.61.1658
– volume: 470
  start-page: 1167
  year: 2010
  ident: 2023102414141595700_c12
  publication-title: Physica C
  doi: 10.1016/j.physc.2010.05.065
– volume: 17
  start-page: 3803
  year: 2007
  ident: 2023102414141595700_c28
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2007.902105
– volume: 5
  start-page: 185
  year: 1992
  ident: 2023102414141595700_c1
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/5/4/001
– volume: 392-396
  start-page: 628
  year: 2003
  ident: 2023102414141595700_c13
  publication-title: Physica C
  doi: 10.1016/s0921-4534(03)00996-1
– volume: 26
  start-page: 3600406
  year: 2016
  ident: 2023102414141595700_c24
  publication-title: IEEE Trans. Appl. Supercond.
  doi: 10.1109/tasc.2016.2519417
– volume: 17
  start-page: R45
  year: 2004
  ident: 2023102414141595700_c27
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/17/11/r01
– volume: 68
  start-page: 1908
  year: 1992
  ident: 2023102414141595700_c3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.68.1908
– volume: 49
  start-page: 354
  year: 2011
  ident: 2023102414141595700_c16
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2010.12.003
– volume: 251
  start-page: 15
  year: 1995
  ident: 2023102414141595700_c9
  publication-title: Physica C
  doi: 10.1016/0921-4534(95)00398-3
– volume: 125
  start-page: 103901
  year: 2019
  ident: 2023102414141595700_c18
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5063893
– volume: 60
  start-page: 9690
  year: 1999
  ident: 2023102414141595700_c11
  publication-title: Phys. Rev. B
  doi: 10.1103/physrevb.60.9690
– volume: 201
  start-page: 285
  year: 2020
  ident: 2023102414141595700_c21
  publication-title: J. Low Temp. Phys.
  doi: 10.1007/s10909-020-02491-6
– volume: 76
  start-page: 497
  year: 2006
  ident: 2023102414141595700_c17
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/s00419-006-0020-1
– volume: 231
  start-page: 217
  year: 1997
  ident: 2023102414141595700_c26
  publication-title: Phys. Lett. A
  doi: 10.1016/s0375-9601(97)00305-8
– volume: 378-381
  start-page: 842
  year: 2002
  ident: 2023102414141595700_c7
  publication-title: Physica C
  doi: 10.1016/s0921-4534(02)01810-5
– volume: 21
  start-page: 60
  year: 2019
  ident: 2023102414141595700_c25
  publication-title: Comput. Sci. Eng.
  doi: 10.1109/mcse.2019.2902452
– volume: 21
  start-page: 115008
  year: 2008
  ident: 2023102414141595700_c6
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/21/11/115008
– volume: 66
  start-page: 1125
  year: 1994
  ident: 2023102414141595700_c4
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/revmodphys.66.1125
SSID ssj0000491084
Score 2.3028824
Snippet The magnetic levitation system of a high-temperature superconductor (HTSC) has nonlinear vibration under external excitation, in which the HTSC is subjected to...
SourceID doaj
proquest
crossref
scitation
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 105232
SubjectTerms Bifurcations
Brittle materials
Constitutive models
Cracking (fracturing)
Cracks
Displacement
Electric fields
Electromagnetic forces
High temperature superconductors
Magnetic levitation
Magnetic levitation systems
Microfracture
Permanent magnets
Superconductivity
Vibration analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kIHoRn1itsqjX0CSz2cdRxVIFPVnoLWz2IQim0sf_dyeblPYgXrzlBRm-yeab2d35hpA7l1YKskwnKvyAE4ZTVtJVMvGGgfdKOQCsHX594-MJe5kW041WX7gnLMoDR-CGgYGAAXDNlGFagJJeBZo2ORM2t0Wj8xlobCOZ-oxxb5ZK1kkJcRiiOqfA-HyLgBqd_q3gci8wT1wE3-CZ0SE5aANEeh8NOyI7rj4mu81GTbM4If656ypCZ56aOZbI01lN6yh5oec09uXBuyhFnKD2VCucTBercBgSYNR4DZRFv_RHjUWMFGvMozk0Sjufksno6f1xnLS9EhIDBSwTKLzMWAEqJMfScFs5noaTPBeVE0Xuna-ky6WVNsAA1ktrldImc3kYxcwKOCO9YKk7J5Q5SG0qhNDaskxqWTiEm3MTkj9lqz656QAsv6MkRtksZXMoi7JFuU8eENr1A6hi3VwIvi1b35Z_-bZPBp1jynZoLcpcSsxSOb7jdu2s3y25-A9LLsk-9pmPu_gGpLecr9xViEaW1XXz4f0AkmTbUw
  priority: 102
  providerName: Directory of Open Access Journals
Title Influence of cracks on nonlinear motion of high-temperature superconducting magnetic levitation system
URI http://dx.doi.org/10.1063/5.0171548
https://www.proquest.com/docview/2881022648
https://doaj.org/article/18134336a49c4a7398f9256c247d2d53
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2158-3226
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000491084
  issn: 2158-3226
  databaseCode: HH5
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVABJ
  databaseName: AIP Open Access
  customDbUrl:
  eissn: 2158-3226
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000491084
  issn: 2158-3226
  databaseCode: AJDQP
  dateStart: 20110301
  isFulltext: true
  titleUrlDefault: https://publishing.aip.org/librarians/open-access-policy
  providerName: American Institute of Physics
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2158-3226
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000491084
  issn: 2158-3226
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2158-3226
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000491084
  issn: 2158-3226
  databaseCode: KQ8
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2158-3226
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000491084
  issn: 2158-3226
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2158-3226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000491084
  issn: 2158-3226
  databaseCode: ADMLS
  dateStart: 20131201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2158-3226
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000491084
  issn: 2158-3226
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50RfQiPnF9LEG9FttMmsfRJyoqigreSpqHJ1fZXf-_k7a76EHw1kdKwkym802S-QbgKOS1waKwmaEfcCbSkpUOtc6iExijMQEx5Q7f3curF3HzWr7OweEfO_gSjxOtpkrAeh4WOJmu7sHCyc3548NsKYVAbpFrMeUN-vnNL2_TkPL_QpJL5GbaHe8fTuVyFVY6NMhOWvWtwVwYrsNicyrTjTcgXk9LiLCPyNwo5cOzjyEbtvwWdsTaIjzpbeIdzhLRVMeSzMZfdEnRbiJ0Jf_E3u3bMGUsspRQ3g6HtTzOm_ByefF8dpV1hREyhyVOMiyjLkSJhiJh7aSvg8zphnNVB1XyGGKtA9deexID-qi9N8a6InAyWeEVbkGPRhq2gYmAuc-VUtZ6UWiryyAdF1I6ivSMr_twMBVg9dnyX1TNvrXEqqw6KffhNIl21iBRVjcPSI9VZwEVQQkUiNIK44RVaHQ0hLeoM-W5L7EPe1PFVJ0djSuudQpJZerjcKasv0ey869Wu7Ccqsa3Z_L2oDcZfYV9whaTekBz6_zu9mnQzbFBE6N_A3OkzXg
linkProvider American Institute of Physics
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZaUAWXir7EUmittteUJOP4caQPtFBArQQSN8vxAyHBstoHv5-ZtXcLh0q9JbEjj2bizDe25xvGvsS6N9A0rjL4A64ELVnp2OsqeQEpGRMBKHf49EwOL8TxZXdZzuZQLgwKMf3qrseZIjjc7xcFVjeIOefjv4QDEvaJcFMR5H7O1pWsFcZe6wfHP_78Xi2yIPxtai2WjEKP33nihxZ0_U8w5gY6oLwX_sjdHG6xlwUn8oMs1yv2LI5esxeL85p--oalo2VxEX6XuJ9Qpjy_G_FRZr5wE57L81ArMRJXREFV-JP5dI6XGAcT1St6Ln7rrkaUy8gp1TyLwzPD81t2cfjz_PuwKiUTKg8dzCrokm5EBwZjZO1l6KOs8aZtVR9V16aYeh1bHXRANUBIOgRjnG9ii5NZBAXv2BpKGrcZFxHqgEpVzgXRaKe7KH0rpPQYA5rQD9inpQLtODNj2MWOtgTb2aLlAftGql11IDLrxQM0ry2mtQgyQABIJ4wXToHRySASw8FUaEMHA7a7NIwtM2xqW60pWJU0xueVsf4tyc5_9frINobnpyf25Ojs13u2SbXl88m9XbY2m8zjHiKQWf-hfGcPElXX8w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+cracks+on+nonlinear+motion+of+high-temperature+superconducting+magnetic+levitation+system&rft.jtitle=AIP+advances&rft.au=Li%2C+Hui&rft.au=Liao-Liao%2C+Huang&rft.au=Huang%2C+Yi&rft.date=2023-10-01&rft.pub=American+Institute+of+Physics&rft.eissn=2158-3226&rft.volume=13&rft.issue=10&rft_id=info:doi/10.1063%2F5.0171548&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3226&client=summon