Angiotensin-converting enzyme 2 is subject to post-transcriptional regulation by miR-421
ACE2 (angiotensin converting enzyme 2) plays a critical role in the local tissue RAS (renin–angiotensin system) by hydrolysing the potent hypertensive and mitogenic peptide AngII (angiotensin II). Changes in the levels of ACE2 have been observed in a number of pathologies, including cardiovascular d...
Saved in:
Published in | Clinical science (1979) Vol. 127; no. 4; pp. 243 - 249 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
01.08.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0143-5221 1470-8736 1470-8736 |
DOI | 10.1042/CS20130420 |
Cover
Abstract | ACE2 (angiotensin converting enzyme 2) plays a critical role in the local tissue RAS (renin–angiotensin system) by hydrolysing the potent hypertensive and mitogenic peptide AngII (angiotensin II). Changes in the levels of ACE2 have been observed in a number of pathologies, including cardiovascular disease, but little is known of the mechanisms regulating its expression. In the present study, therefore, the potential role of miRNAs in the regulation of ACE2 expression in primary human cardiac myofibroblasts was examined. Putative miRNA-binding sites were identified in the 3′-UTR of the ACE2 transcript using online prediction algorithms. Two of these, miR-200b and miR-421, were selected for further analysis. A reporter system using the 3′-UTR of ACE2 fused to the coding region of firefly luciferase was used to determine the functionality of the identified binding sites in vitro. This identified miR-421, but not miR-200b, as a potential regulator of ACE2. The ability of miR-421, an miRNA implicated in the development of thrombosis, to down-regulate ACE2 expression was subsequently confirmed by Western blot analysis of both primary cardiac myofibroblasts and transformed cells transfected with a synthetic miR-421 precursor. Real-time PCR analysis of miR-421 revealed widespread expression in human tissues. miR-421 levels in cardiac myofibroblasts showed significant inter-patient variability, in keeping with the variability of ACE2 expression we have observed previously. In conclusion, the present study is the first to demonstrate that ACE2 may be subject to post-transcriptional regulation and reveals a novel potential therapeutic target, miR-421, which could be exploited to modulate ACE2 expression in disease. |
---|---|
AbstractList | ACE2 (angiotensin converting enzyme 2) plays a critical role in the local tissue RAS (renin-angiotensin system) by hydrolysing the potent hypertensive and mitogenic peptide AngII (angiotensin II). Changes in the levels of ACE2 have been observed in a number of pathologies, including cardiovascular disease, but little is known of the mechanisms regulating its expression. In the present study, therefore, the potential role of miRNAs in the regulation of ACE2 expression in primary human cardiac myofibroblasts was examined. Putative miRNA-binding sites were identified in the 3'-UTR of the ACE2 transcript using online prediction algorithms. Two of these, miR-200b and miR-421, were selected for further analysis. A reporter system using the 3'-UTR of ACE2 fused to the coding region of firefly luciferase was used to determine the functionality of the identified binding sites in vitro. This identified miR-421, but not miR-200b, as a potential regulator of ACE2. The ability of miR-421, an miRNA implicated in the development of thrombosis, to down-regulate ACE2 expression was subsequently confirmed by Western blot analysis of both primary cardiac myofibroblasts and transformed cells transfected with a synthetic miR-421 precursor. Real-time PCR analysis of miR-421 revealed widespread expression in human tissues. miR-421 levels in cardiac myofibroblasts showed significant inter-patient variability, in keeping with the variability of ACE2 expression we have observed previously. In conclusion, the present study is the first to demonstrate that ACE2 may be subject to post-transcriptional regulation and reveals a novel potential therapeutic target, miR-421, which could be exploited to modulate ACE2 expression in disease. ACE2 (angiotensin converting enzyme 2) plays a critical role in the local tissue RAS (renin-angiotensin system) by hydrolysing the potent hypertensive and mitogenic peptide AngII (angiotensin II). Changes in the levels of ACE2 have been observed in a number of pathologies, including cardiovascular disease, but little is known of the mechanisms regulating its expression. In the present study, therefore, the potential role of miRNAs in the regulation of ACE2 expression in primary human cardiac myofibroblasts was examined. Putative miRNA-binding sites were identified in the 3'-UTR of the ACE2 transcript using online prediction algorithms. Two of these, miR-200b and miR-421, were selected for further analysis. A reporter system using the 3'-UTR of ACE2 fused to the coding region of firefly luciferase was used to determine the functionality of the identified binding sites in vitro. This identified miR-421, but not miR-200b, as a potential regulator of ACE2. The ability of miR-421, an miRNA implicated in the development of thrombosis, to down-regulate ACE2 expression was subsequently confirmed by Western blot analysis of both primary cardiac myofibroblasts and transformed cells transfected with a synthetic miR-421 precursor. Real-time PCR analysis of miR-421 revealed widespread expression in human tissues. miR-421 levels in cardiac myofibroblasts showed significant inter-patient variability, in keeping with the variability of ACE2 expression we have observed previously. In conclusion, the present study is the first to demonstrate that ACE2 may be subject to post-transcriptional regulation and reveals a novel potential therapeutic target, miR-421, which could be exploited to modulate ACE2 expression in disease.ACE2 (angiotensin converting enzyme 2) plays a critical role in the local tissue RAS (renin-angiotensin system) by hydrolysing the potent hypertensive and mitogenic peptide AngII (angiotensin II). Changes in the levels of ACE2 have been observed in a number of pathologies, including cardiovascular disease, but little is known of the mechanisms regulating its expression. In the present study, therefore, the potential role of miRNAs in the regulation of ACE2 expression in primary human cardiac myofibroblasts was examined. Putative miRNA-binding sites were identified in the 3'-UTR of the ACE2 transcript using online prediction algorithms. Two of these, miR-200b and miR-421, were selected for further analysis. A reporter system using the 3'-UTR of ACE2 fused to the coding region of firefly luciferase was used to determine the functionality of the identified binding sites in vitro. This identified miR-421, but not miR-200b, as a potential regulator of ACE2. The ability of miR-421, an miRNA implicated in the development of thrombosis, to down-regulate ACE2 expression was subsequently confirmed by Western blot analysis of both primary cardiac myofibroblasts and transformed cells transfected with a synthetic miR-421 precursor. Real-time PCR analysis of miR-421 revealed widespread expression in human tissues. miR-421 levels in cardiac myofibroblasts showed significant inter-patient variability, in keeping with the variability of ACE2 expression we have observed previously. In conclusion, the present study is the first to demonstrate that ACE2 may be subject to post-transcriptional regulation and reveals a novel potential therapeutic target, miR-421, which could be exploited to modulate ACE2 expression in disease. |
Author | Clarke, Nicola E. Hooper, Nigel M. Porter, Karen E. Lambert, Louise A. Turner, Anthony J. Lambert, Daniel W. |
Author_xml | – sequence: 1 givenname: Daniel W. surname: Lambert fullname: Lambert, Daniel W. organization: Integrated Biosciences, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, U.K., School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K – sequence: 2 givenname: Louise A. surname: Lambert fullname: Lambert, Louise A. organization: School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K – sequence: 3 givenname: Nicola E. surname: Clarke fullname: Clarke, Nicola E. organization: School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K – sequence: 4 givenname: Nigel M. surname: Hooper fullname: Hooper, Nigel M. organization: School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K – sequence: 5 givenname: Karen E. surname: Porter fullname: Porter, Karen E. organization: Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics (LIGHT), University of Leeds, Leeds LS2 9JT, U.K – sequence: 6 givenname: Anthony J. surname: Turner fullname: Turner, Anthony J. organization: School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24564768$$D View this record in MEDLINE/PubMed |
BookMark | eNptkFtLxDAQhYMo7q764g-QPIpQnVza7j7K4g0WBC_gW2nSyRJpk5qkwvrrrTcEkWGYGfjOgTkzsu28Q0IOGZwykPxsec-BiXGDLTJlsoRsXopim0yBSZHlnLMJmcX4DMDFWLtkwmVeyLKYT8nTuVtbn9BF6zLt3SuGZN2aonvbdEg5tZHGQT2jTjR52vuYshRqF3WwfbLe1S0NuB7a-uOgakM7e5dJzvbJjqnbiAffc488Xl48LK-z1e3VzfJ8lWmRi5QJEMrwskBgKlfKlAqKetxVwyWbmwaFKXRjFrBYSJEvStkg8rFrpWVhuBZ75PjLtw_-ZcCYqs5GjW1bO_RDrFjOQUjIAUb06BsdVIdN1Qfb1WFT_aQxAvAF6OBjDGgqbdPnY-PLtq0YVB-BV7-Bj5KTP5If13_gd2Udf-0 |
CitedBy_id | crossref_primary_10_1186_s40246_021_00304_9 crossref_primary_10_1007_s00408_020_00408_4 crossref_primary_10_1002_iub_2379 crossref_primary_10_3390_biom11121771 crossref_primary_10_1186_s12879_024_09310_3 crossref_primary_10_3390_brainsci10100666 crossref_primary_10_1093_ndt_gfx206 crossref_primary_10_2217_epi_2020_0247 crossref_primary_10_3389_fcell_2023_1229393 crossref_primary_10_1155_2022_1645366 crossref_primary_10_1097_FJC_0000000000001201 crossref_primary_10_1186_s13293_020_00330_7 crossref_primary_10_1016_j_yjmcc_2014_07_004 crossref_primary_10_1152_ajprenal_00082_2015 crossref_primary_10_3390_ijms22094762 crossref_primary_10_3389_fmed_2024_1430974 crossref_primary_10_3389_fphys_2020_540591 crossref_primary_10_1007_s12195_020_00637_w crossref_primary_10_1042_CS20200480 crossref_primary_10_2174_26669587_v2_e221026_2022_23 crossref_primary_10_1002_jev2_12222 crossref_primary_10_1016_j_cell_2023_01_039 crossref_primary_10_1158_1055_9965_EPI_15_0161 crossref_primary_10_3109_08037051_2016_1167355 crossref_primary_10_1038_celldisc_2017_21 crossref_primary_10_1007_s12017_019_08583_1 crossref_primary_10_1016_j_lfs_2022_120930 crossref_primary_10_3390_cells11010022 crossref_primary_10_1016_j_meegid_2022_105207 crossref_primary_10_1021_acs_jafc_4c01052 crossref_primary_10_1016_j_cdtm_2020_05_003 crossref_primary_10_1042_CS20200476 crossref_primary_10_1152_ajplung_00498_2016 crossref_primary_10_1152_ajpheart_00888_2020 crossref_primary_10_1016_j_mgene_2020_100831 crossref_primary_10_1002_cbf_3648 crossref_primary_10_1002_rmv_2321 crossref_primary_10_5812_ijpr_137832 crossref_primary_10_1002_jcp_30041 crossref_primary_10_1016_j_peptides_2022_170766 crossref_primary_10_3389_fendo_2021_725967 crossref_primary_10_1042_BSR20192012 crossref_primary_10_1155_2015_896861 crossref_primary_10_1038_s42003_022_03609_0 crossref_primary_10_1139_gen_2020_0124 crossref_primary_10_1161_CIRCRESAHA_116_307708 crossref_primary_10_1016_j_ejcb_2023_151316 crossref_primary_10_1007_s10096_021_04264_9 crossref_primary_10_1038_s41598_021_84731_7 crossref_primary_10_1097_MD_0000000000033251 crossref_primary_10_1038_s41598_021_96294_8 crossref_primary_10_3390_ph14080751 crossref_primary_10_1007_s40265_021_01474_5 crossref_primary_10_1098_rsob_200208 crossref_primary_10_1177_0300060519852235 crossref_primary_10_1186_s12985_023_02152_6 crossref_primary_10_1021_acs_jafc_4c01594 crossref_primary_10_1111_jfbc_13683 crossref_primary_10_1080_10495398_2021_1898414 crossref_primary_10_1016_j_biopha_2021_112247 crossref_primary_10_1093_eurheartj_ehaa373 crossref_primary_10_1016_j_vph_2020_106680 crossref_primary_10_1016_j_drudis_2021_04_006 crossref_primary_10_3390_ijms22105263 crossref_primary_10_1093_ndt_gfw206 crossref_primary_10_1002_jcp_28643 crossref_primary_10_3389_fdmed_2024_1438139 crossref_primary_10_1016_j_ncrna_2020_09_001 crossref_primary_10_1021_acs_jafc_4c08947 crossref_primary_10_1016_j_gene_2023_147232 crossref_primary_10_1159_000503020 crossref_primary_10_1016_j_gene_2024_148422 crossref_primary_10_1186_s12929_023_00965_9 crossref_primary_10_1038_s41401_022_00906_6 |
Cites_doi | 10.1161/01.HYP.0000205833.89478.5b 10.1113/expphysiol.2007.040048 10.1096/fj.08-107300 10.1016/j.bcp.2007.08.012 10.1358/mf.2000.22.10.802287 10.1042/CS20130291 10.1161/CIRCRESAHA.113.301282 10.4049/jimmunol.180.8.5689 10.1152/physiolgenomics.90254.2008 10.1074/jbc.M112.423871 10.1161/HYPERTENSIONAHA.110.168252 10.1097/HJH.0b013e3283440665 10.1016/j.ajpath.2013.03.022 10.1111/bph.12159 10.1113/expphysiol.2005.031096 10.2119/molmed.2009.00160 10.1016/j.cardiores.2003.11.032 10.1016/j.gene.2008.07.013 10.1016/j.febslet.2007.11.085 10.1038/nature00786 10.1530/JME-11-0141 10.1042/CS20070160 10.1074/jbc.M505111200 10.1371/journal.pone.0044532 10.1016/j.tig.2007.02.011 10.1186/1471-2164-8-172 10.1074/jbc.M002615200 10.1113/expphysiol.2007.040139 10.2174/156652411794859250 10.1371/journal.pone.0034747 10.1038/ajh.2010.211 10.1172/JCI38864 10.1016/j.bbapap.2004.10.010 10.1002/path.1570 10.1038/nature03712 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1042/CS20130420 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1470-8736 |
EndPage | 249 |
ExternalDocumentID | 24564768 10_1042_CS20130420 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Medical Research Council grantid: MR/L023784/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/D001781/1 |
GroupedDBID | --- 0R~ 29B 2WC 4.4 5GY 5RE 5VS 6J9 AAYXX ABCQX ABJNI ACGFO ACGFS ADBBV AEGXH AENEX AIAGR AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION CS3 DU5 E3Z EBD EBS EJD EMOBN F5P GX1 H13 HZ~ L7B MV1 NTEUP O9- P2P P6G RHI RPO SV3 TR2 WH7 .55 .GJ 0VX 3O- 53G AABGO AAHRG AFFNX AFFVI AI. CGR CUY CVF ECM EIF MVM NPM OHT VH1 X7M ZGI ZXP 7X8 |
ID | FETCH-LOGICAL-c353t-303bf276e01b5bbf7b06a01bbd2418fde3f6cdf9099435974dee2deeabc46f2c3 |
ISSN | 0143-5221 1470-8736 |
IngestDate | Fri Jul 11 10:59:04 EDT 2025 Sat May 31 02:13:11 EDT 2025 Tue Jul 01 03:56:50 EDT 2025 Thu Apr 24 22:58:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c353t-303bf276e01b5bbf7b06a01bbd2418fde3f6cdf9099435974dee2deeabc46f2c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24564768 |
PQID | 1520340500 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_1520340500 pubmed_primary_24564768 crossref_citationtrail_10_1042_CS20130420 crossref_primary_10_1042_CS20130420 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Clinical science (1979) |
PublicationTitleAlternate | Clin Sci (Lond) |
PublicationYear | 2014 |
References | Huentelman (2021113010333666900_B7) 2005; 90 Clarke (2021113010333666900_B32) 2014; 126 Perry (2021113010333666900_B14) 2008; 180 Kozak (2021113010333666900_B30) 2008; 423 Penninger (2021113010333666900_B9) 2008; 93 Tipnis (2021113010333666900_B2) 2000; 275 Lambert (2021113010333666900_B6) 2008; 75 Grobe (2021113010333666900_B25) 2007; 113 Marchand (2021113010333666900_B20) 2012; 7 Witkos (2021113010333666900_B18) 2011; 11 Imai (2021113010333666900_B8) 2005; 436 Nilsen (2021113010333666900_B12) 2007; 23 Lambert (2021113010333666900_B23) 2008; 582 Ceolotto (2021113010333666900_B27) 2011; 24 Clarke (2021113010333666900_B22) 2012; 7 Bhandary (2021113010333666900_B36) 2013; 183 Kowalczuk (2021113010333666900_B24) 2008; 22 Yamamoto (2021113010333666900_B4) 2006; 47 Crackower (2021113010333666900_B3) 2002; 417 Fernandes (2021113010333666900_B28) 2011; 58 Lambert (2021113010333666900_B29) 2005; 280 Fraga-Silva (2021113010333666900_B33) 2010; 16 Guy (2021113010333666900_B16) 2008; 93 Guy (2021113010333666900_B5) 2005; 1751 Kohlstedt (2021113010333666900_B11) 2013; 112 Latronico (2021113010333666900_B13) 2008; 34 Diniz (2021113010333666900_B26) 2012; 49 Lijnen (2021113010333666900_B1) 2000; 22 Hamming (2021113010333666900_B31) 2004; 203 Boettger (2021113010333666900_B10) 2009; 119 Lambert (2021113010333666900_B21) 2008; 75 Williams (2021113010333666900_B15) 2007; 8 Porter (2021113010333666900_B17) 2004; 61 Chang (2021113010333666900_B19) 2013; 288 Ocaranza (2021113010333666900_B34) 2011; 29 Simões e Silva (2021113010333666900_B35) 2013; 169 |
References_xml | – volume: 47 start-page: 718 year: 2006 ident: 2021113010333666900_B4 article-title: Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin II publication-title: Hypertension doi: 10.1161/01.HYP.0000205833.89478.5b – volume: 93 start-page: 543 year: 2008 ident: 2021113010333666900_B9 article-title: The discovery of ACE2 and its role in acute lung injury publication-title: Exp. Physiol. doi: 10.1113/expphysiol.2007.040048 – volume: 22 start-page: 2880 year: 2008 ident: 2021113010333666900_B24 article-title: A protein complex in the brush-border membrane explains a Hartnup disorder allele publication-title: FASEB J. doi: 10.1096/fj.08-107300 – volume: 75 start-page: 781 year: 2008 ident: 2021113010333666900_B21 article-title: Angiotensin-converting enzyme 2 and new insights into the renin-angiotensin system publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2007.08.012 – volume: 75 start-page: 781 year: 2008 ident: 2021113010333666900_B6 article-title: Angiotensin-converting enzyme 2 and new insights into the renin-angiotensin system publication-title: Biochem. Pharmacol. doi: 10.1016/j.bcp.2007.08.012 – volume: 22 start-page: 709 year: 2000 ident: 2021113010333666900_B1 article-title: Induction of cardiac fibrosis by angiotensin II publication-title: Methods Find. Exp. Clin. Pharmacol. doi: 10.1358/mf.2000.22.10.802287 – volume: 126 start-page: 507 year: 2014 ident: 2021113010333666900_B32 article-title: Epigenetic regulation of angiotensin-converting enzyme 2 (ACE2) by SIRT1 under conditions of cell energy stress publication-title: Clin. Sci. doi: 10.1042/CS20130291 – volume: 112 start-page: 1150 year: 2013 ident: 2021113010333666900_B11 article-title: AMP-activated protein kinase regulates endothelial cell angiotensin-converting enzyme expression via p53 and the post-transcriptional regulation of microRNA-143/145 publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.113.301282 – volume: 180 start-page: 5689 year: 2008 ident: 2021113010333666900_B14 article-title: Rapid changes in microRNA-146a expression negatively regulate the IL-1β-induced inflammatory response in human lung alveolar epithelial cells publication-title: J. Immunol. doi: 10.4049/jimmunol.180.8.5689 – volume: 34 start-page: 239 year: 2008 ident: 2021113010333666900_B13 article-title: MicroRNA and cardiac pathologies publication-title: Physiol. Genomics doi: 10.1152/physiolgenomics.90254.2008 – volume: 288 start-page: 4908 year: 2013 ident: 2021113010333666900_B19 article-title: Antagonistic function of the RNA-binding protein HuR and miR-200b in post-transcriptional regulation of vascular endothelial growth factor-A expression and angiogenesis publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.423871 – volume: 58 start-page: 182 year: 2011 ident: 2021113010333666900_B28 article-title: Aerobic exercise training-induced left ventricular hypertrophy involves regulatory microRNAs, decreased angiotensin-converting enzyme-angiotensin II, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1–7) publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.110.168252 – volume: 29 start-page: 706 year: 2011 ident: 2021113010333666900_B34 article-title: Rho kinase inhibition activates the homologous angiotensin-converting enzyme-angiotensin-(1–9) axis in experimental hypertension publication-title: J. Hypertens. doi: 10.1097/HJH.0b013e3283440665 – volume: 183 start-page: 131 year: 2013 ident: 2021113010333666900_B36 article-title: Regulation of lung injury and fibrosis by p53-mediated changes in urokinase and plasminogen activator inhibitor-1 publication-title: Am. J. Pathol. doi: 10.1016/j.ajpath.2013.03.022 – volume: 169 start-page: 477 year: 2013 ident: 2021113010333666900_B35 article-title: ACE2, angiotensin-(1–7) and Mas receptor axis in inflammation and fibrosis publication-title: Br. J. Pharmacol. doi: 10.1111/bph.12159 – volume: 90 start-page: 783 year: 2005 ident: 2021113010333666900_B7 article-title: Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats publication-title: Exp. Physiol. doi: 10.1113/expphysiol.2005.031096 – volume: 16 start-page: 210 year: 2010 ident: 2021113010333666900_B33 article-title: ACE2 activation promotes antithrombotic activity publication-title: Mol. Med. doi: 10.2119/molmed.2009.00160 – volume: 61 start-page: 745 year: 2004 ident: 2021113010333666900_B17 article-title: Simvastatin reduces human atrial myofibroblast proliferation independently of cholesterol lowering via inhibition of RhoA publication-title: Cardiovasc. Res. doi: 10.1016/j.cardiores.2003.11.032 – volume: 423 start-page: 108 year: 2008 ident: 2021113010333666900_B30 article-title: Faulty old ideas about translational regulation paved the way for current confusion about how microRNAs function publication-title: Gene doi: 10.1016/j.gene.2008.07.013 – volume: 582 start-page: 385 year: 2008 ident: 2021113010333666900_B23 article-title: Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain publication-title: FEBS Lett. doi: 10.1016/j.febslet.2007.11.085 – volume: 417 start-page: 822 year: 2002 ident: 2021113010333666900_B3 article-title: Angiotensin-converting enzyme 2 is an essential regulator of heart function publication-title: Nature doi: 10.1038/nature00786 – volume: 49 start-page: 11 year: 2012 ident: 2021113010333666900_B26 article-title: New insight into the mechanisms associated with the rapid effect of T3 on AT1R expression publication-title: J. Mol. Endocrinol. doi: 10.1530/JME-11-0141 – volume: 113 start-page: 357 year: 2007 ident: 2021113010333666900_B25 article-title: ACE2 overexpression inhibits hypoxia-induced collagen production by cardiac fibroblasts publication-title: Clin. Sci. doi: 10.1042/CS20070160 – volume: 280 start-page: 30113 year: 2005 ident: 2021113010333666900_B29 article-title: Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M505111200 – volume: 7 start-page: e44532 year: 2012 ident: 2021113010333666900_B20 article-title: miR-421 and miR-30c inhibit SERPINE 1 gene expression in human endothelial cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0044532 – volume: 23 start-page: 243 year: 2007 ident: 2021113010333666900_B12 article-title: Mechanisms of microRNA-mediated gene regulation in animal cells publication-title: Trends Genet. doi: 10.1016/j.tig.2007.02.011 – volume: 8 start-page: 172 year: 2007 ident: 2021113010333666900_B15 article-title: microRNA expression in the aging mouse lung publication-title: BMC Genomics doi: 10.1186/1471-2164-8-172 – volume: 275 start-page: 33238 year: 2000 ident: 2021113010333666900_B2 article-title: A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M002615200 – volume: 93 start-page: 579 year: 2008 ident: 2021113010333666900_B16 article-title: Functional angiotensin-converting enzyme 2 is expressed in human cardiac myofibroblasts publication-title: Exp. Physiol. doi: 10.1113/expphysiol.2007.040139 – volume: 11 start-page: 93 year: 2011 ident: 2021113010333666900_B18 article-title: Practical aspects of microRNA target prediction publication-title: Curr. Mol. Med. doi: 10.2174/156652411794859250 – volume: 7 start-page: e34747 year: 2012 ident: 2021113010333666900_B22 article-title: Angiotensin converting enzyme (ACE) and ACE2 bind integrins and ACE2 regulates integrin signalling publication-title: PLoS ONE doi: 10.1371/journal.pone.0034747 – volume: 24 start-page: 241 year: 2011 ident: 2021113010333666900_B27 article-title: Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives publication-title: Am. J. Hypertens. doi: 10.1038/ajh.2010.211 – volume: 119 start-page: 2634 year: 2009 ident: 2021113010333666900_B10 article-title: Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the miR143/145 gene cluster publication-title: J. Clin. Invest. doi: 10.1172/JCI38864 – volume: 1751 start-page: 2 year: 2005 ident: 2021113010333666900_B5 article-title: Membrane-associated zinc peptidase families: comparing ACE and ACE2 publication-title: Biochim. Biophys. Acta. doi: 10.1016/j.bbapap.2004.10.010 – volume: 203 start-page: 631 year: 2004 ident: 2021113010333666900_B31 article-title: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis publication-title: J. Pathol. doi: 10.1002/path.1570 – volume: 436 start-page: 112 year: 2005 ident: 2021113010333666900_B8 article-title: Angiotensin-converting enzyme 2 protects from severe acute lung failure publication-title: Nature doi: 10.1038/nature03712 |
SSID | ssj0023232 |
Score | 2.4200535 |
Snippet | ACE2 (angiotensin converting enzyme 2) plays a critical role in the local tissue RAS (renin–angiotensin system) by hydrolysing the potent hypertensive and... ACE2 (angiotensin converting enzyme 2) plays a critical role in the local tissue RAS (renin-angiotensin system) by hydrolysing the potent hypertensive and... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 243 |
SubjectTerms | Angiotensin II - genetics Angiotensin II - metabolism Angiotensin-Converting Enzyme 2 Cardiovascular Diseases - genetics Cardiovascular Diseases - metabolism Down-Regulation - genetics Gene Expression Regulation - genetics Humans MicroRNAs - genetics MicroRNAs - metabolism Peptidyl-Dipeptidase A - metabolism Renin-Angiotensin System - genetics Transcription, Genetic |
Title | Angiotensin-converting enzyme 2 is subject to post-transcriptional regulation by miR-421 |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24564768 https://www.proquest.com/docview/1520340500 |
Volume | 127 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1470-8736 dateEnd: 20231001 omitProxy: true ssIdentifier: ssj0023232 issn: 0143-5221 databaseCode: GX1 dateStart: 19790101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSIiXiTsbMBmBkNBkcBPn9jhNGxXqigStyFtkJ04VaUu6JX3Yfj3nOE7SiSANHhpFrpu0Pl9PvuNzI-RDkIUi9JTHci_lTEQTySI_85gKZSR8HgRpiPnOZ3N_uhTfYi8eNnNMdkmjPqc3o3kl_yNVGAO5YpbsP0i2vygMwDnIF44gYTjeScZH5aqoTAh6yUz4-JUJYtblzfUFbqwW9WG9UbjTghRzXdUNa_DZ1GkKU9R_ZRt4IRG9KH4w0eYS9-ULbqVOpoaSTqIg2tpCmEnsKtIMGeuHv0bemlWbAqug9F6PPjLIoFEOORHTqlq3SJoXK4y83d6amIg-MK7TpiLgoG5dW-t6ZKxTwW19AIs1sa1Q2yJOfyh60DVYQPing55X4fDhcda58Offk9PlbJYsTuLFx_Ulw0Zj6JC3XVfukwdO4PvY9OJr3EcFAb80Pe36b9lVtBXOl-FmtznMXwwTQ1AWj8mutSzoUQuTJ-SeLp-Sh2c2duIZicfRQlu0UIcWNbVooU1Fx9BCB7RQdU0tWp6T5enJ4njKbF8Nlrqe2zBgLSqHH6_5RHlK5YHivoRzlQGdC_NMu7mfZnkExgOQaTA4M60deEmVCj93UvcF2SmrUr8iFAa0BJoodcZFLvPQkSLCv3joau6GYo986lYqSW3Reex9cp6Y4AfhJMOq7pH3_dx1W2pldNa7bsET0ITo3pKlrjZ1AkyUu2B_cJjzspVEfx107wuwrPfv8OnX5BHcLGrB_IbsNFcb_RaYZ6MODFZ-A4rUgxc |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Angiotensin-converting+enzyme+2+is+subject+to+post-transcriptional+regulation+by+miR-421&rft.jtitle=Clinical+science+%281979%29&rft.au=Lambert%2C+Daniel+W&rft.au=Lambert%2C+Louise+A&rft.au=Clarke%2C+Nicola+E&rft.au=Hooper%2C+Nigel+M&rft.date=2014-08-01&rft.issn=1470-8736&rft.eissn=1470-8736&rft.volume=127&rft.issue=4&rft.spage=243&rft_id=info:doi/10.1042%2FCS20130420&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-5221&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-5221&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-5221&client=summon |