A machine learning model for predicting serum neutralizing activity against Omicron SARS‐CoV‐2 BA.2 and BA.4/5 sublineages in the general population
Supervised machine learning (ML) methods have been used to predict antibody responses elicited by COVID‐19 vaccines in a variety of clinical settings. Here, we explored the reliability of a ML approach to predict the presence of detectable neutralizing antibody responses (NtAb) against Omicron BA.2...
Saved in:
| Published in | Journal of medical virology Vol. 95; no. 4; pp. e28739 - n/a |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Wiley Subscription Services, Inc
01.04.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0146-6615 1096-9071 1096-9071 |
| DOI | 10.1002/jmv.28739 |
Cover
| Abstract | Supervised machine learning (ML) methods have been used to predict antibody responses elicited by COVID‐19 vaccines in a variety of clinical settings. Here, we explored the reliability of a ML approach to predict the presence of detectable neutralizing antibody responses (NtAb) against Omicron BA.2 and BA.4/5 sublineages in the general population. Anti‐SARS‐CoV‐2 receptor‐binding domain (RBD) total antibodies were measured by the Elecsys® Anti‐SARS‐CoV‐2 S assay (Roche Diagnostics) in all participants. NtAbs against Omicron BA.2 and BA4/5 were measured using a SARS‐CoV‐2 S pseudotyped neutralization assay in 100 randomly selected sera. A ML model was built using the variables of age, vaccination (number of doses) and SARS‐CoV‐2 infection status. The model was trained in a cohort (TC) comprising 931 participants and validated in an external cohort (VC) including 787 individuals. Receiver operating characteristics analysis indicated that an anti‐SARS‐CoV‐2 RBD total antibody threshold of 2300 BAU/mL best discriminated between participants either exhibiting or not detectable Omicron BA.2 and Omicron BA.4/5‐Spike targeted NtAb responses (87% and 84% precision, respectively). The ML model correctly classified 88% (793/901) of participants in the TC: 717/749 (95.7%) of those displaying ≥2300 BAU/mL and 76/152 (50%) of those exhibiting antibody levels <2300 BAU/mL. The model performed better in vaccinated participants, either with or without prior SARS‐CoV‐2 infection. The overall accuracy of the ML model in the VC was comparable. Our ML model, based upon a few easily collected parameters for predicting neutralizing activity against Omicron BA.2 and BA.4/5 (sub)variants circumvents the need to perform not only neutralization assays, but also anti‐S serological tests, thus potentially saving costs in the setting of large seroprevalence studies. |
|---|---|
| AbstractList | Supervised machine learning (ML) methods have been used to predict antibody responses elicited by COVID-19 vaccines in a variety of clinical settings. Here, we explored the reliability of a ML approach to predict the presence of detectable neutralizing antibody responses (NtAb) against Omicron BA.2 and BA.4/5 sublineages in the general population. Anti-SARS-CoV-2 receptor-binding domain (RBD) total antibodies were measured by the Elecsys® Anti-SARS-CoV-2 S assay (Roche Diagnostics) in all participants. NtAbs against Omicron BA.2 and BA4/5 were measured using a SARS-CoV-2 S pseudotyped neutralization assay in 100 randomly selected sera. A ML model was built using the variables of age, vaccination (number of doses) and SARS-CoV-2 infection status. The model was trained in a cohort (TC) comprising 931 participants and validated in an external cohort (VC) including 787 individuals. Receiver operating characteristics analysis indicated that an anti-SARS-CoV-2 RBD total antibody threshold of 2300 BAU/mL best discriminated between participants either exhibiting or not detectable Omicron BA.2 and Omicron BA.4/5-Spike targeted NtAb responses (87% and 84% precision, respectively). The ML model correctly classified 88% (793/901) of participants in the TC: 717/749 (95.7%) of those displaying ≥2300 BAU/mL and 76/152 (50%) of those exhibiting antibody levels <2300 BAU/mL. The model performed better in vaccinated participants, either with or without prior SARS-CoV-2 infection. The overall accuracy of the ML model in the VC was comparable. Our ML model, based upon a few easily collected parameters for predicting neutralizing activity against Omicron BA.2 and BA.4/5 (sub)variants circumvents the need to perform not only neutralization assays, but also anti-S serological tests, thus potentially saving costs in the setting of large seroprevalence studies. Supervised machine learning (ML) methods have been used to predict antibody responses elicited by COVID-19 vaccines in a variety of clinical settings. Here, we explored the reliability of a ML approach to predict the presence of detectable neutralizing antibody responses (NtAb) against Omicron BA.2 and BA.4/5 sublineages in the general population. Anti-SARS-CoV-2 receptor-binding domain (RBD) total antibodies were measured by the Elecsys® Anti-SARS-CoV-2 S assay (Roche Diagnostics) in all participants. NtAbs against Omicron BA.2 and BA4/5 were measured using a SARS-CoV-2 S pseudotyped neutralization assay in 100 randomly selected sera. A ML model was built using the variables of age, vaccination (number of doses) and SARS-CoV-2 infection status. The model was trained in a cohort (TC) comprising 931 participants and validated in an external cohort (VC) including 787 individuals. Receiver operating characteristics analysis indicated that an anti-SARS-CoV-2 RBD total antibody threshold of 2300 BAU/mL best discriminated between participants either exhibiting or not detectable Omicron BA.2 and Omicron BA.4/5-Spike targeted NtAb responses (87% and 84% precision, respectively). The ML model correctly classified 88% (793/901) of participants in the TC: 717/749 (95.7%) of those displaying ≥2300 BAU/mL and 76/152 (50%) of those exhibiting antibody levels <2300 BAU/mL. The model performed better in vaccinated participants, either with or without prior SARS-CoV-2 infection. The overall accuracy of the ML model in the VC was comparable. Our ML model, based upon a few easily collected parameters for predicting neutralizing activity against Omicron BA.2 and BA.4/5 (sub)variants circumvents the need to perform not only neutralization assays, but also anti-S serological tests, thus potentially saving costs in the setting of large seroprevalence studies.Supervised machine learning (ML) methods have been used to predict antibody responses elicited by COVID-19 vaccines in a variety of clinical settings. Here, we explored the reliability of a ML approach to predict the presence of detectable neutralizing antibody responses (NtAb) against Omicron BA.2 and BA.4/5 sublineages in the general population. Anti-SARS-CoV-2 receptor-binding domain (RBD) total antibodies were measured by the Elecsys® Anti-SARS-CoV-2 S assay (Roche Diagnostics) in all participants. NtAbs against Omicron BA.2 and BA4/5 were measured using a SARS-CoV-2 S pseudotyped neutralization assay in 100 randomly selected sera. A ML model was built using the variables of age, vaccination (number of doses) and SARS-CoV-2 infection status. The model was trained in a cohort (TC) comprising 931 participants and validated in an external cohort (VC) including 787 individuals. Receiver operating characteristics analysis indicated that an anti-SARS-CoV-2 RBD total antibody threshold of 2300 BAU/mL best discriminated between participants either exhibiting or not detectable Omicron BA.2 and Omicron BA.4/5-Spike targeted NtAb responses (87% and 84% precision, respectively). The ML model correctly classified 88% (793/901) of participants in the TC: 717/749 (95.7%) of those displaying ≥2300 BAU/mL and 76/152 (50%) of those exhibiting antibody levels <2300 BAU/mL. The model performed better in vaccinated participants, either with or without prior SARS-CoV-2 infection. The overall accuracy of the ML model in the VC was comparable. Our ML model, based upon a few easily collected parameters for predicting neutralizing activity against Omicron BA.2 and BA.4/5 (sub)variants circumvents the need to perform not only neutralization assays, but also anti-S serological tests, thus potentially saving costs in the setting of large seroprevalence studies. |
| Author | Álvarez‐Rodríguez, Beatriz Zulaica, Joao Navarro, David Peiró, Salvador Moreno, Alicia Rodríguez Giménez, Estela Camacho, Jorge Albert, Eliseo Geller, Ron Rusu, Luciana |
| Author_xml | – sequence: 1 givenname: Jorge orcidid: 0000-0002-6602-0966 surname: Camacho fullname: Camacho, Jorge organization: INCLIVA Biomedical Research Institute – sequence: 2 givenname: Eliseo surname: Albert fullname: Albert, Eliseo organization: INCLIVA Biomedical Research Institute – sequence: 3 givenname: Beatriz surname: Álvarez‐Rodríguez fullname: Álvarez‐Rodríguez, Beatriz organization: Universitat de Valencia‐CSIC – sequence: 4 givenname: Luciana surname: Rusu fullname: Rusu, Luciana organization: Universitat de Valencia‐CSIC – sequence: 5 givenname: Joao surname: Zulaica fullname: Zulaica, Joao organization: Universitat de Valencia‐CSIC – sequence: 6 givenname: Alicia Rodríguez surname: Moreno fullname: Moreno, Alicia Rodríguez organization: Universitat de Valencia‐CSIC – sequence: 7 givenname: Salvador orcidid: 0000-0002-3902-569X surname: Peiró fullname: Peiró, Salvador organization: Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO) – sequence: 8 givenname: Ron surname: Geller fullname: Geller, Ron organization: Universitat de Valencia‐CSIC – sequence: 9 givenname: David orcidid: 0000-0003-3010-4110 surname: Navarro fullname: Navarro, David organization: University of Valencia – sequence: 10 givenname: Estela surname: Giménez fullname: Giménez, Estela email: estela.gimenez.quiles@gmail.com organization: Instituto de Salud Carlos III |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37185857$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAUhS1URKeFBS-ALLGBRWb8E9vxchjxq6JKFLqNPMnN1CPHTu2kaFjxCCx5Pp4ET6ewqAQb27r-7rn2OSfoyAcPCD2lZE4JYYttfzNnleL6AZpRomWhiaJHaEZoKQspqThGJyltCSGVZuwROuaKVqISaoZ-LnFvmivrATsw0Vu_wX1oweEuRDxEaG0z7osJ4tRjD9MYjbPf9iWTb27suMNmY6xPIz7vbRODxxfLTxe_vv9Yhcu8MvxqOWfY-HZ_KBcCp2nt8kCzgYStx-MV4A14yLp4CMPkzGiDf4wedsYleHK3n6Ivb15_Xr0rzs7fvl8tz4qGC66LtjWaK85FSdZrqXhZEtKVVEklGgDBlVaE6VZ2UguZ_8zbSnW5sSQgGDDBT9GLg-4Qw_UEaax7mxpwzngIU6pZRUvBSsZ0Rp_fQ7dhij6_LlNEMkFFVWbq2R01rXto6yHa3sRd_cfzDLw8ANmrlCJ0fxFK6n2edc6zvs0zs4t7bGPHW39yDNb9r-OrdbD7t3T94ePloeM3f0uxAA |
| CitedBy_id | crossref_primary_10_3390_vaccines12040352 |
| Cites_doi | 10.3389/fimmu.2022.997343 10.1128/jcm.00482-21 10.3390/biomedicines10020204 10.1056/NEJMc2214314 10.1093/cid/ciab079 10.1128/JCM.03149-20 10.1016/j.clim.2021.108918 10.1111/joim.13372 10.1157/13115113 10.1097/TP.0000000000004259 10.1093/cid/ciac223 10.1016/j.cmi.2021.10.005 10.1056/NEJMc2212117 10.3390/vaccines10101757 10.1038/s41598-022-07849-2 10.3390/v15010167 10.1056/NEJMoa2110345 10.1007/s00277-022-04906-8 10.1002/jmv.28284 10.1038/s41591-021-01377-8 10.1126/science.abm3425 |
| ContentType | Journal Article |
| Copyright | 2023 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2023 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QL 7TK 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 |
| DOI | 10.1002/jmv.28739 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Bacteriology Abstracts (Microbiology B) Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
| DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1096-9071 |
| EndPage | n/a |
| ExternalDocumentID | 37185857 10_1002_jmv_28739 JMV28739 |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GroupedDBID | --- .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABOCM ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AI. AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS ECGQY EJD ELTNK EMOBN F00 F01 F04 F5P FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KBYEO KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS UB1 V2E VH1 W8V W99 WBKPD WHG WIB WIH WIJ WIK WJL WNSPC WOHZO WQJ WRC WUP WXI WXSBR WYISQ X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~KM ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 7QL 7TK 7U9 8FD C1K FR3 H94 K9. M7N P64 RC3 7X8 |
| ID | FETCH-LOGICAL-c3539-dda93733540bb6734400f417675cee53797029d6f69568583d87f53940e52e253 |
| IEDL.DBID | DR2 |
| ISSN | 0146-6615 1096-9071 |
| IngestDate | Thu Oct 02 12:15:00 EDT 2025 Tue Oct 07 05:53:21 EDT 2025 Mon Jul 21 05:41:20 EDT 2025 Thu Apr 24 22:58:34 EDT 2025 Wed Oct 01 03:06:55 EDT 2025 Wed Jan 22 16:21:42 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | BA/4/5 sublineages neutralizing antibodies SARS-CoV-2 anti-receptor-binding domain antibodies Omicron BA.2 machine learning |
| Language | English |
| License | 2023 Wiley Periodicals LLC. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3539-dda93733540bb6734400f417675cee53797029d6f69568583d87f53940e52e253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-6602-0966 0000-0002-3902-569X 0000-0003-3010-4110 |
| PMID | 37185857 |
| PQID | 2806251584 |
| PQPubID | 105515 |
| PageCount | 8 |
| ParticipantIDs | proquest_miscellaneous_2814524229 proquest_journals_2806251584 pubmed_primary_37185857 crossref_primary_10_1002_jmv_28739 crossref_citationtrail_10_1002_jmv_28739 wiley_primary_10_1002_jmv_28739_JMV28739 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2023 2023-04-00 20230401 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: London |
| PublicationTitle | Journal of medical virology |
| PublicationTitleAlternate | J Med Virol |
| PublicationYear | 2023 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2022; 375 2022; 387 2022; 101 2021; 27 2023; 95 2021; 59 2022; 291 2022; 60 2023; 15 2023; 388 2022; 12 2022; 13 2008; 22 2022; 75 2023; S0163‐4453 2022; 10 2021; 385 2022; 106 2021; 73 2022; 28 2022; 234 e_1_2_10_12_1 e_1_2_10_23_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_11_1 e_1_2_10_22_1 e_1_2_10_20_1 Camacho J (e_1_2_10_21_1) 2023; 0163 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 |
| References_xml | – volume: 291 start-page: 32 year: 2022 end-page: 50 article-title: Immunity to SARS‐CoV‐2 induced by infection or vaccination publication-title: J Intern Med – volume: 27 start-page: 1205 year: 2021 end-page: 1211 article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS‐CoV‐2 infection publication-title: Nature Med – volume: 22 start-page: 65 issue: 1 year: 2008 end-page: 72 article-title: Aproximación a la metodología basada en árboles de decisión (CART). Mortalidad hospitalaria del infarto agudo de miocardio publication-title: Gac Sanit – volume: S0163‐4453 issue: 22 year: 2023 article-title: Neutralizing antibodies against Omicron BA.4/5 after COVID‐19 vaccination in SARS‐CoV‐2 experienced versus naïve individuals in the general population publication-title: J Infect – volume: 388 start-page: 662 year: 2023 end-page: 664 article-title: Substantial neutralization escape by SARS‐CoV‐2 Omicron variants BQ.1.1 and XBB.1 publication-title: N Engl J Med – volume: 234 year: 2022 article-title: Evaluation of serological anti‐SARS‐CoV‐2 chemiluminescent immunoassays correlated to live virus neutralization test, for the detection of anti‐RBD antibodies as a relevant alternative in COVID‐19 large‐scale neutralizing activity monitoring publication-title: Clin Immunol – volume: 10 start-page: 1757 year: 2022 article-title: Post‐vaccination neutralization responses to Omicron sub‐variants publication-title: Vaccines – volume: 10 start-page: 204 year: 2022 article-title: Predictive factors for neutralizing antibody levels nine months after full vaccination with BNT162b2: results of a machine learning analysis publication-title: Biomedicines – volume: 75 start-page: e865 year: 2022 end-page: e868 article-title: Severe acute respiratory syndrome coronavirus 2 adaptive immunity in nursing home residents following a third dose of the comirnaty coronavirus disease 2019 vaccine publication-title: Clin Infect Dis – volume: 385 start-page: 1761 year: 2021 end-page: 1773 article-title: Safety and efficacy of the BNT162b2 mRNA Covid‐19 vaccine publication-title: New Engl J Med – volume: 101 start-page: 2053 year: 2022 end-page: 2067 article-title: Applicability of probabilistic graphical models for early detection of SARS‐CoV‐2 reactive antibodies after SARS‐CoV‐2 vaccination in hematological patients publication-title: Ann Hematol – volume: 12 start-page: 3788 year: 2022 article-title: Neutralizing antibodies against SARS‐CoV‐2 variants of concern elicited by the comirnaty COVID‐19 vaccine in nursing home residents publication-title: Sci Rep – volume: 15 start-page: 167 year: 2023 article-title: A detailed overview of SARS‐CoV‐2 omicron: its sub‐variants, mutations and pathophysiology, clinical characteristics, immunological landscape, immune escape, and therapies publication-title: Viruses – volume: 375 start-page: 43 year: 2022 end-page: 50 article-title: Immune correlates analysis of the mRNA‐1273 COVID‐19 vaccine efficacy clinical trial publication-title: Science – volume: 60 year: 2022 article-title: Immunity to SARS‐CoV‐2: what do we know and should we be testing for it publication-title: J Clin Microbiol – volume: 13 year: 2022 article-title: Development and validation of multivariable prediction models of serological response to SARS‐CoV‐2 vaccination in kidney transplant recipients publication-title: Front Immunol – volume: 28 start-page: 202 year: 2022 end-page: 221 article-title: Comparing COVID‐19 vaccines for their characteristics, efficacy and effectiveness against SARS‐CoV‐2 and variants of concern: a narrative review publication-title: Clin Microbiol Infect – volume: 387 start-page: 1904 year: 2022 end-page: 1906 article-title: Neutralization escape by SARS‐CoV‐2 omicron subvariant BA.4.6 publication-title: N Engl J Med – volume: 95 year: 2023 article-title: Cumulative incidence of SARS‐CoV‐2 infection in the general population of the valencian community (Spain) after the surge of the Omicron BA.1 variant publication-title: J Med Virol – volume: 106 start-page: e452 year: 2022 end-page: e460 article-title: Predicting a positive antibody response after 2 SARS‐CoV‐2 mRNA vaccines in transplant recipients: a machine learning approach with external validation publication-title: Transplantation – volume: 73 start-page: 2257 issue: 12 year: 2021 end-page: 2264 article-title: The impact of vaccination on coronavirus disease 2019 (COVID‐19) outbreaks in the United States publication-title: Clin Infect Dis – volume: 59 start-page: e03149 year: 2021 end-page: e03120 article-title: Quantitative measurement of anti‐SARS‐CoV‐2 antibodies: analytical and clinical evaluation publication-title: J Clin Microbiol – ident: e_1_2_10_14_1 doi: 10.3389/fimmu.2022.997343 – ident: e_1_2_10_8_1 doi: 10.1128/jcm.00482-21 – ident: e_1_2_10_13_1 doi: 10.3390/biomedicines10020204 – ident: e_1_2_10_23_1 doi: 10.1056/NEJMc2214314 – volume: 0163 issue: 22 year: 2023 ident: e_1_2_10_21_1 article-title: Neutralizing antibodies against Omicron BA.4/5 after COVID‐19 vaccination in SARS‐CoV‐2 experienced versus naïve individuals in the general population publication-title: J Infect – ident: e_1_2_10_2_1 doi: 10.1093/cid/ciab079 – ident: e_1_2_10_9_1 doi: 10.1128/JCM.03149-20 – ident: e_1_2_10_7_1 doi: 10.1016/j.clim.2021.108918 – ident: e_1_2_10_6_1 doi: 10.1111/joim.13372 – ident: e_1_2_10_17_1 doi: 10.1157/13115113 – ident: e_1_2_10_15_1 doi: 10.1097/TP.0000000000004259 – ident: e_1_2_10_19_1 doi: 10.1093/cid/ciac223 – ident: e_1_2_10_3_1 doi: 10.1016/j.cmi.2021.10.005 – ident: e_1_2_10_10_1 doi: 10.1056/NEJMc2212117 – ident: e_1_2_10_11_1 doi: 10.3390/vaccines10101757 – ident: e_1_2_10_20_1 doi: 10.1038/s41598-022-07849-2 – ident: e_1_2_10_22_1 doi: 10.3390/v15010167 – ident: e_1_2_10_4_1 doi: 10.1056/NEJMoa2110345 – ident: e_1_2_10_16_1 doi: 10.1007/s00277-022-04906-8 – ident: e_1_2_10_18_1 doi: 10.1002/jmv.28284 – ident: e_1_2_10_12_1 doi: 10.1038/s41591-021-01377-8 – ident: e_1_2_10_5_1 doi: 10.1126/science.abm3425 |
| SSID | ssj0008922 |
| Score | 2.3974857 |
| Snippet | Supervised machine learning (ML) methods have been used to predict antibody responses elicited by COVID‐19 vaccines in a variety of clinical settings. Here, we... Supervised machine learning (ML) methods have been used to predict antibody responses elicited by COVID-19 vaccines in a variety of clinical settings. Here, we... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e28739 |
| SubjectTerms | Antibodies Antibodies, Neutralizing Antibodies, Viral anti‐receptor‐binding domain antibodies Assaying BA/4/5 sublineages COVID-19 COVID-19 - prevention & control COVID-19 Vaccines Humans Learning algorithms Machine Learning Neutralization Neutralizing neutralizing antibodies Omicron BA.2 Reproducibility of Results SARS-CoV-2 Seroepidemiologic Studies Serological tests Serology Severe acute respiratory syndrome Severe acute respiratory syndrome coronavirus 2 Supervised learning Vaccines Virology |
| Title | A machine learning model for predicting serum neutralizing activity against Omicron SARS‐CoV‐2 BA.2 and BA.4/5 sublineages in the general population |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmv.28739 https://www.ncbi.nlm.nih.gov/pubmed/37185857 https://www.proquest.com/docview/2806251584 https://www.proquest.com/docview/2814524229 |
| Volume | 95 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0146-6615 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1096-9071 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008922 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAX3o-FggbEgUt2Ez_yEKeloqoqLUgtrXpAihzbWRVY76q74dATP4Ejv49fwozzqMpDQlyiKJnEjjNjf7ZnvmHsRZJZq43jUWIKE0kRV5HOtY3S1GWyMHVtAtnz7G26fywPTtXpFnvVx8K0_BDDghtZRuivycB1tZ5ckoZ-XHwZI9wXFLyXiDRMpw4vqaPyot1BwJ4AC05UzyoU88nw5NWx6DeAeRWvhgFn7yb70Fe19TP5NG421dhc_MLi-J_fcovd6IAoTFvNuc22nL_Drs26rfa77PsUFsHR0kGXWWIOIW0OIMyF1TkJkss0oA43C_CuCWsmF3SJgiUoJwXouT5D_AnvFuT35-Foenj04-u33eUJHjm8no45aG_pRE4UrGlNzDvs4tZw5gGxKcxbWmxYDYnG7rHjvTfvd_ejLo1DZIQSRYTKgBhI0AJTVaWZkNht1DIhFhkcoZXIiizmhU3rlEIXVS5sntWKMrY7xR1X4j7b9kvvHjLQsrAWUY1TjnjoYq2NjrmRRlpb5VKO2Mv-h5am4zinVBufy5admZfY0mVo6RF7PoiuWmKPPwnt9FpRdra9LmkvGlEhIrcRezbcRqukrRbt3bIhmUQqRD8cX_Gg1aahFIFwACdpGVY26MTfiy8PZifh5NG_iz5m1znisNa5aIdtb84b9wRx06Z6GgzkJ3siFO8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYAL78dCgQFx4JLdxI88JC5LRbWUbpH6Ui8ocmzvqsBmV90Nh574CRz5ffwSZpxHVR4S4hJFySR2nBn783j8DWMvosRabRwPIpOZQIqwCHSqbRDHLpGZmUyMJ3se78ajQ7l9rI7X2Kt2L0zND9E53MgyfH9NBk4O6cE5a-jH2Zc-4n2RXWKXZYzzFIJEe-fkUWlWryFgX4BFR6rlFQr5oHv04mj0G8S8iFj9kLN1g31oK1tHmnzqV6uib85-4XH836-5ya43WBSGtfLcYmuuvM2ujJvV9jvs-xBmPtbSQZNcYgo-cw4g0oXFKQlS1DSgGlczKF3l3SZndIn2S1BaCtBTfYIQFN7PKPSvhP3h3v6Pr98250d45PB62OegS0sncqBgSW6x0mEvt4STEhCewrRmxoZFl2vsLjvcenOwOQqaTA6BEUpkAeoDwiBBPqaiiBMhseeYyIiIZHCQViLJkpBnNp7EtHtRpcKmyURR0nanuONK3GPr5bx0DxhomVmLwMYpR1R0odZGh9xII60tUil77GX7R3PT0JxTto3PeU3QzHNs6dy3dI8970QXNbfHn4Q2WrXIG_Ne5rQcjcAQwVuPPetuo2HSaosu3bwimUgqBEAcX3G_VqeuFIGIAOdpCVbWK8Xfi8-3x0f-5OG_iz5lV0cH45185-3uu0fsGkdYVscabbD11WnlHiOMWhVPvLX8BMasGRA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkSouvB8LBQziwCW7iR95SFyWllUpbEEtrXqpIsd2VqXd7Kq74dATP4Ejv49fwoydpCoPCXGJrGQSO86M_cUz_oaQF1FijNKWBZHOdCB4WAQqVSaIY5uITJeldmTP4514a19sH8rDFfKq3Qvj-SG6BTe0DDdeo4HbuSkHF6yhn6df-oD3eXaFXBUySzGgb3P3gjwqzbwPAcYCqDqSLa9QyAbdrZdno98g5mXE6qac0Q1y1DbWR5qc9Otl0dfnv_A4_u_b3CTXGyxKh155bpEVW90ma-PG236HfB_SqYu1tLRJLjGhLnMOBaRL52coiFHTFNS4ntLK1m7Z5BxP4X4JTEtB1UQdAwSlH6YY-lfRveHu3o-v3zZmB3Bk9PWwz6iqDBbEQNIFLotVFka5BT2uKMBTOvHM2HTe5Rq7S_ZHbz5tbAVNJodAc8mzAPQBYBDHNaaiiBMuYOQoRYREMjBJS55kScgyE5cx7l6UKTdpUkpM2m4ls0zye2S1mlX2AaFKZMYAsLHSIhVdqJRWIdNCC2OKVIgeedl-0Vw3NOeYbeM09wTNLIeezl1P98jzTnTuuT3-JLTeqkXemPciR3c0AEMAbz3yrLsMhoneFlXZWY0ykZAAgBg84r5Xp64WDogA_tMSaKxTir9Xn2-PD1zh4b-LPiVrHzdH-fu3O-8ekWsMUJkPNVonq8uz2j4GFLUsnjhj-QlNJhiU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+model+for+predicting+serum+neutralizing+activity+against+Omicron+SARS-CoV-2+BA.2+and+BA.4%2F5+sublineages+in+the+general+population&rft.jtitle=Journal+of+medical+virology&rft.au=Camacho%2C+Jorge&rft.au=Albert%2C+Eliseo&rft.au=%C3%81lvarez-Rodr%C3%ADguez%2C+Beatriz&rft.au=Rusu%2C+Luciana&rft.date=2023-04-01&rft.issn=1096-9071&rft.eissn=1096-9071&rft.volume=95&rft.issue=4&rft.spage=e28739&rft_id=info:doi/10.1002%2Fjmv.28739&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-6615&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-6615&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-6615&client=summon |