Stacking of purines in water: the role of dipolar interactions in caffeine
During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and e...
        Saved in:
      
    
          | Published in | Physical chemistry chemical physics : PCCP Vol. 18; no. 19; pp. 13478 - 13486 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
        
        11.05.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1463-9076 1463-9084 1463-9084  | 
| DOI | 10.1039/C5CP07326J | 
Cover
| Abstract | During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo–Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 °C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations. | 
    
|---|---|
| AbstractList | During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo-Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 degree C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations. During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo–Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 °C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations. During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo-Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 °C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations.During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the understanding of the nature of the interactions involved in the stacking process remains under debate and it is a subject of theoretical and experimental studies. Structural similarity between purine bases (guanine and adenine) in DNA and the caffeine molecule makes caffeine an excellent model for the purine bases. The present study clearly shows that dipolar interactions play a fundamental role in determining stacking of purine molecules in solution. In order to reach this achievement, polarized ultraviolet Raman resonant scattering experiments have been carried out on caffeine aqueous solutions as a function of concentration and temperature. The investigation pointed out at the aggregation and solvation properties, particularly at elevated temperatures. Kubo-Anderson theory was used as a framework to investigate the non-coincidence effect (NCE) occurring in the totally symmetric breathing modes of the purine rings, and in the bending modes of the methyl groups of caffeine. The NCE concentration dependence shows that caffeine aggregation at 80 °C occurs by planar stacking of the hydrophobic faces. The data clearly indicate that dipolar interactions determine the reorientational motion of the molecules in solution and are the driving force for the stacking of caffeine. In parallel, the observed dephasing times imply a change in caffeine interactions as a function of temperature and concentration. A decrease, at low water content, of the dephasing time for the ring breathing vibration mode indicates that self-association alters the solvation structure that is detectable at low concentration. These results are in agreement with simulation predictions and serve as an important validation of the models used in those calculations.  | 
    
| Author | Cesàro, A. Tavagnacco, L. D’Amico, F. Brady, J. W. Di Fonzo, S. Masciovecchio, C.  | 
    
| Author_xml | – sequence: 1 givenname: L. surname: Tavagnacco fullname: Tavagnacco, L. organization: Elettra-Sincrotrone Trieste S.C.p.A., I-34149 Trieste, Italy, Lab. of Physical and Macromolecular Chemistry, Department of Chemical and Pharmaceutical Sciences – sequence: 2 givenname: S. orcidid: 0000-0002-5630-9168 surname: Di Fonzo fullname: Di Fonzo, S. organization: Elettra-Sincrotrone Trieste S.C.p.A., I-34149 Trieste, Italy – sequence: 3 givenname: F. surname: D’Amico fullname: D’Amico, F. organization: Elettra-Sincrotrone Trieste S.C.p.A., I-34149 Trieste, Italy – sequence: 4 givenname: C. surname: Masciovecchio fullname: Masciovecchio, C. organization: Elettra-Sincrotrone Trieste S.C.p.A., I-34149 Trieste, Italy – sequence: 5 givenname: J. W. surname: Brady fullname: Brady, J. W. organization: Department of Food Science, Stocking Hall, Cornell University, Ithaca, USA – sequence: 6 givenname: A. surname: Cesàro fullname: Cesàro, A. organization: Elettra-Sincrotrone Trieste S.C.p.A., I-34149 Trieste, Italy, Lab. of Physical and Macromolecular Chemistry, Department of Chemical and Pharmaceutical Sciences  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27127808$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqN0UtLxDAQB_AgK-5DL34A6VGE6qR5NPUmxdeyoKCeS5qmGu22NUkRv72tu64gHvY0A__fhDAzRaO6qTVChxhOMZDkLGXpPcQk4vMdNMGUkzABQUebPuZjNHXuFQAww2QPjaMYR7EAMUHzBy_Vm6mfg6YM2s6aWrvA1MGH9NqeB_5FB7ap9JAWpm0qafu0j6Typqm_qZJlqfu5fbRbysrpg3Wdoaery8f0JlzcXd-mF4tQEUZ8GPWa00QmkgFTCou-kIjpvCAqIRQ4FoTTgse5oApkXqhCx4rQQgNliQAyQ8erd1vbvHfa-WxpnNJVJWvddC7DAnOAJCZiCwqCUyHYFjTuGRGMDh84WtMuX-oia61ZSvuZ_Wy1BycroGzjnNXlhmDIhpNlvyfrMfzByng5bNdbaar_Rr4AuqOVig | 
    
| CitedBy_id | crossref_primary_10_1016_j_colsurfb_2018_01_026 crossref_primary_10_1039_C8CP04728F crossref_primary_10_1021_acs_jpcb_7b07798 crossref_primary_10_2478_hepo_2018_0012 crossref_primary_10_1021_acs_jpcb_1c04360 crossref_primary_10_1021_acs_jchemed_0c00961 crossref_primary_10_1021_acsomega_7b00613 crossref_primary_10_1039_D4CE00831F crossref_primary_10_1002_wrna_1422 crossref_primary_10_1021_acs_jctc_8b00139 crossref_primary_10_1021_acs_jpcb_6b06980 crossref_primary_10_1039_D0CP01022G crossref_primary_10_1016_j_colsurfa_2023_131645 crossref_primary_10_1021_acs_jpcb_6b03892 crossref_primary_10_1039_C9CP05420K crossref_primary_10_1016_j_cplett_2018_10_015 crossref_primary_10_1016_j_jddst_2019_101472 crossref_primary_10_3390_molecules29133035 crossref_primary_10_1016_j_molliq_2024_124058 crossref_primary_10_3390_ma14030497 crossref_primary_10_1016_j_scitotenv_2020_144229 crossref_primary_10_3390_chemosensors10080301 crossref_primary_10_1002_adma_202202242 crossref_primary_10_1039_C8CP05647A crossref_primary_10_1016_j_ica_2022_120945 crossref_primary_10_1016_j_jbc_2023_105117  | 
    
| Cites_doi | 10.1080/00268979100100991 10.1063/1.441782 10.1080/00268970009483349 10.1135/cccc20021109 10.1016/0022-2860(93)80055-Z 10.1021/j100862a016 10.1021/jp2021352 10.1007/s002490100150 10.1039/B614420A 10.1002/bip.22322 10.1103/PhysRevA.33.3113 10.1063/1.480309 10.1080/00387018608069240 10.1139/H08-120 10.1063/1.445812 10.1016/S1386-1425(01)00649-7 10.1021/j100369a015 10.1021/cg070291o 10.1016/j.ijpharm.2015.04.001 10.1063/1.432789 10.1139/v90-199 10.1021/jp9718966 10.1063/1.4812283 10.1080/00268978400101291 10.1016/0301-0104(86)80022-2 10.1021/jp3088594 10.1146/annurev.bi.50.070181.005025 10.1002/bip.10248 10.1021/j100544a026 10.1002/chem.200600973 10.1093/nar/gkj454 10.1063/1.465622 10.1139/v79-318 10.1107/S0365110X58001286 10.1016/j.saa.2013.06.005 10.1103/PhysRev.46.618 10.1063/1.455772 10.1093/nar/16.6.2671 10.1002/mnfr.200400109 10.1063/1.470815 10.1016/S0009-2614(99)00146-3 10.1021/acs.jpcb.5b09204 10.1021/j100105a009 10.1016/j.nima.2012.11.037 10.1063/1.460179 10.1016/j.saa.2004.10.022 10.1351/pac200476010157 10.1080/00268979809482375 10.1021/jp9929061 10.1063/1.1681643 10.1080/00268978600101011  | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7TM 7SR 7U5 8BQ 8FD JG9 L7M  | 
    
| DOI | 10.1039/C5CP07326J | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Nucleic Acids Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Nucleic Acids Abstracts Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX  | 
    
| DatabaseTitleList | Materials Research Database CrossRef Nucleic Acids Abstracts MEDLINE MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Chemistry | 
    
| EISSN | 1463-9084 | 
    
| EndPage | 13486 | 
    
| ExternalDocumentID | 27127808 10_1039_C5CP07326J  | 
    
| Genre | Research Support, Non-U.S. Gov't Journal Article  | 
    
| GroupedDBID | --- -DZ -~X 0-7 0R~ 0UZ 123 1TJ 29O 2WC 4.4 53G 6TJ 705 70~ 71~ 7~J 87K 9M8 AAEMU AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACHDF ACIWK ACLDK ACNCT ACRPL ADMRA ADNMO ADSRN AEFDR AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRDS AFRZK AFVBQ AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP ASKNT ASPBG AUDPV AVWKF AZFZN BBWZM BLAPV BSQNT C6K CAG CITATION COF CS3 D0L DU5 EBS ECGLT EE0 EEHRC EF- EJD F5P FEDTE GGIMP GNO H13 HVGLF HZ~ H~9 H~N IDY IDZ J3G J3H J3I L-8 M4U MVM N9A NDZJH NHB O9- P2P R56 R7B R7C RAOCF RCLXC RCNCU RNS ROL RPMJG RRA RRC RSCEA SKA SKF SLH TN5 TWZ UHB VH6 WH7 XJT XOL YNT ZCG CGR CUY CVF ECM EIF NPM 7X8 7TM 7SR 7U5 8BQ 8FD JG9 L7M  | 
    
| ID | FETCH-LOGICAL-c353t-2ffe649a9a505cc18505325ebd3c9340618364d67b84c0abdcde7c34de0459803 | 
    
| ISSN | 1463-9076 1463-9084  | 
    
| IngestDate | Fri Jul 11 11:34:30 EDT 2025 Thu Oct 02 05:44:15 EDT 2025 Thu Jul 10 19:04:50 EDT 2025 Mon Jul 21 06:01:57 EDT 2025 Wed Oct 01 03:26:37 EDT 2025 Thu Apr 24 22:52:00 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 19 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c353t-2ffe649a9a505cc18505325ebd3c9340618364d67b84c0abdcde7c34de0459803 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0002-5630-9168 | 
    
| PMID | 27127808 | 
    
| PQID | 1788538540 | 
    
| PQPubID | 23479 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | proquest_miscellaneous_1816009738 proquest_miscellaneous_1808648858 proquest_miscellaneous_1788538540 pubmed_primary_27127808 crossref_primary_10_1039_C5CP07326J crossref_citationtrail_10_1039_C5CP07326J  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-05-11 | 
    
| PublicationDateYYYYMMDD | 2016-05-11 | 
    
| PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-11 day: 11  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England | 
    
| PublicationTitle | Physical chemistry chemical physics : PCCP | 
    
| PublicationTitleAlternate | Phys Chem Chem Phys | 
    
| PublicationYear | 2016 | 
    
| References | Tavagnacco (C5CP07326J-(cit5)/*[position()=1]) 2011; 115 McHale (C5CP07326J-(cit54)/*[position()=1]) 1981; 75 Giorgini (C5CP07326J-(cit20)/*[position()=1]) 2000; 98 Thomas (C5CP07326J-(cit25)/*[position()=1]) 1989; 90 D'Amico (C5CP07326J-(cit40)/*[position()=1]) 2013; 703 Kirillov (C5CP07326J-(cit18)/*[position()=1]) 1999; 303 Sutor (C5CP07326J-(cit44)/*[position()=1]) 1958; 11 Tavagnacco (C5CP07326J-(cit9)/*[position()=1]) 2015; 119 Párkányi (C5CP07326J-(cit6)/*[position()=1]) 2002; 67 Döge (C5CP07326J-(cit52)/*[position()=1]) 1984; 52 Yakovchuk (C5CP07326J-(cit10)/*[position()=1]) 2006; 34 Teng (C5CP07326J-(cit43)/*[position()=1]) 1988; 16 Moustafa (C5CP07326J-(cit46)/*[position()=1]) 2002; 58 Musso (C5CP07326J-(cit21)/*[position()=1]) 1997; 92 Giorgini (C5CP07326J-(cit50)/*[position()=1]) 2004; 76 Srivastava (C5CP07326J-(cit39)/*[position()=1]) 2013; 115 Falk (C5CP07326J-(cit49)/*[position()=1]) 1990; 68 Lehmann (C5CP07326J-(cit56)/*[position()=1]) 2007; 13 Mariani (C5CP07326J-(cit41)/*[position()=1]) 1996; 104 Taeye (C5CP07326J-(cit33)/*[position()=1]) 1986; 19 Logan (C5CP07326J-(cit53)/*[position()=1]) 1986; 103 Davies (C5CP07326J-(cit12)/*[position()=1]) 2001; 30 Rothschild (C5CP07326J-(cit15)/*[position()=1]) 1984 Sun (C5CP07326J-(cit24)/*[position()=1]) 1991; 94 Giorgini (C5CP07326J-(cit26)/*[position()=1]) 1983; 79 Torii (C5CP07326J-(cit31)/*[position()=1]) 1993; 99 Record (C5CP07326J-(cit3)/*[position()=1]) 1981; 50 Hildebrandt (C5CP07326J-(cit16)/*[position()=1]) 1990; 94 van Dam (C5CP07326J-(cit2)/*[position()=1]) 2008; 33 Morresi (C5CP07326J-(cit30)/*[position()=1]) 1993; 293 Kabelac (C5CP07326J-(cit4)/*[position()=1]) 2007; 9 Cesàro (C5CP07326J-(cit7)/*[position()=1]) 1976; 80 Rothschild (C5CP07326J-(cit42)/*[position()=1]) 1976; 65 Czeslik (C5CP07326J-(cit29)/*[position()=1]) 1999; 111 D’Amico (C5CP07326J-(cit48)/*[position()=1]) 2012; 116 Fini (C5CP07326J-(cit51)/*[position()=1]) 1971; 71 Møller (C5CP07326J-(cit37)/*[position()=1]) 1934; 46 Enright (C5CP07326J-(cit45)/*[position()=1]) 2007; 7 Bradley (C5CP07326J-(cit28)/*[position()=1]) 1993; 97 Hédoux (C5CP07326J-(cit34)/*[position()=1]) 2015; 486 Šponer (C5CP07326J-(cit57)/*[position()=1]) 2013; 99 Ranheim (C5CP07326J-(cit1)/*[position()=1]) 2005; 49 Campbell (C5CP07326J-(cit14)/*[position()=1]) 1974; 61 Nishi (C5CP07326J-(cit19)/*[position()=1]) 1999; 103 Torii (C5CP07326J-(cit22)/*[position()=1]) 1998; 94 Bakhshiev (C5CP07326J-(cit13)/*[position()=1]) 1972 Morresi (C5CP07326J-(cit32)/*[position()=1]) 2000; 12 Edwards (C5CP07326J-(cit35)/*[position()=1]) 2005; 61 Pavel (C5CP07326J-(cit36)/*[position()=1]) 2003; 72 Stoesser (C5CP07326J-(cit8)/*[position()=1]) 1967; 71 Shelley (C5CP07326J-(cit23)/*[position()=1]) 1991; 72 Neurohr (C5CP07326J-(cit11)/*[position()=1]) 1979; 57 Slager (C5CP07326J-(cit27)/*[position()=1]) 1997; 101 D’Amico (C5CP07326J-(cit47)/*[position()=1]) 2013; 139 Logan (C5CP07326J-(cit55)/*[position()=1]) 1986; 58 Bischel (C5CP07326J-(cit17)/*[position()=1]) 1986; 33  | 
    
| References_xml | – volume: 72 start-page: 1407 year: 1991 ident: C5CP07326J-(cit23)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268979100100991 – volume: 75 start-page: 30 year: 1981 ident: C5CP07326J-(cit54)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.441782 – volume: 98 start-page: 783 year: 2000 ident: C5CP07326J-(cit20)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268970009483349 – volume: 67 start-page: 1109 year: 2002 ident: C5CP07326J-(cit6)/*[position()=1] publication-title: Collect. Czech. Chem. Commun. doi: 10.1135/cccc20021109 – volume: 12 start-page: 3631 year: 2000 ident: C5CP07326J-(cit32)/*[position()=1] publication-title: J. Phys.: Condens. Matter – volume: 293 start-page: 227 year: 1993 ident: C5CP07326J-(cit30)/*[position()=1] publication-title: J. Mol. Struct. doi: 10.1016/0022-2860(93)80055-Z – volume: 71 start-page: 564 year: 1967 ident: C5CP07326J-(cit8)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100862a016 – volume: 115 start-page: 10957 year: 2011 ident: C5CP07326J-(cit5)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp2021352 – volume: 30 start-page: 354 year: 2001 ident: C5CP07326J-(cit12)/*[position()=1] publication-title: Eur. Biophys. J. doi: 10.1007/s002490100150 – volume: 9 start-page: 903 year: 2007 ident: C5CP07326J-(cit4)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/B614420A – volume: 99 start-page: 978 year: 2013 ident: C5CP07326J-(cit57)/*[position()=1] publication-title: Biopolymers doi: 10.1002/bip.22322 – volume-title: Spectroscopy of Intermolecular Interactions year: 1972 ident: C5CP07326J-(cit13)/*[position()=1] – volume: 33 start-page: 3113 year: 1986 ident: C5CP07326J-(cit17)/*[position()=1] publication-title: Phys. Rev. A: At., Mol., Opt. Phys. doi: 10.1103/PhysRevA.33.3113 – volume: 111 start-page: 9739 year: 1999 ident: C5CP07326J-(cit29)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.480309 – volume: 19 start-page: 299 year: 1986 ident: C5CP07326J-(cit33)/*[position()=1] publication-title: Spectrosc. Lett. doi: 10.1080/00387018608069240 – volume: 33 start-page: 1269 year: 2008 ident: C5CP07326J-(cit2)/*[position()=1] publication-title: Appl. Physiol., Nutr., Metab. doi: 10.1139/H08-120 – volume: 79 start-page: 639 year: 1983 ident: C5CP07326J-(cit26)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.445812 – volume: 58 start-page: 2013 year: 2002 ident: C5CP07326J-(cit46)/*[position()=1] publication-title: Spectrochim. Acta, Part A doi: 10.1016/S1386-1425(01)00649-7 – volume: 94 start-page: 2274 year: 1990 ident: C5CP07326J-(cit16)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100369a015 – volume: 7 start-page: 1406 year: 2007 ident: C5CP07326J-(cit45)/*[position()=1] publication-title: Cryst. Growth Des. doi: 10.1021/cg070291o – volume: 486 start-page: 331 year: 2015 ident: C5CP07326J-(cit34)/*[position()=1] publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2015.04.001 – volume: 65 start-page: 455 year: 1976 ident: C5CP07326J-(cit42)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.432789 – volume: 68 start-page: 1293 year: 1990 ident: C5CP07326J-(cit49)/*[position()=1] publication-title: Can. J. Chem. doi: 10.1139/v90-199 – volume-title: Dynamics of Molecular Liquids year: 1984 ident: C5CP07326J-(cit15)/*[position()=1] – volume: 101 start-page: 9774 year: 1997 ident: C5CP07326J-(cit27)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp9718966 – volume: 139 start-page: 015101 year: 2013 ident: C5CP07326J-(cit47)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.4812283 – volume: 52 start-page: 399 year: 1984 ident: C5CP07326J-(cit52)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268978400101291 – volume: 71 start-page: 2241 year: 1971 ident: C5CP07326J-(cit51)/*[position()=1] publication-title: J. Chem. Phys. – volume: 103 start-page: 215 year: 1986 ident: C5CP07326J-(cit53)/*[position()=1] publication-title: Chem. Phys. doi: 10.1016/0301-0104(86)80022-2 – volume: 116 start-page: 13219 year: 2012 ident: C5CP07326J-(cit48)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/jp3088594 – volume: 50 start-page: 997 year: 1981 ident: C5CP07326J-(cit3)/*[position()=1] publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.bi.50.070181.005025 – volume: 72 start-page: 25 year: 2003 ident: C5CP07326J-(cit36)/*[position()=1] publication-title: Biopolymers doi: 10.1002/bip.10248 – volume: 80 start-page: 335 year: 1976 ident: C5CP07326J-(cit7)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100544a026 – volume: 13 start-page: 2908 year: 2007 ident: C5CP07326J-(cit56)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.200600973 – volume: 34 start-page: 564 year: 2006 ident: C5CP07326J-(cit10)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkj454 – volume: 99 start-page: 8459 year: 1993 ident: C5CP07326J-(cit31)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.465622 – volume: 57 start-page: 1986 year: 1979 ident: C5CP07326J-(cit11)/*[position()=1] publication-title: Can. J. Chem. doi: 10.1139/v79-318 – volume: 11 start-page: 453 year: 1958 ident: C5CP07326J-(cit44)/*[position()=1] publication-title: Acta Crystallogr. doi: 10.1107/S0365110X58001286 – volume: 115 start-page: 45 year: 2013 ident: C5CP07326J-(cit39)/*[position()=1] publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2013.06.005 – volume: 46 start-page: 618 year: 1934 ident: C5CP07326J-(cit37)/*[position()=1] publication-title: Phys. Rev. doi: 10.1103/PhysRev.46.618 – volume: 90 start-page: 4144 year: 1989 ident: C5CP07326J-(cit25)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.455772 – volume: 16 start-page: 2671 year: 1988 ident: C5CP07326J-(cit43)/*[position()=1] publication-title: Nucleic Acids Res. doi: 10.1093/nar/16.6.2671 – volume: 49 start-page: 274 year: 2005 ident: C5CP07326J-(cit1)/*[position()=1] publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.200400109 – volume: 104 start-page: 914 year: 1996 ident: C5CP07326J-(cit41)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.470815 – volume: 303 start-page: 37 year: 1999 ident: C5CP07326J-(cit18)/*[position()=1] publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(99)00146-3 – volume: 119 start-page: 13294 year: 2015 ident: C5CP07326J-(cit9)/*[position()=1] publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.5b09204 – volume: 92 start-page: 97 year: 1997 ident: C5CP07326J-(cit21)/*[position()=1] publication-title: Mol. Phys. – volume: 97 start-page: 575 year: 1993 ident: C5CP07326J-(cit28)/*[position()=1] publication-title: J. Phys. Chem. doi: 10.1021/j100105a009 – volume: 703 start-page: 33 year: 2013 ident: C5CP07326J-(cit40)/*[position()=1] publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A doi: 10.1016/j.nima.2012.11.037 – volume: 94 start-page: 7486 year: 1991 ident: C5CP07326J-(cit24)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.460179 – volume: 61 start-page: 1453 year: 2005 ident: C5CP07326J-(cit35)/*[position()=1] publication-title: Spectrochim. Acta, Part A doi: 10.1016/j.saa.2004.10.022 – volume: 76 start-page: 157 year: 2004 ident: C5CP07326J-(cit50)/*[position()=1] publication-title: Pure Appl. Chem. doi: 10.1351/pac200476010157 – volume: 94 start-page: 821 year: 1998 ident: C5CP07326J-(cit22)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268979809482375 – volume: 103 start-page: 10851 year: 1999 ident: C5CP07326J-(cit19)/*[position()=1] publication-title: J. Phys. Chem. A doi: 10.1021/jp9929061 – volume: 61 start-page: 346 year: 1974 ident: C5CP07326J-(cit14)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.1681643 – volume: 58 start-page: 97 year: 1986 ident: C5CP07326J-(cit55)/*[position()=1] publication-title: Mol. Phys. doi: 10.1080/00268978600101011  | 
    
| SSID | ssj0001513 | 
    
| Score | 2.3333137 | 
    
| Snippet | During the last few decades it has been ascertained that base stacking is one of the major contributions stabilizing nucleic acid conformations. However, the... | 
    
| SourceID | proquest pubmed crossref  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 13478 | 
    
| SubjectTerms | Adenine - chemistry Adenines Agglomeration Caffeine Caffeine - chemistry Guanine - chemistry Hydrophobic and Hydrophilic Interactions Mathematical models Models, Molecular Moisture content Nucleic Acid Conformation Purines Purines - chemistry Quantum Theory Solutions Solvation Stacking Temperature Ultraviolet Rays Water - chemistry  | 
    
| Title | Stacking of purines in water: the role of dipolar interactions in caffeine | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/27127808 https://www.proquest.com/docview/1788538540 https://www.proquest.com/docview/1808648858 https://www.proquest.com/docview/1816009738  | 
    
| Volume | 18 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection 2023 customDbUrl: https://pubs.rsc.org eissn: 1463-9084 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001513 issn: 1463-9076 databaseCode: AETIL dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9ACXijflJSMeEqoMttf27nKLTKISpSUHR8rNWq_XEIrsQNMilT_P7Ctx1FIVLpazHtnOznjm250XQq-CGowifGQ-DypYoDAp_BKT2hdhKJjEkSQ6kfbwKD2YxeN5Mu_1fnezS1blO3F-aV7J_3AVxoCvKkv2Hzi7vikMwDnwF47AYThei8eAFMWxC1tW2-Y6umr_F1cecBuw4cIHq8Wy1RGnaiZNNoMmFryupXOuW5Q6dcwTrh2cOVNDZivkRG8lTLNsnR6W8zP-peFCtJtcBgWQF_ujtjlvt3ZZP76OyABu126FFh9yMMftGXD766KzgWu3JMJUedOtyjRaNE6xD6tuW-O6O2b6wV1UvUrEWEeRqgxX2rHK8NuUzL6g8gOsKqaKRCxBW0Xpt41hc878o8_FaDaZFPlwnr9Z_vBVyzHlmrf9V26gnQikNeijncEw_zRZG3IAQ9gkp5l_46rbYvZ-87htPPOXRYoGK_lttGtXGd7AiMwd1JPNXXQzc9y8h8ZOdLy29qzoeIvG06LzwQPB8ZTgqKtWcLyu4ChSJzj30Ww0zLMD37bV8AVO8MqP4GoaM844oF8hALCp7iCJLCssGFYAj-I0rlJS0lgEvKxEJYnAcSUB_jMa4Aeo37SNfIS8smK1qCmVESljjjEH_F2TEuOAk7IO6B566yanELbmvGp98r3QsQ-YFVmSTfVEjvfQyzXt0lRauZTqhZvjAqZMebd4I9vTkyIkFKAnhRXIFTQUVvBgshJ6FU2Y6iJWQPPQMHH9PhEJIwL3eHyNJzxBtzbfxlPUX_08lc8AwK7K51bQ_gCQX5vh | 
    
| linkProvider | Royal Society of Chemistry | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stacking+of+purines+in+water%3A+the+role+of+dipolar+interactions+in+caffeine&rft.jtitle=Physical+chemistry+chemical+physics+%3A+PCCP&rft.au=Tavagnacco%2C+L&rft.au=Di+Fonzo%2C+S&rft.au=D%27Amico%2C+F&rft.au=Masciovecchio%2C+C&rft.date=2016-05-11&rft.issn=1463-9076&rft.eissn=1463-9084&rft.volume=18&rft.issue=19&rft.spage=13478&rft.epage=13486&rft_id=info:doi/10.1039%2Fc5cp07326j&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1463-9076&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1463-9076&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1463-9076&client=summon |