Significance of Finite Element Models and Solid-State Phase Transformation on the Evaluation of Weld Induced Residual Stresses

In the present study, different finite element (FE) models were prepared to investigate weld induced residual stresses in thick multi-pass butt welded joint of SA516 Gr. 70 plates. Both 3D and 2D full geometry models and their axisymmetric half models were taken into consideration. The competence of...

Full description

Saved in:
Bibliographic Details
Published inMetals and materials international Vol. 27; no. 9; pp. 3478 - 3492
Main Authors Taraphdar, P. K., Kumar, Rajiv, Pandey, Chandan, Mahapatra, M. M.
Format Journal Article
LanguageEnglish
Published Seoul The Korean Institute of Metals and Materials 01.09.2021
Springer Nature B.V
대한금속·재료학회
Subjects
Online AccessGet full text
ISSN1598-9623
2005-4149
DOI10.1007/s12540-020-00921-4

Cover

Abstract In the present study, different finite element (FE) models were prepared to investigate weld induced residual stresses in thick multi-pass butt welded joint of SA516 Gr. 70 plates. Both 3D and 2D full geometry models and their axisymmetric half models were taken into consideration. The competence of these FE models on the accuracy of predicting residual stress distribution across the weld cross-section was investigated by comparing it with the experimental results. Blind hole drilling technique and deep hole drilling technique were employed to evaluate the surface and through-thickness residual stress distributions, respectively. In addition, the change in volume and yield strength of weld material due to austenitic phase transformation was also incorporated in the material modeling to observe the effect of solid-state phase transformation (SSPT) on the evaluation of residual stresses. Computed residual stresses obtained from different FE models indicate that the 3D FE models procured the best accuracy compared with the experimental results. On the other hand, 2D models can save a significant amount of computational time with reasonable accuracy. Incorporation of SSPT in the 3D FE full model exhibited a better agreement of predicted results with the experimental measurements. Graphic Abstract
AbstractList In the present study, different finite element (FE) models were prepared to investigate weld induced residual stresses inthick multi-pass butt welded joint of SA516 Gr. 70 plates. Both 3D and 2D full geometry models and their axisymmetrichalf models were taken into consideration. The competence of these FE models on the accuracy of predicting residual stressdistribution across the weld cross-section was investigated by comparing it with the experimental results. Blind hole drillingtechnique and deep hole drilling technique were employed to evaluate the surface and through-thickness residual stressdistributions, respectively. In addition, the change in volume and yield strength of weld material due to austenitic phasetransformation was also incorporated in the material modeling to observe the effect of solid-state phase transformation(SSPT) on the evaluation of residual stresses. Computed residual stresses obtained from different FE models indicate thatthe 3D FE models procured the best accuracy compared with the experimental results. On the other hand, 2D models cansave a significant amount of computational time with reasonable accuracy. Incorporation of SSPT in the 3D FE full modelexhibited a better agreement of predicted results with the experimental measurements. KCI Citation Count: 0
In the present study, different finite element (FE) models were prepared to investigate weld induced residual stresses in thick multi-pass butt welded joint of SA516 Gr. 70 plates. Both 3D and 2D full geometry models and their axisymmetric half models were taken into consideration. The competence of these FE models on the accuracy of predicting residual stress distribution across the weld cross-section was investigated by comparing it with the experimental results. Blind hole drilling technique and deep hole drilling technique were employed to evaluate the surface and through-thickness residual stress distributions, respectively. In addition, the change in volume and yield strength of weld material due to austenitic phase transformation was also incorporated in the material modeling to observe the effect of solid-state phase transformation (SSPT) on the evaluation of residual stresses. Computed residual stresses obtained from different FE models indicate that the 3D FE models procured the best accuracy compared with the experimental results. On the other hand, 2D models can save a significant amount of computational time with reasonable accuracy. Incorporation of SSPT in the 3D FE full model exhibited a better agreement of predicted results with the experimental measurements. Graphic Abstract
In the present study, different finite element (FE) models were prepared to investigate weld induced residual stresses in thick multi-pass butt welded joint of SA516 Gr. 70 plates. Both 3D and 2D full geometry models and their axisymmetric half models were taken into consideration. The competence of these FE models on the accuracy of predicting residual stress distribution across the weld cross-section was investigated by comparing it with the experimental results. Blind hole drilling technique and deep hole drilling technique were employed to evaluate the surface and through-thickness residual stress distributions, respectively. In addition, the change in volume and yield strength of weld material due to austenitic phase transformation was also incorporated in the material modeling to observe the effect of solid-state phase transformation (SSPT) on the evaluation of residual stresses. Computed residual stresses obtained from different FE models indicate that the 3D FE models procured the best accuracy compared with the experimental results. On the other hand, 2D models can save a significant amount of computational time with reasonable accuracy. Incorporation of SSPT in the 3D FE full model exhibited a better agreement of predicted results with the experimental measurements.Graphic Abstract
Author Taraphdar, P. K.
Kumar, Rajiv
Pandey, Chandan
Mahapatra, M. M.
Author_xml – sequence: 1
  givenname: P. K.
  surname: Taraphdar
  fullname: Taraphdar, P. K.
  organization: School of Mechanical Sciences, Indian Institute of Technology
– sequence: 2
  givenname: Rajiv
  surname: Kumar
  fullname: Kumar, Rajiv
  organization: School of Mechanical Sciences, Indian Institute of Technology
– sequence: 3
  givenname: Chandan
  surname: Pandey
  fullname: Pandey, Chandan
  email: jscpandey@iitj.ac.in, chandanpy.1989@gmail.com
  organization: Department of Mechanical Engineering, Indian Institute of Technology Jodhpur
– sequence: 4
  givenname: M. M.
  surname: Mahapatra
  fullname: Mahapatra, M. M.
  organization: School of Mechanical Sciences, Indian Institute of Technology
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002751643$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kc1LBCEYxiUK2rb-gU5Cpw5Tfs_MMaKPhaJoNzqKObpZs1rqBF3627OdIOgQKK_o83t9eZ4dsOmDNwDsY3SEEaqPEyacoQqRslFLcMU2wIQgxCuGWbsJJpi3TdUKQrfBTkrPCAlMMZmAz7lbemedVl4bGCw8d95lA896szI-w-vQmT5B5Ts4D73rqnlW5fn2SSUDF1H5ZENcqeyCh2Xlp4K-q374ubHwwfQdnPlu0KaDdya5blA9nOdoUjJpF2xZ1Sez91On4P78bHF6WV3dXMxOT64qTTnNFWaNEIiLx7ZloracinLUonusVV0TTAXjmlrBiEKCIy1axZriAlVENBxbQafgcOzro5Uv2smg3Loug3yJ8uRuMZNtw-sGsaI9GLWvMbwNJmX5HIboy3iScNEIToqnRUVGlY4hpWisfI1upeKHxEh-ZyLHTGTJRK4zkd9Q8wfSLq-tylG5_n-Ujmgq__ilib9T_UN9AcfeoNM
CitedBy_id crossref_primary_10_1016_j_jmapro_2021_06_046
crossref_primary_10_1080_1064119X_2022_2118648
crossref_primary_10_1016_j_ijpvp_2023_105088
crossref_primary_10_1080_10408436_2022_2138828
crossref_primary_10_1016_j_ijpvp_2021_104392
crossref_primary_10_1007_s40194_023_01584_6
crossref_primary_10_3390_ma16062256
crossref_primary_10_1080_10589759_2023_2194649
crossref_primary_10_1016_j_addma_2024_104077
crossref_primary_10_1016_j_mtcomm_2022_104770
crossref_primary_10_1016_j_ijpvp_2021_104557
crossref_primary_10_1007_s11665_024_10357_1
crossref_primary_10_1007_s11665_022_06877_3
crossref_primary_10_1016_j_heliyon_2023_e18959
crossref_primary_10_1016_j_ijpvp_2021_104439
crossref_primary_10_1007_s00170_024_14469_9
crossref_primary_10_1016_j_mtcomm_2025_111514
crossref_primary_10_3390_app13042648
crossref_primary_10_1007_s11661_023_07101_0
crossref_primary_10_1007_s12666_021_02326_2
crossref_primary_10_3390_buildings13051267
crossref_primary_10_1007_s43452_024_00958_x
crossref_primary_10_1016_j_optlastec_2022_108635
crossref_primary_10_1007_s11668_022_01349_1
crossref_primary_10_1016_j_matchemphys_2024_129322
crossref_primary_10_1007_s11665_023_08125_8
crossref_primary_10_1080_17452759_2024_2409390
crossref_primary_10_3390_ma15113796
crossref_primary_10_1007_s43452_024_01042_0
crossref_primary_10_3390_met12060951
crossref_primary_10_1016_j_ijpvp_2021_104443
crossref_primary_10_1177_16878132241290948
crossref_primary_10_1007_s11665_022_06747_y
crossref_primary_10_1007_s11665_023_08969_0
crossref_primary_10_1177_14644207231225884
crossref_primary_10_1007_s11665_024_10137_x
crossref_primary_10_1007_s43452_022_00540_3
crossref_primary_10_3390_met12091502
crossref_primary_10_1080_09507116_2024_2328593
crossref_primary_10_1007_s43452_024_00920_x
crossref_primary_10_1007_s11663_024_03053_x
crossref_primary_10_1007_s12008_024_01764_8
crossref_primary_10_1016_j_ijpvp_2024_105422
crossref_primary_10_1109_TASC_2024_3446284
crossref_primary_10_1007_s11665_025_10674_z
crossref_primary_10_1007_s00170_023_11210_w
crossref_primary_10_3390_cryst12101422
crossref_primary_10_3390_met12030462
crossref_primary_10_1016_j_net_2024_10_037
crossref_primary_10_3390_buildings13082111
crossref_primary_10_1016_j_cscm_2023_e01991
crossref_primary_10_1177_14644207231171266
crossref_primary_10_1177_09544062211073101
crossref_primary_10_1177_09544089241239620
crossref_primary_10_1016_j_jmrt_2022_05_135
crossref_primary_10_1016_j_ijpvp_2024_105213
crossref_primary_10_1007_s12008_024_02095_4
crossref_primary_10_1007_s11665_021_06004_8
crossref_primary_10_1016_j_ijpvp_2023_105034
crossref_primary_10_1080_09507116_2023_2242777
crossref_primary_10_3390_pr10071312
crossref_primary_10_1115_1_4055329
crossref_primary_10_1093_jcde_qwac047
crossref_primary_10_1520_JTE20230729
crossref_primary_10_1080_01495739_2023_2283309
crossref_primary_10_1007_s11665_024_09577_2
Cites_doi 10.1016/j.commatsci.2005.07.007
10.1007/s11340-008-9164-y
10.1016/j.commatsci.2005.06.010
10.1016/S0308-0161(97)00117-8
10.1007/BF02667333
10.4028/www.scientific.net/AMM.70.291
10.1007/BF03266531
10.1016/j.matdes.2013.02.065
10.1080/17445302.2017.1368122
10.1007/s43452-020-00056-8
10.1016/j.ijpvp.2009.07.007
10.1016/j.matlet.2020.128347
10.1016/B978-0-08-034062-3.50019-7
10.1179/026708301101510087
10.1016/j.commatsci.2007.07.009
10.1016/j.jmapro.2019.07.035
10.1016/j.jcsr.2013.02.007
10.1016/j.matdes.2010.11.032
10.1243/03093247V313177
10.1177/0954405416646309
10.1016/j.jmatprotec.2005.06.018
10.1007/s13296-016-0118-4
10.1016/j.ijpvp.2013.07.002
10.1016/j.ijmecsci.2005.06.011
10.1016/j.cma.2005.08.018
10.1016/j.applthermaleng.2012.04.007
10.1016/j.commatsci.2009.05.007
10.1243/03093247JSA372
10.1016/j.jmatprotec.2017.01.033
10.1243/09544054JEM617
10.1016/j.fusengdes.2011.01.116
10.1016/j.jcsr.2011.08.011
10.1016/j.marstruc.2010.05.002
ContentType Journal Article
Copyright The Korean Institute of Metals and Materials 2021
The Korean Institute of Metals and Materials 2021.
Copyright_xml – notice: The Korean Institute of Metals and Materials 2021
– notice: The Korean Institute of Metals and Materials 2021.
DBID AAYXX
CITATION
7SR
8BQ
8FD
JG9
ACYCR
DOI 10.1007/s12540-020-00921-4
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
Korean Citation Index
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2005-4149
EndPage 3492
ExternalDocumentID oai_kci_go_kr_ARTI_9857804
10_1007_s12540_020_00921_4
GroupedDBID -EM
06D
0R~
0VY
123
1N0
2.D
203
29M
2JY
2KG
2VQ
30V
4.4
406
408
40D
5VS
67Z
8FE
8FG
96X
9ZL
AAAVM
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
BA0
BENPR
BGLVJ
CAG
CCPQU
COF
CS3
CSCUP
D1I
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZB
HZ~
I0C
IKXTQ
IWAJR
IXC
IXD
I~X
J-C
J0Z
JBSCW
JZLTJ
KB.
KOV
KVFHK
LLZTM
MA-
MZR
N2Q
NDZJH
NPVJJ
NQJWS
O9-
O93
O9G
O9I
O9J
P19
P2P
P9N
PDBOC
PT4
PT5
Q2X
R89
R9I
RLLFE
ROL
RSV
S1Z
S26
S27
S28
S3B
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
T16
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
W4F
WK8
Z45
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
ZMTXR
ZZE
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SR
8BQ
8FD
ABRTQ
JG9
AABYN
AAFGU
AAGCJ
AAPBV
AAUCO
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEEQQ
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AJGSW
AKQUC
SQXTU
Z5O
Z7S
Z88
ID FETCH-LOGICAL-c353t-14866056b99467f5366b9c6db7a77213645c3f642a0650c69a489213a26851f63
IEDL.DBID U2A
ISSN 1598-9623
IngestDate Tue Nov 21 21:41:30 EST 2023
Thu Sep 25 00:52:28 EDT 2025
Tue Jul 01 01:15:26 EDT 2025
Thu Apr 24 23:12:32 EDT 2025
Fri Feb 21 02:48:31 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords SA516 Gr. 70
Solid-state phase transformation
Residual stresses
Blind hole drilling
FE model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-14866056b99467f5366b9c6db7a77213645c3f642a0650c69a489213a26851f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2568652414
PQPubID 326276
PageCount 15
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9857804
proquest_journals_2568652414
crossref_primary_10_1007_s12540_020_00921_4
crossref_citationtrail_10_1007_s12540_020_00921_4
springer_journals_10_1007_s12540_020_00921_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Seoul
PublicationPlace_xml – name: Seoul
PublicationTitle Metals and materials international
PublicationTitleAbbrev Met. Mater. Int
PublicationYear 2021
Publisher The Korean Institute of Metals and Materials
Springer Nature B.V
대한금속·재료학회
Publisher_xml – name: The Korean Institute of Metals and Materials
– name: Springer Nature B.V
– name: 대한금속·재료학회
References ChenBQHashemzadehMGuedesSoaresCShips Offshore Struct.201813273282
E.M. Beaney, Measurement of Sub-Surface Stress, Report Rd/B/N4325, Central Electricity Generating Board (1978)
GoldakJChakravartiABibbyMMetall. Trans. B.198415B299305
P.K. Taraphdar, M.M. Mahapatra, A.K. Pradhan, P.K. Singh, K. Sharma, S. Kumar, P. I. Mech. Eng. L J. Mat. (2020)
GiriAMahapatraMMSharmaKSinghPKInt. J. Steel Struct.2017176575
HeinzeCSchwenkCRethmeierMJ. Constr. Steel Res.2012721219
YanDWuASilvanusJShiQMater. Des.201132228422911:CAS:528:DC%2BC3MXhtlSrtr0%3D
Sattari-FarIFarahaniMRInt. J. Press. Vessel. Pip.2009867237311:CAS:528:DC%2BD1MXhtF2lu73N
LeggattRHSmithDJSmithSDFaureFJ. Strain Anal. Eng. Des.199631177186
BrickstadBJosefsonBLInt. J. Press. Vessel. Pip.19987511251:CAS:528:DyaK1cXltFGit7w%3D
DengDMurakawaHComput. Mater. Sci.2006372692771:CAS:528:DC%2BD28XntlCqsLk%3D
MondalAKLohitABiswasPBagSDasMProc. Inst Mech. Eng. Part B J. Eng. Manuf.2018232499512
BorzabadiFarahaniESobhaniAraghBMansurWJProc. Inst. Mech Eng. Part L J. Mater. Des. Appl.2019233235223641:CAS:528:DC%2BC1MXhslKitLfE
MahapatraMMDattaGLPradhanBMandalNRProc. Inst Mech. Eng. Part B J. Eng. Manuf.2007221397407
LeeCChangKAppl. Therm. Eng.201245–463341
HansenJNumerical Modeling of Welding Induced Stresses2003LyngbyTechnical University of Denmark
UedaYYamakawaTTrans. Jpn. Weld. Soc.1971290100
ProcterEBeaneyEInt Guid. B. Residual Stress.198714165198
JesenskyMVargovaJSvaracske Sprav.1981317987
LiWYuRHuangDWuJWangYHuTWangJJ. Manuf. Process.201945460471
GannonLLiuYPeggNSmithMMar. Struct.201023385404
DeanDHidekazuMComput. Mater. Sci.200637209219
YaghiAHHydeTHBeckerAASunWIMechE J. Strain Anal.200843275293
BatemanMGMillerOHPalmerTJBreenCEPKingstonEJSmithDJPavierMJInt. J. Mech. Sci.20054717181739
WithersPJBhadeshiaHKDHMater. Sci. Technol.2001173663751:CAS:528:DC%2BD3MXjtF2it7w%3D
FengZProcesses and mechanisms of welding residual stress and distortion20051CambridgeWoodhead Publishing Limited
DengDMurakawaHLiangWComput. Mater. Sci.2008422342441:CAS:528:DC%2BD1cXjt1yksLs%3D
ZhdanovIGoncharAAutom. Weld.19783192224
TaraphdarPKPandeyCMahapatraMMArch. Civ. Mech. Eng.202020113
DengDMater. Des.201349102210331:CAS:528:DC%2BC3sXmslajsr8%3D
YaghiAHHydeTHBeckerAASunWInt. J. Press. Vessel. Pip.2013111–112173186
HossainSKingstonEJTrumanCESmithDJAppl. Mech. Mater.201170291296
LeeCHChangKHComput. Mater. Sci.200946101410221:CAS:528:DC%2BD1MXhtFGht7bP
KannengiesserTBoellinghausTNeuhausMWeld. World2006501117
LiuCZhangJXXueCBFusion Eng. Des.2011862882951:CAS:528:DC%2BC3MXms12hs78%3D
BrownSSongHWeld. J.1992715562
LindgrenLEComput. Methods Appl. Mech. Eng.200619567106736
GeryDLongHMaropoulosPJ. Mater. Process. Technol.20051673934011:CAS:528:DC%2BD2MXos1Cktrk%3D
LiSRenSZhangYDengDMurakawaHJ. Mater. Process. Technol.20172442402521:CAS:528:DC%2BC2sXivVOlsb8%3D
TaraphdarPKThakareJGPandeyCMahapatraMMMater. Lett.20202771283471:CAS:528:DC%2BB3cXhsVegurjL
LeeCKChiewSPJiangJJ. Constr. Steel Res.20138494104
JiangWWooWWanYLuoYXieXTuSTJ. Press. Vessel Technol. Trans. ASME2017139110
HidekazuMMasanoriSJiangchaoWTrans. JWRI2012416570
MahmoudiAHHossainSTrumanCESmithDJPavierMJExp. Mech.200949595604
E Procter (921_CR26) 1987; 14
W Li (921_CR44) 2019; 45
PJ Withers (921_CR1) 2001; 17
(921_CR5) 2005
CK Lee (921_CR8) 2013; 84
D Deng (921_CR12) 2006; 37
L Gannon (921_CR35) 2010; 23
C Heinze (921_CR3) 2012; 72
M Hidekazu (921_CR15) 2012; 41
C Lee (921_CR37) 2012; 45–46
921_CR24
PK Taraphdar (921_CR2) 2020; 20
AK Mondal (921_CR39) 2018; 232
Y Ueda (921_CR6) 1971; 2
I Zhdanov (921_CR23) 1978; 319
T Kannengiesser (921_CR4) 2006; 50
LE Lindgren (921_CR13) 2006; 195
M Jesensky (921_CR25) 1981; 31
S Brown (921_CR38) 1992; 71
D Yan (921_CR14) 2011; 32
W Jiang (921_CR10) 2017; 139
D Dean (921_CR22) 2006; 37
J Goldak (921_CR33) 1984; 15B
921_CR30
D Gery (921_CR34) 2005; 167
C Liu (921_CR17) 2011; 86
AH Yaghi (921_CR42) 2008; 43
J Hansen (921_CR41) 2003
S Li (921_CR20) 2017; 244
AH Mahmoudi (921_CR28) 2009; 49
PK Taraphdar (921_CR31) 2020; 277
CH Lee (921_CR43) 2009; 46
I Sattari-Far (921_CR18) 2009; 86
A Giri (921_CR19) 2017; 17
MG Bateman (921_CR32) 2005; 47
RH Leggatt (921_CR27) 1996; 31
B Brickstad (921_CR36) 1998; 75
BQ Chen (921_CR9) 2018; 13
E BorzabadiFarahani (921_CR11) 2019; 233
D Deng (921_CR16) 2008; 42
MM Mahapatra (921_CR40) 2007; 221
D Deng (921_CR7) 2013; 49
S Hossain (921_CR29) 2011; 70
AH Yaghi (921_CR21) 2013; 111–112
References_xml – reference: YaghiAHHydeTHBeckerAASunWInt. J. Press. Vessel. Pip.2013111–112173186
– reference: P.K. Taraphdar, M.M. Mahapatra, A.K. Pradhan, P.K. Singh, K. Sharma, S. Kumar, P. I. Mech. Eng. L J. Mat. (2020)
– reference: HossainSKingstonEJTrumanCESmithDJAppl. Mech. Mater.201170291296
– reference: DeanDHidekazuMComput. Mater. Sci.200637209219
– reference: BrownSSongHWeld. J.1992715562
– reference: MondalAKLohitABiswasPBagSDasMProc. Inst Mech. Eng. Part B J. Eng. Manuf.2018232499512
– reference: ZhdanovIGoncharAAutom. Weld.19783192224
– reference: GoldakJChakravartiABibbyMMetall. Trans. B.198415B299305
– reference: DengDMurakawaHLiangWComput. Mater. Sci.2008422342441:CAS:528:DC%2BD1cXjt1yksLs%3D
– reference: DengDMurakawaHComput. Mater. Sci.2006372692771:CAS:528:DC%2BD28XntlCqsLk%3D
– reference: GannonLLiuYPeggNSmithMMar. Struct.201023385404
– reference: MahapatraMMDattaGLPradhanBMandalNRProc. Inst Mech. Eng. Part B J. Eng. Manuf.2007221397407
– reference: FengZProcesses and mechanisms of welding residual stress and distortion20051CambridgeWoodhead Publishing Limited
– reference: UedaYYamakawaTTrans. Jpn. Weld. Soc.1971290100
– reference: MahmoudiAHHossainSTrumanCESmithDJPavierMJExp. Mech.200949595604
– reference: JesenskyMVargovaJSvaracske Sprav.1981317987
– reference: LiWYuRHuangDWuJWangYHuTWangJJ. Manuf. Process.201945460471
– reference: HidekazuMMasanoriSJiangchaoWTrans. JWRI2012416570
– reference: Sattari-FarIFarahaniMRInt. J. Press. Vessel. Pip.2009867237311:CAS:528:DC%2BD1MXhtF2lu73N
– reference: ProcterEBeaneyEInt Guid. B. Residual Stress.198714165198
– reference: HeinzeCSchwenkCRethmeierMJ. Constr. Steel Res.2012721219
– reference: LeeCHChangKHComput. Mater. Sci.200946101410221:CAS:528:DC%2BD1MXhtFGht7bP
– reference: WithersPJBhadeshiaHKDHMater. Sci. Technol.2001173663751:CAS:528:DC%2BD3MXjtF2it7w%3D
– reference: LeeCKChiewSPJiangJJ. Constr. Steel Res.20138494104
– reference: YaghiAHHydeTHBeckerAASunWIMechE J. Strain Anal.200843275293
– reference: LeeCChangKAppl. Therm. Eng.201245–463341
– reference: KannengiesserTBoellinghausTNeuhausMWeld. World2006501117
– reference: E.M. Beaney, Measurement of Sub-Surface Stress, Report Rd/B/N4325, Central Electricity Generating Board (1978)
