Significance of Finite Element Models and Solid-State Phase Transformation on the Evaluation of Weld Induced Residual Stresses
In the present study, different finite element (FE) models were prepared to investigate weld induced residual stresses in thick multi-pass butt welded joint of SA516 Gr. 70 plates. Both 3D and 2D full geometry models and their axisymmetric half models were taken into consideration. The competence of...
Saved in:
Published in | Metals and materials international Vol. 27; no. 9; pp. 3478 - 3492 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Seoul
The Korean Institute of Metals and Materials
01.09.2021
Springer Nature B.V 대한금속·재료학회 |
Subjects | |
Online Access | Get full text |
ISSN | 1598-9623 2005-4149 |
DOI | 10.1007/s12540-020-00921-4 |
Cover
Abstract | In the present study, different finite element (FE) models were prepared to investigate weld induced residual stresses in thick multi-pass butt welded joint of SA516 Gr. 70 plates. Both 3D and 2D full geometry models and their axisymmetric half models were taken into consideration. The competence of these FE models on the accuracy of predicting residual stress distribution across the weld cross-section was investigated by comparing it with the experimental results. Blind hole drilling technique and deep hole drilling technique were employed to evaluate the surface and through-thickness residual stress distributions, respectively. In addition, the change in volume and yield strength of weld material due to austenitic phase transformation was also incorporated in the material modeling to observe the effect of solid-state phase transformation (SSPT) on the evaluation of residual stresses. Computed residual stresses obtained from different FE models indicate that the 3D FE models procured the best accuracy compared with the experimental results. On the other hand, 2D models can save a significant amount of computational time with reasonable accuracy. Incorporation of SSPT in the 3D FE full model exhibited a better agreement of predicted results with the experimental measurements.
Graphic Abstract |
---|---|
AbstractList | In the present study, different finite element (FE) models were prepared to investigate weld induced residual stresses inthick multi-pass butt welded joint of SA516 Gr. 70 plates. Both 3D and 2D full geometry models and their axisymmetrichalf models were taken into consideration. The competence of these FE models on the accuracy of predicting residual stressdistribution across the weld cross-section was investigated by comparing it with the experimental results. Blind hole drillingtechnique and deep hole drilling technique were employed to evaluate the surface and through-thickness residual stressdistributions, respectively. In addition, the change in volume and yield strength of weld material due to austenitic phasetransformation was also incorporated in the material modeling to observe the effect of solid-state phase transformation(SSPT) on the evaluation of residual stresses. Computed residual stresses obtained from different FE models indicate thatthe 3D FE models procured the best accuracy compared with the experimental results. On the other hand, 2D models cansave a significant amount of computational time with reasonable accuracy. Incorporation of SSPT in the 3D FE full modelexhibited a better agreement of predicted results with the experimental measurements. KCI Citation Count: 0 In the present study, different finite element (FE) models were prepared to investigate weld induced residual stresses in thick multi-pass butt welded joint of SA516 Gr. 70 plates. Both 3D and 2D full geometry models and their axisymmetric half models were taken into consideration. The competence of these FE models on the accuracy of predicting residual stress distribution across the weld cross-section was investigated by comparing it with the experimental results. Blind hole drilling technique and deep hole drilling technique were employed to evaluate the surface and through-thickness residual stress distributions, respectively. In addition, the change in volume and yield strength of weld material due to austenitic phase transformation was also incorporated in the material modeling to observe the effect of solid-state phase transformation (SSPT) on the evaluation of residual stresses. Computed residual stresses obtained from different FE models indicate that the 3D FE models procured the best accuracy compared with the experimental results. On the other hand, 2D models can save a significant amount of computational time with reasonable accuracy. Incorporation of SSPT in the 3D FE full model exhibited a better agreement of predicted results with the experimental measurements. Graphic Abstract In the present study, different finite element (FE) models were prepared to investigate weld induced residual stresses in thick multi-pass butt welded joint of SA516 Gr. 70 plates. Both 3D and 2D full geometry models and their axisymmetric half models were taken into consideration. The competence of these FE models on the accuracy of predicting residual stress distribution across the weld cross-section was investigated by comparing it with the experimental results. Blind hole drilling technique and deep hole drilling technique were employed to evaluate the surface and through-thickness residual stress distributions, respectively. In addition, the change in volume and yield strength of weld material due to austenitic phase transformation was also incorporated in the material modeling to observe the effect of solid-state phase transformation (SSPT) on the evaluation of residual stresses. Computed residual stresses obtained from different FE models indicate that the 3D FE models procured the best accuracy compared with the experimental results. On the other hand, 2D models can save a significant amount of computational time with reasonable accuracy. Incorporation of SSPT in the 3D FE full model exhibited a better agreement of predicted results with the experimental measurements.Graphic Abstract |
Author | Taraphdar, P. K. Kumar, Rajiv Pandey, Chandan Mahapatra, M. M. |
Author_xml | – sequence: 1 givenname: P. K. surname: Taraphdar fullname: Taraphdar, P. K. organization: School of Mechanical Sciences, Indian Institute of Technology – sequence: 2 givenname: Rajiv surname: Kumar fullname: Kumar, Rajiv organization: School of Mechanical Sciences, Indian Institute of Technology – sequence: 3 givenname: Chandan surname: Pandey fullname: Pandey, Chandan email: jscpandey@iitj.ac.in, chandanpy.1989@gmail.com organization: Department of Mechanical Engineering, Indian Institute of Technology Jodhpur – sequence: 4 givenname: M. M. surname: Mahapatra fullname: Mahapatra, M. M. organization: School of Mechanical Sciences, Indian Institute of Technology |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002751643$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNp9kc1LBCEYxiUK2rb-gU5Cpw5Tfs_MMaKPhaJoNzqKObpZs1rqBF3627OdIOgQKK_o83t9eZ4dsOmDNwDsY3SEEaqPEyacoQqRslFLcMU2wIQgxCuGWbsJJpi3TdUKQrfBTkrPCAlMMZmAz7lbemedVl4bGCw8d95lA896szI-w-vQmT5B5Ts4D73rqnlW5fn2SSUDF1H5ZENcqeyCh2Xlp4K-q374ubHwwfQdnPlu0KaDdya5blA9nOdoUjJpF2xZ1Sez91On4P78bHF6WV3dXMxOT64qTTnNFWaNEIiLx7ZloracinLUonusVV0TTAXjmlrBiEKCIy1axZriAlVENBxbQafgcOzro5Uv2smg3Loug3yJ8uRuMZNtw-sGsaI9GLWvMbwNJmX5HIboy3iScNEIToqnRUVGlY4hpWisfI1upeKHxEh-ZyLHTGTJRK4zkd9Q8wfSLq-tylG5_n-Ujmgq__ilib9T_UN9AcfeoNM |
CitedBy_id | crossref_primary_10_1016_j_jmapro_2021_06_046 crossref_primary_10_1080_1064119X_2022_2118648 crossref_primary_10_1016_j_ijpvp_2023_105088 crossref_primary_10_1080_10408436_2022_2138828 crossref_primary_10_1016_j_ijpvp_2021_104392 crossref_primary_10_1007_s40194_023_01584_6 crossref_primary_10_3390_ma16062256 crossref_primary_10_1080_10589759_2023_2194649 crossref_primary_10_1016_j_addma_2024_104077 crossref_primary_10_1016_j_mtcomm_2022_104770 crossref_primary_10_1016_j_ijpvp_2021_104557 crossref_primary_10_1007_s11665_024_10357_1 crossref_primary_10_1007_s11665_022_06877_3 crossref_primary_10_1016_j_heliyon_2023_e18959 crossref_primary_10_1016_j_ijpvp_2021_104439 crossref_primary_10_1007_s00170_024_14469_9 crossref_primary_10_1016_j_mtcomm_2025_111514 crossref_primary_10_3390_app13042648 crossref_primary_10_1007_s11661_023_07101_0 crossref_primary_10_1007_s12666_021_02326_2 crossref_primary_10_3390_buildings13051267 crossref_primary_10_1007_s43452_024_00958_x crossref_primary_10_1016_j_optlastec_2022_108635 crossref_primary_10_1007_s11668_022_01349_1 crossref_primary_10_1016_j_matchemphys_2024_129322 crossref_primary_10_1007_s11665_023_08125_8 crossref_primary_10_1080_17452759_2024_2409390 crossref_primary_10_3390_ma15113796 crossref_primary_10_1007_s43452_024_01042_0 crossref_primary_10_3390_met12060951 crossref_primary_10_1016_j_ijpvp_2021_104443 crossref_primary_10_1177_16878132241290948 crossref_primary_10_1007_s11665_022_06747_y crossref_primary_10_1007_s11665_023_08969_0 crossref_primary_10_1177_14644207231225884 crossref_primary_10_1007_s11665_024_10137_x crossref_primary_10_1007_s43452_022_00540_3 crossref_primary_10_3390_met12091502 crossref_primary_10_1080_09507116_2024_2328593 crossref_primary_10_1007_s43452_024_00920_x crossref_primary_10_1007_s11663_024_03053_x crossref_primary_10_1007_s12008_024_01764_8 crossref_primary_10_1016_j_ijpvp_2024_105422 crossref_primary_10_1109_TASC_2024_3446284 crossref_primary_10_1007_s11665_025_10674_z crossref_primary_10_1007_s00170_023_11210_w crossref_primary_10_3390_cryst12101422 crossref_primary_10_3390_met12030462 crossref_primary_10_1016_j_net_2024_10_037 crossref_primary_10_3390_buildings13082111 crossref_primary_10_1016_j_cscm_2023_e01991 crossref_primary_10_1177_14644207231171266 crossref_primary_10_1177_09544062211073101 crossref_primary_10_1177_09544089241239620 crossref_primary_10_1016_j_jmrt_2022_05_135 crossref_primary_10_1016_j_ijpvp_2024_105213 crossref_primary_10_1007_s12008_024_02095_4 crossref_primary_10_1007_s11665_021_06004_8 crossref_primary_10_1016_j_ijpvp_2023_105034 crossref_primary_10_1080_09507116_2023_2242777 crossref_primary_10_3390_pr10071312 crossref_primary_10_1115_1_4055329 crossref_primary_10_1093_jcde_qwac047 crossref_primary_10_1520_JTE20230729 crossref_primary_10_1080_01495739_2023_2283309 crossref_primary_10_1007_s11665_024_09577_2 |
Cites_doi | 10.1016/j.commatsci.2005.07.007 10.1007/s11340-008-9164-y 10.1016/j.commatsci.2005.06.010 10.1016/S0308-0161(97)00117-8 10.1007/BF02667333 10.4028/www.scientific.net/AMM.70.291 10.1007/BF03266531 10.1016/j.matdes.2013.02.065 10.1080/17445302.2017.1368122 10.1007/s43452-020-00056-8 10.1016/j.ijpvp.2009.07.007 10.1016/j.matlet.2020.128347 10.1016/B978-0-08-034062-3.50019-7 10.1179/026708301101510087 10.1016/j.commatsci.2007.07.009 10.1016/j.jmapro.2019.07.035 10.1016/j.jcsr.2013.02.007 10.1016/j.matdes.2010.11.032 10.1243/03093247V313177 10.1177/0954405416646309 10.1016/j.jmatprotec.2005.06.018 10.1007/s13296-016-0118-4 10.1016/j.ijpvp.2013.07.002 10.1016/j.ijmecsci.2005.06.011 10.1016/j.cma.2005.08.018 10.1016/j.applthermaleng.2012.04.007 10.1016/j.commatsci.2009.05.007 10.1243/03093247JSA372 10.1016/j.jmatprotec.2017.01.033 10.1243/09544054JEM617 10.1016/j.fusengdes.2011.01.116 10.1016/j.jcsr.2011.08.011 10.1016/j.marstruc.2010.05.002 |
ContentType | Journal Article |
Copyright | The Korean Institute of Metals and Materials 2021 The Korean Institute of Metals and Materials 2021. |
Copyright_xml | – notice: The Korean Institute of Metals and Materials 2021 – notice: The Korean Institute of Metals and Materials 2021. |
DBID | AAYXX CITATION 7SR 8BQ 8FD JG9 ACYCR |
DOI | 10.1007/s12540-020-00921-4 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database Korean Citation Index |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2005-4149 |
EndPage | 3492 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9857804 10_1007_s12540_020_00921_4 |
GroupedDBID | -EM 06D 0R~ 0VY 123 1N0 2.D 203 29M 2JY 2KG 2VQ 30V 4.4 406 408 40D 5VS 67Z 8FE 8FG 96X 9ZL AAAVM AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTD ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG AVWKF AXYYD AYJHY AZFZN BA0 BENPR BGLVJ CAG CCPQU COF CS3 CSCUP D1I DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZB HZ~ I0C IKXTQ IWAJR IXC IXD I~X J-C J0Z JBSCW JZLTJ KB. KOV KVFHK LLZTM MA- MZR N2Q NDZJH NPVJJ NQJWS O9- O93 O9G O9I O9J P19 P2P P9N PDBOC PT4 PT5 Q2X R89 R9I RLLFE ROL RSV S1Z S26 S27 S28 S3B SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 T16 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 W4F WK8 Z45 Z7R Z7V Z7X Z7Y Z7Z Z83 Z85 ZMTXR ZZE ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SR 8BQ 8FD ABRTQ JG9 AABYN AAFGU AAGCJ AAPBV AAUCO AAYFA ABFGW ABKAS ACBMV ACBRV ACBYP ACIGE ACIPQ ACTTH ACVWB ACWMK ACYCR ADMDM ADOXG AEEQQ AEFTE AESTI AEVTX AFNRJ AGGBP AIMYW AJDOV AJGSW AKQUC SQXTU Z5O Z7S Z88 |
ID | FETCH-LOGICAL-c353t-14866056b99467f5366b9c6db7a77213645c3f642a0650c69a489213a26851f63 |
IEDL.DBID | U2A |
ISSN | 1598-9623 |
IngestDate | Tue Nov 21 21:41:30 EST 2023 Thu Sep 25 00:52:28 EDT 2025 Tue Jul 01 01:15:26 EDT 2025 Thu Apr 24 23:12:32 EDT 2025 Fri Feb 21 02:48:31 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | SA516 Gr. 70 Solid-state phase transformation Residual stresses Blind hole drilling FE model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c353t-14866056b99467f5366b9c6db7a77213645c3f642a0650c69a489213a26851f63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2568652414 |
PQPubID | 326276 |
PageCount | 15 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9857804 proquest_journals_2568652414 crossref_primary_10_1007_s12540_020_00921_4 crossref_citationtrail_10_1007_s12540_020_00921_4 springer_journals_10_1007_s12540_020_00921_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Seoul |
PublicationPlace_xml | – name: Seoul |
PublicationTitle | Metals and materials international |
PublicationTitleAbbrev | Met. Mater. Int |
PublicationYear | 2021 |
Publisher | The Korean Institute of Metals and Materials Springer Nature B.V 대한금속·재료학회 |
Publisher_xml | – name: The Korean Institute of Metals and Materials – name: Springer Nature B.V – name: 대한금속·재료학회 |
References | ChenBQHashemzadehMGuedesSoaresCShips Offshore Struct.201813273282 E.M. Beaney, Measurement of Sub-Surface Stress, Report Rd/B/N4325, Central Electricity Generating Board (1978) GoldakJChakravartiABibbyMMetall. Trans. B.198415B299305 P.K. Taraphdar, M.M. Mahapatra, A.K. Pradhan, P.K. Singh, K. Sharma, S. Kumar, P. I. Mech. Eng. L J. Mat. (2020) GiriAMahapatraMMSharmaKSinghPKInt. J. Steel Struct.2017176575 HeinzeCSchwenkCRethmeierMJ. Constr. Steel Res.2012721219 YanDWuASilvanusJShiQMater. Des.201132228422911:CAS:528:DC%2BC3MXhtlSrtr0%3D Sattari-FarIFarahaniMRInt. J. Press. Vessel. Pip.2009867237311:CAS:528:DC%2BD1MXhtF2lu73N LeggattRHSmithDJSmithSDFaureFJ. Strain Anal. Eng. Des.199631177186 BrickstadBJosefsonBLInt. J. Press. Vessel. Pip.19987511251:CAS:528:DyaK1cXltFGit7w%3D DengDMurakawaHComput. Mater. Sci.2006372692771:CAS:528:DC%2BD28XntlCqsLk%3D MondalAKLohitABiswasPBagSDasMProc. Inst Mech. Eng. Part B J. Eng. Manuf.2018232499512 BorzabadiFarahaniESobhaniAraghBMansurWJProc. Inst. Mech Eng. Part L J. Mater. Des. Appl.2019233235223641:CAS:528:DC%2BC1MXhslKitLfE MahapatraMMDattaGLPradhanBMandalNRProc. Inst Mech. Eng. Part B J. Eng. Manuf.2007221397407 LeeCChangKAppl. Therm. Eng.201245–463341 HansenJNumerical Modeling of Welding Induced Stresses2003LyngbyTechnical University of Denmark UedaYYamakawaTTrans. Jpn. Weld. Soc.1971290100 ProcterEBeaneyEInt Guid. B. Residual Stress.198714165198 JesenskyMVargovaJSvaracske Sprav.1981317987 LiWYuRHuangDWuJWangYHuTWangJJ. Manuf. Process.201945460471 GannonLLiuYPeggNSmithMMar. Struct.201023385404 DeanDHidekazuMComput. Mater. Sci.200637209219 YaghiAHHydeTHBeckerAASunWIMechE J. Strain Anal.200843275293 BatemanMGMillerOHPalmerTJBreenCEPKingstonEJSmithDJPavierMJInt. J. Mech. Sci.20054717181739 WithersPJBhadeshiaHKDHMater. Sci. Technol.2001173663751:CAS:528:DC%2BD3MXjtF2it7w%3D FengZProcesses and mechanisms of welding residual stress and distortion20051CambridgeWoodhead Publishing Limited DengDMurakawaHLiangWComput. Mater. Sci.2008422342441:CAS:528:DC%2BD1cXjt1yksLs%3D ZhdanovIGoncharAAutom. Weld.19783192224 TaraphdarPKPandeyCMahapatraMMArch. Civ. Mech. Eng.202020113 DengDMater. Des.201349102210331:CAS:528:DC%2BC3sXmslajsr8%3D YaghiAHHydeTHBeckerAASunWInt. J. Press. Vessel. Pip.2013111–112173186 HossainSKingstonEJTrumanCESmithDJAppl. Mech. Mater.201170291296 LeeCHChangKHComput. Mater. Sci.200946101410221:CAS:528:DC%2BD1MXhtFGht7bP KannengiesserTBoellinghausTNeuhausMWeld. World2006501117 LiuCZhangJXXueCBFusion Eng. Des.2011862882951:CAS:528:DC%2BC3MXms12hs78%3D BrownSSongHWeld. J.1992715562 LindgrenLEComput. Methods Appl. Mech. Eng.200619567106736 GeryDLongHMaropoulosPJ. Mater. Process. Technol.20051673934011:CAS:528:DC%2BD2MXos1Cktrk%3D LiSRenSZhangYDengDMurakawaHJ. Mater. Process. Technol.20172442402521:CAS:528:DC%2BC2sXivVOlsb8%3D TaraphdarPKThakareJGPandeyCMahapatraMMMater. Lett.20202771283471:CAS:528:DC%2BB3cXhsVegurjL LeeCKChiewSPJiangJJ. Constr. Steel Res.20138494104 JiangWWooWWanYLuoYXieXTuSTJ. Press. Vessel Technol. Trans. ASME2017139110 HidekazuMMasanoriSJiangchaoWTrans. JWRI2012416570 MahmoudiAHHossainSTrumanCESmithDJPavierMJExp. Mech.200949595604 E Procter (921_CR26) 1987; 14 W Li (921_CR44) 2019; 45 PJ Withers (921_CR1) 2001; 17 (921_CR5) 2005 CK Lee (921_CR8) 2013; 84 D Deng (921_CR12) 2006; 37 L Gannon (921_CR35) 2010; 23 C Heinze (921_CR3) 2012; 72 M Hidekazu (921_CR15) 2012; 41 C Lee (921_CR37) 2012; 45–46 921_CR24 PK Taraphdar (921_CR2) 2020; 20 AK Mondal (921_CR39) 2018; 232 Y Ueda (921_CR6) 1971; 2 I Zhdanov (921_CR23) 1978; 319 T Kannengiesser (921_CR4) 2006; 50 LE Lindgren (921_CR13) 2006; 195 M Jesensky (921_CR25) 1981; 31 S Brown (921_CR38) 1992; 71 D Yan (921_CR14) 2011; 32 W Jiang (921_CR10) 2017; 139 D Dean (921_CR22) 2006; 37 J Goldak (921_CR33) 1984; 15B 921_CR30 D Gery (921_CR34) 2005; 167 C Liu (921_CR17) 2011; 86 AH Yaghi (921_CR42) 2008; 43 J Hansen (921_CR41) 2003 S Li (921_CR20) 2017; 244 AH Mahmoudi (921_CR28) 2009; 49 PK Taraphdar (921_CR31) 2020; 277 CH Lee (921_CR43) 2009; 46 I Sattari-Far (921_CR18) 2009; 86 A Giri (921_CR19) 2017; 17 MG Bateman (921_CR32) 2005; 47 RH Leggatt (921_CR27) 1996; 31 B Brickstad (921_CR36) 1998; 75 BQ Chen (921_CR9) 2018; 13 E BorzabadiFarahani (921_CR11) 2019; 233 D Deng (921_CR16) 2008; 42 MM Mahapatra (921_CR40) 2007; 221 D Deng (921_CR7) 2013; 49 S Hossain (921_CR29) 2011; 70 AH Yaghi (921_CR21) 2013; 111–112 |
References_xml | – reference: YaghiAHHydeTHBeckerAASunWInt. J. Press. Vessel. Pip.2013111–112173186 – reference: P.K. Taraphdar, M.M. Mahapatra, A.K. Pradhan, P.K. Singh, K. Sharma, S. Kumar, P. I. Mech. Eng. L J. Mat. (2020) – reference: HossainSKingstonEJTrumanCESmithDJAppl. Mech. Mater.201170291296 – reference: DeanDHidekazuMComput. Mater. Sci.200637209219 – reference: BrownSSongHWeld. J.1992715562 – reference: MondalAKLohitABiswasPBagSDasMProc. Inst Mech. Eng. Part B J. Eng. Manuf.2018232499512 – reference: ZhdanovIGoncharAAutom. Weld.19783192224 – reference: GoldakJChakravartiABibbyMMetall. Trans. B.198415B299305 – reference: DengDMurakawaHLiangWComput. Mater. Sci.2008422342441:CAS:528:DC%2BD1cXjt1yksLs%3D – reference: DengDMurakawaHComput. Mater. Sci.2006372692771:CAS:528:DC%2BD28XntlCqsLk%3D – reference: GannonLLiuYPeggNSmithMMar. Struct.201023385404 – reference: MahapatraMMDattaGLPradhanBMandalNRProc. Inst Mech. Eng. Part B J. Eng. Manuf.2007221397407 – reference: FengZProcesses and mechanisms of welding residual stress and distortion20051CambridgeWoodhead Publishing Limited – reference: UedaYYamakawaTTrans. Jpn. Weld. Soc.1971290100 – reference: MahmoudiAHHossainSTrumanCESmithDJPavierMJExp. Mech.200949595604 – reference: JesenskyMVargovaJSvaracske Sprav.1981317987 – reference: LiWYuRHuangDWuJWangYHuTWangJJ. Manuf. Process.201945460471 – reference: HidekazuMMasanoriSJiangchaoWTrans. JWRI2012416570 – reference: Sattari-FarIFarahaniMRInt. J. Press. Vessel. Pip.2009867237311:CAS:528:DC%2BD1MXhtF2lu73N – reference: ProcterEBeaneyEInt Guid. B. Residual Stress.198714165198 – reference: HeinzeCSchwenkCRethmeierMJ. Constr. Steel Res.2012721219 – reference: LeeCHChangKHComput. Mater. Sci.200946101410221:CAS:528:DC%2BD1MXhtFGht7bP – reference: WithersPJBhadeshiaHKDHMater. Sci. Technol.2001173663751:CAS:528:DC%2BD3MXjtF2it7w%3D – reference: LeeCKChiewSPJiangJJ. Constr. Steel Res.20138494104 – reference: YaghiAHHydeTHBeckerAASunWIMechE J. Strain Anal.200843275293 – reference: LeeCChangKAppl. Therm. Eng.201245–463341 – reference: KannengiesserTBoellinghausTNeuhausMWeld. World2006501117 – reference: E.M. Beaney, Measurement of Sub-Surface Stress, Report Rd/B/N4325, Central Electricity Generating Board (1978) – reference: DengDMater. Des.201349102210331:CAS:528:DC%2BC3sXmslajsr8%3D – reference: HansenJNumerical Modeling of Welding Induced Stresses2003LyngbyTechnical University of Denmark – reference: ChenBQHashemzadehMGuedesSoaresCShips Offshore Struct.201813273282 – reference: GiriAMahapatraMMSharmaKSinghPKInt. J. Steel Struct.2017176575 – reference: LindgrenLEComput. Methods Appl. Mech. Eng.200619567106736 – reference: LiuCZhangJXXueCBFusion Eng. Des.2011862882951:CAS:528:DC%2BC3MXms12hs78%3D – reference: LeggattRHSmithDJSmithSDFaureFJ. Strain Anal. Eng. Des.199631177186 – reference: TaraphdarPKThakareJGPandeyCMahapatraMMMater. Lett.20202771283471:CAS:528:DC%2BB3cXhsVegurjL – reference: BorzabadiFarahaniESobhaniAraghBMansurWJProc. Inst. Mech Eng. Part L J. Mater. Des. Appl.2019233235223641:CAS:528:DC%2BC1MXhslKitLfE – reference: JiangWWooWWanYLuoYXieXTuSTJ. Press. Vessel Technol. Trans. ASME2017139110 – reference: BatemanMGMillerOHPalmerTJBreenCEPKingstonEJSmithDJPavierMJInt. J. Mech. Sci.20054717181739 – reference: LiSRenSZhangYDengDMurakawaHJ. Mater. Process. Technol.20172442402521:CAS:528:DC%2BC2sXivVOlsb8%3D – reference: TaraphdarPKPandeyCMahapatraMMArch. Civ. Mech. Eng.202020113 – reference: GeryDLongHMaropoulosPJ. Mater. Process. Technol.20051673934011:CAS:528:DC%2BD2MXos1Cktrk%3D – reference: BrickstadBJosefsonBLInt. J. Press. Vessel. Pip.19987511251:CAS:528:DyaK1cXltFGit7w%3D – reference: YanDWuASilvanusJShiQMater. Des.201132228422911:CAS:528:DC%2BC3MXhtlSrtr0%3D – volume: 71 start-page: 55 year: 1992 ident: 921_CR38 publication-title: Weld. J. – volume: 37 start-page: 269 year: 2006 ident: 921_CR12 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2005.07.007 – volume: 2 start-page: 90 year: 1971 ident: 921_CR6 publication-title: Trans. Jpn. Weld. Soc. – volume-title: Processes and mechanisms of welding residual stress and distortion year: 2005 ident: 921_CR5 – volume: 49 start-page: 595 year: 2009 ident: 921_CR28 publication-title: Exp. Mech. doi: 10.1007/s11340-008-9164-y – volume: 37 start-page: 209 year: 2006 ident: 921_CR22 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2005.06.010 – volume: 75 start-page: 11 year: 1998 ident: 921_CR36 publication-title: Int. J. Press. Vessel. Pip. doi: 10.1016/S0308-0161(97)00117-8 – volume: 319 start-page: 22 year: 1978 ident: 921_CR23 publication-title: Autom. Weld. – ident: 921_CR30 – volume: 15B start-page: 299 year: 1984 ident: 921_CR33 publication-title: Metall. Trans. B. doi: 10.1007/BF02667333 – volume: 70 start-page: 291 year: 2011 ident: 921_CR29 publication-title: Appl. Mech. Mater. doi: 10.4028/www.scientific.net/AMM.70.291 – volume: 50 start-page: 11 year: 2006 ident: 921_CR4 publication-title: Weld. World doi: 10.1007/BF03266531 – volume: 49 start-page: 1022 year: 2013 ident: 921_CR7 publication-title: Mater. Des. doi: 10.1016/j.matdes.2013.02.065 – volume-title: Numerical Modeling of Welding Induced Stresses year: 2003 ident: 921_CR41 – volume: 13 start-page: 273 year: 2018 ident: 921_CR9 publication-title: Ships Offshore Struct. doi: 10.1080/17445302.2017.1368122 – volume: 20 start-page: 1 year: 2020 ident: 921_CR2 publication-title: Arch. Civ. Mech. Eng. doi: 10.1007/s43452-020-00056-8 – volume: 86 start-page: 723 year: 2009 ident: 921_CR18 publication-title: Int. J. Press. Vessel. Pip. doi: 10.1016/j.ijpvp.2009.07.007 – volume: 277 start-page: 128347 year: 2020 ident: 921_CR31 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2020.128347 – volume: 14 start-page: 165 year: 1987 ident: 921_CR26 publication-title: Int Guid. B. Residual Stress. doi: 10.1016/B978-0-08-034062-3.50019-7 – volume: 17 start-page: 366 year: 2001 ident: 921_CR1 publication-title: Mater. Sci. Technol. doi: 10.1179/026708301101510087 – volume: 42 start-page: 234 year: 2008 ident: 921_CR16 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2007.07.009 – volume: 45 start-page: 460 year: 2019 ident: 921_CR44 publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2019.07.035 – volume: 84 start-page: 94 year: 2013 ident: 921_CR8 publication-title: J. Constr. Steel Res. doi: 10.1016/j.jcsr.2013.02.007 – volume: 32 start-page: 2284 year: 2011 ident: 921_CR14 publication-title: Mater. Des. doi: 10.1016/j.matdes.2010.11.032 – volume: 233 start-page: 2352 year: 2019 ident: 921_CR11 publication-title: Proc. Inst. Mech Eng. Part L J. Mater. Des. Appl. – volume: 31 start-page: 177 year: 1996 ident: 921_CR27 publication-title: J. Strain Anal. Eng. Des. doi: 10.1243/03093247V313177 – volume: 232 start-page: 499 year: 2018 ident: 921_CR39 publication-title: Proc. Inst Mech. Eng. Part B J. Eng. Manuf. doi: 10.1177/0954405416646309 – ident: 921_CR24 – volume: 167 start-page: 393 year: 2005 ident: 921_CR34 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2005.06.018 – volume: 17 start-page: 65 year: 2017 ident: 921_CR19 publication-title: Int. J. Steel Struct. doi: 10.1007/s13296-016-0118-4 – volume: 111–112 start-page: 173 year: 2013 ident: 921_CR21 publication-title: Int. J. Press. Vessel. Pip. doi: 10.1016/j.ijpvp.2013.07.002 – volume: 47 start-page: 1718 year: 2005 ident: 921_CR32 publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2005.06.011 – volume: 41 start-page: 65 year: 2012 ident: 921_CR15 publication-title: Trans. JWRI – volume: 195 start-page: 6710 year: 2006 ident: 921_CR13 publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2005.08.018 – volume: 45–46 start-page: 33 year: 2012 ident: 921_CR37 publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2012.04.007 – volume: 46 start-page: 1014 year: 2009 ident: 921_CR43 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2009.05.007 – volume: 43 start-page: 275 year: 2008 ident: 921_CR42 publication-title: IMechE J. Strain Anal. doi: 10.1243/03093247JSA372 – volume: 139 start-page: 1 year: 2017 ident: 921_CR10 publication-title: J. Press. Vessel Technol. Trans. ASME – volume: 244 start-page: 240 year: 2017 ident: 921_CR20 publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2017.01.033 – volume: 221 start-page: 397 year: 2007 ident: 921_CR40 publication-title: Proc. Inst Mech. Eng. Part B J. Eng. Manuf. doi: 10.1243/09544054JEM617 – volume: 86 start-page: 288 year: 2011 ident: 921_CR17 publication-title: Fusion Eng. Des. doi: 10.1016/j.fusengdes.2011.01.116 – volume: 72 start-page: 12 year: 2012 ident: 921_CR3 publication-title: J. Constr. Steel Res. doi: 10.1016/j.jcsr.2011.08.011 – volume: 31 start-page: 79 year: 1981 ident: 921_CR25 publication-title: Svaracske Sprav. – volume: 23 start-page: 385 year: 2010 ident: 921_CR35 publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2010.05.002 |
SSID | ssj0061312 |
Score | 2.513673 |
Snippet | In the present study, different finite element (FE) models were prepared to investigate weld induced residual stresses in thick multi-pass butt welded joint of... In the present study, different finite element (FE) models were prepared to investigate weld induced residual stresses inthick multi-pass butt welded joint of... |
SourceID | nrf proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3478 |
SubjectTerms | Accuracy Butt joints Butt welding Characterization and Evaluation of Materials Chemistry and Materials Science Computing time Drilling Engineering Thermodynamics Evaluation Finite element method Heat and Mass Transfer Machines Magnetic Materials Magnetism Manufacturing Materials Science Mathematical models Metallic Materials Phase transitions Processes Residual stress Solid Mechanics Solid state Stress distribution Three dimensional models Two dimensional models Welded joints 재료공학 |
Title | Significance of Finite Element Models and Solid-State Phase Transformation on the Evaluation of Weld Induced Residual Stresses |
URI | https://link.springer.com/article/10.1007/s12540-020-00921-4 https://www.proquest.com/docview/2568652414 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002751643 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Metals and Materials International, 2021, 27(9), , pp.3478-3492 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5se9GD-MRqLYt40xzy2jbHVlqrYhHbYj0t233U0pBIU6_-dmfSpA9RQQhJYDcb2Nnd-YaZ-YaQS8N0wLB8u2O0sbwR3ISSwlIuYOuaMmAWYXLyY5d1Bt790B9mSWFJHu2euyTTk3qV7OagEx_NHSQKAsunQEo-8knBKh44jfz8Bf208HH6AWxl0O5ZqszPY2yoo0I0MxtI85tzNNU57T2ym4FF2lhId59s6eiA7KxRCB6Sz95kHGG4D0qPxoa2J4giaWsRFk6x1lmYUBEp2ovDibJSdEmf3kB70f4aao0jChfAQdpaEoDjeC86VBQLfEit6LNO0uQt2ktTTHRyRAbtVv-mY2U1FSzp-u7cAuuHgQXDRkEAR6TxXQavkqlRTQDOttEpKV0DRolA7CZZILw6TJQrHAbYzDD3mBSjONInhIJtiGDCriltI64SRtme0XVXSOWJwJSJnU8tlxnhONa9CPmKKhnFwUEcPBUH98rkavnN-4Ju48_eFyAxPpUTjizZ-BzHfDrjYAvc8aDuI7tSmVRygfJsfyYcgF6d-YBeoPk6F_Kq-fdfnv6v-xnZdjAIJg1Kq5DifPahzwHFzEdVUmq0m80uPm9fH1rVdBF_AbP96Mg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT8JAFJ4IHtSDcY0o6sR40x66De2RGAgoECMQuU2GWZBAWkPx6m_3vdKyGDUxadomM22Tfu2878vbCLk1TIcM27c7RhvLG8JOKCks5QK3rigDsgiTk9sd1uh7jwN_kCWFJXm0e-6STFfqVbKbg058lDtYKAiUT4Fso5sRJVffqebrL9inhY_TD-FXBuuepcr8fI8Nc1SIZmaDaX5zjqY2p35A9jOySKsLdA_Jlo6OyN5aCcFj8tkdjyIM90H0aGxofYwsktYWYeEUe51NEyoiRbvxdKyslF3S5zewXrS3xlrjiMIGdJDWlgXA8X6veqooNviQWtEXnaTJW7Sbppjo5IT067XeQ8PKeipY0vXduQXqh4GCYcMwhCXS-C6DU8nUsCKAZ9volJSuAVEikLtJFgovgBflCocBNzPMPSXFKI70GaGgDZFM2BWlbeRVwijbMzpwhVSeCE2J2Pmr5TIrOI59L6Z8VSoZ4eAAB0_h4F6J3C2veV-U2_hz9g0gxidyzLFKNh5HMZ_MOGiBJg8DH6srlUg5B5Rn_2fCgegFzAf2AsP3Ocir4d8fef6_6ddkp9Frt3ir2Xm6ILsOBsSkAWplUpzPPvQlMJr58Cr9gL8AES3omw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6VREL0QMtLDQ10hbi1Bjm2N_ExKgkEWoQICDit1vuAKJGNEnPhwG_vjB95IIpUVbJsS16v7fXszjeamW8A9i03Iafy7Q1rrONHuJNaSUd7iK2b2qJZRMnJv8_5ybV_ehvczmXxZ9HupUsyz2kglqY4PXzU9nCW-NYghz6ZPkQahFbQElR9qiFRgWr7-O6sU67GqK1yj2cQ4sRGXV8kzrzdy4JyWorHdgF3vnKVZhqo-wlk-e554Mnw4CmNDtTzK1rH__m4z7BawFPWzuVpDT6YeB0-zpEWbsBLf3AfU4ARyQtLLOsOCLeyTh6Izqi62mjCZKxZPxkNtJPhWXbxgPqSXc3h5CRmuCEAZZ0p5Tj1d2NGmlFJEWU0uzSTLF2M9bOkFjPZhOtu5-rniVNUcXCUF3ipg_YWR5uJR2GIi7INPI6niuuoKRHZu-QGVZ5FM0gSWlQ8lH4Lv9qTDY5o0HJvCypxEpsvwNAaJfjiNrVxCclJq13fmpYnlfZlaGvglr9PqILinCptjMSMnJnGVuDYimxshV-D79N7HnOCj3db76FUiKEaCOLlpuN9IoZjgdZHT4StgPicalAvhUYUK8JEILRs8QDxEl7-UcrA7PLfH7n9b82_wfLFUVf86p2ffYWVBkXgZBFxdaik4yezgxAqjXaLWfIH_ckOdA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Significance+of+Finite+Element+Models+and+Solid-State+Phase+Transformation+on+the+Evaluation+of+Weld+Induced+Residual+Stresses&rft.jtitle=Metals+and+materials+international&rft.au=Taraphdar%2C+P.+K.&rft.au=Kumar%2C+Rajiv&rft.au=Pandey%2C+Chandan&rft.au=Mahapatra%2C+M.+M.&rft.date=2021-09-01&rft.issn=1598-9623&rft.eissn=2005-4149&rft.volume=27&rft.issue=9&rft.spage=3478&rft.epage=3492&rft_id=info:doi/10.1007%2Fs12540-020-00921-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12540_020_00921_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-9623&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-9623&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-9623&client=summon |