Stacking of purines in water: the role of dipolar interactions in caffeine

During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and e...

Full description

Saved in:
Bibliographic Details
Published inPhysical chemistry chemical physics : PCCP Vol. 18; no. 19; pp. 13478 - 13486
Main Authors Tavagnacco, L., Di Fonzo, S., D’Amico, F., Masciovecchio, C., Brady, J. W., Cesàro, A.
Format Journal Article
LanguageEnglish
Published England 11.05.2016
Subjects
Online AccessGet full text
ISSN1463-9076
1463-9084
1463-9084
DOI10.1039/C5CP07326J

Cover

Abstract During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo–Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 °C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations.
AbstractList During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo-Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 degree C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations.
During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo–Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 °C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations.
During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo-Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 °C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations.During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo-Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 °C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations.
Author Cesàro, A.
Tavagnacco, L.
D’Amico, F.
Brady, J. W.
Di Fonzo, S.
Masciovecchio, C.
Author_xml – sequence: 1
  givenname: L.
  surname: Tavagnacco
  fullname: Tavagnacco, L.
  organization: Elettra-Sincrotrone Trieste S.C.p.A., I-34149 Trieste, Italy, Lab. of Physical and Macromolecular Chemistry, Department of Chemical and Pharmaceutical Sciences
– sequence: 2
  givenname: S.
  orcidid: 0000-0002-5630-9168
  surname: Di Fonzo
  fullname: Di Fonzo, S.
  organization: Elettra-Sincrotrone Trieste S.C.p.A., I-34149 Trieste, Italy
– sequence: 3
  givenname: F.
  surname: D’Amico
  fullname: D’Amico, F.
  organization: Elettra-Sincrotrone Trieste S.C.p.A., I-34149 Trieste, Italy
– sequence: 4
  givenname: C.
  surname: Masciovecchio
  fullname: Masciovecchio, C.
  organization: Elettra-Sincrotrone Trieste S.C.p.A., I-34149 Trieste, Italy
– sequence: 5
  givenname: J. W.
  surname: Brady
  fullname: Brady, J. W.
  organization: Department of Food Science, Stocking Hall, Cornell University, Ithaca, USA
– sequence: 6
  givenname: A.
  surname: Cesàro
  fullname: Cesàro, A.
  organization: Elettra-Sincrotrone Trieste S.C.p.A., I-34149 Trieste, Italy, Lab. of Physical and Macromolecular Chemistry, Department of Chemical and Pharmaceutical Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27127808$$D View this record in MEDLINE/PubMed
BookMark eNqN0UtLxDAQB_AgK-5DL34A6VGE6qR5NPUmxdeyoKCeS5qmGu22NUkRv72tu64gHvY0A__fhDAzRaO6qTVChxhOMZDkLGXpPcQk4vMdNMGUkzABQUebPuZjNHXuFQAww2QPjaMYR7EAMUHzBy_Vm6mfg6YM2s6aWrvA1MGH9NqeB_5FB7ap9JAWpm0qafu0j6Typqm_qZJlqfu5fbRbysrpg3Wdoaery8f0JlzcXd-mF4tQEUZ8GPWa00QmkgFTCou-kIjpvCAqIRQ4FoTTgse5oApkXqhCx4rQQgNliQAyQ8erd1vbvHfa-WxpnNJVJWvddC7DAnOAJCZiCwqCUyHYFjTuGRGMDh84WtMuX-oia61ZSvuZ_Wy1BycroGzjnNXlhmDIhpNlvyfrMfzByng5bNdbaar_Rr4AuqOVig
CitedBy_id crossref_primary_10_1016_j_colsurfb_2018_01_026
crossref_primary_10_1039_C8CP04728F
crossref_primary_10_1021_acs_jpcb_7b07798
crossref_primary_10_2478_hepo_2018_0012
crossref_primary_10_1021_acs_jpcb_1c04360
crossref_primary_10_1021_acs_jchemed_0c00961
