Identification of nonparametric dynamic power system equivalents with artificial neural networks
The paper proposes an artificial neural network (ANN)-based strategy for identification of reduced-order dynamic equivalents of power systems. This large-signal model is formulated in continuous-time and is therefore compatible with standard models of power system components. In a departure from pre...
        Saved in:
      
    
          | Published in | IEEE transactions on power systems Vol. 18; no. 4; pp. 1478 - 1486 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.11.2003
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0885-8950 1558-0679  | 
| DOI | 10.1109/TPWRS.2003.818704 | 
Cover
| Abstract | The paper proposes an artificial neural network (ANN)-based strategy for identification of reduced-order dynamic equivalents of power systems. This large-signal model is formulated in continuous-time and is therefore compatible with standard models of power system components. In a departure from previous works on the subject, we do not postulate a particular model structure for the equivalent, hence the label nonparametric. The approach uses only measurements at points where internal (retained) and external (reduced) systems are interfaced, and requires no knowledge of parameters and topology of the external subsystem. The procedure consists of two conceptual steps: (1) the first ("bottleneck") ANN is used to extract "states" of the reduced-order equivalent; and (2) the second (recurrent) ANN is embedded in an ordinary differential equations (ODEs) solver, and trained to approximate the "right-hand side," using the states extracted at the first step. We also describe an extension in which a third ANN is used to synthesize missing interface measurements from a historical database of system responses to various disturbances. We illustrate the capabilities of the approach on a multimachine benchmark example derived from the WSCC system. | 
    
|---|---|
| AbstractList | The procedure consists of two conceptual steps: (1) the first ("bottleneck") ANN is used to extract "states" of the reduced-order equivalent; and (2) the second (recurrent) ANN is embedded in an ordinary differential equations (ODEs) solver, and trained to approximate the "right-hand side," using the states extracted at the first step. The paper proposes an artificial neural network (ANN)-based strategy for identification of reduced-order dynamic equivalents of power systems. This large-signal model is formulated in continuous-time and is therefore compatible with standard models of power system components. In a departure from previous works on the subject, we do not postulate a particular model structure for the equivalent, hence the label nonparametric. The approach uses only measurements at points where internal (retained) and external (reduced) systems are interfaced, and requires no knowledge of parameters and topology of the external subsystem. The procedure consists of two conceptual steps: (1) the first ("bottleneck") ANN is used to extract "states" of the reduced-order equivalent; and (2) the second (recurrent) ANN is embedded in an ordinary differential equations (ODEs) solver, and trained to approximate the "right-hand side," using the states extracted at the first step. We also describe an extension in which a third ANN is used to synthesize missing interface measurements from a historical database of system responses to various disturbances. We illustrate the capabilities of the approach on a multimachine benchmark example derived from the WSCC system.  | 
    
| Author | Saric, A.T. Milosevic, M. Stankovic, A.M.  | 
    
| Author_xml | – sequence: 1 givenname: A.M. surname: Stankovic fullname: Stankovic, A.M. organization: Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA – sequence: 2 givenname: A.T. surname: Saric fullname: Saric, A.T. organization: Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA – sequence: 3 givenname: M. surname: Milosevic fullname: Milosevic, M. organization: Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA  | 
    
| BookMark | eNp9kUFLHDEYhkOx0NX2B5ReBg_2NOuXTLLJHEVsFQSltfSYZpJvaHRmsiaZLvvvjbtCwYPk8B7yPC8k7yE5mMKEhHymsKQU2tO7298_fi4ZQLNUVEng78iCCqFqWMn2gCxAKVGrVsAHcpjSPQCsysWC_LlyOGXfe2uyD1MV-qo0r000I-bobeW2kxlLrsMGY5W2KeNY4ePs_5mhmKna-Py3MnHX4c1QTTjHXeRNiA_pI3nfmyHhp5c8Ir--XdydX9bXN9-vzs-ua9uIJteU9V2DvZCC88ZxbK1yxrpV2zorOke5NG4lDZdMWHTY8Y6iZEpKlF2PwJsj8nXfu47hccaU9eiTxWEwE4Y56RaoBFVOIU_eJJliwCmwAh6_Au_DHKfyCq0UZ6IBRgsk95CNIaWIvbY-7_4yR-MHTUE_D6R3A-nngfR-oGLSV-Y6-tHE7ZvOl73jEfE_z7gQkjdPEHyg2g | 
    
| CODEN | ITPSEG | 
    
| CitedBy_id | crossref_primary_10_1109_JSYST_2021_3051938 crossref_primary_10_1109_ACCESS_2020_2966238 crossref_primary_10_1016_j_epsr_2023_109917 crossref_primary_10_1109_TPWRS_2022_3194570 crossref_primary_10_23919_IEN_2023_0023 crossref_primary_10_3390_en15041396 crossref_primary_10_1016_j_ijepes_2012_06_025 crossref_primary_10_1109_TCSI_2006_877887 crossref_primary_10_1016_j_neunet_2009_06_033 crossref_primary_10_2478_jee_2019_0078 crossref_primary_10_7227_IJEEE_46_2_1 crossref_primary_10_1016_j_segan_2023_101031 crossref_primary_10_1109_TPWRS_2022_3153117 crossref_primary_10_1016_j_ijepes_2012_07_002 crossref_primary_10_1049_tje2_12157 crossref_primary_10_1049_iet_gtd_2013_0285 crossref_primary_10_46604_aiti_2021_7853 crossref_primary_10_1016_j_epsr_2008_11_007 crossref_primary_10_1080_15325000601023613 crossref_primary_10_1016_j_epsr_2011_09_023 crossref_primary_10_1109_TPWRS_2003_821459 crossref_primary_10_3390_math12081190 crossref_primary_10_1016_j_ijepes_2009_03_016 crossref_primary_10_1109_ACCESS_2024_3415478 crossref_primary_10_1016_j_ijepes_2015_05_040 crossref_primary_10_1109_TPWRS_2012_2182783  | 
    
| Cites_doi | 10.1109/72.661124 10.1002/9781118878286 10.1109/PESW.2002.985166 10.1103/PhysRevLett.59.2229 10.1109/59.476067 10.1109/81.841915 10.1109/TPAS.1978.354620 10.23919/ACC.1993.4793116 10.1103/PhysRevLett.72.1822 10.1109/59.14570 10.1109/59.962416 10.1002/aic.690370209 10.1016/0098-1354(96)00133-0 10.1109/T-PAS.1975.31972 10.1109/59.708595 10.1109/59.744536 10.1109/59.589749 10.1109/ICNN.1993.298782  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003 | 
    
| DBID | RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M 7QO P64  | 
    
| DOI | 10.1109/TPWRS.2003.818704 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts  | 
    
| DatabaseTitleList | Civil Engineering Abstracts Engineering Research Database Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1558-0679 | 
    
| EndPage | 1486 | 
    
| ExternalDocumentID | 2429034621 10_1109_TPWRS_2003_818704 1245574  | 
    
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M RIG 7QO P64  | 
    
| ID | FETCH-LOGICAL-c353t-12fb3ef575443d4e9c8dacd699dc5bd147ad67a4725cedeb4b1e72877e7bfe043 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0885-8950 | 
    
| IngestDate | Tue Oct 07 09:50:31 EDT 2025 Sat Sep 27 20:47:50 EDT 2025 Mon Jun 30 06:11:28 EDT 2025 Wed Oct 01 04:11:32 EDT 2025 Thu Apr 24 23:00:14 EDT 2025 Wed Aug 27 02:51:36 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c353t-12fb3ef575443d4e9c8dacd699dc5bd147ad67a4725cedeb4b1e72877e7bfe043 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23  | 
    
| PQID | 884253021 | 
    
| PQPubID | 85441 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | proquest_miscellaneous_28204102 proquest_miscellaneous_901708080 crossref_primary_10_1109_TPWRS_2003_818704 crossref_citationtrail_10_1109_TPWRS_2003_818704 proquest_journals_884253021 ieee_primary_1245574  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2003-11-01 | 
    
| PublicationDateYYYYMMDD | 2003-11-01 | 
    
| PublicationDate_xml | – month: 11 year: 2003 text: 2003-11-01 day: 01  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on power systems | 
    
| PublicationTitleAbbrev | TPWRS | 
    
| PublicationYear | 2003 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref15 ref10 (ref25) 2001 ref2 ref1 ref17 ref16 ref19 (ref24) 1994; 1–6 rico-martinez (ref13) 1995 smith (ref23) 1994 ref20 haykin (ref11) 1999 ref22 ref21 lei (ref8) 2002 ref7 zhao (ref12) 1998 sauer (ref14) 1998 ref9 rico-martines (ref18) 1993 ref4 ref3 ref6 ref5 (ref26) 1993  | 
    
| References_xml | – ident: ref20 doi: 10.1109/72.661124 – ident: ref1 doi: 10.1002/9781118878286 – start-page: 533 year: 1994 ident: ref23 article-title: a low order power system model with dynamic characteristics of the western north american system publication-title: Proc North Amer Power Symp II – year: 2002 ident: ref8 article-title: industrial approaches for dynamic equivalents of large power systems publication-title: Proc IEEE Power Engineering Society Winter Meeting doi: 10.1109/PESW.2002.985166 – year: 1999 ident: ref11 publication-title: Neural Networks A Comprehensive Foundation – ident: ref21 doi: 10.1103/PhysRevLett.59.2229 – ident: ref5 doi: 10.1109/59.476067 – ident: ref22 doi: 10.1109/81.841915 – year: 1993 ident: ref26 publication-title: Dynamic Reduction Program (DYNRED) User s Manual Version 1 1 – ident: ref3 doi: 10.1109/TPAS.1978.354620 – start-page: 1475 year: 1993 ident: ref18 article-title: discrete- vs. continuous-time nonlinear signal processing: attractors, transitions and parallel implementation issues publication-title: 1993 American Control Conference ACC doi: 10.23919/ACC.1993.4793116 – year: 1998 ident: ref14 publication-title: Power System Dynamics and Stability – ident: ref16 doi: 10.1103/PhysRevLett.72.1822 – start-page: 241 year: 1998 ident: ref12 article-title: a study of power system dissipativity using artificial neural networks publication-title: Proc North Amer Power Symp – ident: ref4 doi: 10.1109/59.14570 – ident: ref9 doi: 10.1109/59.962416 – ident: ref15 doi: 10.1002/aic.690370209 – ident: ref17 doi: 10.1016/0098-1354(96)00133-0 – ident: ref2 doi: 10.1109/T-PAS.1975.31972 – year: 2001 ident: ref25 publication-title: Neural Network Toolbox for use With MATLAB User s Guide Version 4 – ident: ref7 doi: 10.1109/59.708595 – ident: ref10 doi: 10.1109/59.744536 – ident: ref6 doi: 10.1109/59.589749 – volume: 1–6 year: 1994 ident: ref24 publication-title: Extended Transient-Midterm Stability Program (ETMSP) User s Manual Version 3 1 – start-page: 409 year: 1995 ident: ref13 article-title: nonlinear system identification using neural networks: dynamics and instabilities publication-title: Neural Networks for Chemical Engineers – ident: ref19 doi: 10.1109/ICNN.1993.298782  | 
    
| SSID | ssj0006679 | 
    
| Score | 1.9761952 | 
    
| Snippet | The paper proposes an artificial neural network (ANN)-based strategy for identification of reduced-order dynamic equivalents of power systems. This... The procedure consists of two conceptual steps: (1) the first ("bottleneck") ANN is used to extract "states" of the reduced-order equivalent; and (2) the...  | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1478 | 
    
| SubjectTerms | Artificial neural networks Differential equations Neural networks Ordinary differential equations Power system analysis computing Power system dynamics Power system interconnection Power system measurements Power system modeling Power systems Reduced order systems Studies Uncertainty  | 
    
| Title | Identification of nonparametric dynamic power system equivalents with artificial neural networks | 
    
| URI | https://ieeexplore.ieee.org/document/1245574 https://www.proquest.com/docview/884253021 https://www.proquest.com/docview/28204102 https://www.proquest.com/docview/901708080  | 
    
| Volume | 18 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0679 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006679 issn: 0885-8950 databaseCode: RIE dateStart: 19860101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i_WZgyexa7tNmvYoooigiA_0VptkCqLuru724q83k7Sr-MJTC53SwEwzz3wfwI4RcYqxqkJCMw95WfJQKV6GKklSGz3HlUQ3bXGentzw0ztxNwF747MwiOiGz7BDt66Xb_q6plLZvvVFQkg-CZMyS_1ZrfGum6YeVy_LRJjlou1gxlG-f31xe3nloD871j3JhpOt9UGOVOXbTuzcy_EcnLUL81Mlj516pDr67Qtm439XPg-zTZzJDrxhLMAE9hZh5hP64BLc-0O6VVO1Y_2K9fo9wgJ_JpotzYxnq2cDYlJjHvOZ4Uv9YK2T5i8YFXEZ2Z6HoWAEjukubrR8uAw3x0fXhydhQ7gQ6kQkozDuVirBSjhQPMMx15kptUnz3GihTMxlaVJZctkVGg0qrmKUNuWSKFWFEU9WYMouFFeBcaW5FUBUkeKiq1SEcVfaTNwmlHZLKwOIWhUUukEjJ1KMp8JlJVFeOK0RS2ZSeK0FsDt-ZeChOP4SXiItfAh6BQSw3uq5aH7WYZFRKzKxwU4A2-On9i-j1knZw349LGxiGnEbiwXAfpHICYiIQDrXfv7yOkz7OUCq3mzA1Oi1xk0bz4zUljPkd2-L9OE | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9RAFH8BPKAHv5BYV905eDJ0abdvOu2REMiqQIwugVvpzLwmRt0Fdnvxr3feTLsaEMOpTfqaTvJe533O7wfwzso0p1Q3MaOZx1jXGGuNdayzLHfRc9oo8tMWJ_nkFD-ey_M12FmdhSEiP3xGI771vXw7Ny2XynadL5JS4To8kIgow2mt1b6b5wFZryhkXJSy72GmSbk7_Xz25asH_xw5B6U6VrbeC3lalVt7sXcwh0_guF9amCv5PmqXemR-3UBtvO_an8LjLtIUe8E0nsEazZ7Do7_wB7fgIhzTbbq6nZg3YjafMRr4TybaMsIGvnpxyVxqIqA-C7pqvzn75AkMwWVcwdYXgCgEw2P6ix8uX7yA08OD6f4k7igXYpPJbBmn40Zn1EgPi2eRSlPY2ti8LK2R2qaoapurGtVYGrKkUaekXNKlSOmGEsy2YcMtlF6CQG3QCRDpRKMca51QOlYuF3cppdvU6giSXgWV6fDImRbjR-XzkqSsvNaYJzOrgtYieL965TKAcfxPeIu18EcwKCCCQa_nqvtdF1XBzcjMhTsRDFdP3X_GzZN6RvN2UbnUNEEXjUUg7pAoGYqIYTpf_fvLQ9icTI-PqqMPJ58G8DBMBXIt5zVsLK9beuOim6V-6436N2BO-C4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+nonparametric+dynamic+power+system+equivalents+with+artificial+neural+networks&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Stankovic%2C+A+M&rft.au=Saric%2C+A+T&rft.au=Milosevic%2C+M&rft.date=2003-11-01&rft.issn=0885-8950&rft.volume=18&rft.issue=4&rft_id=info:doi/10.1109%2FTPWRS.2003.818704&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon |