A web‐based algorithm to rapidly classify seizures for the purpose of drug selection

Objective To develop and validate a pragmatic algorithm that classifies seizure types, to facilitate therapeutic decision‐making. Methods Using a modified Delphi method, five experts developed a pragmatic classification of nine types of epileptic seizures or combinations of seizures that influence c...

Full description

Saved in:
Bibliographic Details
Published inEpilepsia (Copenhagen) Vol. 62; no. 10; pp. 2474 - 2484
Main Authors Beniczky, Sándor, Asadi‐Pooya, Ali A., Perucca, Emilio, Rubboli, Guido, Tartara, Elena, Meritam Larsen, Pirgit, Ebrahimi, Saqar, Farzinmehr, Somayeh, Rampp, Stefan, Sperling, Michael R.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.10.2021
Subjects
Online AccessGet full text
ISSN0013-9580
1528-1167
1528-1167
DOI10.1111/epi.17039

Cover

Abstract Objective To develop and validate a pragmatic algorithm that classifies seizure types, to facilitate therapeutic decision‐making. Methods Using a modified Delphi method, five experts developed a pragmatic classification of nine types of epileptic seizures or combinations of seizures that influence choice of medication, and constructed a simple algorithm, freely available on the internet. The algorithm consists of seven questions applicable to patients with seizure onset at the age of 10 years or older. Questions to screen for nonepileptic attacks were added. Junior physicians, nurses, and physician assistants applied the algorithm to consecutive patients in a multicenter prospective validation study (ClinicalTrials.gov identifier: NCT03796520). The reference standard was the seizure classification by expert epileptologists, based on all available data, including electroencephalogram (EEG), video‐EEG monitoring, and neuroimaging. In addition, physicians working in underserved areas assessed the feasibility of using the web‐based algorithm in their clinical setting. Results A total of 262 patients were assessed, of whom 157 had focal, 51 had generalized, and 10 had unknown onset epileptic seizures, and 44 had nonepileptic paroxysmal events. Agreement between the algorithm and the expert classification was 83.2% (95% confidence interval = 78.6%–87.8%), with an agreement coefficient (AC1) of .82 (95% confidence interval = .77–.87), indicating almost perfect agreement. Thirty‐two health care professionals from 14 countries evaluated the feasibility of the web‐based algorithm in their clinical setting, and found it applicable and useful for their practice (median = 6.5 on 7‐point Likert scale). Significance The web‐based algorithm provides an accurate classification of seizure types, which can be used for selecting antiseizure medications in adolescents and adults.
AbstractList To develop and validate a pragmatic algorithm that classifies seizure types, to facilitate therapeutic decision-making.OBJECTIVETo develop and validate a pragmatic algorithm that classifies seizure types, to facilitate therapeutic decision-making.Using a modified Delphi method, five experts developed a pragmatic classification of nine types of epileptic seizures or combinations of seizures that influence choice of medication, and constructed a simple algorithm, freely available on the internet. The algorithm consists of seven questions applicable to patients with seizure onset at the age of 10 years or older. Questions to screen for nonepileptic attacks were added. Junior physicians, nurses, and physician assistants applied the algorithm to consecutive patients in a multicenter prospective validation study (ClinicalTrials.gov identifier: NCT03796520). The reference standard was the seizure classification by expert epileptologists, based on all available data, including electroencephalogram (EEG), video-EEG monitoring, and neuroimaging. In addition, physicians working in underserved areas assessed the feasibility of using the web-based algorithm in their clinical setting.METHODSUsing a modified Delphi method, five experts developed a pragmatic classification of nine types of epileptic seizures or combinations of seizures that influence choice of medication, and constructed a simple algorithm, freely available on the internet. The algorithm consists of seven questions applicable to patients with seizure onset at the age of 10 years or older. Questions to screen for nonepileptic attacks were added. Junior physicians, nurses, and physician assistants applied the algorithm to consecutive patients in a multicenter prospective validation study (ClinicalTrials.gov identifier: NCT03796520). The reference standard was the seizure classification by expert epileptologists, based on all available data, including electroencephalogram (EEG), video-EEG monitoring, and neuroimaging. In addition, physicians working in underserved areas assessed the feasibility of using the web-based algorithm in their clinical setting.A total of 262 patients were assessed, of whom 157 had focal, 51 had generalized, and 10 had unknown onset epileptic seizures, and 44 had nonepileptic paroxysmal events. Agreement between the algorithm and the expert classification was 83.2% (95% confidence interval = 78.6%-87.8%), with an agreement coefficient (AC1) of .82 (95% confidence interval = .77-.87), indicating almost perfect agreement. Thirty-two health care professionals from 14 countries evaluated the feasibility of the web-based algorithm in their clinical setting, and found it applicable and useful for their practice (median = 6.5 on 7-point Likert scale).RESULTSA total of 262 patients were assessed, of whom 157 had focal, 51 had generalized, and 10 had unknown onset epileptic seizures, and 44 had nonepileptic paroxysmal events. Agreement between the algorithm and the expert classification was 83.2% (95% confidence interval = 78.6%-87.8%), with an agreement coefficient (AC1) of .82 (95% confidence interval = .77-.87), indicating almost perfect agreement. Thirty-two health care professionals from 14 countries evaluated the feasibility of the web-based algorithm in their clinical setting, and found it applicable and useful for their practice (median = 6.5 on 7-point Likert scale).The web-based algorithm provides an accurate classification of seizure types, which can be used for selecting antiseizure medications in adolescents and adults.SIGNIFICANCEThe web-based algorithm provides an accurate classification of seizure types, which can be used for selecting antiseizure medications in adolescents and adults.
To develop and validate a pragmatic algorithm that classifies seizure types, to facilitate therapeutic decision-making. Using a modified Delphi method, five experts developed a pragmatic classification of nine types of epileptic seizures or combinations of seizures that influence choice of medication, and constructed a simple algorithm, freely available on the internet. The algorithm consists of seven questions applicable to patients with seizure onset at the age of 10 years or older. Questions to screen for nonepileptic attacks were added. Junior physicians, nurses, and physician assistants applied the algorithm to consecutive patients in a multicenter prospective validation study (ClinicalTrials.gov identifier: NCT03796520). The reference standard was the seizure classification by expert epileptologists, based on all available data, including electroencephalogram (EEG), video-EEG monitoring, and neuroimaging. In addition, physicians working in underserved areas assessed the feasibility of using the web-based algorithm in their clinical setting. A total of 262 patients were assessed, of whom 157 had focal, 51 had generalized, and 10 had unknown onset epileptic seizures, and 44 had nonepileptic paroxysmal events. Agreement between the algorithm and the expert classification was 83.2% (95% confidence interval = 78.6%-87.8%), with an agreement coefficient (AC1) of .82 (95% confidence interval = .77-.87), indicating almost perfect agreement. Thirty-two health care professionals from 14 countries evaluated the feasibility of the web-based algorithm in their clinical setting, and found it applicable and useful for their practice (median = 6.5 on 7-point Likert scale). The web-based algorithm provides an accurate classification of seizure types, which can be used for selecting antiseizure medications in adolescents and adults.
ObjectiveTo develop and validate a pragmatic algorithm that classifies seizure types, to facilitate therapeutic decision‐making.MethodsUsing a modified Delphi method, five experts developed a pragmatic classification of nine types of epileptic seizures or combinations of seizures that influence choice of medication, and constructed a simple algorithm, freely available on the internet. The algorithm consists of seven questions applicable to patients with seizure onset at the age of 10 years or older. Questions to screen for nonepileptic attacks were added. Junior physicians, nurses, and physician assistants applied the algorithm to consecutive patients in a multicenter prospective validation study (ClinicalTrials.gov identifier: NCT03796520). The reference standard was the seizure classification by expert epileptologists, based on all available data, including electroencephalogram (EEG), video‐EEG monitoring, and neuroimaging. In addition, physicians working in underserved areas assessed the feasibility of using the web‐based algorithm in their clinical setting.ResultsA total of 262 patients were assessed, of whom 157 had focal, 51 had generalized, and 10 had unknown onset epileptic seizures, and 44 had nonepileptic paroxysmal events. Agreement between the algorithm and the expert classification was 83.2% (95% confidence interval = 78.6%–87.8%), with an agreement coefficient (AC1) of .82 (95% confidence interval = .77–.87), indicating almost perfect agreement. Thirty‐two health care professionals from 14 countries evaluated the feasibility of the web‐based algorithm in their clinical setting, and found it applicable and useful for their practice (median = 6.5 on 7‐point Likert scale).SignificanceThe web‐based algorithm provides an accurate classification of seizure types, which can be used for selecting antiseizure medications in adolescents and adults.
Objective To develop and validate a pragmatic algorithm that classifies seizure types, to facilitate therapeutic decision‐making. Methods Using a modified Delphi method, five experts developed a pragmatic classification of nine types of epileptic seizures or combinations of seizures that influence choice of medication, and constructed a simple algorithm, freely available on the internet. The algorithm consists of seven questions applicable to patients with seizure onset at the age of 10 years or older. Questions to screen for nonepileptic attacks were added. Junior physicians, nurses, and physician assistants applied the algorithm to consecutive patients in a multicenter prospective validation study (ClinicalTrials.gov identifier: NCT03796520). The reference standard was the seizure classification by expert epileptologists, based on all available data, including electroencephalogram (EEG), video‐EEG monitoring, and neuroimaging. In addition, physicians working in underserved areas assessed the feasibility of using the web‐based algorithm in their clinical setting. Results A total of 262 patients were assessed, of whom 157 had focal, 51 had generalized, and 10 had unknown onset epileptic seizures, and 44 had nonepileptic paroxysmal events. Agreement between the algorithm and the expert classification was 83.2% (95% confidence interval = 78.6%–87.8%), with an agreement coefficient (AC1) of .82 (95% confidence interval = .77–.87), indicating almost perfect agreement. Thirty‐two health care professionals from 14 countries evaluated the feasibility of the web‐based algorithm in their clinical setting, and found it applicable and useful for their practice (median = 6.5 on 7‐point Likert scale). Significance The web‐based algorithm provides an accurate classification of seizure types, which can be used for selecting antiseizure medications in adolescents and adults.
Author Rubboli, Guido
Ebrahimi, Saqar
Perucca, Emilio
Meritam Larsen, Pirgit
Sperling, Michael R.
Rampp, Stefan
Beniczky, Sándor
Farzinmehr, Somayeh
Asadi‐Pooya, Ali A.
Tartara, Elena
Author_xml – sequence: 1
  givenname: Sándor
  orcidid: 0000-0002-6035-6581
  surname: Beniczky
  fullname: Beniczky, Sándor
  email: sbz@filadelfia.dk
  organization: Aarhus University Hospital
– sequence: 2
  givenname: Ali A.
  orcidid: 0000-0002-2598-7601
  surname: Asadi‐Pooya
  fullname: Asadi‐Pooya, Ali A.
  organization: Thomas Jefferson University
– sequence: 3
  givenname: Emilio
  orcidid: 0000-0001-8703-223X
  surname: Perucca
  fullname: Perucca, Emilio
  organization: Istituto Neurologico Nazionale a Carattere Scientific Mondino Foundation Pavia
– sequence: 4
  givenname: Guido
  orcidid: 0000-0002-5309-2514
  surname: Rubboli
  fullname: Rubboli, Guido
  organization: University of Copenhagen
– sequence: 5
  givenname: Elena
  orcidid: 0000-0003-1656-5420
  surname: Tartara
  fullname: Tartara, Elena
  organization: IRCCS Mondino Foundation Pavia
– sequence: 6
  givenname: Pirgit
  surname: Meritam Larsen
  fullname: Meritam Larsen, Pirgit
  organization: Danish Epilepsy Center
– sequence: 7
  givenname: Saqar
  surname: Ebrahimi
  fullname: Ebrahimi, Saqar
  organization: Shiraz University of Medical Sciences
– sequence: 8
  givenname: Somayeh
  surname: Farzinmehr
  fullname: Farzinmehr, Somayeh
  organization: Shiraz University of Medical Sciences
– sequence: 9
  givenname: Stefan
  orcidid: 0000-0002-4826-1520
  surname: Rampp
  fullname: Rampp, Stefan
  organization: University Hospital Halle
– sequence: 10
  givenname: Michael R.
  orcidid: 0000-0003-0708-6006
  surname: Sperling
  fullname: Sperling, Michael R.
  organization: Thomas Jefferson University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34420206$$D View this record in MEDLINE/PubMed
BookMark eNp1kcFO3DAQhi0EKgv0wAsgS1zaQ2Ac23FyRIi2SEjlAFwtJxmDkTcOdiK0nPoIfcY-SU13uaAyl9FI3_9rZv49sj2EAQk5ZHDCcp3i6E6YAt5skQWTZV0wVqltsgBgvGhkDbtkL6VHAFCV4p_ILheihBKqBbk7o8_Y_vn1uzUJe2r8fYhueljSKdBoRtf7Fe28ScnZFU3oXuaIidoQ6fSAdJzjGBLSYGkf5_sMeOwmF4YDsmONT_h50_fJ7beLm_MfxdXP75fnZ1dFxyVvCtMiiLqvOUAesWO2ZIBgjKlL1kuhZMtNK7p8gpR9VQnbmEaBtU2LQjY93ydf1r5jDE8zpkkvXerQezNgmJMuZcWrRtWizOjxO_QxzHHI22VK1SBAKpapow01t0vs9Rjd0sSVfvtYBk7XQBdDShGt7txkXm-eonFeM9Cvmeicif6XSVZ8fad4M_0fu3F_dh5XH4P64vpyrfgL7Piarw
CitedBy_id crossref_primary_10_1111_epi_17129
crossref_primary_10_1111_epi_17833
crossref_primary_10_1177_15357597211062385
crossref_primary_10_1016_S0140_6736_23_01048_6
crossref_primary_10_1111_epi_18062
crossref_primary_10_1038_s41598_024_51846_6
crossref_primary_10_1016_j_seizure_2023_08_017
crossref_primary_10_1016_j_yebeh_2024_109793
Cites_doi 10.1111/epi.16610
10.2471/BLT.09.064147
10.1111/epi.13670
10.1016/j.seizure.2013.01.010
10.1136/bmj.326.7379.41
10.1016/j.seizure.2014.03.010
10.1186/1471-2288-13-61
10.1111/epi.14699
10.2307/2529310
10.1016/j.seizure.2017.12.006
10.1159/000115641
10.1016/S0140-6736(14)60456-6
10.1080/01621459.1927.10502953
10.1111/epi.16763
10.1016/j.yebeh.2018.03.018
10.1016/j.yebeh.2016.11.028
10.1212/CPJ.0000000000000726
10.1016/S0140-6736(06)68477-8
10.1111/epi.12653
10.1001/jamaneurol.2017.3949
10.1111/j.1468-1331.2008.02260.x
10.1097/00004691-200302000-00005
10.1111/epi.12002
10.1111/j.1528-1167.2008.01693.x
10.1111/epi.12074
10.1016/j.seizure.2016.11.029
10.1093/qjmed/92.1.15
10.1212/WNL.0000000000003509
10.1016/S0140-6736(18)32596-0
10.1016/j.seizure.2015.05.011
10.1111/epi.13799
10.1348/000711006X126600
ContentType Journal Article
Copyright 2021 International League Against Epilepsy
2021 International League Against Epilepsy.
Copyright © 2021 International League Against Epilepsy
Copyright_xml – notice: 2021 International League Against Epilepsy
– notice: 2021 International League Against Epilepsy.
– notice: Copyright © 2021 International League Against Epilepsy
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
DOI 10.1111/epi.17039
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Neurosciences Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1528-1167
EndPage 2484
ExternalDocumentID 34420206
10_1111_epi_17039
EPI17039
Genre article
Research Support, Non-U.S. Gov't
Multicenter Study
Journal Article
GrantInformation_xml – fundername: Filadelfia Research Foundation (Denmark)
GroupedDBID ---
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
24P
29G
2WC
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAGKA
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIVO
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AI.
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BAWUL
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DCZOG
DIK
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
ESX
EX3
F00
F01
F04
F5P
FEDTE
FIJ
FUBAC
FYBCS
G-S
G.N
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IPNFZ
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OHT
OIG
OK1
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TEORI
TR2
UB1
V8K
V9Y
VH1
W8V
W99
WBKPD
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOW
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
YFH
YOC
YUY
ZGI
ZXP
ZZTAW
~IA
~WT
AAFWJ
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7X8
ID FETCH-LOGICAL-c3539-abe048d8300539ec1f210e0aaa821d5475b3ab4c58055d664f9a970ff9be459d3
IEDL.DBID DR2
ISSN 0013-9580
1528-1167
IngestDate Fri Sep 05 08:58:31 EDT 2025
Wed Aug 13 04:04:50 EDT 2025
Mon Jul 21 05:59:05 EDT 2025
Thu Apr 24 22:59:15 EDT 2025
Wed Oct 01 03:58:07 EDT 2025
Wed Jan 22 17:20:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords epilepsy
seizure
classification
web-based application
algorithm
Language English
License 2021 International League Against Epilepsy.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3539-abe048d8300539ec1f210e0aaa821d5475b3ab4c58055d664f9a970ff9be459d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0708-6006
0000-0002-4826-1520
0000-0003-1656-5420
0000-0001-8703-223X
0000-0002-5309-2514
0000-0002-2598-7601
0000-0002-6035-6581
PMID 34420206
PQID 2578040571
PQPubID 1066359
PageCount 11
ParticipantIDs proquest_miscellaneous_2563697842
proquest_journals_2578040571
pubmed_primary_34420206
crossref_citationtrail_10_1111_epi_17039
crossref_primary_10_1111_epi_17039
wiley_primary_10_1111_epi_17039_EPI17039
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Epilepsia (Copenhagen)
PublicationTitleAlternate Epilepsia
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2013; 22
2020; 61
2017; 88
2017; 44
2015; 30
2015; 385
2017; 67
2008; 15
2008; 59
2018; 82
2020; 10
2014; 23
2012; 53
2010; 88
1927; 22
2019; 60
2003; 326
2017; 58
2013; 54
2013; 13
2008; 49
2018
1977; 33
2019; 393
2008; 61
1999; 92
2018; 55
2018; 75
2021; 62
2003; 20
2014; 55
2006; 367
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 22
  start-page: 271
  year: 2013
  end-page: 4
  article-title: Reasons for uncontrolled seizures in adults; the impact of pseudointractability
  publication-title: Seizure
– volume: 61
  start-page: 1668
  year: 2020
  end-page: 77
  article-title: A pragmatic algorithm to select appropriate antiseizure medications in patients with epilepsy
  publication-title: Epilepsia
– volume: 33
  start-page: 159
  year: 1977
  end-page: 74
  article-title: The measurement of observer agreement for categorical data
  publication-title: Biometrics
– volume: 75
  start-page: 279
  year: 2018
  end-page: 86
  article-title: Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30‐year longitudinal cohort study
  publication-title: JAMA Neurol
– volume: 59
  start-page: 267
  year: 2008
  end-page: 71
  article-title: Errors in EEG interpretation and misdiagnosis of epilepsy. Which EEG patterns are overread?
  publication-title: Eur Neurol
– volume: 92
  start-page: 15
  year: 1999
  end-page: 23
  article-title: The misdiagnosis of epilepsy and the management of refractory epilepsy in a specialist clinic
  publication-title: QJM
– volume: 55
  start-page: 1366
  year: 2014
  end-page: 73
  article-title: Interrater agreement for critical care EEG terminology
  publication-title: Epilepsia
– volume: 49
  start-page: 1491
  year: 2008
  end-page: 503
  article-title: The epilepsy treatment gap in developing countries: a systematic review of the magnitude, causes, and intervention strategies
  publication-title: Epilepsia
– volume: 326
  start-page: 41
  year: 2003
  end-page: 4
  article-title: Towards complete and accurate reporting of studies of diagnostic accuracy: the STARD initiative
  publication-title: BMJ
– volume: 60
  start-page: 1032
  year: 2019
  end-page: 9
  article-title: Critique of the 2017 epileptic seizure and epilepsy classifications
  publication-title: Epilepsia
– volume: 30
  start-page: 46
  year: 2015
  end-page: 9
  article-title: Validation of a phone app for epilepsy diagnosis in India and Nepal
  publication-title: Seizure
– volume: 10
  start-page: 96
  year: 2020
  end-page: 105
  article-title: Machine learning as a diagnostic decision aid for patients with transient loss of consciousness
  publication-title: Neurol Clin Pract
– volume: 54
  start-page: 551
  year: 2013
  end-page: 63
  article-title: Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes
  publication-title: Epilepsia
– volume: 15
  start-page: 1034
  year: 2008
  end-page: 42
  article-title: Misdiagnosis in epilepsy: a review and recognition of diagnostic uncertainty
  publication-title: Eur J Neurol
– year: 2018
– volume: 393
  start-page: 689
  year: 2019
  end-page: 701
  article-title: Epilepsy in adults
  publication-title: Lancet
– volume: 58
  start-page: 1298
  year: 2017
  end-page: 300
  article-title: The new ILAE seizure classification: 63 seizure types?
  publication-title: Epilepsia
– volume: 88
  start-page: 260
  year: 2010
  end-page: 6
  article-title: Global disparities in the epilepsy treatment gap: a systematic review
  publication-title: Bull World Health Organ
– volume: 55
  start-page: 4
  year: 2018
  end-page: 8
  article-title: Diagnosis of epileptic seizures by community health workers using a mobile app: a comparison with physicians and a neurologist
  publication-title: Seizure
– volume: 88
  start-page: 296
  year: 2017
  end-page: 303
  article-title: Prevalence and incidence of epilepsy: a systematic review and meta‐analysis of international studies
  publication-title: Neurology
– volume: 53
  start-page: 2178
  year: 2012
  end-page: 85
  article-title: Critical determinants of the epilepsy treatment gap: a cross‐national analysis in resource‐limited settings
  publication-title: Epilepsia
– volume: 13
  start-page: 61
  year: 2013
  article-title: A comparison of Cohen's Kappa and Gwet's AC1 when calculating inter‐rater reliability coefficients: a study conducted with personality disorder samples
  publication-title: BMC Med Res Methodol
– volume: 82
  start-page: 140
  year: 2018
  end-page: 3
  article-title: Usage of EpiFinder clinical decision support in the assessment of epilepsy
  publication-title: Epilepsy Behav
– volume: 22
  start-page: 209
  year: 1927
  end-page: 12
  article-title: Probable inference, the law of succession, and statistical inference
  publication-title: J Am Stat Assoc
– volume: 62
  start-page: 220
  year: 2021
  end-page: 7
  article-title: Optimal choice of antiseizure medication: agreement among experts and validation of a web‐based decision support application
  publication-title: Epilepsia
– volume: 20
  start-page: 42
  year: 2003
  end-page: 4
  article-title: Overintepretation of EEGs and misdiagnosis of epilepsy
  publication-title: J Clin Neurophysiol
– volume: 67
  start-page: 98
  year: 2017
  end-page: 104
  article-title: Epilepsy and treatment gap in urban and rural areas of the Southern Kazakhstan in adults
  publication-title: Epilepsy Behav
– volume: 58
  start-page: 522
  year: 2017
  end-page: 30
  article-title: Operational classification of seizure types by the International League Against Epilepsy: position paper of the ILAE Commission for Classification and Terminology
  publication-title: Epilepsia
– volume: 61
  start-page: 29
  year: 2008
  end-page: 48
  article-title: Computing inter‐rater reliability and its variance in the presence of high agreement
  publication-title: Br J Math Stat Psychol
– volume: 23
  start-page: 567
  year: 2014
  end-page: 9
  article-title: A Bayesian tool for epilepsy diagnosis in the resource‐poor world: development and early validation
  publication-title: Seizure
– volume: 367
  start-page: 1087
  year: 2006
  end-page: 100
  article-title: Adult epilepsy
  publication-title: Lancet
– volume: 44
  start-page: 143
  year: 2017
  end-page: 6
  article-title: The misdiagnosis of epilepsy: appraising risks and managing uncertainty
  publication-title: Seizure
– volume: 385
  start-page: 884
  year: 2015
  end-page: 98
  article-title: Epilepsy: new advances
  publication-title: Lancet
– ident: e_1_2_8_8_1
  doi: 10.1111/epi.16610
– ident: e_1_2_8_12_1
  doi: 10.2471/BLT.09.064147
– ident: e_1_2_8_6_1
  doi: 10.1111/epi.13670
– ident: e_1_2_8_18_1
  doi: 10.1016/j.seizure.2013.01.010
– ident: e_1_2_8_27_1
  doi: 10.1136/bmj.326.7379.41
– ident: e_1_2_8_31_1
  doi: 10.1016/j.seizure.2014.03.010
– ident: e_1_2_8_24_1
  doi: 10.1186/1471-2288-13-61
– ident: e_1_2_8_30_1
  doi: 10.1111/epi.14699
– ident: e_1_2_8_26_1
  doi: 10.2307/2529310
– ident: e_1_2_8_33_1
  doi: 10.1016/j.seizure.2017.12.006
– ident: e_1_2_8_21_1
  doi: 10.1159/000115641
– ident: e_1_2_8_29_1
  doi: 10.1016/S0140-6736(14)60456-6
– ident: e_1_2_8_28_1
– ident: e_1_2_8_22_1
  doi: 10.1080/01621459.1927.10502953
– ident: e_1_2_8_9_1
  doi: 10.1111/epi.16763
– ident: e_1_2_8_34_1
  doi: 10.1016/j.yebeh.2018.03.018
– ident: e_1_2_8_14_1
  doi: 10.1016/j.yebeh.2016.11.028
– ident: e_1_2_8_35_1
  doi: 10.1212/CPJ.0000000000000726
– ident: e_1_2_8_4_1
  doi: 10.1016/S0140-6736(06)68477-8
– ident: e_1_2_8_25_1
  doi: 10.1111/epi.12653
– ident: e_1_2_8_5_1
  doi: 10.1001/jamaneurol.2017.3949
– ident: e_1_2_8_19_1
– ident: e_1_2_8_16_1
  doi: 10.1111/j.1468-1331.2008.02260.x
– ident: e_1_2_8_20_1
  doi: 10.1097/00004691-200302000-00005
– ident: e_1_2_8_13_1
  doi: 10.1111/epi.12002
– ident: e_1_2_8_11_1
  doi: 10.1111/j.1528-1167.2008.01693.x
– ident: e_1_2_8_10_1
  doi: 10.1111/epi.12074
– ident: e_1_2_8_15_1
  doi: 10.1016/j.seizure.2016.11.029
– ident: e_1_2_8_17_1
  doi: 10.1093/qjmed/92.1.15
– ident: e_1_2_8_2_1
  doi: 10.1212/WNL.0000000000003509
– ident: e_1_2_8_3_1
  doi: 10.1016/S0140-6736(18)32596-0
– ident: e_1_2_8_32_1
  doi: 10.1016/j.seizure.2015.05.011
– ident: e_1_2_8_7_1
  doi: 10.1111/epi.13799
– ident: e_1_2_8_23_1
  doi: 10.1348/000711006X126600
SSID ssj0007673
Score 2.4255328
Snippet Objective To develop and validate a pragmatic algorithm that classifies seizure types, to facilitate therapeutic decision‐making. Methods Using a modified...
To develop and validate a pragmatic algorithm that classifies seizure types, to facilitate therapeutic decision-making. Using a modified Delphi method, five...
ObjectiveTo develop and validate a pragmatic algorithm that classifies seizure types, to facilitate therapeutic decision‐making.MethodsUsing a modified Delphi...
To develop and validate a pragmatic algorithm that classifies seizure types, to facilitate therapeutic decision-making.OBJECTIVETo develop and validate a...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2474
SubjectTerms Adolescent
Adult
algorithm
Algorithms
Anticonvulsants - therapeutic use
Child
Classification
Confidence intervals
Convulsions & seizures
Decision making
EEG
Electroencephalography
Epilepsy
Epilepsy - drug therapy
Health care
Humans
Internet
Neuroimaging
Patients
seizure
Seizures
Seizures - diagnosis
Seizures - drug therapy
web‐based application
Title A web‐based algorithm to rapidly classify seizures for the purpose of drug selection
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fepi.17039
https://www.ncbi.nlm.nih.gov/pubmed/34420206
https://www.proquest.com/docview/2578040571
https://www.proquest.com/docview/2563697842
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1528-1167
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0007673
  issn: 0013-9580
  databaseCode: DIK
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0013-9580
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1528-1167
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007673
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9VAFJ4QFoSNiqBeRDIaFm5603Ye7cQVIRDQYAwBw8KkmSc2Xm5vbtsFrPwJ_kZ_CWemD8VHYtw16WmmnfOdme_rnDmD0B5AQonMiMgJoSKaGhdJYBYRzxKnGXNCOS8UT9_z4wv69pJdrqA3w16Yrj7E-MPNR0YYr32AS1X_FOR2UU4TwKvfvJcQHuTU2Y_SURnvV5cTEgmWx31VIZ_FMz55fy76jWDe56thwjl6iD4Nr9rlmXyZto2a6ttfqjj-57c8Qg96Ior3O-RsoBU7f4zWTvul9k30cR_DCPv96zc_zxksZ1fVsmw-X-Omwku5KM3sBmtPvUt3g2tb3rYg3DFQYAyUEi_Af1VtceWwWbZXuA7H7QAGttDF0eH5wXHUH8IQacKIiKSyEOQm92XtibA6cSASbSylzNPEMJoxRaSiGrqYMcM5dUKKLHbgZUuZMOQJWp1Xc_sMYWtknEslndSKet0V55mx4CuVcKednKDXgzsK3Vco9wdlzIpBqUA_FaGfJujVaLroynL8yWhn8GnRR2Zd-CEq9iw1maCX422IKb9QIue2ar0NJxzkNU0n6GmHhbEVQmkKFJvDywaP_r354vDDSbjY_nfT52g99UkzIVtwB602y9a-ANbTqF2A98m73QDyOxJm_yM
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXyquwUMAgDlyyysN2YolLVbXaQrdCqEW9oMjPErFsVrvJoT3xE_iN_SUd5wXlISFukTKRE8-M_X325DPAKwwJJVIjAieECmhsXCARWQQ8jZxmzAnlPFGcHvLJMX17wk7W4E3_L0yrDzEsuPnMaMZrn-B-QfqnLLeLYhxhwIprcJ1y5CkeEn34IR6V8m5_OUoCwbKw0xXydTzDo1dno98g5lXE2kw5exvwqX_ZttLky7iu1Fif_6Lj-L9fcwdud1iUbLfBcxfW7Pwe3Jh2u-334eM2wUH24tt3P9UZImen5bKoPn8lVUmWclGY2RnRHn0X7oysbHFeI3cniIIJokqyQBeWK0tKR8yyPiWr5sQdDIMHcLy3e7QzCbpzGAKdsEQEUlnMc5N5ZftEWB055Ik2lFJmcWQYTZlKpKIa-5gxwzl1Qoo0dOhoS5kwySasz8u5fQTEGhlmUkkntaKeeoVZaiw6S0XcaSdH8Lr3R647kXJ_VsYs78kK9lPe9NMIXg6mi1aZ409GW71T8y45V7kfpUIPVKMRvBhuY1r5vRI5t2XtbXjCkWHTeAQP22AYWkkojRFlc3zZxqV_bz7ffb_fXDz-d9PncHNyND3ID_YP3z2BW7GvoWmKB7dgvVrW9imCoEo9a2L9EgL-Alo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIlVceD8WChjEgUtWedhOLHGpaFct0KpCFPWCIj9L1O0m2k0O7YmfwG_klzDOC8pDQtwiZSI7_mbsb-LJZ4AX6BJKpEYETggV0Ni4QCKzCHgaOc2YE8r5RHH_gO8e0TfH7HgNXg3_wnT6EOMHNx8Z7XztA9xWxv0U5bYqphE6rLgCVykTmS_o237_Qzwq5f3-cpQEgmVhryvk63jGRy-vRr9RzMuMtV1yZjfg09DZrtLkdNrUaqovftFx_N-3uQnXey5KtjrnuQVrdnEbNvb73fY78HGL4CT77ctXv9QZIucn5bKoP5-RuiRLWRVmfk60Z9-FOycrW1w0mLsTZMEEWSWpEMJyZUnpiFk2J2TVnriDbnAXjmY7H17vBv05DIFOWCICqSzGucm8sn0irI4c5ok2lFJmcWQYTZlKpKIax5gxwzl1Qoo0dAi0RWBMcg_WF-XCPgBijQwzqaSTWlGfeoVZaiyCpSLutJMTeDngketepNyflTHPh2QFxylvx2kCz0fTqlPm-JPR5gBq3gfnKvezVOiJajSBZ-NtDCu_VyIXtmy8DU84Ztg0nsD9zhnGVhJKY2TZHDvbQvr35vOdw7324uG_mz6FjcPtWf5u7-DtI7gW-xKatnZwE9brZWMfIweq1ZPW1b8DqFoB3g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+web%E2%80%90based+algorithm+to+rapidly+classify+seizures+for+the+purpose+of+drug+selection&rft.jtitle=Epilepsia+%28Copenhagen%29&rft.au=Beniczky%2C+S%C3%A1ndor&rft.au=Asadi%E2%80%90Pooya%2C+Ali+A.&rft.au=Perucca%2C+Emilio&rft.au=Rubboli%2C+Guido&rft.date=2021-10-01&rft.issn=0013-9580&rft.eissn=1528-1167&rft.volume=62&rft.issue=10&rft.spage=2474&rft.epage=2484&rft_id=info:doi/10.1111%2Fepi.17039&rft.externalDBID=10.1111%252Fepi.17039&rft.externalDocID=EPI17039
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-9580&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-9580&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-9580&client=summon