crossref_primary_10_1021_acsomega_7b00613
crossref_primary_10_1039_D4CE00831F
crossref_primary_10_1002_wrna_1422
crossref_primary_10_1021_acs_jctc_8b00139
crossref_primary_10_1021_acs_jpcb_6b06980
crossref_primary_10_1039_D0CP01022G
crossref_primary_10_1016_j_colsurfa_2023_131645
crossref_primary_10_1021_acs_jpcb_6b03892
crossref_primary_10_1039_C9CP05420K
crossref_primary_10_1016_j_cplett_2018_10_015
crossref_primary_10_1016_j_jddst_2019_101472
crossref_primary_10_3390_molecules29133035
crossref_primary_10_1016_j_molliq_2024_124058
crossref_primary_10_3390_ma14030497
crossref_primary_10_1016_j_scitotenv_2020_144229
crossref_primary_10_3390_chemosensors10080301
crossref_primary_10_1002_adma_202202242
crossref_primary_10_1039_C8CP05647A
crossref_primary_10_1016_j_ica_2022_120945
crossref_primary_10_1016_j_jbc_2023_105117
Cites_doi 10.1080/00268979100100991
10.1063/1.441782
10.1080/00268970009483349
10.1135/cccc20021109
10.1016/0022-2860(93)80055-Z
10.1021/j100862a016
10.1021/jp2021352
10.1007/s002490100150
10.1039/B614420A
10.1002/bip.22322
10.1103/PhysRevA.33.3113
10.1063/1.480309
10.1080/00387018608069240
10.1139/H08-120
10.1063/1.445812
10.1016/S1386-1425(01)00649-7
10.1021/j100369a015
10.1021/cg070291o
10.1016/j.ijpharm.2015.04.001
10.1063/1.432789
10.1139/v90-199
10.1021/jp9718966
10.1063/1.4812283
10.1080/00268978400101291
10.1016/0301-0104(86)80022-2
10.1021/jp3088594
10.1146/annurev.bi.50.070181.005025
10.1002/bip.10248
10.1021/j100544a026
10.1002/chem.200600973
10.1093/nar/gkj454
10.1063/1.465622
10.1139/v79-318
10.1107/S0365110X58001286
10.1016/j.saa.2013.06.005
10.1103/PhysRev.46.618
10.1063/1.455772
10.1093/nar/16.6.2671
10.1002/mnfr.200400109
10.1063/1.470815
10.1016/S0009-2614(99)00146-3
10.1021/acs.jpcb.5b09204
10.1021/j100105a009
10.1016/j.nima.2012.11.037
10.1063/1.460179
10.1016/j.saa.2004.10.022
10.1351/pac200476010157
10.1080/00268979809482375
10.1021/jp9929061
10.1063/1.1681643
10.1080/00268978600101011
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1039/C5CP07326J
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Nucleic Acids Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Nucleic Acids Abstracts
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database
CrossRef
Nucleic Acids Abstracts
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1463-9084
EndPage 13486
ExternalDocumentID 27127808
10_1039_C5CP07326J
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
0-7
0R~
0UZ
123
1TJ
29O
2WC
4.4
53G
6TJ
705
70~
71~
7~J
87K
9M8
AAEMU
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACHDF
ACIWK
ACLDK
ACNCT
ACRPL
ADMRA
ADNMO
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AFVBQ
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
ASKNT
ASPBG
AUDPV
AVWKF
AZFZN
BBWZM
BLAPV
BSQNT
C6K
CAG
CITATION
COF
CS3
D0L
DU5
EBS
ECGLT
EE0
EEHRC
EF-
EJD
F5P
FEDTE
GGIMP
GNO
H13
HVGLF
HZ~
H~9
H~N
IDY
IDZ
J3G
J3H
J3I
L-8
M4U
MVM
N9A
NDZJH
NHB
O9-
P2P
R56
R7B
R7C
RAOCF
RCLXC
RCNCU
RNS
ROL
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SLH
TN5
TWZ
UHB
VH6
WH7
XJT
XOL
YNT
ZCG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7TM
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c353t-2ffe649a9a505cc18505325ebd3c9340618364d67b84c0abdcde7c34de0459803
ISSN 1463-9076
1463-9084
IngestDate Fri Jul 11 11:34:30 EDT 2025
Thu Oct 02 05:44:15 EDT 2025
Thu Jul 10 19:04:50 EDT 2025
Mon Jul 21 06:01:57 EDT 2025
Wed Oct 01 03:26:37 EDT 2025
Thu Apr 24 22:52:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c353t-2ffe649a9a505cc18505325ebd3c9340618364d67b84c0abdcde7c34de0459803
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-5630-9168
PMID 27127808
PQID 1788538540
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_1816009738
proquest_miscellaneous_1808648858
proquest_miscellaneous_1788538540
pubmed_primary_27127808
crossref_primary_10_1039_C5CP07326J
crossref_citationtrail_10_1039_C5CP07326J
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-11
PublicationDateYYYYMMDD 2016-05-11
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-11
  day: 11
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physical chemistry chemical physics : PCCP
PublicationTitleAlternate Phys Chem Chem Phys
PublicationYear 2016
References Tavagnacco (C5CP07326J-(cit5)/*[position()=1]) 2011; 115
McHale (C5CP07326J-(cit54)/*[position()=1]) 1981; 75
Giorgini (C5CP07326J-(cit20)/*[position()=1]) 2000; 98
Thomas (C5CP07326J-(cit25)/*[position()=1]) 1989; 90
D'Amico (C5CP07326J-(cit40)/*[position()=1]) 2013; 703
Kirillov (C5CP07326J-(cit18)/*[position()=1]) 1999; 303
Sutor (C5CP07326J-(cit44)/*[position()=1]) 1958; 11
Tavagnacco (C5CP07326J-(cit9)/*[position()=1]) 2015; 119
Párkányi (C5CP07326J-(cit6)/*[position()=1]) 2002; 67
Döge (C5CP07326J-(cit52)/*[position()=1]) 1984; 52
Yakovchuk (C5CP07326J-(cit10)/*[position()=1]) 2006; 34
Teng (C5CP07326J-(cit43)/*[position()=1]) 1988; 16
Moustafa (C5CP07326J-(cit46)/*[position()=1]) 2002; 58
Musso (C5CP07326J-(cit21)/*[position()=1]) 1997; 92
Giorgini (C5CP07326J-(cit50)/*[position()=1]) 2004; 76
Srivastava (C5CP07326J-(cit39)/*[position()=1]) 2013; 115
Falk (C5CP07326J-(cit49)/*[position()=1]) 1990; 68
Lehmann (C5CP07326J-(cit56)/*[position()=1]) 2007; 13
Mariani (C5CP07326J-(cit41)/*[position()=1]) 1996; 104
Taeye (C5CP07326J-(cit33)/*[position()=1]) 1986; 19
Logan (C5CP07326J-(cit53)/*[position()=1]) 1986; 103
Davies (C5CP07326J-(cit12)/*[position()=1]) 2001; 30
Rothschild (C5CP07326J-(cit15)/*[position()=1]) 1984
Sun (C5CP07326J-(cit24)/*[position()=1]) 1991; 94
Giorgini (C5CP07326J-(cit26)/*[position()=1]) 1983; 79
Torii (C5CP07326J-(cit31)/*[position()=1]) 1993; 99
Record (C5CP07326J-(cit3)/*[position()=1]) 1981; 50
Hildebrandt (C5CP07326J-(cit16)/*[position()=1]) 1990; 94
van Dam (C5CP07326J-(cit2)/*[position()=1]) 2008; 33
Morresi (C5CP07326J-(cit30)/*[position()=1]) 1993; 293
Kabelac (C5CP07326J-(cit4)/*[position()=1]) 2007; 9
Cesàro (C5CP07326J-(cit7)/*[position()=1]) 1976; 80
Rothschild (C5CP07326J-(cit42)/*[position()=1]) 1976; 65
Czeslik (C5CP07326J-(cit29)/*[position()=1]) 1999; 111
D’Amico (C5CP07326J-(cit48)/*[position()=1]) 2012; 116
Fini (C5CP07326J-(cit51)/*[position()=1]) 1971; 71
Møller (C5CP07326J-(cit37)/*[position()=1]) 1934; 46
Enright (C5CP07326J-(cit45)/*[position()=1]) 2007; 7
Bradley (C5CP07326J-(cit28)/*[position()=1]) 1993; 97
Hédoux (C5CP07326J-(cit34)/*[position()=1]) 2015; 486
Šponer (C5CP07326J-(cit57)/*[position()=1]) 2013; 99
Ranheim (C5CP07326J-(cit1)/*[position()=1]) 2005; 49
Campbell (C5CP07326J-(cit14)/*[position()=1]) 1974; 61
Nishi (C5CP07326J-(cit19)/*[position()=1]) 1999; 103
Torii (C5CP07326J-(cit22)/*[position()=1]) 1998; 94
Bakhshiev (C5CP07326J-(cit13)/*[position()=1]) 1972
Morresi (C5CP07326J-(cit32)/*[position()=1]) 2000; 12
Edwards (C5CP07326J-(cit35)/*[position()=1]) 2005; 61
Pavel (C5CP07326J-(cit36)/*[position()=1]) 2003; 72
Stoesser (C5CP07326J-(cit8)/*[position()=1]) 1967; 71
Shelley (C5CP07326J-(cit23)/*[position()=1]) 1991; 72
Neurohr (C5CP07326J-(cit11)/*[position()=1]) 1979; 57
Slager (C5CP07326J-(cit27)/*[position()=1]) 1997; 101
D’Amico (C5CP07326J-(cit47)/*[position()=1]) 2013; 139
Logan (C5CP07326J-(cit55)/*[position()=1]) 1986; 58
Bischel (C5CP07326J-(cit17)/*[position()=1]) 1986; 33
References_xml – volume: 72
  start-page: 1407
  year: 1991
  ident: C5CP07326J-(cit23)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268979100100991
– volume: 75
  start-page: 30
  year: 1981
  ident: C5CP07326J-(cit54)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.441782
– volume: 98
  start-page: 783
  year: 2000
  ident: C5CP07326J-(cit20)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268970009483349
– volume: 67
  start-page: 1109
  year: 2002
  ident: C5CP07326J-(cit6)/*[position()=1]
  publication-title: Collect. Czech. Chem. Commun.
  doi: 10.1135/cccc20021109
– volume: 12
  start-page: 3631
  year: 2000
  ident: C5CP07326J-(cit32)/*[position()=1]
  publication-title: J. Phys.: Condens. Matter
– volume: 293
  start-page: 227
  year: 1993
  ident: C5CP07326J-(cit30)/*[position()=1]
  publication-title: J. Mol. Struct.
  doi: 10.1016/0022-2860(93)80055-Z
– volume: 71
  start-page: 564
  year: 1967
  ident: C5CP07326J-(cit8)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100862a016
– volume: 115
  start-page: 10957
  year: 2011
  ident: C5CP07326J-(cit5)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp2021352
– volume: 30
  start-page: 354
  year: 2001
  ident: C5CP07326J-(cit12)/*[position()=1]
  publication-title: Eur. Biophys. J.
  doi: 10.1007/s002490100150
– volume: 9
  start-page: 903
  year: 2007
  ident: C5CP07326J-(cit4)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/B614420A
– volume: 99
  start-page: 978
  year: 2013
  ident: C5CP07326J-(cit57)/*[position()=1]
  publication-title: Biopolymers
  doi: 10.1002/bip.22322
– volume-title: Spectroscopy of Intermolecular Interactions
  year: 1972
  ident: C5CP07326J-(cit13)/*[position()=1]
– volume: 33
  start-page: 3113
  year: 1986
  ident: C5CP07326J-(cit17)/*[position()=1]
  publication-title: Phys. Rev. A: At., Mol., Opt. Phys.
  doi: 10.1103/PhysRevA.33.3113
– volume: 111
  start-page: 9739
  year: 1999
  ident: C5CP07326J-(cit29)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.480309
– volume: 19
  start-page: 299
  year: 1986
  ident: C5CP07326J-(cit33)/*[position()=1]
  publication-title: Spectrosc. Lett.
  doi: 10.1080/00387018608069240
– volume: 33
  start-page: 1269
  year: 2008
  ident: C5CP07326J-(cit2)/*[position()=1]
  publication-title: Appl. Physiol., Nutr., Metab.
  doi: 10.1139/H08-120
– volume: 79
  start-page: 639
  year: 1983
  ident: C5CP07326J-(cit26)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.445812
– volume: 58
  start-page: 2013
  year: 2002
  ident: C5CP07326J-(cit46)/*[position()=1]
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/S1386-1425(01)00649-7
– volume: 94
  start-page: 2274
  year: 1990
  ident: C5CP07326J-(cit16)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100369a015
– volume: 7
  start-page: 1406
  year: 2007
  ident: C5CP07326J-(cit45)/*[position()=1]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg070291o
– volume: 486
  start-page: 331
  year: 2015
  ident: C5CP07326J-(cit34)/*[position()=1]
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2015.04.001
– volume: 65
  start-page: 455
  year: 1976
  ident: C5CP07326J-(cit42)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.432789
– volume: 68
  start-page: 1293
  year: 1990
  ident: C5CP07326J-(cit49)/*[position()=1]
  publication-title: Can. J. Chem.
  doi: 10.1139/v90-199
– volume-title: Dynamics of Molecular Liquids
  year: 1984
  ident: C5CP07326J-(cit15)/*[position()=1]
– volume: 101
  start-page: 9774
  year: 1997
  ident: C5CP07326J-(cit27)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp9718966
– volume: 139
  start-page: 015101
  year: 2013
  ident: C5CP07326J-(cit47)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4812283
– volume: 52
  start-page: 399
  year: 1984
  ident: C5CP07326J-(cit52)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268978400101291
– volume: 71
  start-page: 2241
  year: 1971
  ident: C5CP07326J-(cit51)/*[position()=1]
  publication-title: J. Chem. Phys.
– volume: 103
  start-page: 215
  year: 1986
  ident: C5CP07326J-(cit53)/*[position()=1]
  publication-title: Chem. Phys.
  doi: 10.1016/0301-0104(86)80022-2
– volume: 116
  start-page: 13219
  year: 2012
  ident: C5CP07326J-(cit48)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp3088594
– volume: 50
  start-page: 997
  year: 1981
  ident: C5CP07326J-(cit3)/*[position()=1]
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.bi.50.070181.005025
– volume: 72
  start-page: 25
  year: 2003
  ident: C5CP07326J-(cit36)/*[position()=1]
  publication-title: Biopolymers
  doi: 10.1002/bip.10248
– volume: 80
  start-page: 335
  year: 1976
  ident: C5CP07326J-(cit7)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100544a026
– volume: 13
  start-page: 2908
  year: 2007
  ident: C5CP07326J-(cit56)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.200600973
– volume: 34
  start-page: 564
  year: 2006
  ident: C5CP07326J-(cit10)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkj454
– volume: 99
  start-page: 8459
  year: 1993
  ident: C5CP07326J-(cit31)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.465622
– volume: 57
  start-page: 1986
  year: 1979
  ident: C5CP07326J-(cit11)/*[position()=1]
  publication-title: Can. J. Chem.
  doi: 10.1139/v79-318
– volume: 11
  start-page: 453
  year: 1958
  ident: C5CP07326J-(cit44)/*[position()=1]
  publication-title: Acta Crystallogr.
  doi: 10.1107/S0365110X58001286
– volume: 115
  start-page: 45
  year: 2013
  ident: C5CP07326J-(cit39)/*[position()=1]
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2013.06.005
– volume: 46
  start-page: 618
  year: 1934
  ident: C5CP07326J-(cit37)/*[position()=1]
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.46.618
– volume: 90
  start-page: 4144
  year: 1989
  ident: C5CP07326J-(cit25)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.455772
– volume: 16
  start-page: 2671
  year: 1988
  ident: C5CP07326J-(cit43)/*[position()=1]
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/16.6.2671
– volume: 49
  start-page: 274
  year: 2005
  ident: C5CP07326J-(cit1)/*[position()=1]
  publication-title: Mol. Nutr. Food Res.
  doi: 10.1002/mnfr.200400109
– volume: 104
  start-page: 914
  year: 1996
  ident: C5CP07326J-(cit41)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.470815
– volume: 303
  start-page: 37
  year: 1999
  ident: C5CP07326J-(cit18)/*[position()=1]
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(99)00146-3
– volume: 119
  start-page: 13294
  year: 2015
  ident: C5CP07326J-(cit9)/*[position()=1]
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.5b09204
– volume: 92
  start-page: 97
  year: 1997
  ident: C5CP07326J-(cit21)/*[position()=1]
  publication-title: Mol. Phys.
– volume: 97
  start-page: 575
  year: 1993
  ident: C5CP07326J-(cit28)/*[position()=1]
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100105a009
– volume: 703
  start-page: 33
  year: 2013
  ident: C5CP07326J-(cit40)/*[position()=1]
  publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A
  doi: 10.1016/j.nima.2012.11.037
– volume: 94
  start-page: 7486
  year: 1991
  ident: C5CP07326J-(cit24)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.460179
– volume: 61
  start-page: 1453
  year: 2005
  ident: C5CP07326J-(cit35)/*[position()=1]
  publication-title: Spectrochim. Acta, Part A
  doi: 10.1016/j.saa.2004.10.022
– volume: 76
  start-page: 157
  year: 2004
  ident: C5CP07326J-(cit50)/*[position()=1]
  publication-title: Pure Appl. Chem.
  doi: 10.1351/pac200476010157
– volume: 94
  start-page: 821
  year: 1998
  ident: C5CP07326J-(cit22)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268979809482375
– volume: 103
  start-page: 10851
  year: 1999
  ident: C5CP07326J-(cit19)/*[position()=1]
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp9929061
– volume: 61
  start-page: 346
  year: 1974
  ident: C5CP07326J-(cit14)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1681643
– volume: 58
  start-page: 97
  year: 1986
  ident: C5CP07326J-(cit55)/*[position()=1]
  publication-title: Mol. Phys.
  doi: 10.1080/00268978600101011
SSID ssj0001513
Score 2.3333137
Snippet During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 13478
SubjectTerms Adenine - chemistry
Adenines
Agglomeration
Caffeine
Caffeine - chemistry
Guanine - chemistry
Hydrophobic and Hydrophilic Interactions
Mathematical models
Models, Molecular
Moisture content
Nucleic Acid Conformation
Purines
Purines - chemistry
Quantum Theory
Solutions
Solvation
Stacking
Temperature
Ultraviolet Rays
Water - chemistry
Title Stacking of purines in water: the role of dipolar interactions in caffeine
URI https://www.ncbi.nlm.nih.gov/pubmed/27127808
https://www.proquest.com/docview/1788538540
https://www.proquest.com/docview/1808648858
https://www.proquest.com/docview/1816009738
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection 2023
  customDbUrl: https://pubs.rsc.org
  eissn: 1463-9084
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001513
  issn: 1463-9076
  databaseCode: AETIL
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9ACXijflJSMeEqoMttf27nKLTKISpSUHR8rNWq_XEIrsQNMilT_P7Ctx1FIVLpazHtnOznjm250XQq-CGowifGQ-DypYoDAp_BKT2hdhKJjEkSQ6kfbwKD2YxeN5Mu_1fnezS1blO3F-aV7J_3AVxoCvKkv2Hzi7vikMwDnwF47AYThei8eAFMWxC1tW2-Y6umr_F1cecBuw4cIHq8Wy1RGnaiZNNoMmFryupXOuW5Q6dcwTrh2cOVNDZivkRG8lTLNsnR6W8zP-peFCtJtcBgWQF_ujtjlvt3ZZP76OyABu126FFh9yMMftGXD766KzgWu3JMJUedOtyjRaNE6xD6tuW-O6O2b6wV1UvUrEWEeRqgxX2rHK8NuUzL6g8gOsKqaKRCxBW0Xpt41hc878o8_FaDaZFPlwnr9Z_vBVyzHlmrf9V26gnQikNeijncEw_zRZG3IAQ9gkp5l_46rbYvZ-87htPPOXRYoGK_lttGtXGd7AiMwd1JPNXXQzc9y8h8ZOdLy29qzoeIvG06LzwQPB8ZTgqKtWcLyu4ChSJzj30Ww0zLMD37bV8AVO8MqP4GoaM844oF8hALCp7iCJLCssGFYAj-I0rlJS0lgEvKxEJYnAcSUB_jMa4Aeo37SNfIS8smK1qCmVESljjjEH_F2TEuOAk7IO6B566yanELbmvGp98r3QsQ-YFVmSTfVEjvfQyzXt0lRauZTqhZvjAqZMebd4I9vTkyIkFKAnhRXIFTQUVvBgshJ6FU2Y6iJWQPPQMHH9PhEJIwL3eHyNJzxBtzbfxlPUX_08lc8AwK7K51bQ_gCQX5vh
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacking+of+purines+in+water%3A+the+role+of+dipolar+interactions+in+caffeine&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Tavagnacco%2C+L&rft.au=Di+Fonzo%2C+S&rft.au=D%27Amico%2C+F&rft.au=Masciovecchio%2C+C&rft.date=2016-05-11&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=18&rft.issue=19&rft.spage=13478&rft.epage=13486&rft_id=info:doi/10.1039%2Fc5cp07326j&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon