Data-Driven Self-sensing Technique for Active Magnetic Bearing
In the last two decades, soft sensors proved themselves as a valuable alternative to the physical sensor for gathering critical process information. A self-sensing technique for the magnetic bearing is considered as a soft sensor since the object position is estimated from the current signal of the...
Saved in:
Published in | International journal of precision engineering and manufacturing Vol. 22; no. 6; pp. 1031 - 1038 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
Korean Society for Precision Engineering
01.06.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2234-7593 2005-4602 |
DOI | 10.1007/s12541-021-00525-x |
Cover
Abstract | In the last two decades, soft sensors proved themselves as a valuable alternative to the physical sensor for gathering critical process information. A self-sensing technique for the magnetic bearing is considered as a soft sensor since the object position is estimated from the current signal of the electromagnet. Self-sensing techniques developed so far are the model-driven soft sensors. This paper presents a data-driven self-sensing technique to compensate for the nonlinear characteristic of the electromagnet. First, model-driven self-sensing techniques and their problems are reviewed. Then, data-driven self-sensing technique using recurrent neural network (RNN) is proposed to compensate for the nonlinear characteristics. Both the position control and self-sensing with the RNN are implemented in a single digital signal processor. The effectiveness of the proposed method is experimentally verified by comparison with the current slope method. Both estimation errors during initial levitation and jitter after levitation are reduced by 90% and 36%, respectively. Estimation error with 2 Hz sine wave is improved by 65.9%, while jitter during self-sensing levitation is cut down to 26.8%. |
---|---|
AbstractList | In the last two decades, soft sensors proved themselves as a valuable alternative to the physical sensor for gathering critical process information. A self-sensing technique for the magnetic bearing is considered as a soft sensor since the object position is estimated from the current signal of the electromagnet. Self-sensing techniques developed so far are the model-driven soft sensors. This paper presents a data-driven self-sensing technique to compensate for the nonlinear characteristic of the electromagnet. First, model-driven self-sensing techniques and their problems are reviewed. Then, data-driven self-sensing technique using recurrent neural network (RNN) is proposed to compensate for the nonlinear characteristics. Both the position control and self-sensing with the RNN are implemented in a single digital signal processor. The effectiveness of the proposed method is experimentally verified by comparison with the current slope method. Both estimation errors during initial levitation and jitter after levitation are reduced by 90% and 36%, respectively. Estimation error with 2 Hz sine wave is improved by 65.9%, while jitter during self-sensing levitation is cut down to 26.8%. In the last two decades, soft sensors proved themselves as a valuable alternative to the physical sensor for gathering critical process information. A self-sensing technique for the magnetic bearing is considered as a soft sensor since the object position is estimated from the current signal of the electromagnet. Self-sensing techniques developed so far are the model-driven soft sensors. This paper presents a data-driven self-sensing technique to compensate for the nonlinear characteristic of the electromagnet. First, model-driven self-sensing techniques and their problems are reviewed. Then, data-driven self-sensing technique using recurrent neural network (RNN) is proposed to compensate for the nonlinear characteristics. Both the position control and self-sensing with the RNN are implemented in a single digital signal processor. The effectiveness of the proposed method is experimentally verified by comparison with the current slope method. Both estimation errors during initial levitation and jitter after levitation are reduced by 90% and 36%, respectively. Estimation error with 2 Hz sine wave is improved by 65.9%, while jitter during self-sensing levitation is cut down to 26.8%. |
Author | Cho, Kwang-Hwi Ahn, Hyeong-Joon Yoo, Seong Jong Kim, Sinyoung |
Author_xml | – sequence: 1 givenname: Seong Jong surname: Yoo fullname: Yoo, Seong Jong organization: Department of Mechanical Engineering, Graduate School, Soongsil University – sequence: 2 givenname: Sinyoung surname: Kim fullname: Kim, Sinyoung organization: Department of Bioinformatics, Soongsil University – sequence: 3 givenname: Kwang-Hwi surname: Cho fullname: Cho, Kwang-Hwi organization: School of Systems Biomedical Science, Soongsil University – sequence: 4 givenname: Hyeong-Joon orcidid: 0000-0002-4947-2311 surname: Ahn fullname: Ahn, Hyeong-Joon email: ahj123@ssu.ac.kr organization: School of Mechanical Engineering, Soongsil University |
BookMark | eNp9kM1OAyEURonRxFr7Aq4mcY3CpTCdjUlt_UtqXFjXhKF3KqYyFaipby91TExcdEG4i-_Ad88JOfStR0LOOLvgjJWXkYMccsogHyZB0u0B6UEe6VAxOMwziCEtZSWOySBGVzPBQQk5Uj1yNTXJ0Glwn-iLZ1w1NKKPzi-LOdpX7z42WDRtKMY25UjxaJYek7PFNZqQU6fkqDGriIPfu09ebm_mk3s6e7p7mIxn1AopEuU1Q1VzqEzJKiXUwjSlMbVshOB2MTSVMmjzDlWtoMzFrUWuFlAB1mUDuWufnHfvrkObK8Wk39pN8PlLDRIqwThwkVOjLmVDG2PARluXTHKtT8G4leZM74TpTpjOwvSPML3NKPxD18G9m_C1HxIdFNc7GRj-Wu2hvgGxYH7h |
CitedBy_id | crossref_primary_10_1007_s12541_024_01173_7 crossref_primary_10_1016_j_ymssp_2023_110567 crossref_primary_10_26583_gns_2023_03_04 crossref_primary_10_1186_s40323_024_00258_2 crossref_primary_10_14489_td_2023_01_pp_022_029 crossref_primary_10_1007_s12541_024_01054_z crossref_primary_10_7736_JKSPE_022_133 crossref_primary_10_1007_s12541_024_01105_5 crossref_primary_10_3390_coatings13030649 crossref_primary_10_7736_JKSPE_023_142 crossref_primary_10_1016_j_ymssp_2022_110054 |
Cites_doi | 10.1109/19.552155 10.1115/1.1514671 10.3390/s130912149 10.1007/s12206-008-0608-1 10.1109/TASC.2017.2784397 10.1016/j.mechatronics.2014.01.008 10.1109/TEC.2010.2073709 10.1016/j.automatica.2018.08.004 10.1016/j.compchemeng.2008.12.012 10.1109/20.250632 10.1016/j.conengprac.2010.11.003 10.1109/TCST.2004.843142 10.1109/JSEN.2019.2904106 10.1109/CDC.1998.757843 10.1109/SLED.2010.5542800 |
ContentType | Journal Article |
Copyright | Korean Society for Precision Engineering 2021 Korean Society for Precision Engineering 2021. |
Copyright_xml | – notice: Korean Society for Precision Engineering 2021 – notice: Korean Society for Precision Engineering 2021. |
DBID | AAYXX CITATION |
DOI | 10.1007/s12541-021-00525-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2005-4602 |
EndPage | 1038 |
ExternalDocumentID | 10_1007_s12541_021_00525_x |
GrantInformation_xml | – fundername: Korea government (MOTIE) grantid: P0006915 – fundername: Soongil University |
GroupedDBID | -EM .UV 06D 0R~ 0VY 203 29J 29~ 2JY 2KG 2VQ 30V 4.4 406 408 5GY 5VS 67Z 8TC 96X 9ZL AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABHLI ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACREN ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BA0 BGNMA CAG COF CSCUP DBRKI DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GW5 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ I0C IKXTQ IWAJR IXC IXD I~X J-C J0Z JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P2P P9P PT4 R9I RLLFE ROL RSV S1Z S27 S3B SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TDB TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z7R Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c353t-1b0e6b129a709636daf7aab5f331cd4a96aec5419b627005cce16d292eb7f2263 |
IEDL.DBID | AGYKE |
ISSN | 2234-7593 |
IngestDate | Thu Sep 18 00:00:19 EDT 2025 Tue Jul 01 01:18:52 EDT 2025 Thu Apr 24 23:12:19 EDT 2025 Fri Feb 21 02:48:23 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Self-sensing Active magnetic bearing RNN Data-driven sensor |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-1b0e6b129a709636daf7aab5f331cd4a96aec5419b627005cce16d292eb7f2263 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4947-2311 |
PQID | 2529301213 |
PQPubID | 2043903 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2529301213 crossref_citationtrail_10_1007_s12541_021_00525_x crossref_primary_10_1007_s12541_021_00525_x springer_journals_10_1007_s12541_021_00525_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-06-01 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul – name: Heidelberg |
PublicationTitle | International journal of precision engineering and manufacturing |
PublicationTitleAbbrev | Int. J. Precis. Eng. Manuf |
PublicationYear | 2021 |
Publisher | Korean Society for Precision Engineering Springer Nature B.V |
Publisher_xml | – name: Korean Society for Precision Engineering – name: Springer Nature B.V |
References | Schweitzer, Maslen (CR18) 2009 Schammass, Herzog, Buhler, Bleuler (CR12) 2005; 13 Thibeault, Smith (CR8) 2002; 124 Park, Han, Park, Ahn, Jang (CR9) 2008; 22 CR7 Niemann, Van Schoor, Du Rand (CR13) 2013; 13 Glück, Kemmetmüller, Tump, Kugi (CR14) 2011; 19 Sun, Zhao, Shi, Yu (CR5) 2014; 24 CR15 Jiang, Wang, Sun, Xie (CR21) 2019; 19 Asama, Asami, Imakawa, Chiba, Nakajima, Rahman (CR19) 2011; 26 Vischer, Bleuler (CR6) 1993; 29 CR11 Wang (CR16) 2016 CR22 Schweitzer, Bleuler, Traxler (CR17) 1994 Liu, Zhu, Wu, Zhang (CR3) 2020; 30 Kadlec, Gabrys (CR4) 2009; 42 Noh, Maslen (CR10) 1997; 46 Gu, Zhu, Hua (CR2) 2018; 28 Kadlec, Gabrys, Strandt (CR1) 2009; 33 Bobtsov, Pyrkin, Ortega, Vedyakov (CR20) 2018; 97 AA Bobtsov (525_CR20) 2018; 97 YH Park (525_CR9) 2008; 22 AC Niemann (525_CR13) 2013; 13 T Glück (525_CR14) 2011; 19 MD Noh (525_CR10) 1997; 46 A Schammass (525_CR12) 2005; 13 P Kadlec (525_CR1) 2009; 33 Z Sun (525_CR5) 2014; 24 525_CR7 G Schweitzer (525_CR18) 2009 N Thibeault (525_CR8) 2002; 124 Y Jiang (525_CR21) 2019; 19 525_CR11 G Schweitzer (525_CR17) 1994 525_CR22 D Vischer (525_CR6) 1993; 29 525_CR15 H Gu (525_CR2) 2018; 28 J Asama (525_CR19) 2011; 26 P Kadlec (525_CR4) 2009; 42 J Wang (525_CR16) 2016 T Liu (525_CR3) 2020; 30 |
References_xml | – volume: 46 start-page: 45 issue: 1 year: 1997 end-page: 50 ident: CR10 article-title: Self-sensing magnetic bearings using parameter estimation publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/19.552155 – volume: 30 start-page: 1 issue: 4 year: 2020 end-page: 4 ident: CR3 article-title: Rotor Displacement Self-Sensing Method for Six-Pole Radial Hybrid Magnetic Bearing Using Mixed-Kernel Fuzzy Support Vector Machine publication-title: IEEE Transactions on Applied Superconductivity – year: 2016 ident: CR16 publication-title: The current slope based position estimation for self-sensing magnetic bearings – ident: CR22 – volume: 42 start-page: 572 issue: 19 year: 2009 end-page: 577 ident: CR4 article-title: Soft sensors: Where are we and what are the current and future challenges? publication-title: IFAC Proceedings – volume: 124 start-page: 589 year: 2002 end-page: 598 ident: CR8 article-title: Magnetic bearing measurement configurations and associated robustness and performance limitations publication-title: Journal of Dynamic Systems, Measurement and Control doi: 10.1115/1.1514671 – volume: 13 start-page: 12149 issue: 9 year: 2013 end-page: 12165 ident: CR13 article-title: A self-sensing active magnetic bearing based on a direct current measurement approach publication-title: Sensors doi: 10.3390/s130912149 – volume: 22 start-page: 1757 issue: 9 year: 2008 end-page: 1764 ident: CR9 article-title: A self-sensing technology of active magnetic bearings using a phase modulation algorithm based on a high frequency voltage injection method publication-title: Journal of Mechanical Science and Technology doi: 10.1007/s12206-008-0608-1 – ident: CR15 – volume: 28 start-page: 1 issue: 3 year: 2018 end-page: 5 ident: CR2 article-title: Soft Sensing Modeling of Magnetic Suspension Rotor Displacements Based on Continuous Hidden Markov Model publication-title: IEEE Transactions on Applied Superconductivity doi: 10.1109/TASC.2017.2784397 – volume: 24 start-page: 186 year: 2014 end-page: 197 ident: CR5 article-title: Soft sensing of magnetic bearing system based on support vector regression and extended Kalman filter publication-title: Mechatronics doi: 10.1016/j.mechatronics.2014.01.008 – ident: CR11 – year: 2009 ident: CR18 publication-title: Magnetic bearings: Theory design and application to rotating machinery – volume: 26 start-page: 46 issue: 1 year: 2011 end-page: 54 ident: CR19 article-title: Effects of permanent-magnet passive magnetic bearing on a two-axis actively regulated low-speed bearingless motor publication-title: IEEE Transactions on Energy Conversion doi: 10.1109/TEC.2010.2073709 – volume: 97 start-page: 263 year: 2018 end-page: 270 ident: CR20 article-title: A state observer for sensorless control of magnetic levitation systems publication-title: Automatica doi: 10.1016/j.automatica.2018.08.004 – year: 1994 ident: CR17 publication-title: Active magnetic bearings: Basics, properties and applications of active magnetic bearings – volume: 33 start-page: 795 year: 2009 end-page: 814 ident: CR1 article-title: Data-driven soft sensors in the process industry publication-title: Computers and Chemical Engineering doi: 10.1016/j.compchemeng.2008.12.012 – ident: CR7 – volume: 29 start-page: 1276 issue: 2 year: 1993 end-page: 1281 ident: CR6 article-title: Self-sensing active magnetic levitation publication-title: IEEE Transactions on Magnetics doi: 10.1109/20.250632 – volume: 19 start-page: 146 issue: 2 year: 2011 end-page: 157 ident: CR14 article-title: A novel robust position estimator for self-sensing magnetic levitation systems based on least squares identification publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2010.11.003 – volume: 13 start-page: 509 issue: 4 year: 2005 end-page: 516 ident: CR12 article-title: New results for self-sensing active magnetic bearings using modulation approach publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2004.843142 – volume: 19 start-page: 5460 issue: 14 year: 2019 end-page: 5469 ident: CR21 article-title: Displacement Self-Sensing Method for AMB-Rotor Systems Using Current Ripple Demodulations Combined With PWM Command Signals publication-title: IEEE Sensors doi: 10.1109/JSEN.2019.2904106 – volume: 22 start-page: 1757 issue: 9 year: 2008 ident: 525_CR9 publication-title: Journal of Mechanical Science and Technology doi: 10.1007/s12206-008-0608-1 – volume: 19 start-page: 5460 issue: 14 year: 2019 ident: 525_CR21 publication-title: IEEE Sensors doi: 10.1109/JSEN.2019.2904106 – volume: 26 start-page: 46 issue: 1 year: 2011 ident: 525_CR19 publication-title: IEEE Transactions on Energy Conversion doi: 10.1109/TEC.2010.2073709 – ident: 525_CR7 doi: 10.1109/CDC.1998.757843 – ident: 525_CR15 – volume: 42 start-page: 572 issue: 19 year: 2009 ident: 525_CR4 publication-title: IFAC Proceedings – volume: 30 start-page: 1 issue: 4 year: 2020 ident: 525_CR3 publication-title: IEEE Transactions on Applied Superconductivity – volume-title: Magnetic bearings: Theory design and application to rotating machinery year: 2009 ident: 525_CR18 – ident: 525_CR22 – ident: 525_CR11 doi: 10.1109/SLED.2010.5542800 – volume-title: The current slope based position estimation for self-sensing magnetic bearings year: 2016 ident: 525_CR16 – volume: 124 start-page: 589 year: 2002 ident: 525_CR8 publication-title: Journal of Dynamic Systems, Measurement and Control doi: 10.1115/1.1514671 – volume: 29 start-page: 1276 issue: 2 year: 1993 ident: 525_CR6 publication-title: IEEE Transactions on Magnetics doi: 10.1109/20.250632 – volume: 13 start-page: 12149 issue: 9 year: 2013 ident: 525_CR13 publication-title: Sensors doi: 10.3390/s130912149 – volume: 97 start-page: 263 year: 2018 ident: 525_CR20 publication-title: Automatica doi: 10.1016/j.automatica.2018.08.004 – volume: 28 start-page: 1 issue: 3 year: 2018 ident: 525_CR2 publication-title: IEEE Transactions on Applied Superconductivity doi: 10.1109/TASC.2017.2784397 – volume: 24 start-page: 186 year: 2014 ident: 525_CR5 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2014.01.008 – volume: 33 start-page: 795 year: 2009 ident: 525_CR1 publication-title: Computers and Chemical Engineering doi: 10.1016/j.compchemeng.2008.12.012 – volume: 19 start-page: 146 issue: 2 year: 2011 ident: 525_CR14 publication-title: Control Engineering Practice doi: 10.1016/j.conengprac.2010.11.003 – volume: 13 start-page: 509 issue: 4 year: 2005 ident: 525_CR12 publication-title: IEEE Transactions on Control Systems Technology doi: 10.1109/TCST.2004.843142 – volume: 46 start-page: 45 issue: 1 year: 1997 ident: 525_CR10 publication-title: IEEE Transactions on Instrumentation and Measurement doi: 10.1109/19.552155 – volume-title: Active magnetic bearings: Basics, properties and applications of active magnetic bearings year: 1994 ident: 525_CR17 |
SSID | ssib031263586 ssib036278122 ssib053376809 ssj0068040 |
Score | 2.2852342 |
Snippet | In the last two decades, soft sensors proved themselves as a valuable alternative to the physical sensor for gathering critical process information. A... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1031 |
SubjectTerms | Digital signal processors Electromagnets Engineering Industrial and Production Engineering Levitation Magnetic bearings Materials Science Microprocessors Position sensing Recurrent neural networks Regular Paper Sensors Signal processing Sine waves Vibration |
Title | Data-Driven Self-sensing Technique for Active Magnetic Bearing |
URI | https://link.springer.com/article/10.1007/s12541-021-00525-x https://www.proquest.com/docview/2529301213 |
Volume | 22 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2005-4602 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068040 issn: 2234-7593 databaseCode: AFBBN dateStart: 20090101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2005-4602 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0068040 issn: 2234-7593 databaseCode: AGYKE dateStart: 20090101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2005-4602 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0068040 issn: 2234-7593 databaseCode: U2A dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgjSiUKgMbGNVJHCcLUgstFYguNFKZIttxOlAFRIOE-PWc82gAAVKHSJHiPHw-330X-74DOA2YZMIPOoSpjiZuYGsiEpsRP6FacBHQmJrk5PuRNwzd2wmblElh82q3e7UkmVvqOtkNYxkMfW08TPE1gshxjZkApQFr3ZvHu36lRw41DCs1LRraaI5-bOHGEeEgyDa0VYXFxvM8cRI9pUs4C5wyueb3t353YDUq_bGQmvunwRaEVc-KbSlPF2-ZvFAfP0gfl-36NmyWgNXqFhq2Ays63YWNLzSGe3B5LTJBrl-N4bQe9Cwhc7MtPp1a44oh1kJsbHVz22rdi2lqUietHs4ybLUP4aA_vhqSsi4DUQ5zMkJlR3sSgYLgGAA5XiwSLoRkieNQFbsi8IRW-MGB9MyyNlNKUy-2UQ8kTxDuOQfQSJ9TfQiWKRNMfenFcdJxuat87iuBgN_W6LwFZ02glbAjVZKWm9oZs6imWzayiVA2US6b6L0JZ4t7XgrKjn9bt6oxjMrpO49shigoZ7trwnk1JPXlv592tFzzY1i381E1f3Va0Mhe3_QJgpxMtlGnB73eqF3qdhtWQ7v7CaR37a0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED6hdgAG3ojyzMAGRnUSx8mCVCilQNuFVoIpsh2nA1VAbSohfj3nPAggQGKIFCnOw-fz3Xex7zuA44BJJvygSZhqauIGtiYithnxY6oFFwGNqElO7g-87si9fWAPRVLYrNztXi5JZpa6SnbDWAZDXxsPU3yNIHKsu9T33RrUW9ePd1elHjnUMKxUtGhoozn6sQ83jggHQbahrcotNp5niZPoKV3CWeAUyTU_v_WrA6tQ6beF1Mw_dVZhVPYs35bydDZP5Zl6-0b6-N-ur8FKAVitVq5h67Cgkw1Y_kRjuAnnbZEK0p4aw2nd60lMZmZbfDK2hiVDrIXY2GplttXqi3FiUietC5xl2GoLRp2r4WWXFHUZiHKYkxIqm9qTCBQExwDI8SIRcyEkix2HqsgVgSe0wg8OpGeWtZlSmnqRjXogeYxwz9mGWvKc6B2wTJlg6ksviuKmy13lc18JBPy2RuctOGsALYUdqoK03NTOmIQV3bKRTYiyCTPZhK8NOPm45yWn7Piz9X45hmExfWehzRAFZWx3DTgth6S6_PvTdv_X_AgWu8N-L-zdDO72YMnORtj84dmHWjqd6wMEPKk8LPT7HfJb7jk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA8yQfRB_MTp1Dz4pmFN0zTtizCdY35sCG6wt5Cm6V5GHVsF_3wv_bBTVPChUNq0pdfL3e96ud8hdBHyiKsgdAjXjiFe6BqiEpeTIKFGCRXSmNri5MHQ74-9hwmfrFTx56vdq5RkUdNgWZrSrD2Pk3Zd-AZxDYTBLmy2ERsBFLnuwUEbfo3dTqVRjFqulZogDay1AI_26dAB6wDctgRWhe2G_byEEnymRwQPWVlm8_Mzv7qyGp9-S6nmnqq3g7ZLiIk7hU7sojWT7qGtFeLBfXTdVZki3YU1dfjFzBKytAvZ0ykeVZyuGNAs7uTWEA_UNLXFjvgG5gWMOkDj3t3otk_KTgpEM84yQiPH-BG4diUgZGF-rBKhVMQTxqiOPRX6ymh4uzDybSKaa22oH7vw5SKRAEBjh6iRvqbmCGHb2JcGkR_HieMJTwci0AogumvA3SrBm4hWQpG6pBm33S5msiZItoKUIEiZC1K-N9Hl5zXzgmTjz9GtStaynHBL6XLALTk_XRNdVfKvT_9-t-P_DT9HG8_dnny6Hz6eoE031wb7S6aFGtnizZwCQsmis1wJPwCmw9VJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Driven+Self-sensing+Technique+for+Active+Magnetic+Bearing&rft.jtitle=International+journal+of+precision+engineering+and+manufacturing&rft.au=Yoo%2C+Seong+Jong&rft.au=Kim+Sinyoung&rft.au=Cho+Kwang-Hwi&rft.au=Ahn+Hyeong-Joon&rft.date=2021-06-01&rft.pub=Springer+Nature+B.V&rft.issn=2234-7593&rft.eissn=2005-4602&rft.volume=22&rft.issue=6&rft.spage=1031&rft.epage=1038&rft_id=info:doi/10.1007%2Fs12541-021-00525-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2234-7593&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2234-7593&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2234-7593&client=summon |