Angiotensin-converting enzyme 2 is subject to post-transcriptional regulation by miR-421

ACE2 (angiotensin converting enzyme 2) plays a critical role in the local tissue RAS (renin–angiotensin system) by hydrolysing the potent hypertensive and mitogenic peptide AngII (angiotensin II). Changes in the levels of ACE2 have been observed in a number of pathologies, including cardiovascular d...

Full description

Saved in:
Bibliographic Details
Published inClinical science (1979) Vol. 127; no. 4; pp. 243 - 249
Main Authors Lambert, Daniel W., Lambert, Louise A., Clarke, Nicola E., Hooper, Nigel M., Porter, Karen E., Turner, Anthony J.
Format Journal Article
LanguageEnglish
Published England 01.08.2014
Subjects
Online AccessGet full text
ISSN0143-5221
1470-8736
1470-8736
DOI10.1042/CS20130420

Cover

Abstract ACE2 (angiotensin converting enzyme 2) plays a critical role in the local tissue RAS (renin–angiotensin system) by hydrolysing the potent hypertensive and mitogenic peptide AngII (angiotensin II). Changes in the levels of ACE2 have been observed in a number of pathologies, including cardiovascular disease, but little is known of the mechanisms regulating its expression. In the present study, therefore, the potential role of miRNAs in the regulation of ACE2 expression in primary human cardiac myofibroblasts was examined. Putative miRNA-binding sites were identified in the 3′-UTR of the ACE2 transcript using online prediction algorithms. Two of these, miR-200b and miR-421, were selected for further analysis. A reporter system using the 3′-UTR of ACE2 fused to the coding region of firefly luciferase was used to determine the functionality of the identified binding sites in vitro. This identified miR-421, but not miR-200b, as a potential regulator of ACE2. The ability of miR-421, an miRNA implicated in the development of thrombosis, to down-regulate ACE2 expression was subsequently confirmed by Western blot analysis of both primary cardiac myofibroblasts and transformed cells transfected with a synthetic miR-421 precursor. Real-time PCR analysis of miR-421 revealed widespread expression in human tissues. miR-421 levels in cardiac myofibroblasts showed significant inter-patient variability, in keeping with the variability of ACE2 expression we have observed previously. In conclusion, the present study is the first to demonstrate that ACE2 may be subject to post-transcriptional regulation and reveals a novel potential therapeutic target, miR-421, which could be exploited to modulate ACE2 expression in disease.
AbstractList ACE2 (angiotensin converting enzyme 2) plays a critical role in the local tissue RAS (renin-angiotensin system) by hydrolysing the potent hypertensive and mitogenic peptide AngII (angiotensin II). Changes in the levels of ACE2 have been observed in a number of pathologies, including cardiovascular disease, but little is known of the mechanisms regulating its expression. In the present study, therefore, the potential role of miRNAs in the regulation of ACE2 expression in primary human cardiac myofibroblasts was examined. Putative miRNA-binding sites were identified in the 3'-UTR of the ACE2 transcript using online prediction algorithms. Two of these, miR-200b and miR-421, were selected for further analysis. A reporter system using the 3'-UTR of ACE2 fused to the coding region of firefly luciferase was used to determine the functionality of the identified binding sites in vitro. This identified miR-421, but not miR-200b, as a potential regulator of ACE2. The ability of miR-421, an miRNA implicated in the development of thrombosis, to down-regulate ACE2 expression was subsequently confirmed by Western blot analysis of both primary cardiac myofibroblasts and transformed cells transfected with a synthetic miR-421 precursor. Real-time PCR analysis of miR-421 revealed widespread expression in human tissues. miR-421 levels in cardiac myofibroblasts showed significant inter-patient variability, in keeping with the variability of ACE2 expression we have observed previously. In conclusion, the present study is the first to demonstrate that ACE2 may be subject to post-transcriptional regulation and reveals a novel potential therapeutic target, miR-421, which could be exploited to modulate ACE2 expression in disease.
ACE2 (angiotensin converting enzyme 2) plays a critical role in the local tissue RAS (renin-angiotensin system) by hydrolysing the potent hypertensive and mitogenic peptide AngII (angiotensin II). Changes in the levels of ACE2 have been observed in a number of pathologies, including cardiovascular disease, but little is known of the mechanisms regulating its expression. In the present study, therefore, the potential role of miRNAs in the regulation of ACE2 expression in primary human cardiac myofibroblasts was examined. Putative miRNA-binding sites were identified in the 3'-UTR of the ACE2 transcript using online prediction algorithms. Two of these, miR-200b and miR-421, were selected for further analysis. A reporter system using the 3'-UTR of ACE2 fused to the coding region of firefly luciferase was used to determine the functionality of the identified binding sites in vitro. This identified miR-421, but not miR-200b, as a potential regulator of ACE2. The ability of miR-421, an miRNA implicated in the development of thrombosis, to down-regulate ACE2 expression was subsequently confirmed by Western blot analysis of both primary cardiac myofibroblasts and transformed cells transfected with a synthetic miR-421 precursor. Real-time PCR analysis of miR-421 revealed widespread expression in human tissues. miR-421 levels in cardiac myofibroblasts showed significant inter-patient variability, in keeping with the variability of ACE2 expression we have observed previously. In conclusion, the present study is the first to demonstrate that ACE2 may be subject to post-transcriptional regulation and reveals a novel potential therapeutic target, miR-421, which could be exploited to modulate ACE2 expression in disease.ACE2 (angiotensin converting enzyme 2) plays a critical role in the local tissue RAS (renin-angiotensin system) by hydrolysing the potent hypertensive and mitogenic peptide AngII (angiotensin II). Changes in the levels of ACE2 have been observed in a number of pathologies, including cardiovascular disease, but little is known of the mechanisms regulating its expression. In the present study, therefore, the potential role of miRNAs in the regulation of ACE2 expression in primary human cardiac myofibroblasts was examined. Putative miRNA-binding sites were identified in the 3'-UTR of the ACE2 transcript using online prediction algorithms. Two of these, miR-200b and miR-421, were selected for further analysis. A reporter system using the 3'-UTR of ACE2 fused to the coding region of firefly luciferase was used to determine the functionality of the identified binding sites in vitro. This identified miR-421, but not miR-200b, as a potential regulator of ACE2. The ability of miR-421, an miRNA implicated in the development of thrombosis, to down-regulate ACE2 expression was subsequently confirmed by Western blot analysis of both primary cardiac myofibroblasts and transformed cells transfected with a synthetic miR-421 precursor. Real-time PCR analysis of miR-421 revealed widespread expression in human tissues. miR-421 levels in cardiac myofibroblasts showed significant inter-patient variability, in keeping with the variability of ACE2 expression we have observed previously. In conclusion, the present study is the first to demonstrate that ACE2 may be subject to post-transcriptional regulation and reveals a novel potential therapeutic target, miR-421, which could be exploited to modulate ACE2 expression in disease.
Author Clarke, Nicola E.
Hooper, Nigel M.
Porter, Karen E.
Lambert, Louise A.
Turner, Anthony J.
Lambert, Daniel W.
Author_xml – sequence: 1
  givenname: Daniel W.
  surname: Lambert
  fullname: Lambert, Daniel W.
  organization: Integrated Biosciences, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, U.K., School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
– sequence: 2
  givenname: Louise A.
  surname: Lambert
  fullname: Lambert, Louise A.
  organization: School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
– sequence: 3
  givenname: Nicola E.
  surname: Clarke
  fullname: Clarke, Nicola E.
  organization: School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
– sequence: 4
  givenname: Nigel M.
  surname: Hooper
  fullname: Hooper, Nigel M.
  organization: School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
– sequence: 5
  givenname: Karen E.
  surname: Porter
  fullname: Porter, Karen E.
  organization: Division of Cardiovascular and Diabetes Research, Leeds Institute of Genetics, Health and Therapeutics (LIGHT), University of Leeds, Leeds LS2 9JT, U.K
– sequence: 6
  givenname: Anthony J.
  surname: Turner
  fullname: Turner, Anthony J.
  organization: School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24564768$$D View this record in MEDLINE/PubMed
BookMark eNptkFtLxDAQhYMo7q764g-QPIpQnVza7j7K4g0WBC_gW2nSyRJpk5qkwvrrrTcEkWGYGfjOgTkzsu28Q0IOGZwykPxsec-BiXGDLTJlsoRsXopim0yBSZHlnLMJmcX4DMDFWLtkwmVeyLKYT8nTuVtbn9BF6zLt3SuGZN2aonvbdEg5tZHGQT2jTjR52vuYshRqF3WwfbLe1S0NuB7a-uOgakM7e5dJzvbJjqnbiAffc488Xl48LK-z1e3VzfJ8lWmRi5QJEMrwskBgKlfKlAqKetxVwyWbmwaFKXRjFrBYSJEvStkg8rFrpWVhuBZ75PjLtw_-ZcCYqs5GjW1bO_RDrFjOQUjIAUb06BsdVIdN1Qfb1WFT_aQxAvAF6OBjDGgqbdPnY-PLtq0YVB-BV7-Bj5KTP5If13_gd2Udf-0
CitedBy_id crossref_primary_10_1186_s40246_021_00304_9
crossref_primary_10_1007_s00408_020_00408_4
crossref_primary_10_1002_iub_2379
crossref_primary_10_3390_biom11121771
crossref_primary_10_1186_s12879_024_09310_3
crossref_primary_10_3390_brainsci10100666
crossref_primary_10_1093_ndt_gfx206
crossref_primary_10_2217_epi_2020_0247
crossref_primary_10_3389_fcell_2023_1229393
crossref_primary_10_1155_2022_1645366
crossref_primary_10_1097_FJC_0000000000001201
crossref_primary_10_1186_s13293_020_00330_7
crossref_primary_10_1016_j_yjmcc_2014_07_004
crossref_primary_10_1152_ajprenal_00082_2015
crossref_primary_10_3390_ijms22094762
crossref_primary_10_3389_fmed_2024_1430974
crossref_primary_10_3389_fphys_2020_540591
crossref_primary_10_1007_s12195_020_00637_w
crossref_primary_10_1042_CS20200480
crossref_primary_10_2174_26669587_v2_e221026_2022_23
crossref_primary_10_1002_jev2_12222
crossref_primary_10_1016_j_cell_2023_01_039
crossref_primary_10_1158_1055_9965_EPI_15_0161
crossref_primary_10_3109_08037051_2016_1167355
crossref_primary_10_1038_celldisc_2017_21
crossref_primary_10_1007_s12017_019_08583_1
crossref_primary_10_1016_j_lfs_2022_120930
crossref_primary_10_3390_cells11010022
crossref_primary_10_1016_j_meegid_2022_105207
crossref_primary_10_1021_acs_jafc_4c01052
crossref_primary_10_1016_j_cdtm_2020_05_003
crossref_primary_10_1042_CS20200476
crossref_primary_10_1152_ajplung_00498_2016
crossref_primary_10_1152_ajpheart_00888_2020
crossref_primary_10_1016_j_mgene_2020_100831
crossref_primary_10_1002_cbf_3648
crossref_primary_10_1002_rmv_2321
crossref_primary_10_5812_ijpr_137832
crossref_primary_10_1002_jcp_30041
crossref_primary_10_1016_j_peptides_2022_170766
crossref_primary_10_3389_fendo_2021_725967
crossref_primary_10_1042_BSR20192012
crossref_primary_10_1155_2015_896861
crossref_primary_10_1038_s42003_022_03609_0
crossref_primary_10_1139_gen_2020_0124
crossref_primary_10_1161_CIRCRESAHA_116_307708
crossref_primary_10_1016_j_ejcb_2023_151316
crossref_primary_10_1007_s10096_021_04264_9
crossref_primary_10_1038_s41598_021_84731_7
crossref_primary_10_1097_MD_0000000000033251
crossref_primary_10_1038_s41598_021_96294_8
crossref_primary_10_3390_ph14080751
crossref_primary_10_1007_s40265_021_01474_5
crossref_primary_10_1098_rsob_200208
crossref_primary_10_1177_0300060519852235
crossref_primary_10_1186_s12985_023_02152_6
crossref_primary_10_1021_acs_jafc_4c01594
crossref_primary_10_1111_jfbc_13683
crossref_primary_10_1080_10495398_2021_1898414
crossref_primary_10_1016_j_biopha_2021_112247
crossref_primary_10_1093_eurheartj_ehaa373
crossref_primary_10_1016_j_vph_2020_106680
crossref_primary_10_1016_j_drudis_2021_04_006
crossref_primary_10_3390_ijms22105263
crossref_primary_10_1093_ndt_gfw206
crossref_primary_10_1002_jcp_28643
crossref_primary_10_3389_fdmed_2024_1438139
crossref_primary_10_1016_j_ncrna_2020_09_001
crossref_primary_10_1021_acs_jafc_4c08947
crossref_primary_10_1016_j_gene_2023_147232
crossref_primary_10_1159_000503020
crossref_primary_10_1016_j_gene_2024_148422
crossref_primary_10_1186_s12929_023_00965_9
crossref_primary_10_1038_s41401_022_00906_6
Cites_doi 10.1161/01.HYP.0000205833.89478.5b
10.1113/expphysiol.2007.040048
10.1096/fj.08-107300
10.1016/j.bcp.2007.08.012
10.1358/mf.2000.22.10.802287
10.1042/CS20130291
10.1161/CIRCRESAHA.113.301282
10.4049/jimmunol.180.8.5689
10.1152/physiolgenomics.90254.2008
10.1074/jbc.M112.423871
10.1161/HYPERTENSIONAHA.110.168252
10.1097/HJH.0b013e3283440665
10.1016/j.ajpath.2013.03.022
10.1111/bph.12159
10.1113/expphysiol.2005.031096
10.2119/molmed.2009.00160
10.1016/j.cardiores.2003.11.032
10.1016/j.gene.2008.07.013
10.1016/j.febslet.2007.11.085
10.1038/nature00786
10.1530/JME-11-0141
10.1042/CS20070160
10.1074/jbc.M505111200
10.1371/journal.pone.0044532
10.1016/j.tig.2007.02.011
10.1186/1471-2164-8-172
10.1074/jbc.M002615200
10.1113/expphysiol.2007.040139
10.2174/156652411794859250
10.1371/journal.pone.0034747
10.1038/ajh.2010.211
10.1172/JCI38864
10.1016/j.bbapap.2004.10.010
10.1002/path.1570
10.1038/nature03712
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1042/CS20130420
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1470-8736
EndPage 249
ExternalDocumentID 24564768
10_1042_CS20130420
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Medical Research Council
  grantid: MR/L023784/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/D001781/1
GroupedDBID ---
0R~
29B
2WC
4.4
5GY
5RE
5VS
6J9
AAYXX
ABCQX
ABJNI
ACGFO
ACGFS
ADBBV
AEGXH
AENEX
AIAGR
AIZAD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
CS3
DU5
E3Z
EBD
EBS
EJD
EMOBN
F5P
GX1
H13
HZ~
L7B
MV1
NTEUP
O9-
P2P
P6G
RHI
RPO
SV3
TR2
WH7
.55
.GJ
0VX
3O-
53G
AABGO
AAHRG
AFFNX
AFFVI
AI.
CGR
CUY
CVF
ECM
EIF
MVM
NPM
OHT
VH1
X7M
ZGI
ZXP
7X8
ID FETCH-LOGICAL-c353t-303bf276e01b5bbf7b06a01bbd2418fde3f6cdf9099435974dee2deeabc46f2c3
ISSN 0143-5221
1470-8736
IngestDate Fri Jul 11 10:59:04 EDT 2025
Sat May 31 02:13:11 EDT 2025
Tue Jul 01 03:56:50 EDT 2025
Thu Apr 24 22:58:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c353t-303bf276e01b5bbf7b06a01bbd2418fde3f6cdf9099435974dee2deeabc46f2c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24564768
PQID 1520340500
PQPubID 23479
PageCount 7
ParticipantIDs proquest_miscellaneous_1520340500
pubmed_primary_24564768
crossref_citationtrail_10_1042_CS20130420
crossref_primary_10_1042_CS20130420
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Clinical science (1979)
PublicationTitleAlternate Clin Sci (Lond)
PublicationYear 2014
References Huentelman (2021113010333666900_B7) 2005; 90
Clarke (2021113010333666900_B32) 2014; 126
Perry (2021113010333666900_B14) 2008; 180
Kozak (2021113010333666900_B30) 2008; 423
Penninger (2021113010333666900_B9) 2008; 93
Tipnis (2021113010333666900_B2) 2000; 275
Lambert (2021113010333666900_B6) 2008; 75
Grobe (2021113010333666900_B25) 2007; 113
Marchand (2021113010333666900_B20) 2012; 7
Witkos (2021113010333666900_B18) 2011; 11
Imai (2021113010333666900_B8) 2005; 436
Nilsen (2021113010333666900_B12) 2007; 23
Lambert (2021113010333666900_B23) 2008; 582
Ceolotto (2021113010333666900_B27) 2011; 24
Clarke (2021113010333666900_B22) 2012; 7
Bhandary (2021113010333666900_B36) 2013; 183
Kowalczuk (2021113010333666900_B24) 2008; 22
Yamamoto (2021113010333666900_B4) 2006; 47
Crackower (2021113010333666900_B3) 2002; 417
Fernandes (2021113010333666900_B28) 2011; 58
Lambert (2021113010333666900_B29) 2005; 280
Fraga-Silva (2021113010333666900_B33) 2010; 16
Guy (2021113010333666900_B16) 2008; 93
Guy (2021113010333666900_B5) 2005; 1751
Kohlstedt (2021113010333666900_B11) 2013; 112
Latronico (2021113010333666900_B13) 2008; 34
Diniz (2021113010333666900_B26) 2012; 49
Lijnen (2021113010333666900_B1) 2000; 22
Hamming (2021113010333666900_B31) 2004; 203
Boettger (2021113010333666900_B10) 2009; 119
Lambert (2021113010333666900_B21) 2008; 75
Williams (2021113010333666900_B15) 2007; 8
Porter (2021113010333666900_B17) 2004; 61
Chang (2021113010333666900_B19) 2013; 288
Ocaranza (2021113010333666900_B34) 2011; 29
Simões e Silva (2021113010333666900_B35) 2013; 169
References_xml – volume: 47
  start-page: 718
  year: 2006
  ident: 2021113010333666900_B4
  article-title: Deletion of angiotensin-converting enzyme 2 accelerates pressure overload-induced cardiac dysfunction by increasing local angiotensin II
  publication-title: Hypertension
  doi: 10.1161/01.HYP.0000205833.89478.5b
– volume: 93
  start-page: 543
  year: 2008
  ident: 2021113010333666900_B9
  article-title: The discovery of ACE2 and its role in acute lung injury
  publication-title: Exp. Physiol.
  doi: 10.1113/expphysiol.2007.040048
– volume: 22
  start-page: 2880
  year: 2008
  ident: 2021113010333666900_B24
  article-title: A protein complex in the brush-border membrane explains a Hartnup disorder allele
  publication-title: FASEB J.
  doi: 10.1096/fj.08-107300
– volume: 75
  start-page: 781
  year: 2008
  ident: 2021113010333666900_B21
  article-title: Angiotensin-converting enzyme 2 and new insights into the renin-angiotensin system
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2007.08.012
– volume: 75
  start-page: 781
  year: 2008
  ident: 2021113010333666900_B6
  article-title: Angiotensin-converting enzyme 2 and new insights into the renin-angiotensin system
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/j.bcp.2007.08.012
– volume: 22
  start-page: 709
  year: 2000
  ident: 2021113010333666900_B1
  article-title: Induction of cardiac fibrosis by angiotensin II
  publication-title: Methods Find. Exp. Clin. Pharmacol.
  doi: 10.1358/mf.2000.22.10.802287
– volume: 126
  start-page: 507
  year: 2014
  ident: 2021113010333666900_B32
  article-title: Epigenetic regulation of angiotensin-converting enzyme 2 (ACE2) by SIRT1 under conditions of cell energy stress
  publication-title: Clin. Sci.
  doi: 10.1042/CS20130291
– volume: 112
  start-page: 1150
  year: 2013
  ident: 2021113010333666900_B11
  article-title: AMP-activated protein kinase regulates endothelial cell angiotensin-converting enzyme expression via p53 and the post-transcriptional regulation of microRNA-143/145
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.113.301282
– volume: 180
  start-page: 5689
  year: 2008
  ident: 2021113010333666900_B14
  article-title: Rapid changes in microRNA-146a expression negatively regulate the IL-1β-induced inflammatory response in human lung alveolar epithelial cells
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.180.8.5689
– volume: 34
  start-page: 239
  year: 2008
  ident: 2021113010333666900_B13
  article-title: MicroRNA and cardiac pathologies
  publication-title: Physiol. Genomics
  doi: 10.1152/physiolgenomics.90254.2008
– volume: 288
  start-page: 4908
  year: 2013
  ident: 2021113010333666900_B19
  article-title: Antagonistic function of the RNA-binding protein HuR and miR-200b in post-transcriptional regulation of vascular endothelial growth factor-A expression and angiogenesis
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.423871
– volume: 58
  start-page: 182
  year: 2011
  ident: 2021113010333666900_B28
  article-title: Aerobic exercise training-induced left ventricular hypertrophy involves regulatory microRNAs, decreased angiotensin-converting enzyme-angiotensin II, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1–7)
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.110.168252
– volume: 29
  start-page: 706
  year: 2011
  ident: 2021113010333666900_B34
  article-title: Rho kinase inhibition activates the homologous angiotensin-converting enzyme-angiotensin-(1–9) axis in experimental hypertension
  publication-title: J. Hypertens.
  doi: 10.1097/HJH.0b013e3283440665
– volume: 183
  start-page: 131
  year: 2013
  ident: 2021113010333666900_B36
  article-title: Regulation of lung injury and fibrosis by p53-mediated changes in urokinase and plasminogen activator inhibitor-1
  publication-title: Am. J. Pathol.
  doi: 10.1016/j.ajpath.2013.03.022
– volume: 169
  start-page: 477
  year: 2013
  ident: 2021113010333666900_B35
  article-title: ACE2, angiotensin-(1–7) and Mas receptor axis in inflammation and fibrosis
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.12159
– volume: 90
  start-page: 783
  year: 2005
  ident: 2021113010333666900_B7
  article-title: Protection from angiotensin II-induced cardiac hypertrophy and fibrosis by systemic lentiviral delivery of ACE2 in rats
  publication-title: Exp. Physiol.
  doi: 10.1113/expphysiol.2005.031096
– volume: 16
  start-page: 210
  year: 2010
  ident: 2021113010333666900_B33
  article-title: ACE2 activation promotes antithrombotic activity
  publication-title: Mol. Med.
  doi: 10.2119/molmed.2009.00160
– volume: 61
  start-page: 745
  year: 2004
  ident: 2021113010333666900_B17
  article-title: Simvastatin reduces human atrial myofibroblast proliferation independently of cholesterol lowering via inhibition of RhoA
  publication-title: Cardiovasc. Res.
  doi: 10.1016/j.cardiores.2003.11.032
– volume: 423
  start-page: 108
  year: 2008
  ident: 2021113010333666900_B30
  article-title: Faulty old ideas about translational regulation paved the way for current confusion about how microRNAs function
  publication-title: Gene
  doi: 10.1016/j.gene.2008.07.013
– volume: 582
  start-page: 385
  year: 2008
  ident: 2021113010333666900_B23
  article-title: Calmodulin interacts with angiotensin-converting enzyme-2 (ACE2) and inhibits shedding of its ectodomain
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2007.11.085
– volume: 417
  start-page: 822
  year: 2002
  ident: 2021113010333666900_B3
  article-title: Angiotensin-converting enzyme 2 is an essential regulator of heart function
  publication-title: Nature
  doi: 10.1038/nature00786
– volume: 49
  start-page: 11
  year: 2012
  ident: 2021113010333666900_B26
  article-title: New insight into the mechanisms associated with the rapid effect of T3 on AT1R expression
  publication-title: J. Mol. Endocrinol.
  doi: 10.1530/JME-11-0141
– volume: 113
  start-page: 357
  year: 2007
  ident: 2021113010333666900_B25
  article-title: ACE2 overexpression inhibits hypoxia-induced collagen production by cardiac fibroblasts
  publication-title: Clin. Sci.
  doi: 10.1042/CS20070160
– volume: 280
  start-page: 30113
  year: 2005
  ident: 2021113010333666900_B29
  article-title: Tumor necrosis factor-α convertase (ADAM17) mediates regulated ectodomain shedding of the severe-acute respiratory syndrome-coronavirus (SARS-CoV) receptor, angiotensin-converting enzyme-2 (ACE2)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M505111200
– volume: 7
  start-page: e44532
  year: 2012
  ident: 2021113010333666900_B20
  article-title: miR-421 and miR-30c inhibit SERPINE 1 gene expression in human endothelial cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0044532
– volume: 23
  start-page: 243
  year: 2007
  ident: 2021113010333666900_B12
  article-title: Mechanisms of microRNA-mediated gene regulation in animal cells
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2007.02.011
– volume: 8
  start-page: 172
  year: 2007
  ident: 2021113010333666900_B15
  article-title: microRNA expression in the aging mouse lung
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-8-172
– volume: 275
  start-page: 33238
  year: 2000
  ident: 2021113010333666900_B2
  article-title: A human homolog of angiotensin-converting enzyme. Cloning and functional expression as a captopril-insensitive carboxypeptidase
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M002615200
– volume: 93
  start-page: 579
  year: 2008
  ident: 2021113010333666900_B16
  article-title: Functional angiotensin-converting enzyme 2 is expressed in human cardiac myofibroblasts
  publication-title: Exp. Physiol.
  doi: 10.1113/expphysiol.2007.040139
– volume: 11
  start-page: 93
  year: 2011
  ident: 2021113010333666900_B18
  article-title: Practical aspects of microRNA target prediction
  publication-title: Curr. Mol. Med.
  doi: 10.2174/156652411794859250
– volume: 7
  start-page: e34747
  year: 2012
  ident: 2021113010333666900_B22
  article-title: Angiotensin converting enzyme (ACE) and ACE2 bind integrins and ACE2 regulates integrin signalling
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0034747
– volume: 24
  start-page: 241
  year: 2011
  ident: 2021113010333666900_B27
  article-title: Interplay between miR-155, AT1R A1166C polymorphism, and AT1R expression in young untreated hypertensives
  publication-title: Am. J. Hypertens.
  doi: 10.1038/ajh.2010.211
– volume: 119
  start-page: 2634
  year: 2009
  ident: 2021113010333666900_B10
  article-title: Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the miR143/145 gene cluster
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI38864
– volume: 1751
  start-page: 2
  year: 2005
  ident: 2021113010333666900_B5
  article-title: Membrane-associated zinc peptidase families: comparing ACE and ACE2
  publication-title: Biochim. Biophys. Acta.
  doi: 10.1016/j.bbapap.2004.10.010
– volume: 203
  start-page: 631
  year: 2004
  ident: 2021113010333666900_B31
  article-title: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis
  publication-title: J. Pathol.
  doi: 10.1002/path.1570
– volume: 436
  start-page: 112
  year: 2005
  ident: 2021113010333666900_B8
  article-title: Angiotensin-converting enzyme 2 protects from severe acute lung failure
  publication-title: Nature
  doi: 10.1038/nature03712
SSID ssj0023232
Score 2.4200535
Snippet ACE2 (angiotensin converting enzyme 2) plays a critical role in the local tissue RAS (renin–angiotensin system) by hydrolysing the potent hypertensive and...
ACE2 (angiotensin converting enzyme 2) plays a critical role in the local tissue RAS (renin-angiotensin system) by hydrolysing the potent hypertensive and...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 243
SubjectTerms Angiotensin II - genetics
Angiotensin II - metabolism
Angiotensin-Converting Enzyme 2
Cardiovascular Diseases - genetics
Cardiovascular Diseases - metabolism
Down-Regulation - genetics
Gene Expression Regulation - genetics
Humans
MicroRNAs - genetics
MicroRNAs - metabolism
Peptidyl-Dipeptidase A - metabolism
Renin-Angiotensin System - genetics
Transcription, Genetic
Title Angiotensin-converting enzyme 2 is subject to post-transcriptional regulation by miR-421
URI https://www.ncbi.nlm.nih.gov/pubmed/24564768
https://www.proquest.com/docview/1520340500
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1470-8736
  dateEnd: 20231001
  omitProxy: true
  ssIdentifier: ssj0023232
  issn: 0143-5221
  databaseCode: GX1
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZgSIiXiTsbMBmBkNBkcBPn9jhNGxXqigStyFtkJ04VaUu6JX3Yfj3nOE7SiSANHhpFrpu0Pl9PvuNzI-RDkIUi9JTHci_lTEQTySI_85gKZSR8HgRpiPnOZ3N_uhTfYi8eNnNMdkmjPqc3o3kl_yNVGAO5YpbsP0i2vygMwDnIF44gYTjeScZH5aqoTAh6yUz4-JUJYtblzfUFbqwW9WG9UbjTghRzXdUNa_DZ1GkKU9R_ZRt4IRG9KH4w0eYS9-ULbqVOpoaSTqIg2tpCmEnsKtIMGeuHv0bemlWbAqug9F6PPjLIoFEOORHTqlq3SJoXK4y83d6amIg-MK7TpiLgoG5dW-t6ZKxTwW19AIs1sa1Q2yJOfyh60DVYQPing55X4fDhcda58Offk9PlbJYsTuLFx_Ulw0Zj6JC3XVfukwdO4PvY9OJr3EcFAb80Pe36b9lVtBXOl-FmtznMXwwTQ1AWj8mutSzoUQuTJ-SeLp-Sh2c2duIZicfRQlu0UIcWNbVooU1Fx9BCB7RQdU0tWp6T5enJ4njKbF8Nlrqe2zBgLSqHH6_5RHlK5YHivoRzlQGdC_NMu7mfZnkExgOQaTA4M60deEmVCj93UvcF2SmrUr8iFAa0BJoodcZFLvPQkSLCv3joau6GYo986lYqSW3Reex9cp6Y4AfhJMOq7pH3_dx1W2pldNa7bsET0ITo3pKlrjZ1AkyUu2B_cJjzspVEfx107wuwrPfv8OnX5BHcLGrB_IbsNFcb_RaYZ6MODFZ-A4rUgxc
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Angiotensin-converting+enzyme+2+is+subject+to+post-transcriptional+regulation+by+miR-421&rft.jtitle=Clinical+science+%281979%29&rft.au=Lambert%2C+Daniel+W&rft.au=Lambert%2C+Louise+A&rft.au=Clarke%2C+Nicola+E&rft.au=Hooper%2C+Nigel+M&rft.date=2014-08-01&rft.issn=1470-8736&rft.eissn=1470-8736&rft.volume=127&rft.issue=4&rft.spage=243&rft_id=info:doi/10.1042%2FCS20130420&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0143-5221&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0143-5221&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0143-5221&client=summon