– reference: DengDMater. Des.201349102210331:CAS:528:DC%2BC3sXmslajsr8%3D
– reference: HansenJNumerical Modeling of Welding Induced Stresses2003LyngbyTechnical University of Denmark
– reference: ChenBQHashemzadehMGuedesSoaresCShips Offshore Struct.201813273282
– reference: GiriAMahapatraMMSharmaKSinghPKInt. J. Steel Struct.2017176575
– reference: LindgrenLEComput. Methods Appl. Mech. Eng.200619567106736
– reference: LiuCZhangJXXueCBFusion Eng. Des.2011862882951:CAS:528:DC%2BC3MXms12hs78%3D
– reference: LeggattRHSmithDJSmithSDFaureFJ. Strain Anal. Eng. Des.199631177186
– reference: TaraphdarPKThakareJGPandeyCMahapatraMMMater. Lett.20202771283471:CAS:528:DC%2BB3cXhsVegurjL
– reference: BorzabadiFarahaniESobhaniAraghBMansurWJProc. Inst. Mech Eng. Part L J. Mater. Des. Appl.2019233235223641:CAS:528:DC%2BC1MXhslKitLfE
– reference: JiangWWooWWanYLuoYXieXTuSTJ. Press. Vessel Technol. Trans. ASME2017139110
– reference: BatemanMGMillerOHPalmerTJBreenCEPKingstonEJSmithDJPavierMJInt. J. Mech. Sci.20054717181739
– reference: LiSRenSZhangYDengDMurakawaHJ. Mater. Process. Technol.20172442402521:CAS:528:DC%2BC2sXivVOlsb8%3D
– reference: TaraphdarPKPandeyCMahapatraMMArch. Civ. Mech. Eng.202020113
– reference: GeryDLongHMaropoulosPJ. Mater. Process. Technol.20051673934011:CAS:528:DC%2BD2MXos1Cktrk%3D
– reference: BrickstadBJosefsonBLInt. J. Press. Vessel. Pip.19987511251:CAS:528:DyaK1cXltFGit7w%3D
– reference: YanDWuASilvanusJShiQMater. Des.201132228422911:CAS:528:DC%2BC3MXhtlSrtr0%3D
– volume: 71
  start-page: 55
  year: 1992
  ident: 921_CR38
  publication-title: Weld. J.
– volume: 37
  start-page: 269
  year: 2006
  ident: 921_CR12
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.07.007
– volume: 2
  start-page: 90
  year: 1971
  ident: 921_CR6
  publication-title: Trans. Jpn. Weld. Soc.
– volume-title: Processes and mechanisms of welding residual stress and distortion
  year: 2005
  ident: 921_CR5
– volume: 49
  start-page: 595
  year: 2009
  ident: 921_CR28
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-008-9164-y
– volume: 37
  start-page: 209
  year: 2006
  ident: 921_CR22
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.06.010
– volume: 75
  start-page: 11
  year: 1998
  ident: 921_CR36
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/S0308-0161(97)00117-8
– volume: 319
  start-page: 22
  year: 1978
  ident: 921_CR23
  publication-title: Autom. Weld.
– ident: 921_CR30
– volume: 15B
  start-page: 299
  year: 1984
  ident: 921_CR33
  publication-title: Metall. Trans. B.
  doi: 10.1007/BF02667333
– volume: 70
  start-page: 291
  year: 2011
  ident: 921_CR29
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.70.291
– volume: 50
  start-page: 11
  year: 2006
  ident: 921_CR4
  publication-title: Weld. World
  doi: 10.1007/BF03266531
– volume: 49
  start-page: 1022
  year: 2013
  ident: 921_CR7
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2013.02.065
– volume-title: Numerical Modeling of Welding Induced Stresses
  year: 2003
  ident: 921_CR41
– volume: 13
  start-page: 273
  year: 2018
  ident: 921_CR9
  publication-title: Ships Offshore Struct.
  doi: 10.1080/17445302.2017.1368122
– volume: 20
  start-page: 1
  year: 2020
  ident: 921_CR2
  publication-title: Arch. Civ. Mech. Eng.
  doi: 10.1007/s43452-020-00056-8
– volume: 86
  start-page: 723
  year: 2009
  ident: 921_CR18
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/j.ijpvp.2009.07.007
– volume: 277
  start-page: 128347
  year: 2020
  ident: 921_CR31
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2020.128347
– volume: 14
  start-page: 165
  year: 1987
  ident: 921_CR26
  publication-title: Int Guid. B. Residual Stress.
  doi: 10.1016/B978-0-08-034062-3.50019-7
– volume: 17
  start-page: 366
  year: 2001
  ident: 921_CR1
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/026708301101510087
– volume: 42
  start-page: 234
  year: 2008
  ident: 921_CR16
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2007.07.009
– volume: 45
  start-page: 460
  year: 2019
  ident: 921_CR44
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2019.07.035
– volume: 84
  start-page: 94
  year: 2013
  ident: 921_CR8
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/j.jcsr.2013.02.007
– volume: 32
  start-page: 2284
  year: 2011
  ident: 921_CR14
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2010.11.032
– volume: 233
  start-page: 2352
  year: 2019
  ident: 921_CR11
  publication-title: Proc. Inst. Mech Eng. Part L J. Mater. Des. Appl.
– volume: 31
  start-page: 177
  year: 1996
  ident: 921_CR27
  publication-title: J. Strain Anal. Eng. Des.
  doi: 10.1243/03093247V313177
– volume: 232
  start-page: 499
  year: 2018
  ident: 921_CR39
  publication-title: Proc. Inst Mech. Eng. Part B J. Eng. Manuf.
  doi: 10.1177/0954405416646309
– ident: 921_CR24
– volume: 167
  start-page: 393
  year: 2005
  ident: 921_CR34
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2005.06.018
– volume: 17
  start-page: 65
  year: 2017
  ident: 921_CR19
  publication-title: Int. J. Steel Struct.
  doi: 10.1007/s13296-016-0118-4
– volume: 111–112
  start-page: 173
  year: 2013
  ident: 921_CR21
  publication-title: Int. J. Press. Vessel. Pip.
  doi: 10.1016/j.ijpvp.2013.07.002
– volume: 47
  start-page: 1718
  year: 2005
  ident: 921_CR32
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2005.06.011
– volume: 41
  start-page: 65
  year: 2012
  ident: 921_CR15
  publication-title: Trans. JWRI
– volume: 195
  start-page: 6710
  year: 2006
  ident: 921_CR13
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2005.08.018
– volume: 45–46
  start-page: 33
  year: 2012
  ident: 921_CR37
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.04.007
– volume: 46
  start-page: 1014
  year: 2009
  ident: 921_CR43
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2009.05.007
– volume: 43
  start-page: 275
  year: 2008
  ident: 921_CR42
  publication-title: IMechE J. Strain Anal.
  doi: 10.1243/03093247JSA372
– volume: 139
  start-page: 1
  year: 2017
  ident: 921_CR10
  publication-title: J. Press. Vessel Technol. Trans. ASME
– volume: 244
  start-page: 240
  year: 2017
  ident: 921_CR20
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2017.01.033
– volume: 221
  start-page: 397
  year: 2007
  ident: 921_CR40
  publication-title: Proc. Inst Mech. Eng. Part B J. Eng. Manuf.
  doi: 10.1243/09544054JEM617
– volume: 86
  start-page: 288
  year: 2011
  ident: 921_CR17
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2011.01.116
– volume: 72
  start-page: 12
  year: 2012
  ident: 921_CR3
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/j.jcsr.2011.08.011
– volume: 31
  start-page: 79
  year: 1981
  ident: 921_CR25
  publication-title: Svaracske Sprav.
– volume: 23
  start-page: 385
  year: 2010
  ident: 921_CR35
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2010.05.002
SSID ssj0061312
Score 2.513673
Snippet In the present study, different finite element (FE) models were prepared to investigate weld induced residual stresses in thick multi-pass butt welded joint of...
In the present study, different finite element (FE) models were prepared to investigate weld induced residual stresses inthick multi-pass butt welded joint of...
SourceID nrf
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3478
SubjectTerms Accuracy
Butt joints
Butt welding
Characterization and Evaluation of Materials
Chemistry and Materials Science
Computing time
Drilling
Engineering Thermodynamics
Evaluation
Finite element method
Heat and Mass Transfer
Machines
Magnetic Materials
Magnetism
Manufacturing
Materials Science
Mathematical models
Metallic Materials
Phase transitions
Processes
Residual stress
Solid Mechanics
Solid state
Stress distribution
Three dimensional models
Two dimensional models
Welded joints
재료공학
Title Significance of Finite Element Models and Solid-State Phase Transformation on the Evaluation of Weld Induced Residual Stresses
URI https://link.springer.com/article/10.1007/s12540-020-00921-4
https://www.proquest.com/docview/2568652414
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002751643
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Metals and Materials International, 2021, 27(9), , pp.3478-3492
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5se9GD-MRqLYt40xzy2jbHVlqrYhHbYj0t233U0pBIU6_-dmfSpA9RQQhJYDcb2Nnd-YaZ-YaQS8N0wLB8u2O0sbwR3ISSwlIuYOuaMmAWYXLyY5d1Bt790B9mSWFJHu2euyTTk3qV7OagEx_NHSQKAsunQEo-8knBKh44jfz8Bf208HH6AWxl0O5ZqszPY2yoo0I0MxtI85tzNNU57T2ym4FF2lhId59s6eiA7KxRCB6Sz95kHGG4D0qPxoa2J4giaWsRFk6x1lmYUBEp2ovDibJSdEmf3kB70f4aao0jChfAQdpaEoDjeC86VBQLfEit6LNO0uQt2ktTTHRyRAbtVv-mY2U1FSzp-u7cAuuHgQXDRkEAR6TxXQavkqlRTQDOttEpKV0DRolA7CZZILw6TJQrHAbYzDD3mBSjONInhIJtiGDCriltI64SRtme0XVXSOWJwJSJnU8tlxnhONa9CPmKKhnFwUEcPBUH98rkavnN-4Ju48_eFyAxPpUTjizZ-BzHfDrjYAvc8aDuI7tSmVRygfJsfyYcgF6d-YBeoPk6F_Kq-fdfnv6v-xnZdjAIJg1Kq5DifPahzwHFzEdVUmq0m80uPm9fH1rVdBF_AbP96Mg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JT8JAFJ4IHtSDcY0o6sR40x66De2RGAgoECMQuU2GWZBAWkPx6m_3vdKyGDUxadomM22Tfu2878vbCLk1TIcM27c7RhvLG8JOKCks5QK3rigDsgiTk9sd1uh7jwN_kCWFJXm0e-6STFfqVbKbg058lDtYKAiUT4Fso5sRJVffqebrL9inhY_TD-FXBuuepcr8fI8Nc1SIZmaDaX5zjqY2p35A9jOySKsLdA_Jlo6OyN5aCcFj8tkdjyIM90H0aGxofYwsktYWYeEUe51NEyoiRbvxdKyslF3S5zewXrS3xlrjiMIGdJDWlgXA8X6veqooNviQWtEXnaTJW7Sbppjo5IT067XeQ8PKeipY0vXduQXqh4GCYcMwhCXS-C6DU8nUsCKAZ9volJSuAVEikLtJFgovgBflCocBNzPMPSXFKI70GaGgDZFM2BWlbeRVwijbMzpwhVSeCE2J2Pmr5TIrOI59L6Z8VSoZ4eAAB0_h4F6J3C2veV-U2_hz9g0gxidyzLFKNh5HMZ_MOGiBJg8DH6srlUg5B5Rn_2fCgegFzAf2AsP3Ocir4d8fef6_6ddkp9Frt3ir2Xm6ILsOBsSkAWplUpzPPvQlMJr58Cr9gL8AES3omw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB6VREL0QMtLDQ10hbi1Bjm2N_ExKgkEWoQICDit1vuAKJGNEnPhwG_vjB95IIpUVbJsS16v7fXszjeamW8A9i03Iafy7Q1rrONHuJNaSUd7iK2b2qJZRMnJv8_5ybV_ehvczmXxZ9HupUsyz2kglqY4PXzU9nCW-NYghz6ZPkQahFbQElR9qiFRgWr7-O6sU67GqK1yj2cQ4sRGXV8kzrzdy4JyWorHdgF3vnKVZhqo-wlk-e554Mnw4CmNDtTzK1rH__m4z7BawFPWzuVpDT6YeB0-zpEWbsBLf3AfU4ARyQtLLOsOCLeyTh6Izqi62mjCZKxZPxkNtJPhWXbxgPqSXc3h5CRmuCEAZZ0p5Tj1d2NGmlFJEWU0uzSTLF2M9bOkFjPZhOtu5-rniVNUcXCUF3ipg_YWR5uJR2GIi7INPI6niuuoKRHZu-QGVZ5FM0gSWlQ8lH4Lv9qTDY5o0HJvCypxEpsvwNAaJfjiNrVxCclJq13fmpYnlfZlaGvglr9PqILinCptjMSMnJnGVuDYimxshV-D79N7HnOCj3db76FUiKEaCOLlpuN9IoZjgdZHT4StgPicalAvhUYUK8JEILRs8QDxEl7-UcrA7PLfH7n9b82_wfLFUVf86p2ffYWVBkXgZBFxdaik4yezgxAqjXaLWfIH_ckOdA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Significance+of+Finite+Element+Models+and+Solid-State+Phase+Transformation+on+the+Evaluation+of+Weld+Induced+Residual+Stresses&rft.jtitle=Metals+and+materials+international&rft.au=Taraphdar%2C+P.+K.&rft.au=Kumar%2C+Rajiv&rft.au=Pandey%2C+Chandan&rft.au=Mahapatra%2C+M.+M.&rft.date=2021-09-01&rft.issn=1598-9623&rft.eissn=2005-4149&rft.volume=27&rft.issue=9&rft.spage=3478&rft.epage=3492&rft_id=info:doi/10.1007%2Fs12540-020-00921-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12540_020_00921_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1598-9623&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1598-9623&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1598-9623&client=summon