A machine learning model for predicting serum neutralizing activity against Omicron SARS‐CoV‐2 BA.2 and BA.4/5 sublineages in the general population

Supervised machine learning (ML) methods have been used to predict antibody responses elicited by COVID‐19 vaccines in a variety of clinical settings. Here, we explored the reliability of a ML approach to predict the presence of detectable neutralizing antibody responses (NtAb) against Omicron BA.2...

Full description

Saved in:
Bibliographic Details
Published inJournal of medical virology Vol. 95; no. 4; pp. e28739 - n/a
Main Authors Camacho, Jorge, Albert, Eliseo, Álvarez‐Rodríguez, Beatriz, Rusu, Luciana, Zulaica, Joao, Moreno, Alicia Rodríguez, Peiró, Salvador, Geller, Ron, Navarro, David, Giménez, Estela
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.04.2023
Subjects
Online AccessGet full text
ISSN0146-6615
1096-9071
1096-9071
DOI10.1002/jmv.28739

Cover

Abstract Supervised machine learning (ML) methods have been used to predict antibody responses elicited by COVID‐19 vaccines in a variety of clinical settings. Here, we explored the reliability of a ML approach to predict the presence of detectable neutralizing antibody responses (NtAb) against Omicron BA.2 and BA.4/5 sublineages in the general population. Anti‐SARS‐CoV‐2 receptor‐binding domain (RBD) total antibodies were measured by the Elecsys® Anti‐SARS‐CoV‐2 S assay (Roche Diagnostics) in all participants. NtAbs against Omicron BA.2 and BA4/5 were measured using a SARS‐CoV‐2 S pseudotyped neutralization assay in 100 randomly selected sera. A ML model was built using the variables of age, vaccination (number of doses) and SARS‐CoV‐2 infection status. The model was trained in a cohort (TC) comprising 931 participants and validated in an external cohort (VC) including 787 individuals. Receiver operating characteristics analysis indicated that an anti‐SARS‐CoV‐2 RBD total antibody threshold of 2300 BAU/mL best discriminated between participants either exhibiting or not detectable Omicron BA.2 and Omicron BA.4/5‐Spike targeted NtAb responses (87% and 84% precision, respectively). The ML model correctly classified 88% (793/901) of participants in the TC: 717/749 (95.7%) of those displaying ≥2300 BAU/mL and 76/152 (50%) of those exhibiting antibody levels <2300 BAU/mL. The model performed better in vaccinated participants, either with or without prior SARS‐CoV‐2 infection. The overall accuracy of the ML model in the VC was comparable. Our ML model, based upon a few easily collected parameters for predicting neutralizing activity against Omicron BA.2 and BA.4/5 (sub)variants circumvents the need to perform not only neutralization assays, but also anti‐S serological tests, thus potentially saving costs in the setting of large seroprevalence studies.
AbstractList Supervised machine learning (ML) methods have been used to predict antibody responses elicited by COVID-19 vaccines in a variety of clinical settings. Here, we explored the reliability of a ML approach to predict the presence of detectable neutralizing antibody responses (NtAb) against Omicron BA.2 and BA.4/5 sublineages in the general population. Anti-SARS-CoV-2 receptor-binding domain (RBD) total antibodies were measured by the Elecsys® Anti-SARS-CoV-2 S assay (Roche Diagnostics) in all participants. NtAbs against Omicron BA.2 and BA4/5 were measured using a SARS-CoV-2 S pseudotyped neutralization assay in 100 randomly selected sera. A ML model was built using the variables of age, vaccination (number of doses) and SARS-CoV-2 infection status. The model was trained in a cohort (TC) comprising 931 participants and validated in an external cohort (VC) including 787 individuals. Receiver operating characteristics analysis indicated that an anti-SARS-CoV-2 RBD total antibody threshold of 2300 BAU/mL best discriminated between participants either exhibiting or not detectable Omicron BA.2 and Omicron BA.4/5-Spike targeted NtAb responses (87% and 84% precision, respectively). The ML model correctly classified 88% (793/901) of participants in the TC: 717/749 (95.7%) of those displaying ≥2300 BAU/mL and 76/152 (50%) of those exhibiting antibody levels <2300 BAU/mL. The model performed better in vaccinated participants, either with or without prior SARS-CoV-2 infection. The overall accuracy of the ML model in the VC was comparable. Our ML model, based upon a few easily collected parameters for predicting neutralizing activity against Omicron BA.2 and BA.4/5 (sub)variants circumvents the need to perform not only neutralization assays, but also anti-S serological tests, thus potentially saving costs in the setting of large seroprevalence studies.
Supervised machine learning (ML) methods have been used to predict antibody responses elicited by COVID-19 vaccines in a variety of clinical settings. Here, we explored the reliability of a ML approach to predict the presence of detectable neutralizing antibody responses (NtAb) against Omicron BA.2 and BA.4/5 sublineages in the general population. Anti-SARS-CoV-2 receptor-binding domain (RBD) total antibodies were measured by the Elecsys® Anti-SARS-CoV-2 S assay (Roche Diagnostics) in all participants. NtAbs against Omicron BA.2 and BA4/5 were measured using a SARS-CoV-2 S pseudotyped neutralization assay in 100 randomly selected sera. A ML model was built using the variables of age, vaccination (number of doses) and SARS-CoV-2 infection status. The model was trained in a cohort (TC) comprising 931 participants and validated in an external cohort (VC) including 787 individuals. Receiver operating characteristics analysis indicated that an anti-SARS-CoV-2 RBD total antibody threshold of 2300 BAU/mL best discriminated between participants either exhibiting or not detectable Omicron BA.2 and Omicron BA.4/5-Spike targeted NtAb responses (87% and 84% precision, respectively). The ML model correctly classified 88% (793/901) of participants in the TC: 717/749 (95.7%) of those displaying ≥2300 BAU/mL and 76/152 (50%) of those exhibiting antibody levels <2300 BAU/mL. The model performed better in vaccinated participants, either with or without prior SARS-CoV-2 infection. The overall accuracy of the ML model in the VC was comparable. Our ML model, based upon a few easily collected parameters for predicting neutralizing activity against Omicron BA.2 and BA.4/5 (sub)variants circumvents the need to perform not only neutralization assays, but also anti-S serological tests, thus potentially saving costs in the setting of large seroprevalence studies.Supervised machine learning (ML) methods have been used to predict antibody responses elicited by COVID-19 vaccines in a variety of clinical settings. Here, we explored the reliability of a ML approach to predict the presence of detectable neutralizing antibody responses (NtAb) against Omicron BA.2 and BA.4/5 sublineages in the general population. Anti-SARS-CoV-2 receptor-binding domain (RBD) total antibodies were measured by the Elecsys® Anti-SARS-CoV-2 S assay (Roche Diagnostics) in all participants. NtAbs against Omicron BA.2 and BA4/5 were measured using a SARS-CoV-2 S pseudotyped neutralization assay in 100 randomly selected sera. A ML model was built using the variables of age, vaccination (number of doses) and SARS-CoV-2 infection status. The model was trained in a cohort (TC) comprising 931 participants and validated in an external cohort (VC) including 787 individuals. Receiver operating characteristics analysis indicated that an anti-SARS-CoV-2 RBD total antibody threshold of 2300 BAU/mL best discriminated between participants either exhibiting or not detectable Omicron BA.2 and Omicron BA.4/5-Spike targeted NtAb responses (87% and 84% precision, respectively). The ML model correctly classified 88% (793/901) of participants in the TC: 717/749 (95.7%) of those displaying ≥2300 BAU/mL and 76/152 (50%) of those exhibiting antibody levels <2300 BAU/mL. The model performed better in vaccinated participants, either with or without prior SARS-CoV-2 infection. The overall accuracy of the ML model in the VC was comparable. Our ML model, based upon a few easily collected parameters for predicting neutralizing activity against Omicron BA.2 and BA.4/5 (sub)variants circumvents the need to perform not only neutralization assays, but also anti-S serological tests, thus potentially saving costs in the setting of large seroprevalence studies.
Author Álvarez‐Rodríguez, Beatriz
Zulaica, Joao
Navarro, David
Peiró, Salvador
Moreno, Alicia Rodríguez
Giménez, Estela
Camacho, Jorge
Albert, Eliseo
Geller, Ron
Rusu, Luciana
Author_xml – sequence: 1
  givenname: Jorge
  orcidid: 0000-0002-6602-0966
  surname: Camacho
  fullname: Camacho, Jorge
  organization: INCLIVA Biomedical Research Institute
– sequence: 2
  givenname: Eliseo
  surname: Albert
  fullname: Albert, Eliseo
  organization: INCLIVA Biomedical Research Institute
– sequence: 3
  givenname: Beatriz
  surname: Álvarez‐Rodríguez
  fullname: Álvarez‐Rodríguez, Beatriz
  organization: Universitat de Valencia‐CSIC
– sequence: 4
  givenname: Luciana
  surname: Rusu
  fullname: Rusu, Luciana
  organization: Universitat de Valencia‐CSIC
– sequence: 5
  givenname: Joao
  surname: Zulaica
  fullname: Zulaica, Joao
  organization: Universitat de Valencia‐CSIC
– sequence: 6
  givenname: Alicia Rodríguez
  surname: Moreno
  fullname: Moreno, Alicia Rodríguez
  organization: Universitat de Valencia‐CSIC
– sequence: 7
  givenname: Salvador
  orcidid: 0000-0002-3902-569X
  surname: Peiró
  fullname: Peiró, Salvador
  organization: Foundation for the Promotion of Health and Biomedical Research of the Valencian Community (FISABIO)
– sequence: 8
  givenname: Ron
  surname: Geller
  fullname: Geller, Ron
  organization: Universitat de Valencia‐CSIC
– sequence: 9
  givenname: David
  orcidid: 0000-0003-3010-4110
  surname: Navarro
  fullname: Navarro, David
  organization: University of Valencia
– sequence: 10
  givenname: Estela
  surname: Giménez
  fullname: Giménez, Estela
  email: estela.gimenez.quiles@gmail.com
  organization: Instituto de Salud Carlos III
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37185857$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URKeFBS-ALLGBRWb8E9vxchjxq6JKFLqNPMnN1CPHTu2kaFjxCCx5Pp4ET6ewqAQb27r-7rn2OSfoyAcPCD2lZE4JYYttfzNnleL6AZpRomWhiaJHaEZoKQspqThGJyltCSGVZuwROuaKVqISaoZ-LnFvmivrATsw0Vu_wX1oweEuRDxEaG0z7osJ4tRjD9MYjbPf9iWTb27suMNmY6xPIz7vbRODxxfLTxe_vv9Yhcu8MvxqOWfY-HZ_KBcCp2nt8kCzgYStx-MV4A14yLp4CMPkzGiDf4wedsYleHK3n6Ivb15_Xr0rzs7fvl8tz4qGC66LtjWaK85FSdZrqXhZEtKVVEklGgDBlVaE6VZ2UguZ_8zbSnW5sSQgGDDBT9GLg-4Qw_UEaax7mxpwzngIU6pZRUvBSsZ0Rp_fQ7dhij6_LlNEMkFFVWbq2R01rXto6yHa3sRd_cfzDLw8ANmrlCJ0fxFK6n2edc6zvs0zs4t7bGPHW39yDNb9r-OrdbD7t3T94ePloeM3f0uxAA
CitedBy_id crossref_primary_10_3390_vaccines12040352
Cites_doi 10.3389/fimmu.2022.997343
10.1128/jcm.00482-21
10.3390/biomedicines10020204
10.1056/NEJMc2214314
10.1093/cid/ciab079
10.1128/JCM.03149-20
10.1016/j.clim.2021.108918
10.1111/joim.13372
10.1157/13115113
10.1097/TP.0000000000004259
10.1093/cid/ciac223
10.1016/j.cmi.2021.10.005
10.1056/NEJMc2212117
10.3390/vaccines10101757
10.1038/s41598-022-07849-2
10.3390/v15010167
10.1056/NEJMoa2110345
10.1007/s00277-022-04906-8
10.1002/jmv.28284
10.1038/s41591-021-01377-8
10.1126/science.abm3425
ContentType Journal Article
Copyright 2023 Wiley Periodicals LLC.
Copyright_xml – notice: 2023 Wiley Periodicals LLC.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
DOI 10.1002/jmv.28739
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Neurosciences Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Virology and AIDS Abstracts
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE

CrossRef
MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1096-9071
EndPage n/a
ExternalDocumentID 37185857
10_1002_jmv_28739
JMV28739
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABOCM
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AI.
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
ECGQY
EJD
ELTNK
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WHG
WIB
WIH
WIJ
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7TK
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
ID FETCH-LOGICAL-c3539-dda93733540bb6734400f417675cee53797029d6f69568583d87f53940e52e253
IEDL.DBID DR2
ISSN 0146-6615
1096-9071
IngestDate Thu Oct 02 12:15:00 EDT 2025
Tue Oct 07 05:53:21 EDT 2025
Mon Jul 21 05:41:20 EDT 2025
Thu Apr 24 22:58:34 EDT 2025
Wed Oct 01 03:06:55 EDT 2025
Wed Jan 22 16:21:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords BA/4/5 sublineages
neutralizing antibodies
SARS-CoV-2
anti-receptor-binding domain antibodies
Omicron BA.2
machine learning
Language English
License 2023 Wiley Periodicals LLC.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3539-dda93733540bb6734400f417675cee53797029d6f69568583d87f53940e52e253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6602-0966
0000-0002-3902-569X
0000-0003-3010-4110
PMID 37185857
PQID 2806251584
PQPubID 105515
PageCount 8
ParticipantIDs proquest_miscellaneous_2814524229
proquest_journals_2806251584
pubmed_primary_37185857
crossref_primary_10_1002_jmv_28739
crossref_citationtrail_10_1002_jmv_28739
wiley_primary_10_1002_jmv_28739_JMV28739
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
20230401
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: London
PublicationTitle Journal of medical virology
PublicationTitleAlternate J Med Virol
PublicationYear 2023
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2022; 375
2022; 387
2022; 101
2021; 27
2023; 95
2021; 59
2022; 291
2022; 60
2023; 15
2023; 388
2022; 12
2022; 13
2008; 22
2022; 75
2023; S0163‐4453
2022; 10
2021; 385
2022; 106
2021; 73
2022; 28
2022; 234
e_1_2_10_12_1
e_1_2_10_23_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_11_1
e_1_2_10_22_1
e_1_2_10_20_1
Camacho J (e_1_2_10_21_1) 2023; 0163
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
References_xml – volume: 291
  start-page: 32
  year: 2022
  end-page: 50
  article-title: Immunity to SARS‐CoV‐2 induced by infection or vaccination
  publication-title: J Intern Med
– volume: 27
  start-page: 1205
  year: 2021
  end-page: 1211
  article-title: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS‐CoV‐2 infection
  publication-title: Nature Med
– volume: 22
  start-page: 65
  issue: 1
  year: 2008
  end-page: 72
  article-title: Aproximación a la metodología basada en árboles de decisión (CART). Mortalidad hospitalaria del infarto agudo de miocardio
  publication-title: Gac Sanit
– volume: S0163‐4453
  issue: 22
  year: 2023
  article-title: Neutralizing antibodies against Omicron BA.4/5 after COVID‐19 vaccination in SARS‐CoV‐2 experienced versus naïve individuals in the general population
  publication-title: J Infect
– volume: 388
  start-page: 662
  year: 2023
  end-page: 664
  article-title: Substantial neutralization escape by SARS‐CoV‐2 Omicron variants BQ.1.1 and XBB.1
  publication-title: N Engl J Med
– volume: 234
  year: 2022
  article-title: Evaluation of serological anti‐SARS‐CoV‐2 chemiluminescent immunoassays correlated to live virus neutralization test, for the detection of anti‐RBD antibodies as a relevant alternative in COVID‐19 large‐scale neutralizing activity monitoring
  publication-title: Clin Immunol
– volume: 10
  start-page: 1757
  year: 2022
  article-title: Post‐vaccination neutralization responses to Omicron sub‐variants
  publication-title: Vaccines
– volume: 10
  start-page: 204
  year: 2022
  article-title: Predictive factors for neutralizing antibody levels nine months after full vaccination with BNT162b2: results of a machine learning analysis
  publication-title: Biomedicines
– volume: 75
  start-page: e865
  year: 2022
  end-page: e868
  article-title: Severe acute respiratory syndrome coronavirus 2 adaptive immunity in nursing home residents following a third dose of the comirnaty coronavirus disease 2019 vaccine
  publication-title: Clin Infect Dis
– volume: 385
  start-page: 1761
  year: 2021
  end-page: 1773
  article-title: Safety and efficacy of the BNT162b2 mRNA Covid‐19 vaccine
  publication-title: New Engl J Med
– volume: 101
  start-page: 2053
  year: 2022
  end-page: 2067
  article-title: Applicability of probabilistic graphical models for early detection of SARS‐CoV‐2 reactive antibodies after SARS‐CoV‐2 vaccination in hematological patients
  publication-title: Ann Hematol
– volume: 12
  start-page: 3788
  year: 2022
  article-title: Neutralizing antibodies against SARS‐CoV‐2 variants of concern elicited by the comirnaty COVID‐19 vaccine in nursing home residents
  publication-title: Sci Rep
– volume: 15
  start-page: 167
  year: 2023
  article-title: A detailed overview of SARS‐CoV‐2 omicron: its sub‐variants, mutations and pathophysiology, clinical characteristics, immunological landscape, immune escape, and therapies
  publication-title: Viruses
– volume: 375
  start-page: 43
  year: 2022
  end-page: 50
  article-title: Immune correlates analysis of the mRNA‐1273 COVID‐19 vaccine efficacy clinical trial
  publication-title: Science
– volume: 60
  year: 2022
  article-title: Immunity to SARS‐CoV‐2: what do we know and should we be testing for it
  publication-title: J Clin Microbiol
– volume: 13
  year: 2022
  article-title: Development and validation of multivariable prediction models of serological response to SARS‐CoV‐2 vaccination in kidney transplant recipients
  publication-title: Front Immunol
– volume: 28
  start-page: 202
  year: 2022
  end-page: 221
  article-title: Comparing COVID‐19 vaccines for their characteristics, efficacy and effectiveness against SARS‐CoV‐2 and variants of concern: a narrative review
  publication-title: Clin Microbiol Infect
– volume: 387
  start-page: 1904
  year: 2022
  end-page: 1906
  article-title: Neutralization escape by SARS‐CoV‐2 omicron subvariant BA.4.6
  publication-title: N Engl J Med
– volume: 95
  year: 2023
  article-title: Cumulative incidence of SARS‐CoV‐2 infection in the general population of the valencian community (Spain) after the surge of the Omicron BA.1 variant
  publication-title: J Med Virol
– volume: 106
  start-page: e452
  year: 2022
  end-page: e460
  article-title: Predicting a positive antibody response after 2 SARS‐CoV‐2 mRNA vaccines in transplant recipients: a machine learning approach with external validation
  publication-title: Transplantation
– volume: 73
  start-page: 2257
  issue: 12
  year: 2021
  end-page: 2264
  article-title: The impact of vaccination on coronavirus disease 2019 (COVID‐19) outbreaks in the United States
  publication-title: Clin Infect Dis
– volume: 59
  start-page: e03149
  year: 2021
  end-page: e03120
  article-title: Quantitative measurement of anti‐SARS‐CoV‐2 antibodies: analytical and clinical evaluation
  publication-title: J Clin Microbiol
– ident: e_1_2_10_14_1
  doi: 10.3389/fimmu.2022.997343
– ident: e_1_2_10_8_1
  doi: 10.1128/jcm.00482-21
– ident: e_1_2_10_13_1
  doi: 10.3390/biomedicines10020204
– ident: e_1_2_10_23_1
  doi: 10.1056/NEJMc2214314
– volume: 0163
  issue: 22
  year: 2023
  ident: e_1_2_10_21_1
  article-title: Neutralizing antibodies against Omicron BA.4/5 after COVID‐19 vaccination in SARS‐CoV‐2 experienced versus naïve individuals in the general population
  publication-title: J Infect
– ident: e_1_2_10_2_1
  doi: 10.1093/cid/ciab079
– ident: e_1_2_10_9_1
  doi: 10.1128/JCM.03149-20
– ident: e_1_2_10_7_1
  doi: 10.1016/j.clim.2021.108918
– ident: e_1_2_10_6_1
  doi: 10.1111/joim.13372
– ident: e_1_2_10_17_1
  doi: 10.1157/13115113
– ident: e_1_2_10_15_1
  doi: 10.1097/TP.0000000000004259
– ident: e_1_2_10_19_1
  doi: 10.1093/cid/ciac223
– ident: e_1_2_10_3_1
  doi: 10.1016/j.cmi.2021.10.005
– ident: e_1_2_10_10_1
  doi: 10.1056/NEJMc2212117
– ident: e_1_2_10_11_1
  doi: 10.3390/vaccines10101757
– ident: e_1_2_10_20_1
  doi: 10.1038/s41598-022-07849-2
– ident: e_1_2_10_22_1
  doi: 10.3390/v15010167
– ident: e_1_2_10_4_1
  doi: 10.1056/NEJMoa2110345
– ident: e_1_2_10_16_1
  doi: 10.1007/s00277-022-04906-8
– ident: e_1_2_10_18_1
  doi: 10.1002/jmv.28284
– ident: e_1_2_10_12_1
  doi: 10.1038/s41591-021-01377-8
– ident: e_1_2_10_5_1
  doi: 10.1126/science.abm3425
SSID ssj0008922
Score 2.3974857
Snippet Supervised machine learning (ML) methods have been used to predict antibody responses elicited by COVID‐19 vaccines in a variety of clinical settings. Here, we...
Supervised machine learning (ML) methods have been used to predict antibody responses elicited by COVID-19 vaccines in a variety of clinical settings. Here, we...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e28739
SubjectTerms Antibodies
Antibodies, Neutralizing
Antibodies, Viral
anti‐receptor‐binding domain antibodies
Assaying
BA/4/5 sublineages
COVID-19
COVID-19 - prevention & control
COVID-19 Vaccines
Humans
Learning algorithms
Machine Learning
Neutralization
Neutralizing
neutralizing antibodies
Omicron BA.2
Reproducibility of Results
SARS-CoV-2
Seroepidemiologic Studies
Serological tests
Serology
Severe acute respiratory syndrome
Severe acute respiratory syndrome coronavirus 2
Supervised learning
Vaccines
Virology
Title A machine learning model for predicting serum neutralizing activity against Omicron SARS‐CoV‐2 BA.2 and BA.4/5 sublineages in the general population
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjmv.28739
https://www.ncbi.nlm.nih.gov/pubmed/37185857
https://www.proquest.com/docview/2806251584
https://www.proquest.com/docview/2814524229
Volume 95
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0146-6615
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1096-9071
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008922
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqHhAX3o-FggbEgUt2Ez_yEKeloqoqLUgtrXpAihzbWRVY76q74dATP4Ejv49fwozzqMpDQlyiKJnEjjNjf7ZnvmHsRZJZq43jUWIKE0kRV5HOtY3S1GWyMHVtAtnz7G26fywPTtXpFnvVx8K0_BDDghtZRuivycB1tZ5ckoZ-XHwZI9wXFLyXiDRMpw4vqaPyot1BwJ4AC05UzyoU88nw5NWx6DeAeRWvhgFn7yb70Fe19TP5NG421dhc_MLi-J_fcovd6IAoTFvNuc22nL_Drs26rfa77PsUFsHR0kGXWWIOIW0OIMyF1TkJkss0oA43C_CuCWsmF3SJgiUoJwXouT5D_AnvFuT35-Foenj04-u33eUJHjm8no45aG_pRE4UrGlNzDvs4tZw5gGxKcxbWmxYDYnG7rHjvTfvd_ejLo1DZIQSRYTKgBhI0AJTVaWZkNht1DIhFhkcoZXIiizmhU3rlEIXVS5sntWKMrY7xR1X4j7b9kvvHjLQsrAWUY1TjnjoYq2NjrmRRlpb5VKO2Mv-h5am4zinVBufy5admZfY0mVo6RF7PoiuWmKPPwnt9FpRdra9LmkvGlEhIrcRezbcRqukrRbt3bIhmUQqRD8cX_Gg1aahFIFwACdpGVY26MTfiy8PZifh5NG_iz5m1znisNa5aIdtb84b9wRx06Z6GgzkJ3siFO8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkYAL78dCgQFx4JLdxI88JC5LRbWUbpH6Ui8ocmzvqsBmV90Nh574CRz5ffwSZpxHVR4S4hJFySR2nBn783j8DWMvosRabRwPIpOZQIqwCHSqbRDHLpGZmUyMJ3se78ajQ7l9rI7X2Kt2L0zND9E53MgyfH9NBk4O6cE5a-jH2Zc-4n2RXWKXZYzzFIJEe-fkUWlWryFgX4BFR6rlFQr5oHv04mj0G8S8iFj9kLN1g31oK1tHmnzqV6uib85-4XH836-5ya43WBSGtfLcYmuuvM2ujJvV9jvs-xBmPtbSQZNcYgo-cw4g0oXFKQlS1DSgGlczKF3l3SZndIn2S1BaCtBTfYIQFN7PKPSvhP3h3v6Pr98250d45PB62OegS0sncqBgSW6x0mEvt4STEhCewrRmxoZFl2vsLjvcenOwOQqaTA6BEUpkAeoDwiBBPqaiiBMhseeYyIiIZHCQViLJkpBnNp7EtHtRpcKmyURR0nanuONK3GPr5bx0DxhomVmLwMYpR1R0odZGh9xII60tUil77GX7R3PT0JxTto3PeU3QzHNs6dy3dI8970QXNbfHn4Q2WrXIG_Ne5rQcjcAQwVuPPetuo2HSaosu3bwimUgqBEAcX3G_VqeuFIGIAOdpCVbWK8Xfi8-3x0f-5OG_iz5lV0cH45185-3uu0fsGkdYVscabbD11WnlHiOMWhVPvLX8BMasGRA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKkSouvB8LBQziwCW7iR95SFyWllUpbEEtrXqpIsd2VqXd7Kq74dATP4Ejv49fwoydpCoPCXGJrGQSO86M_cUz_oaQF1FijNKWBZHOdCB4WAQqVSaIY5uITJeldmTP4514a19sH8rDFfKq3Qvj-SG6BTe0DDdeo4HbuSkHF6yhn6df-oD3eXaFXBUySzGgb3P3gjwqzbwPAcYCqDqSLa9QyAbdrZdno98g5mXE6qac0Q1y1DbWR5qc9Otl0dfnv_A4_u_b3CTXGyxKh155bpEVW90ma-PG236HfB_SqYu1tLRJLjGhLnMOBaRL52coiFHTFNS4ntLK1m7Z5BxP4X4JTEtB1UQdAwSlH6YY-lfRveHu3o-v3zZmB3Bk9PWwz6iqDBbEQNIFLotVFka5BT2uKMBTOvHM2HTe5Rq7S_ZHbz5tbAVNJodAc8mzAPQBYBDHNaaiiBMuYOQoRYREMjBJS55kScgyE5cx7l6UKTdpUkpM2m4ls0zye2S1mlX2AaFKZMYAsLHSIhVdqJRWIdNCC2OKVIgeedl-0Vw3NOeYbeM09wTNLIeezl1P98jzTnTuuT3-JLTeqkXemPciR3c0AEMAbz3yrLsMhoneFlXZWY0ykZAAgBg84r5Xp64WDogA_tMSaKxTir9Xn2-PD1zh4b-LPiVrHzdH-fu3O-8ekWsMUJkPNVonq8uz2j4GFLUsnjhj-QlNJhiU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+machine+learning+model+for+predicting+serum+neutralizing+activity+against+Omicron+SARS-CoV-2+BA.2+and+BA.4%2F5+sublineages+in+the+general+population&rft.jtitle=Journal+of+medical+virology&rft.au=Camacho%2C+Jorge&rft.au=Albert%2C+Eliseo&rft.au=%C3%81lvarez-Rodr%C3%ADguez%2C+Beatriz&rft.au=Rusu%2C+Luciana&rft.date=2023-04-01&rft.issn=1096-9071&rft.eissn=1096-9071&rft.volume=95&rft.issue=4&rft.spage=e28739&rft_id=info:doi/10.1002%2Fjmv.28739&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0146-6615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0146-6615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0146-6615&client=summon