Identification of nonparametric dynamic power system equivalents with artificial neural networks

The paper proposes an artificial neural network (ANN)-based strategy for identification of reduced-order dynamic equivalents of power systems. This large-signal model is formulated in continuous-time and is therefore compatible with standard models of power system components. In a departure from pre...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power systems Vol. 18; no. 4; pp. 1478 - 1486
Main Authors Stankovic, A.M., Saric, A.T., Milosevic, M.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2003
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-8950
1558-0679
DOI10.1109/TPWRS.2003.818704

Cover

Abstract The paper proposes an artificial neural network (ANN)-based strategy for identification of reduced-order dynamic equivalents of power systems. This large-signal model is formulated in continuous-time and is therefore compatible with standard models of power system components. In a departure from previous works on the subject, we do not postulate a particular model structure for the equivalent, hence the label nonparametric. The approach uses only measurements at points where internal (retained) and external (reduced) systems are interfaced, and requires no knowledge of parameters and topology of the external subsystem. The procedure consists of two conceptual steps: (1) the first ("bottleneck") ANN is used to extract "states" of the reduced-order equivalent; and (2) the second (recurrent) ANN is embedded in an ordinary differential equations (ODEs) solver, and trained to approximate the "right-hand side," using the states extracted at the first step. We also describe an extension in which a third ANN is used to synthesize missing interface measurements from a historical database of system responses to various disturbances. We illustrate the capabilities of the approach on a multimachine benchmark example derived from the WSCC system.
AbstractList The procedure consists of two conceptual steps: (1) the first ("bottleneck") ANN is used to extract "states" of the reduced-order equivalent; and (2) the second (recurrent) ANN is embedded in an ordinary differential equations (ODEs) solver, and trained to approximate the "right-hand side," using the states extracted at the first step.
The paper proposes an artificial neural network (ANN)-based strategy for identification of reduced-order dynamic equivalents of power systems. This large-signal model is formulated in continuous-time and is therefore compatible with standard models of power system components. In a departure from previous works on the subject, we do not postulate a particular model structure for the equivalent, hence the label nonparametric. The approach uses only measurements at points where internal (retained) and external (reduced) systems are interfaced, and requires no knowledge of parameters and topology of the external subsystem. The procedure consists of two conceptual steps: (1) the first ("bottleneck") ANN is used to extract "states" of the reduced-order equivalent; and (2) the second (recurrent) ANN is embedded in an ordinary differential equations (ODEs) solver, and trained to approximate the "right-hand side," using the states extracted at the first step. We also describe an extension in which a third ANN is used to synthesize missing interface measurements from a historical database of system responses to various disturbances. We illustrate the capabilities of the approach on a multimachine benchmark example derived from the WSCC system.
Author Saric, A.T.
Milosevic, M.
Stankovic, A.M.
Author_xml – sequence: 1
  givenname: A.M.
  surname: Stankovic
  fullname: Stankovic, A.M.
  organization: Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA
– sequence: 2
  givenname: A.T.
  surname: Saric
  fullname: Saric, A.T.
  organization: Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA
– sequence: 3
  givenname: M.
  surname: Milosevic
  fullname: Milosevic, M.
  organization: Dept. of Electr. & Comput. Eng., Northeastern Univ., Boston, MA, USA
BookMark eNp9kUFLHDEYhkOx0NX2B5ReBg_2NOuXTLLJHEVsFQSltfSYZpJvaHRmsiaZLvvvjbtCwYPk8B7yPC8k7yE5mMKEhHymsKQU2tO7298_fi4ZQLNUVEng78iCCqFqWMn2gCxAKVGrVsAHcpjSPQCsysWC_LlyOGXfe2uyD1MV-qo0r000I-bobeW2kxlLrsMGY5W2KeNY4ePs_5mhmKna-Py3MnHX4c1QTTjHXeRNiA_pI3nfmyHhp5c8Ir--XdydX9bXN9-vzs-ua9uIJteU9V2DvZCC88ZxbK1yxrpV2zorOke5NG4lDZdMWHTY8Y6iZEpKlF2PwJsj8nXfu47hccaU9eiTxWEwE4Y56RaoBFVOIU_eJJliwCmwAh6_Au_DHKfyCq0UZ6IBRgsk95CNIaWIvbY-7_4yR-MHTUE_D6R3A-nngfR-oGLSV-Y6-tHE7ZvOl73jEfE_z7gQkjdPEHyg2g
CODEN ITPSEG
CitedBy_id crossref_primary_10_1109_JSYST_2021_3051938
crossref_primary_10_1109_ACCESS_2020_2966238
crossref_primary_10_1016_j_epsr_2023_109917
crossref_primary_10_1109_TPWRS_2022_3194570
crossref_primary_10_23919_IEN_2023_0023
crossref_primary_10_3390_en15041396
crossref_primary_10_1016_j_ijepes_2012_06_025
crossref_primary_10_1109_TCSI_2006_877887
crossref_primary_10_1016_j_neunet_2009_06_033
crossref_primary_10_2478_jee_2019_0078
crossref_primary_10_7227_IJEEE_46_2_1
crossref_primary_10_1016_j_segan_2023_101031
crossref_primary_10_1109_TPWRS_2022_3153117
crossref_primary_10_1016_j_ijepes_2012_07_002
crossref_primary_10_1049_tje2_12157
crossref_primary_10_1049_iet_gtd_2013_0285
crossref_primary_10_46604_aiti_2021_7853
crossref_primary_10_1016_j_epsr_2008_11_007
crossref_primary_10_1080_15325000601023613
crossref_primary_10_1016_j_epsr_2011_09_023
crossref_primary_10_1109_TPWRS_2003_821459
crossref_primary_10_3390_math12081190
crossref_primary_10_1016_j_ijepes_2009_03_016
crossref_primary_10_1109_ACCESS_2024_3415478
crossref_primary_10_1016_j_ijepes_2015_05_040
crossref_primary_10_1109_TPWRS_2012_2182783
Cites_doi 10.1109/72.661124
10.1002/9781118878286
10.1109/PESW.2002.985166
10.1103/PhysRevLett.59.2229
10.1109/59.476067
10.1109/81.841915
10.1109/TPAS.1978.354620
10.23919/ACC.1993.4793116
10.1103/PhysRevLett.72.1822
10.1109/59.14570
10.1109/59.962416
10.1002/aic.690370209
10.1016/0098-1354(96)00133-0
10.1109/T-PAS.1975.31972
10.1109/59.708595
10.1109/59.744536
10.1109/59.589749
10.1109/ICNN.1993.298782
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2003
DBID RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
7QO
P64
DOI 10.1109/TPWRS.2003.818704
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Civil Engineering Abstracts
Engineering Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 1486
ExternalDocumentID 2429034621
10_1109_TPWRS_2003_818704
1245574
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
RIG
7QO
P64
ID FETCH-LOGICAL-c353t-12fb3ef575443d4e9c8dacd699dc5bd147ad67a4725cedeb4b1e72877e7bfe043
IEDL.DBID RIE
ISSN 0885-8950
IngestDate Tue Oct 07 09:50:31 EDT 2025
Sat Sep 27 20:47:50 EDT 2025
Mon Jun 30 06:11:28 EDT 2025
Wed Oct 01 04:11:32 EDT 2025
Thu Apr 24 23:00:14 EDT 2025
Wed Aug 27 02:51:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c353t-12fb3ef575443d4e9c8dacd699dc5bd147ad67a4725cedeb4b1e72877e7bfe043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 884253021
PQPubID 85441
PageCount 9
ParticipantIDs proquest_miscellaneous_28204102
proquest_miscellaneous_901708080
crossref_primary_10_1109_TPWRS_2003_818704
crossref_citationtrail_10_1109_TPWRS_2003_818704
proquest_journals_884253021
ieee_primary_1245574
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-11-01
PublicationDateYYYYMMDD 2003-11-01
PublicationDate_xml – month: 11
  year: 2003
  text: 2003-11-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2003
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref10
(ref25) 2001
ref2
ref1
ref17
ref16
ref19
(ref24) 1994; 1–6
rico-martinez (ref13) 1995
smith (ref23) 1994
ref20
haykin (ref11) 1999
ref22
ref21
lei (ref8) 2002
ref7
zhao (ref12) 1998
sauer (ref14) 1998
ref9
rico-martines (ref18) 1993
ref4
ref3
ref6
ref5
(ref26) 1993
References_xml – ident: ref20
  doi: 10.1109/72.661124
– ident: ref1
  doi: 10.1002/9781118878286
– start-page: 533
  year: 1994
  ident: ref23
  article-title: a low order power system model with dynamic characteristics of the western north american system
  publication-title: Proc North Amer Power Symp II
– year: 2002
  ident: ref8
  article-title: industrial approaches for dynamic equivalents of large power systems
  publication-title: Proc IEEE Power Engineering Society Winter Meeting
  doi: 10.1109/PESW.2002.985166
– year: 1999
  ident: ref11
  publication-title: Neural Networks A Comprehensive Foundation
– ident: ref21
  doi: 10.1103/PhysRevLett.59.2229
– ident: ref5
  doi: 10.1109/59.476067
– ident: ref22
  doi: 10.1109/81.841915
– year: 1993
  ident: ref26
  publication-title: Dynamic Reduction Program (DYNRED) User s Manual Version 1 1
– ident: ref3
  doi: 10.1109/TPAS.1978.354620
– start-page: 1475
  year: 1993
  ident: ref18
  article-title: discrete- vs. continuous-time nonlinear signal processing: attractors, transitions and parallel implementation issues
  publication-title: 1993 American Control Conference ACC
  doi: 10.23919/ACC.1993.4793116
– year: 1998
  ident: ref14
  publication-title: Power System Dynamics and Stability
– ident: ref16
  doi: 10.1103/PhysRevLett.72.1822
– start-page: 241
  year: 1998
  ident: ref12
  article-title: a study of power system dissipativity using artificial neural networks
  publication-title: Proc North Amer Power Symp
– ident: ref4
  doi: 10.1109/59.14570
– ident: ref9
  doi: 10.1109/59.962416
– ident: ref15
  doi: 10.1002/aic.690370209
– ident: ref17
  doi: 10.1016/0098-1354(96)00133-0
– ident: ref2
  doi: 10.1109/T-PAS.1975.31972
– year: 2001
  ident: ref25
  publication-title: Neural Network Toolbox for use With MATLAB User s Guide Version 4
– ident: ref7
  doi: 10.1109/59.708595
– ident: ref10
  doi: 10.1109/59.744536
– ident: ref6
  doi: 10.1109/59.589749
– volume: 1–6
  year: 1994
  ident: ref24
  publication-title: Extended Transient-Midterm Stability Program (ETMSP) User s Manual Version 3 1
– start-page: 409
  year: 1995
  ident: ref13
  article-title: nonlinear system identification using neural networks: dynamics and instabilities
  publication-title: Neural Networks for Chemical Engineers
– ident: ref19
  doi: 10.1109/ICNN.1993.298782
SSID ssj0006679
Score 1.9761952
Snippet The paper proposes an artificial neural network (ANN)-based strategy for identification of reduced-order dynamic equivalents of power systems. This...
The procedure consists of two conceptual steps: (1) the first ("bottleneck") ANN is used to extract "states" of the reduced-order equivalent; and (2) the...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1478
SubjectTerms Artificial neural networks
Differential equations
Neural networks
Ordinary differential equations
Power system analysis computing
Power system dynamics
Power system interconnection
Power system measurements
Power system modeling
Power systems
Reduced order systems
Studies
Uncertainty
Title Identification of nonparametric dynamic power system equivalents with artificial neural networks
URI https://ieeexplore.ieee.org/document/1245574
https://www.proquest.com/docview/884253021
https://www.proquest.com/docview/28204102
https://www.proquest.com/docview/901708080
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0679
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006679
  issn: 0885-8950
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB7Ukx58i_WZgyexa7tNmvYoooigiA_0VptkCqLuru724q83k7Sr-MJTC53SwEwzz3wfwI4RcYqxqkJCMw95WfJQKV6GKklSGz3HlUQ3bXGentzw0ztxNwF747MwiOiGz7BDt66Xb_q6plLZvvVFQkg-CZMyS_1ZrfGum6YeVy_LRJjlou1gxlG-f31xe3nloD871j3JhpOt9UGOVOXbTuzcy_EcnLUL81Mlj516pDr67Qtm439XPg-zTZzJDrxhLMAE9hZh5hP64BLc-0O6VVO1Y_2K9fo9wgJ_JpotzYxnq2cDYlJjHvOZ4Uv9YK2T5i8YFXEZ2Z6HoWAEjukubrR8uAw3x0fXhydhQ7gQ6kQkozDuVirBSjhQPMMx15kptUnz3GihTMxlaVJZctkVGg0qrmKUNuWSKFWFEU9WYMouFFeBcaW5FUBUkeKiq1SEcVfaTNwmlHZLKwOIWhUUukEjJ1KMp8JlJVFeOK0RS2ZSeK0FsDt-ZeChOP4SXiItfAh6BQSw3uq5aH7WYZFRKzKxwU4A2-On9i-j1knZw349LGxiGnEbiwXAfpHICYiIQDrXfv7yOkz7OUCq3mzA1Oi1xk0bz4zUljPkd2-L9OE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9RAFH8BPKAHv5BYV905eDJ0abdvOu2REMiqQIwugVvpzLwmRt0Fdnvxr3feTLsaEMOpTfqaTvJe533O7wfwzso0p1Q3MaOZx1jXGGuNdayzLHfRc9oo8tMWJ_nkFD-ey_M12FmdhSEiP3xGI771vXw7Ny2XynadL5JS4To8kIgow2mt1b6b5wFZryhkXJSy72GmSbk7_Xz25asH_xw5B6U6VrbeC3lalVt7sXcwh0_guF9amCv5PmqXemR-3UBtvO_an8LjLtIUe8E0nsEazZ7Do7_wB7fgIhzTbbq6nZg3YjafMRr4TybaMsIGvnpxyVxqIqA-C7pqvzn75AkMwWVcwdYXgCgEw2P6ix8uX7yA08OD6f4k7igXYpPJbBmn40Zn1EgPi2eRSlPY2ti8LK2R2qaoapurGtVYGrKkUaekXNKlSOmGEsy2YcMtlF6CQG3QCRDpRKMca51QOlYuF3cppdvU6giSXgWV6fDImRbjR-XzkqSsvNaYJzOrgtYieL965TKAcfxPeIu18EcwKCCCQa_nqvtdF1XBzcjMhTsRDFdP3X_GzZN6RvN2UbnUNEEXjUUg7pAoGYqIYTpf_fvLQ9icTI-PqqMPJ58G8DBMBXIt5zVsLK9beuOim6V-6436N2BO-C4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+nonparametric+dynamic+power+system+equivalents+with+artificial+neural+networks&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Stankovic%2C+A+M&rft.au=Saric%2C+A+T&rft.au=Milosevic%2C+M&rft.date=2003-11-01&rft.issn=0885-8950&rft.volume=18&rft.issue=4&rft_id=info:doi/10.1109%2FTPWRS.2003.818704&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon