Working memory alpha–beta band oscillatory signatures in adolescents and young adults

The timing of neural activity is an intriguing way of exposing behaviorally relevant neural activity, as neural populations exploit transient windows of synchronized activations to exchange dynamic communications in the service of various cognitive operations. The link between neural synchrony and w...

Full description

Saved in:
Bibliographic Details
Published inThe European journal of neuroscience Vol. 48; no. 7; pp. 2527 - 2536
Main Authors Zammit, Nowell, Falzon, Owen, Camilleri, Kenneth, Muscat, Richard
Format Journal Article
LanguageEnglish
Published France Wiley Subscription Services, Inc 01.10.2018
Subjects
Online AccessGet full text
ISSN0953-816X
1460-9568
1460-9568
DOI10.1111/ejn.13897

Cover

Abstract The timing of neural activity is an intriguing way of exposing behaviorally relevant neural activity, as neural populations exploit transient windows of synchronized activations to exchange dynamic communications in the service of various cognitive operations. The link between neural synchrony and working memory (WM) has been supported at the theoretical and empirical level. However, findings have also shown that WM encoding is also related to significant alpha–beta desynchronization. These findings have been primarily recorded during subsequent memory effect paradigms that compare correct with incorrect encoding trials. The dissociable contribution imparted by various processes to WM performance suggests that incorrect performance may not be directly translatable to unsuccessful encoding. Here, we address the relationship between alpha–beta desynchronization and encoding through the use of an alternative paradigm design by contrasting frontal and parietal human scalp electroencephalography activity during the encoding interval of a delayed matching‐to‐sample task with that recorded during a control task. The additional use of non‐verbal/semantic visual stimulation and recruitment of typically developing adolescent subjects has led us to the conclusion that encoding‐relevant alpha–beta decrements can be replicated via a non‐verbal/semantic delayed matching‐to‐sample task and these are also evident in typically developing adolescents, in addition to adults, as has been previously demonstrated. The identification of encoding‐related alpha–beta decrements in adolescent subjects performing such WM tasks may open new avenues to explore whether such a rhythmic signature may explain WM and electrophysiological deficits that emerge in various adolescent neuropsychiatric disorders such as attention deficit hyperactivity disorder. Here, we addressed alpha–beta desynchronization during encoding by contrasting human EEG activity during the encoding interval of a delayed matching‐to‐sample task with that recorded during a control task. We show that encoding‐relevant alpha–beta decrements reported in subsequent memory effect paradigms can be replicated via a nonverbal/semantic delayed matching‐to‐sample task and that these are also evident in healthy adolescents, in addition to adults, as has been previously demonstrated.
AbstractList The timing of neural activity is an intriguing way of exposing behaviorally relevant neural activity, as neural populations exploit transient windows of synchronized activations to exchange dynamic communications in the service of various cognitive operations. The link between neural synchrony and working memory ( WM ) has been supported at the theoretical and empirical level. However, findings have also shown that WM encoding is also related to significant alpha–beta desynchronization. These findings have been primarily recorded during subsequent memory effect paradigms that compare correct with incorrect encoding trials. The dissociable contribution imparted by various processes to WM performance suggests that incorrect performance may not be directly translatable to unsuccessful encoding. Here, we address the relationship between alpha–beta desynchronization and encoding through the use of an alternative paradigm design by contrasting frontal and parietal human scalp electroencephalography activity during the encoding interval of a delayed matching‐to‐sample task with that recorded during a control task. The additional use of non‐verbal/semantic visual stimulation and recruitment of typically developing adolescent subjects has led us to the conclusion that encoding‐relevant alpha–beta decrements can be replicated via a non‐verbal/semantic delayed matching‐to‐sample task and these are also evident in typically developing adolescents, in addition to adults, as has been previously demonstrated. The identification of encoding‐related alpha–beta decrements in adolescent subjects performing such WM tasks may open new avenues to explore whether such a rhythmic signature may explain WM and electrophysiological deficits that emerge in various adolescent neuropsychiatric disorders such as attention deficit hyperactivity disorder.
The timing of neural activity is an intriguing way of exposing behaviorally relevant neural activity, as neural populations exploit transient windows of synchronized activations to exchange dynamic communications in the service of various cognitive operations. The link between neural synchrony and working memory (WM) has been supported at the theoretical and empirical level. However, findings have also shown that WM encoding is also related to significant alpha–beta desynchronization. These findings have been primarily recorded during subsequent memory effect paradigms that compare correct with incorrect encoding trials. The dissociable contribution imparted by various processes to WM performance suggests that incorrect performance may not be directly translatable to unsuccessful encoding. Here, we address the relationship between alpha–beta desynchronization and encoding through the use of an alternative paradigm design by contrasting frontal and parietal human scalp electroencephalography activity during the encoding interval of a delayed matching‐to‐sample task with that recorded during a control task. The additional use of non‐verbal/semantic visual stimulation and recruitment of typically developing adolescent subjects has led us to the conclusion that encoding‐relevant alpha–beta decrements can be replicated via a non‐verbal/semantic delayed matching‐to‐sample task and these are also evident in typically developing adolescents, in addition to adults, as has been previously demonstrated. The identification of encoding‐related alpha–beta decrements in adolescent subjects performing such WM tasks may open new avenues to explore whether such a rhythmic signature may explain WM and electrophysiological deficits that emerge in various adolescent neuropsychiatric disorders such as attention deficit hyperactivity disorder.
The timing of neural activity is an intriguing way of exposing behaviorally relevant neural activity, as neural populations exploit transient windows of synchronized activations to exchange dynamic communications in the service of various cognitive operations. The link between neural synchrony and working memory (WM) has been supported at the theoretical and empirical level. However, findings have also shown that WM encoding is also related to significant alpha–beta desynchronization. These findings have been primarily recorded during subsequent memory effect paradigms that compare correct with incorrect encoding trials. The dissociable contribution imparted by various processes to WM performance suggests that incorrect performance may not be directly translatable to unsuccessful encoding. Here, we address the relationship between alpha–beta desynchronization and encoding through the use of an alternative paradigm design by contrasting frontal and parietal human scalp electroencephalography activity during the encoding interval of a delayed matching‐to‐sample task with that recorded during a control task. The additional use of non‐verbal/semantic visual stimulation and recruitment of typically developing adolescent subjects has led us to the conclusion that encoding‐relevant alpha–beta decrements can be replicated via a non‐verbal/semantic delayed matching‐to‐sample task and these are also evident in typically developing adolescents, in addition to adults, as has been previously demonstrated. The identification of encoding‐related alpha–beta decrements in adolescent subjects performing such WM tasks may open new avenues to explore whether such a rhythmic signature may explain WM and electrophysiological deficits that emerge in various adolescent neuropsychiatric disorders such as attention deficit hyperactivity disorder. Here, we addressed alpha–beta desynchronization during encoding by contrasting human EEG activity during the encoding interval of a delayed matching‐to‐sample task with that recorded during a control task. We show that encoding‐relevant alpha–beta decrements reported in subsequent memory effect paradigms can be replicated via a nonverbal/semantic delayed matching‐to‐sample task and that these are also evident in healthy adolescents, in addition to adults, as has been previously demonstrated.
The timing of neural activity is an intriguing way of exposing behaviorally relevant neural activity, as neural populations exploit transient windows of synchronized activations to exchange dynamic communications in the service of various cognitive operations. The link between neural synchrony and working memory (WM) has been supported at the theoretical and empirical level. However, findings have also shown that WM encoding is also related to significant alpha-beta desynchronization. These findings have been primarily recorded during subsequent memory effect paradigms that compare correct with incorrect encoding trials. The dissociable contribution imparted by various processes to WM performance suggests that incorrect performance may not be directly translatable to unsuccessful encoding. Here, we address the relationship between alpha-beta desynchronization and encoding through the use of an alternative paradigm design by contrasting frontal and parietal human scalp electroencephalography activity during the encoding interval of a delayed matching-to-sample task with that recorded during a control task. The additional use of non-verbal/semantic visual stimulation and recruitment of typically developing adolescent subjects has led us to the conclusion that encoding-relevant alpha-beta decrements can be replicated via a non-verbal/semantic delayed matching-to-sample task and these are also evident in typically developing adolescents, in addition to adults, as has been previously demonstrated. The identification of encoding-related alpha-beta decrements in adolescent subjects performing such WM tasks may open new avenues to explore whether such a rhythmic signature may explain WM and electrophysiological deficits that emerge in various adolescent neuropsychiatric disorders such as attention deficit hyperactivity disorder.The timing of neural activity is an intriguing way of exposing behaviorally relevant neural activity, as neural populations exploit transient windows of synchronized activations to exchange dynamic communications in the service of various cognitive operations. The link between neural synchrony and working memory (WM) has been supported at the theoretical and empirical level. However, findings have also shown that WM encoding is also related to significant alpha-beta desynchronization. These findings have been primarily recorded during subsequent memory effect paradigms that compare correct with incorrect encoding trials. The dissociable contribution imparted by various processes to WM performance suggests that incorrect performance may not be directly translatable to unsuccessful encoding. Here, we address the relationship between alpha-beta desynchronization and encoding through the use of an alternative paradigm design by contrasting frontal and parietal human scalp electroencephalography activity during the encoding interval of a delayed matching-to-sample task with that recorded during a control task. The additional use of non-verbal/semantic visual stimulation and recruitment of typically developing adolescent subjects has led us to the conclusion that encoding-relevant alpha-beta decrements can be replicated via a non-verbal/semantic delayed matching-to-sample task and these are also evident in typically developing adolescents, in addition to adults, as has been previously demonstrated. The identification of encoding-related alpha-beta decrements in adolescent subjects performing such WM tasks may open new avenues to explore whether such a rhythmic signature may explain WM and electrophysiological deficits that emerge in various adolescent neuropsychiatric disorders such as attention deficit hyperactivity disorder.
Author Camilleri, Kenneth
Zammit, Nowell
Muscat, Richard
Falzon, Owen
Author_xml – sequence: 1
  givenname: Nowell
  orcidid: 0000-0002-2694-8583
  surname: Zammit
  fullname: Zammit, Nowell
  email: nowell.zammit@um.edu.mt
  organization: University of Malta
– sequence: 2
  givenname: Owen
  surname: Falzon
  fullname: Falzon, Owen
  organization: University of Malta
– sequence: 3
  givenname: Kenneth
  surname: Camilleri
  fullname: Camilleri, Kenneth
  organization: University of Malta
– sequence: 4
  givenname: Richard
  surname: Muscat
  fullname: Muscat, Richard
  organization: University of Malta
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29514416$$D View this record in MEDLINE/PubMed
BookMark eNp90b1uFDEUBWALBZFNoOAF0Eg0UEziv_GOSxQlJFEEDSh01vXYDl5m7MX2CG2Xd-ANeZJ4swlFJHDjwt-9OvI5QHshBovQa4KPSD3HdhWOCOvl8hlaEC5wKzvR76EFlh1reyK-7aODnFcY417w7gXap7IjnBOxQNfXMf3w4aaZ7BTTpoFx_R3-3P7WtkCjIZgm5sGPI5Tta_Y3AcqcbG58aMDE0ebBhpKbrdzEuS4CM48lv0TPHYzZvnq4D9HXs9MvJ-ft1eePFycfrtqBdWzZOtDQg1m63jnRm047SRkQ0NZQoamUVmgzCEcHLrEbjOGOOAKYUMYY1R07RO92e9cp_pxtLmryNVINHGycs6KVEsI4JpW-fUJXcU6hplOUUM4xW0pe1ZsHNevJGrVOfoK0UY9fVsH7HRhSzDlZ95cQrLZ1qFqHuq-j2uMndvAFio-hJPDj_yZ--dFu_r1anV5-2k3cAbiinWc
CitedBy_id crossref_primary_10_1016_j_bandl_2022_105127
crossref_primary_10_3389_fnsys_2021_787316
crossref_primary_10_1111_ejn_15040
crossref_primary_10_1371_journal_pone_0258335
crossref_primary_10_1016_j_neuroimage_2021_118299
crossref_primary_10_1111_ejn_14767
crossref_primary_10_1073_pnas_2407457121
crossref_primary_10_1016_j_bandc_2023_105969
crossref_primary_10_1111_psyp_13442
crossref_primary_10_1111_ejn_14398
crossref_primary_10_1016_j_neulet_2023_137100
crossref_primary_10_1038_s41598_023_41358_0
Cites_doi 10.1523/JNEUROSCI.23-34-10809.2003
10.1186/1744-9081-7-30
10.1016/j.neuroimage.2008.05.020
10.1016/j.brainresrev.2006.06.003
10.1016/0165-0173(83)90037-1
10.1037/0278-7393.7.3.191
10.1038/84032
10.1093/cercor/bhl030
10.1155/2011/156869
10.1093/schbul/sbr034
10.1016/S1388-2457(99)00102-9
10.1073/pnas.0900390106
10.1046/j.1467-8624.2003.00639.x
10.1162/jocn_a_00434
10.1037/xhp0000212
10.3389/fnhum.2012.00074
10.1523/JNEUROSCI.2378-13.2013
10.3389/fpsyg.2013.00012
10.1126/science.274.5290.1133
10.3389/fpsyg.2011.00118
10.1126/science.1139597
10.1002/hipo.450030307
10.1016/j.tics.2009.12.002
10.1016/S0010-9452(08)70444-1
10.3389/fpsyg.2012.00201
10.1016/0013-4694(77)90235-8
10.1016/j.tics.2012.10.007
10.1016/j.neuroimage.2013.06.067
10.1126/science.1099745
10.1162/089976699300016719
10.1523/JNEUROSCI.3140-11.2011
10.1016/S0013-4694(96)95562-5
10.1142/S0219635207001416
10.1093/cercor/7.4.374
10.1027/0269-8803/a000052
10.1002/hipo.20689
10.1523/JNEUROSCI.21-11-03942.2001
10.1016/j.bandc.2009.10.003
10.1073/pnas.1604135113
10.3758/BF03193406
10.1016/j.tins.2015.11.004
10.1016/S1364-6613(00)01845-3
10.1016/j.biopsych.2008.07.029
10.1001/archneur.1992.00530340070020
10.1093/cercor/bhs007
10.1093/cercor/bhp118
10.1016/j.neuron.2015.09.020
10.1152/jn.1973.36.1.61
10.1523/JNEUROSCI.5309-07.2008
10.1073/pnas.0402680101
10.3389/fpsyg.2016.00830
10.3389/fpsyg.2017.01080
10.1093/cercor/bhn197
10.1523/JNEUROSCI.1623-09.2010
10.1016/j.jneumeth.2003.10.009
10.1186/1744-9081-1-20
10.1146/annurev.psych.59.103006.093615
10.1038/nrn2979
10.1016/j.neuroimage.2013.09.028
10.1016/j.neuroimage.2013.08.052
10.3389/fpsyg.2015.00696
10.1016/0013-4694(90)90096-3
10.3389/fpsyg.2010.00228
10.1523/JNEUROSCI.5302-10.2011
10.1038/nrn.2016.43
10.1016/S0926-6410(97)00018-9
10.1111/j.1469-8986.2010.01061.x
10.1016/j.tics.2013.10.010
10.1152/jn.1995.74.1.162
10.1111/j.1460-9568.2009.06871.x
10.1016/j.jecp.2006.03.009
10.3758/CABN.3.4.255
10.1016/j.neuroimage.2013.05.121
10.1002/hbm.20273
10.1016/j.jneumeth.2007.03.024
10.1016/j.neuropsychologia.2011.10.001
10.1016/j.neuropsychologia.2016.12.026
10.1162/jocn.2008.21028
10.3389/neuro.07.017.2009
10.1016/j.neuroimage.2013.04.121
10.1016/j.neuron.2013.03.007
10.1016/j.biopsych.2005.11.012
10.1016/j.brainres.2006.12.076
10.1152/jn.1990.63.4.814
ContentType Journal Article
Copyright 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Copyright © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
Copyright_xml – notice: 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
– notice: 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
– notice: Copyright © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
P64
7X8
DOI 10.1111/ejn.13897
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Calcium & Calcified Tissue Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef
Chemoreception Abstracts

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1460-9568
EndPage 2536
ExternalDocumentID 29514416
10_1111_ejn_13897
EJN13897
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
36B
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIVO
ABJNI
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CAG
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
EAD
EAP
EAS
EBC
EBD
EBS
EBX
EJD
EMB
EMK
EMOBN
EPS
ESX
EX3
F00
F01
F04
F5P
FEDTE
FUBAC
FZ0
G-S
G.N
GAKWD
GODZA
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
Q~Q
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
TUS
UB1
W8V
W99
WBKPD
WHG
WIH
WIJ
WIK
WNSPC
WOHZO
WOW
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZGI
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QP
7QR
7TK
8FD
FR3
P64
7X8
ID FETCH-LOGICAL-c3537-faba8ad7f8ff68d5bf923a1abed26b299e6bdc6f2c490fcdd4f1f1a0123332b53
IEDL.DBID DR2
ISSN 0953-816X
1460-9568
IngestDate Fri Jul 11 16:48:38 EDT 2025
Fri Jul 25 20:13:28 EDT 2025
Mon Jul 21 06:05:57 EDT 2025
Wed Oct 01 03:43:56 EDT 2025
Thu Apr 24 23:00:24 EDT 2025
Wed Jan 22 16:54:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords electroencephalography
adolescents
working memory
alpha-beta band oscillatory signatures
young adults
Language English
License 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3537-faba8ad7f8ff68d5bf923a1abed26b299e6bdc6f2c490fcdd4f1f1a0123332b53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2694-8583
PMID 29514416
PQID 2124403794
PQPubID 34057
PageCount 10
ParticipantIDs proquest_miscellaneous_2012113401
proquest_journals_2124403794
pubmed_primary_29514416
crossref_primary_10_1111_ejn_13897
crossref_citationtrail_10_1111_ejn_13897
wiley_primary_10_1111_ejn_13897_EJN13897
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2018
2018-10-00
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: October 2018
PublicationDecade 2010
PublicationPlace France
PublicationPlace_xml – name: France
– name: Chichester
PublicationTitle The European journal of neuroscience
PublicationTitleAlternate Eur J Neurosci
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1995; 74
2017; 8
2013; 4
2013; 25
2010; 14
2006; 34
2009a; 3
2013; 23
2011; 12
2012; 16
2016; 39
1997; 6
1992; 10
1993; 3
1997; 7
2004; 134
2007; 28
2006; 60
2010; 20
2010; 1
2015; 88
2008; 28
2016; 113
2016; 42
2003; 3
2007; 6
1999; 11
2014; 18
2011; 25
2008; 64
2009; 19
2010; 30
2010; 72
2004; 101
2007; 17
1990; 76
2015; 6
2009b; 106
2011; 2
2009; 21
2006; 95
1973; 36
2002; 6
2007; 164
1981; 7
2011; 31
2008; 59
1977; 42
2011; 37
1991
2014; 85
2007; 53
2016; 17
2014; 84
2004; 304
2003; 74
2011; 7
2001; 21
1996; 99
2017; 95
1990; 63
2011; 2011
2016; 7
2009; 30
2007; 316
2012; 3
1983; 287
2013; 77
2013; 33
2013; 79
2001; 4
1999; 110
2006; 1138
2005; 1
1996; 274
2011; 48
2008; 42
2012; 6
2011; 49
2007; 43
2003; 23
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_69_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
e_1_2_10_70_1
e_1_2_10_2_1
e_1_2_10_72_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_74_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_76_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_57_1
e_1_2_10_78_1
e_1_2_10_58_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
e_1_2_10_80_1
e_1_2_10_82_1
e_1_2_10_61_1
e_1_2_10_84_1
e_1_2_10_29_1
e_1_2_10_63_1
e_1_2_10_86_1
e_1_2_10_27_1
e_1_2_10_65_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_67_1
e_1_2_10_24_1
e_1_2_10_22_1
e_1_2_10_43_1
Martin J.H. (e_1_2_10_45_1) 1991
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_71_1
e_1_2_10_73_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_75_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_77_1
e_1_2_10_56_1
e_1_2_10_79_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_59_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_60_1
e_1_2_10_81_1
e_1_2_10_62_1
e_1_2_10_83_1
e_1_2_10_64_1
e_1_2_10_85_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_66_1
e_1_2_10_26_1
e_1_2_10_47_1
e_1_2_10_68_1
References_xml – volume: 31
  start-page: 15674
  year: 2011
  end-page: 15680
  article-title: The relationship between brain oscillations and BOLD signal during memory formation: a combined EEG–fMRI study
  publication-title: J. Neurosci.
– volume: 95
  start-page: 215
  year: 2017
  end-page: 226
  article-title: Developmental trajectories of event related potentials related to working memory
  publication-title: Neuropsychologia
– volume: 30
  start-page: 924
  year: 2009
  end-page: 933
  article-title: Neural generators of sustained activity differ for stimulus‐encoding and delay maintenance
  publication-title: Eur. J. Neurosci.
– volume: 31
  start-page: 10937
  year: 2011
  end-page: 10947
  article-title: Longitudinal development of human brain wiring continues from childhood into adulthood
  publication-title: J. Neurosci.
– volume: 23
  start-page: 264
  year: 2013
  end-page: 282
  article-title: A meta‐analysis of executive components of working memory
  publication-title: Cereb. Cortex
– volume: 60
  start-page: 11
  year: 2006
  end-page: 21
  article-title: A functional magnetic resonance imaging study of working memory abnormalities in schizophrenia
  publication-title: Biol. Psychiat.
– volume: 1
  start-page: 1
  year: 2005
  end-page: 13
  article-title: EEG correlates of verbal and nonverbal working memory
  publication-title: Behav. Brain Funct.
– start-page: 777
  year: 1991
  end-page: 791
– volume: 6
  start-page: 1
  year: 2015
  end-page: 10
  article-title: Visual working memory continues to develop through adolescence
  publication-title: Front. Psychol.
– volume: 42
  start-page: 928
  year: 2008
  end-page: 935
  article-title: Alpha phase coupling reflects object recognition
  publication-title: NeuroImage
– volume: 25
  start-page: 1611
  year: 2013
  end-page: 1623
  article-title: Longitudinal working memory development is related to structural maturation of frontal and parietal cortices
  publication-title: J. Cognitive Neurosci.
– volume: 316
  start-page: 1609
  year: 2007
  end-page: 1612
  article-title: Modulation of neuronal interactions through neuronal synchronization
  publication-title: Science
– volume: 14
  start-page: 72
  year: 2010
  end-page: 80
  article-title: Neural synchrony and the development of cortical networks
  publication-title: Trends Cogn. Sci.
– volume: 304
  start-page: 1926
  year: 2004
  end-page: 1929
  article-title: Neural oscillations in cortical networks
  publication-title: Science
– volume: 12
  start-page: 105
  year: 2011
  end-page: 118
  article-title: The role of phase synchronization in memory processes
  publication-title: Nat. Rev. Neurosci.
– volume: 4
  start-page: 1
  year: 2013
  end-page: 5
  article-title: Age‐related change in visual working memory: a study of 55,753 participants aged 8–75
  publication-title: Front. Psychol.
– volume: 6
  start-page: 93
  year: 2002
  end-page: 102
  article-title: Observing the transformation of experience into memory
  publication-title: Trends Cogn. Sci.
– volume: 28
  start-page: 3586
  year: 2008
  end-page: 3594
  article-title: Neurodevelopmental trajectories of the human cerebral cortex
  publication-title: J. Neurosci.
– volume: 7
  start-page: 191
  year: 1981
  end-page: 203
  article-title: Imagery and semantic elaboration in hypermnesia for words
  publication-title: J. Exp. Psychol. Learn.
– volume: 84
  start-page: 712
  year: 2014
  end-page: 723
  article-title: Using single‐trial EEG to predict and analyze subsequent memory
  publication-title: NeuroImage
– volume: 3
  start-page: 255
  year: 2003
  end-page: 274
  article-title: Neuroimaging studies of working memory: a meta‐analysis
  publication-title: Cogn. Affect. Behav. Ne.
– volume: 17
  start-page: 1190
  year: 2007
  end-page: 1196
  article-title: Hippocampal and neocortical gamma oscillations predict memory formation in humans
  publication-title: Cereb. Cortex
– volume: 16
  start-page: 606
  year: 2012
  end-page: 617
  article-title: Alpha‐band oscillations, attention, and controlled access to stored information
  publication-title: Trends Cogn. Sci.
– volume: 42
  start-page: 1121
  year: 2016
  end-page: 1138
  article-title: The relationship between visual attention and visual working memory encoding: a dissociation between covert and overt orienting
  publication-title: J. Exp. Psychol. Human
– volume: 3
  start-page: 317
  year: 1993
  end-page: 330
  article-title: Phase relationship between hippocampal place units and the EEG theta rhythm
  publication-title: Hippocampus
– volume: 84
  start-page: 488
  year: 2014
  end-page: 494
  article-title: Subsequent memory effect in intracranial and scalp EEG
  publication-title: NeuroImage
– volume: 59
  start-page: 193
  year: 2008
  end-page: 224
  article-title: The mind and brain of short‐term memory
  publication-title: Annu. Rev. Psychol.
– volume: 74
  start-page: 162
  year: 1995
  end-page: 178
  article-title: Mnemonic firing of neurons in the monkey temporal pole during a visual recognition memory task
  publication-title: J. Neurophysiol.
– volume: 30
  start-page: 1250
  year: 2010
  end-page: 1257
  article-title: Gamma‐phase shifting in awake monkey visual cortex
  publication-title: J. Neurosci.
– volume: 33
  start-page: 14211
  year: 2013
  end-page: 14224
  article-title: Theta oscillations in the medial prefrontal cortex are modulated by spatial working memory and synchronize with the hippocampus through its ventral subregion
  publication-title: J. Neurosci.
– volume: 85
  start-page: 648
  year: 2014
  end-page: 655
  article-title: How brain oscillations form memories – a processing based perspective on oscillatory subsequent memory effects
  publication-title: NeuroImage
– volume: 21
  start-page: 316
  year: 2009
  end-page: 332
  article-title: Development of spatial and verbal working memory capacity in the human brain
  publication-title: J. Cognitive Neurosci.
– volume: 113
  start-page: E4885
  year: 2016
  end-page: E4894
  article-title: Neural mechanisms of transient neocortical beta rhythms: converging evidence from humans, computational modeling, monkeys, and mice
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 4
  start-page: 194
  year: 2001
  end-page: 200
  article-title: Rapid feature selective neuronal synchronization through correlated latency shifting
  publication-title: Nat. Neurosci.
– volume: 1138
  start-page: 171
  year: 2006
  end-page: 177
  article-title: Brain oscillatory 4–30 Hz responses during a visual n‐back memory task with varying memory load
  publication-title: Brain Res.
– volume: 99
  start-page: 527
  year: 1996
  end-page: 538
  article-title: Developmental changes in the alpha response system
  publication-title: Electroen. Clin. Neuro.
– volume: 17
  start-page: 438
  year: 2016
  end-page: 449
  article-title: The neuroscience of working memory capacity and training
  publication-title: Nat. Rev. Neurosci.
– volume: 72
  start-page: 86
  year: 2010
  end-page: 100
  article-title: Electrophysiological changes during adolescence: a review
  publication-title: Brain Cognition
– volume: 88
  start-page: 33
  year: 2015
  end-page: 46
  article-title: Neurocognitive architecture of working memory
  publication-title: Neuron
– volume: 42
  start-page: 817
  year: 1977
  end-page: 826
  article-title: Event‐related cortical desynchronization detected by power measurements of scalp EEG
  publication-title: Electroen. Clin. Neuro.
– volume: 21
  start-page: 3942
  year: 2001
  end-page: 3948
  article-title: Transient interhemispheric neuronal synchrony correlates with object recognition
  publication-title: J. Neurosci.
– volume: 2
  start-page: 1
  year: 2011
  end-page: 11
  article-title: Alpha oscillations and early stages of visual encoding
  publication-title: Front. Psychol.
– volume: 164
  start-page: 177
  year: 2007
  end-page: 190
  article-title: Nonparametric statistical testing of EEG‐ and MEG‐data
  publication-title: J. Neurosci. Meth.
– volume: 6
  start-page: 205
  year: 2007
  end-page: 218
  article-title: Integrating “brain” and “body” measures: correlations between EEG and metabolic changes over the human lifespan
  publication-title: J. Integr. Neurosci.
– volume: 1
  start-page: 1
  year: 2010
  end-page: 10
  article-title: Semantic elaboration in auditory and visual spatial memory
  publication-title: Front. Psychol.
– volume: 10
  start-page: 1050
  year: 1992
  end-page: 1058
  article-title: Contributions of the left intralaminar and medial thalamic nuclei to memory comparisons and report of a case
  publication-title: Arch. Neurol.
– volume: 8
  start-page: 1
  year: 2017
  end-page: 10
  article-title: Retrieval and monitoring processes during visual working memory: an ERP study of the benefit of visual semantics
  publication-title: Front. Psychol.
– volume: 37
  start-page: 514
  year: 2011
  end-page: 523
  article-title: The development of neural synchrony and large‐scale cortical networks during adolescence: relevance for the pathophysiology of schizophrenia and neurodevelopmental hypothesis
  publication-title: Schizophrenia Bull.
– volume: 18
  start-page: 16
  year: 2014
  end-page: 25
  article-title: Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information?
  publication-title: Trends Cogn. Sci.
– volume: 7
  start-page: 374
  year: 1997
  end-page: 385
  article-title: High‐resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice
  publication-title: Cereb. Cortex
– volume: 6
  start-page: 1
  year: 2012
  end-page: 12
  article-title: Oscillatory power decreases and long‐term memory: the information via desynchronization hypothesis
  publication-title: Front. Hum. Neurosci.
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  article-title: EEGLAB: an open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis
  publication-title: J. Neurosci. Meth.
– volume: 39
  start-page: 16
  year: 2016
  end-page: 25
  article-title: Oscillations and episodic memory: addressing the synchronization/desynchronization conundrum
  publication-title: Trends Neurosci.
– volume: 77
  start-page: 1002
  year: 2013
  end-page: 1016
  article-title: The theta‐gamma neural code
  publication-title: Neuron
– volume: 23
  start-page: 10809
  year: 2003
  end-page: 10814
  article-title: Theta and gamma oscillations during encoding predict subsequent recall
  publication-title: J. Neurosci.
– volume: 34
  start-page: 277
  year: 2006
  end-page: 286
  article-title: Beneficial effects of verbalization and visual distinctiveness on remembering and knowing faces
  publication-title: Mem. Cognition
– volume: 7
  start-page: 1
  year: 2016
  end-page: 15
  article-title: A new conceptualization of human visual sensory‐memory
  publication-title: Front. Psychol.
– volume: 53
  start-page: 63
  year: 2007
  end-page: 88
  article-title: EEG alpha oscillations: the inhibition‐timing hypothesis
  publication-title: Brain Res. Rev.
– volume: 11
  start-page: 417
  year: 1999
  end-page: 441
  article-title: Independent component analysis using an extended infomax algorithm for mixed sub‐Gaussian and super‐Gaussian sources
  publication-title: Neural Comput.
– volume: 101
  start-page: 8174
  year: 2004
  end-page: 8179
  article-title: Dynamic mapping of human cortical development during childhood through early adulthood
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 20
  start-page: 534
  year: 2010
  end-page: 548
  article-title: Brain maturation in adolescence and young adulthood: regional age‐related changes in cortical thickness and white matter volume and microstructure
  publication-title: Cereb. Cortex
– volume: 106
  start-page: 9866
  year: 2009b
  end-page: 9871
  article-title: The development of neural synchrony reflects late maturation and restructuring of functional networks in humans
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 64
  start-page: 1026
  year: 2008
  end-page: 1034
  article-title: Impairment of working memory maintenance and response in schizophrenia: functional magnetic resonance imaging evidence
  publication-title: Biol. Psychiat.
– volume: 79
  start-page: 361
  year: 2013
  end-page: 370
  article-title: Brain oscillatory subsequent memory effects differ in power and long‐range synchronization between semantic and survival processing
  publication-title: NeuroImage
– volume: 43
  start-page: 38
  year: 2007
  end-page: 52
  article-title: Relationship between prefrontal task‐related activity and information flow during spatial working memory performance
  publication-title: Cortex
– volume: 36
  start-page: 61
  year: 1973
  end-page: 78
  article-title: Unit activity in prefrontal cortex during delayed response performance: neuronal correlates of transient memory
  publication-title: J. Neurophysiol.
– volume: 76
  start-page: 419
  year: 1990
  end-page: 439
  article-title: Short‐term memory storage and retention: an event‐related brain potential study
  publication-title: Electroen. Clin. Neuro.
– volume: 85
  start-page: 834
  year: 2014
  end-page: 843
  article-title: Human intracranial high‐frequency activity maps episodic memory formation in space and time
  publication-title: NeuroImage
– volume: 20
  start-page: 936
  year: 2010
  end-page: 948
  article-title: Abnormal medial temporal activity for bound information during working memory maintenance in patients with schizophrenia
  publication-title: Hippocampus
– volume: 49
  start-page: 3854
  year: 2011
  end-page: 3862
  article-title: Morphometry and connectivity of the fronto‐parietal verbal working memory network in development
  publication-title: Neuropsychologia
– volume: 7
  start-page: 1
  year: 2011
  end-page: 15
  article-title: Automatic classification of artifactual ICA‐components for artifact removal in EEG signals
  publication-title: Behav. Brain Funct.
– volume: 287
  start-page: 139
  year: 1983
  end-page: 171
  article-title: Cellular bases of hippocampal EEG in the behaving rat
  publication-title: Brain Res.
– volume: 63
  start-page: 814
  year: 1990
  end-page: 831
  article-title: Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms
  publication-title: J. Neurophysiol.
– volume: 95
  start-page: 18
  year: 2006
  end-page: 26
  article-title: Changes in the capacity of visual working memory in 5‐ to 10‐year‐olds
  publication-title: J. Exp. Child Psychol.
– volume: 3
  start-page: 1
  year: 2009a
  end-page: 19
  article-title: Neural synchrony in cortical networks: history, concept and current status
  publication-title: Front. Integr. Neurosci.
– volume: 274
  start-page: 1133
  year: 1996
  end-page: 1138
  article-title: Synaptic activity and the construction of cortical circuits
  publication-title: Science
– volume: 6
  start-page: 83
  year: 1997
  end-page: 94
  article-title: Event‐related desynchronization in the alpha band and the processing of semantic information
  publication-title: Cognitive Brain Res.
– volume: 2011
  start-page: 1
  year: 2011
  end-page: 9
  article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data
  publication-title: Comput. Intel. Neurosc.
– volume: 3
  start-page: 1
  year: 2012
  end-page: 15
  article-title: Too many betas do not spoil the broth: the role of beta brain oscillations in language processing
  publication-title: Front. Psychol.
– volume: 110
  start-page: 1399
  year: 1999
  end-page: 1409
  article-title: Life‐span changes in EEG spectral amplitude, amplitude variability and mean frequency
  publication-title: Clin. Neurophysiol.
– volume: 25
  start-page: 143
  year: 2011
  end-page: 158
  article-title: Developmental changes in the EEG rhythms of children and young adults: analyzed by means of correlational, brain topography and principal component analysis
  publication-title: Journal of Psychophysiology.
– volume: 19
  start-page: 1631
  year: 2009
  end-page: 1640
  article-title: Brain oscillations dissociate between semantic and nonsemantic encoding of episodic memories
  publication-title: Cereb. Cortex
– volume: 74
  start-page: 1807
  year: 2003
  end-page: 1822
  article-title: The development of visual short‐term memory capacity in infants
  publication-title: Child Dev.
– volume: 48
  start-page: 229
  year: 2011
  end-page: 240
  article-title: ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features
  publication-title: Psychophysiology
– volume: 28
  start-page: 228
  year: 2007
  end-page: 237
  article-title: Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology
  publication-title: Hum. Brain Mapp.
– ident: e_1_2_10_65_1
  doi: 10.1523/JNEUROSCI.23-34-10809.2003
– ident: e_1_2_10_84_1
  doi: 10.1186/1744-9081-7-30
– ident: e_1_2_10_18_1
  doi: 10.1016/j.neuroimage.2008.05.020
– ident: e_1_2_10_36_1
  doi: 10.1016/j.brainresrev.2006.06.003
– ident: e_1_2_10_10_1
  doi: 10.1016/0165-0173(83)90037-1
– ident: e_1_2_10_4_1
  doi: 10.1037/0278-7393.7.3.191
– ident: e_1_2_10_19_1
  doi: 10.1038/84032
– ident: e_1_2_10_66_1
  doi: 10.1093/cercor/bhl030
– ident: e_1_2_10_55_1
  doi: 10.1155/2011/156869
– ident: e_1_2_10_76_1
  doi: 10.1093/schbul/sbr034
– ident: e_1_2_10_14_1
  doi: 10.1016/S1388-2457(99)00102-9
– ident: e_1_2_10_78_1
  doi: 10.1073/pnas.0900390106
– ident: e_1_2_10_62_1
  doi: 10.1046/j.1467-8624.2003.00639.x
– ident: e_1_2_10_73_1
  doi: 10.1162/jocn_a_00434
– ident: e_1_2_10_74_1
  doi: 10.1037/xhp0000212
– ident: e_1_2_10_27_1
  doi: 10.3389/fnhum.2012.00074
– ident: e_1_2_10_54_1
  doi: 10.1523/JNEUROSCI.2378-13.2013
– ident: e_1_2_10_6_1
  doi: 10.3389/fpsyg.2013.00012
– ident: e_1_2_10_33_1
  doi: 10.1126/science.274.5290.1133
– ident: e_1_2_10_37_1
  doi: 10.3389/fpsyg.2011.00118
– ident: e_1_2_10_85_1
  doi: 10.1126/science.1139597
– ident: e_1_2_10_53_1
  doi: 10.1002/hipo.450030307
– ident: e_1_2_10_79_1
  doi: 10.1016/j.tics.2009.12.002
– ident: e_1_2_10_71_1
  doi: 10.1016/S0010-9452(08)70444-1
– ident: e_1_2_10_82_1
  doi: 10.3389/fpsyg.2012.00201
– ident: e_1_2_10_60_1
  doi: 10.1016/0013-4694(77)90235-8
– ident: e_1_2_10_34_1
  doi: 10.1016/j.tics.2012.10.007
– ident: e_1_2_10_8_1
  doi: 10.1016/j.neuroimage.2013.06.067
– ident: e_1_2_10_9_1
  doi: 10.1126/science.1099745
– ident: e_1_2_10_39_1
  doi: 10.1162/089976699300016719
– ident: e_1_2_10_26_1
  doi: 10.1523/JNEUROSCI.3140-11.2011
– ident: e_1_2_10_86_1
  doi: 10.1016/S0013-4694(96)95562-5
– ident: e_1_2_10_5_1
  doi: 10.1142/S0219635207001416
– ident: e_1_2_10_22_1
  doi: 10.1093/cercor/7.4.374
– ident: e_1_2_10_2_1
  doi: 10.1027/0269-8803/a000052
– ident: e_1_2_10_42_1
  doi: 10.1002/hipo.20689
– ident: e_1_2_10_47_1
  doi: 10.1523/JNEUROSCI.21-11-03942.2001
– ident: e_1_2_10_67_1
  doi: 10.1016/j.bandc.2009.10.003
– ident: e_1_2_10_69_1
  doi: 10.1073/pnas.1604135113
– ident: e_1_2_10_7_1
  doi: 10.3758/BF03193406
– ident: e_1_2_10_28_1
  doi: 10.1016/j.tins.2015.11.004
– ident: e_1_2_10_58_1
  doi: 10.1016/S1364-6613(00)01845-3
– ident: e_1_2_10_13_1
  doi: 10.1016/j.biopsych.2008.07.029
– ident: e_1_2_10_46_1
  doi: 10.1001/archneur.1992.00530340070020
– ident: e_1_2_10_50_1
  doi: 10.1093/cercor/bhs007
– ident: e_1_2_10_72_1
  doi: 10.1093/cercor/bhp118
– ident: e_1_2_10_15_1
  doi: 10.1016/j.neuron.2015.09.020
– ident: e_1_2_10_21_1
  doi: 10.1152/jn.1973.36.1.61
– ident: e_1_2_10_68_1
  doi: 10.1523/JNEUROSCI.5309-07.2008
– ident: e_1_2_10_23_1
  doi: 10.1073/pnas.0402680101
– start-page: 777
  volume-title: Principles of Neural Science
  year: 1991
  ident: e_1_2_10_45_1
– ident: e_1_2_10_52_1
  doi: 10.3389/fpsyg.2016.00830
– ident: e_1_2_10_56_1
  doi: 10.3389/fpsyg.2017.01080
– ident: e_1_2_10_25_1
  doi: 10.1093/cercor/bhn197
– ident: e_1_2_10_80_1
  doi: 10.1523/JNEUROSCI.1623-09.2010
– ident: e_1_2_10_12_1
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: e_1_2_10_29_1
  doi: 10.1186/1744-9081-1-20
– ident: e_1_2_10_32_1
  doi: 10.1146/annurev.psych.59.103006.093615
– ident: e_1_2_10_16_1
  doi: 10.1038/nrn2979
– ident: e_1_2_10_51_1
  doi: 10.1016/j.neuroimage.2013.09.028
– ident: e_1_2_10_41_1
  doi: 10.1016/j.neuroimage.2013.08.052
– ident: e_1_2_10_30_1
  doi: 10.3389/fpsyg.2015.00696
– ident: e_1_2_10_64_1
  doi: 10.1016/0013-4694(90)90096-3
– ident: e_1_2_10_70_1
  doi: 10.3389/fpsyg.2010.00228
– ident: e_1_2_10_38_1
  doi: 10.1523/JNEUROSCI.5302-10.2011
– ident: e_1_2_10_11_1
  doi: 10.1038/nrn.2016.43
– ident: e_1_2_10_35_1
  doi: 10.1016/S0926-6410(97)00018-9
– ident: e_1_2_10_48_1
  doi: 10.1111/j.1469-8986.2010.01061.x
– ident: e_1_2_10_63_1
  doi: 10.1016/j.tics.2013.10.010
– ident: e_1_2_10_49_1
  doi: 10.1152/jn.1995.74.1.162
– ident: e_1_2_10_43_1
  doi: 10.1111/j.1460-9568.2009.06871.x
– ident: e_1_2_10_61_1
  doi: 10.1016/j.jecp.2006.03.009
– ident: e_1_2_10_81_1
  doi: 10.3758/CABN.3.4.255
– ident: e_1_2_10_24_1
  doi: 10.1016/j.neuroimage.2013.05.121
– ident: e_1_2_10_83_1
  doi: 10.1002/hbm.20273
– ident: e_1_2_10_44_1
  doi: 10.1016/j.jneumeth.2007.03.024
– ident: e_1_2_10_57_1
  doi: 10.1016/j.neuropsychologia.2011.10.001
– ident: e_1_2_10_3_1
  doi: 10.1016/j.neuropsychologia.2016.12.026
– ident: e_1_2_10_75_1
  doi: 10.1162/jocn.2008.21028
– ident: e_1_2_10_77_1
  doi: 10.3389/neuro.07.017.2009
– ident: e_1_2_10_17_1
  doi: 10.1016/j.neuroimage.2013.04.121
– ident: e_1_2_10_40_1
  doi: 10.1016/j.neuron.2013.03.007
– ident: e_1_2_10_31_1
  doi: 10.1016/j.biopsych.2005.11.012
– ident: e_1_2_10_59_1
  doi: 10.1016/j.brainres.2006.12.076
– ident: e_1_2_10_20_1
  doi: 10.1152/jn.1990.63.4.814
SSID ssj0008645
Score 2.3402054
Snippet The timing of neural activity is an intriguing way of exposing behaviorally relevant neural activity, as neural populations exploit transient windows of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2527
SubjectTerms Adolescent
Adolescents
Adult
Alpha Rhythm - physiology
alpha–beta band oscillatory signatures
Attention deficit hyperactivity disorder
Beta Rhythm - physiology
Brain - physiology
Cognitive ability
EEG
electroencephalography
Electroencephalography - methods
Female
Humans
Male
Memory
Memory, Short-Term - physiology
Mental disorders
Reaction Time - physiology
Rhythms
Scalp
Semantics
Short term memory
Synchronization
Teenagers
Visual stimuli
working memory
Young Adult
young adults
Title Working memory alpha–beta band oscillatory signatures in adolescents and young adults
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.13897
https://www.ncbi.nlm.nih.gov/pubmed/29514416
https://www.proquest.com/docview/2124403794
https://www.proquest.com/docview/2012113401
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1460-9568
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0008645
  issn: 0953-816X
  databaseCode: ABDBF
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0953-816X
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1460-9568
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008645
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH4MXvTiNi51I4qIlw5t02YqnoZBGQb0IA7OQShJk4DLVHFmDuPJ_-A_9Jf4ki46LiDeCn0lafKWL8nL9wD2JRVoRp5wOcJpN2Q6dLnPuYuhUHmSKsosl97ZOev0wm4_6tfguLwLk_NDVBtuxjKsvzYGzsXwk5Gr26xhTtnMTXKfRvaI9uKDOipmtkCxoVNzY5_1C1Yhk8VTfTkdi74BzGm8agPO6QJcl13N80zuGuORaKTPX1gc__kvizBfAFHSyjVnCWoqW4Z6K8NF-GBCDohNDbV77ssw2y7LwtXhqtheJwOTozsh9rLu28urUCNOBM8kMfSYqFzm9J6Y9BBLHTokNxn5RB9FjOTEuBpiKUCGK9A7Pblsd9yiOoOb0og2Xc0Fj7ls6lhrFstIaMSKOM9CyYAJjHKKCZkyHaThkadTKUPta58bDEdpgBqyCjPZQ6bWgWhPMCpFpG3OXCTR8WHQVFQ2uacQlDlwWM5TkhbU5aaCxn1SLmFwABM7gA7sVaKPOV_HT0Jb5WQnhckOk8AgHY-if3Jgt3qNg2tOUHimHsYoYxnxKK5JHVjLlaRqJUCsitiSYWftVP_efHLSPbcPG38X3YQ5bDxn4vW3YGb0NFbbCIdGYsfq_Tvu0wfK
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6V9hAu0AeU0AcGIcRlo931rrNIXKo2UZqmOaBW5IJW9tqWWsimapJDOPEf-g_5Jcx4H20KSFVvK-2s7LU9M589428A3muuUI185UmE014kbOTJQEoPXaHxNTdcOC6906HonUf9UTxagc_VXZiCH6I-cCPNcPaaFJwOpO9oubnMWxRmaz-BNYrPkVoefbklj0qEK1FMhGpeEohRyStEeTz1p8ve6C-IuYxYncvpPodvVWeLTJPvrflMtbKf93gcH_s36_CsxKLsoFg8G7Bi8k3YOshxHz5esA_MZYe6Y_dNaBxWleG24Gt5ws7GlKa7YO6-7u9fN8rMJFMy14wYMnF9UQCfUYaIYw-dsouc3WGQYiS5IGvDHAvI9AWcdztnhz2vLNDgZTzmbc9KJROp2zaxViQ6VhbhIk61MjoUCh2dEUpnwoZZ9Mm3mdaRDWwgCcZxHuIieQmr-SQ3r4BZXwmuVWxd2lys0fah3zRct6VvEJc14WM1UWlWspdTEY0fabWLwQFM3QA24V0telVQdvxLaLea7bTU2mkaEtjxOZqoJrytX-PgUhBF5mYyRxlHisdxW9qE7WKV1K2ECFcRXgrsrJvr_zefdvpD9_D64aJvoNE7Ox2kg-PhyQ48xY4UxLzBLqzOrudmD9HRTO07JfgDWL8L5g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64gHpxX8Y1ioiXDm3TZiqeRB1cBxHFOQglaRJwq-LMHMaT_8F_6C_xJV3cQbwV-krSvO1L8vIFYFVSgW7kCocjnHYCpgOHe5w7mAqVK6mizHLpHTfY3nlw0AybPbBZnIXJ-CHKBTfjGTZeGwd_kPqDk6vrtGp22Wq90B8wnF0ZRHT6zh0VMXtDseFTcyKPNXNaIVPGU376ORl9Q5ifAavNOPURuCz6mhWa3FQ7bVFNnr7QOP7zZ0ZhOEeiZCsznTHoUek4TGylOAu_65I1YmtD7aL7OAxuF_fCTcBFvr5O7kyRbpfY07qvzy9CtTkRPJXE8GOidZnte2LqQyx3aItcpeQDfxQxkl0Ta4jlAGlNwnl992x7z8mvZ3ASGtKao7ngEZc1HWnNIhkKjWARFS2U9JnANKeYkAnTfhJsuDqRMtCe9rgBcZT6aCJT0Jfep2oGiHYFo1KE2hbNhRIjH2ZNRWWNuwpRWQXWCz3FSc5dbq7QuI2LOQwOYGwHsAIrpehDRtjxk9B8oew499lW7Buo41IMUBVYLl_j4JotFJ6q-w7KWEo8ipPSCkxnRlK24iNYRXDJsLNW1b83H-8eNOzD7N9Fl2DgZKceH-03DudgCPuRsfJ689DXfuyoBYRGbbFoXeANNjEKlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Working+memory+alpha%E2%80%93beta+band+oscillatory+signatures+in+adolescents+and+young+adults&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Zammit%2C+Nowell&rft.au=Falzon%2C+Owen&rft.au=Camilleri%2C+Kenneth&rft.au=Muscat%2C+Richard&rft.date=2018-10-01&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=48&rft.issue=7&rft.spage=2527&rft.epage=2536&rft_id=info:doi/10.1111%2Fejn.13897&rft.externalDBID=10.1111%252Fejn.13897&rft.externalDocID=EJN13897
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon