Working memory alpha–beta band oscillatory signatures in adolescents and young adults
The timing of neural activity is an intriguing way of exposing behaviorally relevant neural activity, as neural populations exploit transient windows of synchronized activations to exchange dynamic communications in the service of various cognitive operations. The link between neural synchrony and w...
Saved in:
Published in | The European journal of neuroscience Vol. 48; no. 7; pp. 2527 - 2536 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
France
Wiley Subscription Services, Inc
01.10.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0953-816X 1460-9568 1460-9568 |
DOI | 10.1111/ejn.13897 |
Cover
Abstract | The timing of neural activity is an intriguing way of exposing behaviorally relevant neural activity, as neural populations exploit transient windows of synchronized activations to exchange dynamic communications in the service of various cognitive operations. The link between neural synchrony and working memory (WM) has been supported at the theoretical and empirical level. However, findings have also shown that WM encoding is also related to significant alpha–beta desynchronization. These findings have been primarily recorded during subsequent memory effect paradigms that compare correct with incorrect encoding trials. The dissociable contribution imparted by various processes to WM performance suggests that incorrect performance may not be directly translatable to unsuccessful encoding. Here, we address the relationship between alpha–beta desynchronization and encoding through the use of an alternative paradigm design by contrasting frontal and parietal human scalp electroencephalography activity during the encoding interval of a delayed matching‐to‐sample task with that recorded during a control task. The additional use of non‐verbal/semantic visual stimulation and recruitment of typically developing adolescent subjects has led us to the conclusion that encoding‐relevant alpha–beta decrements can be replicated via a non‐verbal/semantic delayed matching‐to‐sample task and these are also evident in typically developing adolescents, in addition to adults, as has been previously demonstrated. The identification of encoding‐related alpha–beta decrements in adolescent subjects performing such WM tasks may open new avenues to explore whether such a rhythmic signature may explain WM and electrophysiological deficits that emerge in various adolescent neuropsychiatric disorders such as attention deficit hyperactivity disorder.
Here, we addressed alpha–beta desynchronization during encoding by contrasting human EEG activity during the encoding interval of a delayed matching‐to‐sample task with that recorded during a control task. We show that encoding‐relevant alpha–beta decrements reported in subsequent memory effect paradigms can be replicated via a nonverbal/semantic delayed matching‐to‐sample task and that these are also evident in healthy adolescents, in addition to adults, as has been previously demonstrated. |
---|---|
AbstractList | The timing of neural activity is an intriguing way of exposing behaviorally relevant neural activity, as neural populations exploit transient windows of synchronized activations to exchange dynamic communications in the service of various cognitive operations. The link between neural synchrony and working memory (
WM
) has been supported at the theoretical and empirical level. However, findings have also shown that
WM
encoding is also related to significant alpha–beta desynchronization. These findings have been primarily recorded during subsequent memory effect paradigms that compare correct with incorrect encoding trials. The dissociable contribution imparted by various processes to
WM
performance suggests that incorrect performance may not be directly translatable to unsuccessful encoding. Here, we address the relationship between alpha–beta desynchronization and encoding through the use of an alternative paradigm design by contrasting frontal and parietal human scalp electroencephalography activity during the encoding interval of a delayed matching‐to‐sample task with that recorded during a control task. The additional use of non‐verbal/semantic visual stimulation and recruitment of typically developing adolescent subjects has led us to the conclusion that encoding‐relevant alpha–beta decrements can be replicated via a non‐verbal/semantic delayed matching‐to‐sample task and these are also evident in typically developing adolescents, in addition to adults, as has been previously demonstrated. The identification of encoding‐related alpha–beta decrements in adolescent subjects performing such
WM
tasks may open new avenues to explore whether such a rhythmic signature may explain
WM
and electrophysiological deficits that emerge in various adolescent neuropsychiatric disorders such as attention deficit hyperactivity disorder. The timing of neural activity is an intriguing way of exposing behaviorally relevant neural activity, as neural populations exploit transient windows of synchronized activations to exchange dynamic communications in the service of various cognitive operations. The link between neural synchrony and working memory (WM) has been supported at the theoretical and empirical level. However, findings have also shown that WM encoding is also related to significant alpha–beta desynchronization. These findings have been primarily recorded during subsequent memory effect paradigms that compare correct with incorrect encoding trials. The dissociable contribution imparted by various processes to WM performance suggests that incorrect performance may not be directly translatable to unsuccessful encoding. Here, we address the relationship between alpha–beta desynchronization and encoding through the use of an alternative paradigm design by contrasting frontal and parietal human scalp electroencephalography activity during the encoding interval of a delayed matching‐to‐sample task with that recorded during a control task. The additional use of non‐verbal/semantic visual stimulation and recruitment of typically developing adolescent subjects has led us to the conclusion that encoding‐relevant alpha–beta decrements can be replicated via a non‐verbal/semantic delayed matching‐to‐sample task and these are also evident in typically developing adolescents, in addition to adults, as has been previously demonstrated. The identification of encoding‐related alpha–beta decrements in adolescent subjects performing such WM tasks may open new avenues to explore whether such a rhythmic signature may explain WM and electrophysiological deficits that emerge in various adolescent neuropsychiatric disorders such as attention deficit hyperactivity disorder. The timing of neural activity is an intriguing way of exposing behaviorally relevant neural activity, as neural populations exploit transient windows of synchronized activations to exchange dynamic communications in the service of various cognitive operations. The link between neural synchrony and working memory (WM) has been supported at the theoretical and empirical level. However, findings have also shown that WM encoding is also related to significant alpha–beta desynchronization. These findings have been primarily recorded during subsequent memory effect paradigms that compare correct with incorrect encoding trials. The dissociable contribution imparted by various processes to WM performance suggests that incorrect performance may not be directly translatable to unsuccessful encoding. Here, we address the relationship between alpha–beta desynchronization and encoding through the use of an alternative paradigm design by contrasting frontal and parietal human scalp electroencephalography activity during the encoding interval of a delayed matching‐to‐sample task with that recorded during a control task. The additional use of non‐verbal/semantic visual stimulation and recruitment of typically developing adolescent subjects has led us to the conclusion that encoding‐relevant alpha–beta decrements can be replicated via a non‐verbal/semantic delayed matching‐to‐sample task and these are also evident in typically developing adolescents, in addition to adults, as has been previously demonstrated. The identification of encoding‐related alpha–beta decrements in adolescent subjects performing such WM tasks may open new avenues to explore whether such a rhythmic signature may explain WM and electrophysiological deficits that emerge in various adolescent neuropsychiatric disorders such as attention deficit hyperactivity disorder. Here, we addressed alpha–beta desynchronization during encoding by contrasting human EEG activity during the encoding interval of a delayed matching‐to‐sample task with that recorded during a control task. We show that encoding‐relevant alpha–beta decrements reported in subsequent memory effect paradigms can be replicated via a nonverbal/semantic delayed matching‐to‐sample task and that these are also evident in healthy adolescents, in addition to adults, as has been previously demonstrated. The timing of neural activity is an intriguing way of exposing behaviorally relevant neural activity, as neural populations exploit transient windows of synchronized activations to exchange dynamic communications in the service of various cognitive operations. The link between neural synchrony and working memory (WM) has been supported at the theoretical and empirical level. However, findings have also shown that WM encoding is also related to significant alpha-beta desynchronization. These findings have been primarily recorded during subsequent memory effect paradigms that compare correct with incorrect encoding trials. The dissociable contribution imparted by various processes to WM performance suggests that incorrect performance may not be directly translatable to unsuccessful encoding. Here, we address the relationship between alpha-beta desynchronization and encoding through the use of an alternative paradigm design by contrasting frontal and parietal human scalp electroencephalography activity during the encoding interval of a delayed matching-to-sample task with that recorded during a control task. The additional use of non-verbal/semantic visual stimulation and recruitment of typically developing adolescent subjects has led us to the conclusion that encoding-relevant alpha-beta decrements can be replicated via a non-verbal/semantic delayed matching-to-sample task and these are also evident in typically developing adolescents, in addition to adults, as has been previously demonstrated. The identification of encoding-related alpha-beta decrements in adolescent subjects performing such WM tasks may open new avenues to explore whether such a rhythmic signature may explain WM and electrophysiological deficits that emerge in various adolescent neuropsychiatric disorders such as attention deficit hyperactivity disorder.The timing of neural activity is an intriguing way of exposing behaviorally relevant neural activity, as neural populations exploit transient windows of synchronized activations to exchange dynamic communications in the service of various cognitive operations. The link between neural synchrony and working memory (WM) has been supported at the theoretical and empirical level. However, findings have also shown that WM encoding is also related to significant alpha-beta desynchronization. These findings have been primarily recorded during subsequent memory effect paradigms that compare correct with incorrect encoding trials. The dissociable contribution imparted by various processes to WM performance suggests that incorrect performance may not be directly translatable to unsuccessful encoding. Here, we address the relationship between alpha-beta desynchronization and encoding through the use of an alternative paradigm design by contrasting frontal and parietal human scalp electroencephalography activity during the encoding interval of a delayed matching-to-sample task with that recorded during a control task. The additional use of non-verbal/semantic visual stimulation and recruitment of typically developing adolescent subjects has led us to the conclusion that encoding-relevant alpha-beta decrements can be replicated via a non-verbal/semantic delayed matching-to-sample task and these are also evident in typically developing adolescents, in addition to adults, as has been previously demonstrated. The identification of encoding-related alpha-beta decrements in adolescent subjects performing such WM tasks may open new avenues to explore whether such a rhythmic signature may explain WM and electrophysiological deficits that emerge in various adolescent neuropsychiatric disorders such as attention deficit hyperactivity disorder. |
Author | Camilleri, Kenneth Zammit, Nowell Muscat, Richard Falzon, Owen |
Author_xml | – sequence: 1 givenname: Nowell orcidid: 0000-0002-2694-8583 surname: Zammit fullname: Zammit, Nowell email: nowell.zammit@um.edu.mt organization: University of Malta – sequence: 2 givenname: Owen surname: Falzon fullname: Falzon, Owen organization: University of Malta – sequence: 3 givenname: Kenneth surname: Camilleri fullname: Camilleri, Kenneth organization: University of Malta – sequence: 4 givenname: Richard surname: Muscat fullname: Muscat, Richard organization: University of Malta |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29514416$$D View this record in MEDLINE/PubMed |
BookMark | eNp90b1uFDEUBWALBZFNoOAF0Eg0UEziv_GOSxQlJFEEDSh01vXYDl5m7MX2CG2Xd-ANeZJ4swlFJHDjwt-9OvI5QHshBovQa4KPSD3HdhWOCOvl8hlaEC5wKzvR76EFlh1reyK-7aODnFcY417w7gXap7IjnBOxQNfXMf3w4aaZ7BTTpoFx_R3-3P7WtkCjIZgm5sGPI5Tta_Y3AcqcbG58aMDE0ebBhpKbrdzEuS4CM48lv0TPHYzZvnq4D9HXs9MvJ-ft1eePFycfrtqBdWzZOtDQg1m63jnRm047SRkQ0NZQoamUVmgzCEcHLrEbjOGOOAKYUMYY1R07RO92e9cp_pxtLmryNVINHGycs6KVEsI4JpW-fUJXcU6hplOUUM4xW0pe1ZsHNevJGrVOfoK0UY9fVsH7HRhSzDlZ95cQrLZ1qFqHuq-j2uMndvAFio-hJPDj_yZ--dFu_r1anV5-2k3cAbiinWc |
CitedBy_id | crossref_primary_10_1016_j_bandl_2022_105127 crossref_primary_10_3389_fnsys_2021_787316 crossref_primary_10_1111_ejn_15040 crossref_primary_10_1371_journal_pone_0258335 crossref_primary_10_1016_j_neuroimage_2021_118299 crossref_primary_10_1111_ejn_14767 crossref_primary_10_1073_pnas_2407457121 crossref_primary_10_1016_j_bandc_2023_105969 crossref_primary_10_1111_psyp_13442 crossref_primary_10_1111_ejn_14398 crossref_primary_10_1016_j_neulet_2023_137100 crossref_primary_10_1038_s41598_023_41358_0 |
Cites_doi | 10.1523/JNEUROSCI.23-34-10809.2003 10.1186/1744-9081-7-30 10.1016/j.neuroimage.2008.05.020 10.1016/j.brainresrev.2006.06.003 10.1016/0165-0173(83)90037-1 10.1037/0278-7393.7.3.191 10.1038/84032 10.1093/cercor/bhl030 10.1155/2011/156869 10.1093/schbul/sbr034 10.1016/S1388-2457(99)00102-9 10.1073/pnas.0900390106 10.1046/j.1467-8624.2003.00639.x 10.1162/jocn_a_00434 10.1037/xhp0000212 10.3389/fnhum.2012.00074 10.1523/JNEUROSCI.2378-13.2013 10.3389/fpsyg.2013.00012 10.1126/science.274.5290.1133 10.3389/fpsyg.2011.00118 10.1126/science.1139597 10.1002/hipo.450030307 10.1016/j.tics.2009.12.002 10.1016/S0010-9452(08)70444-1 10.3389/fpsyg.2012.00201 10.1016/0013-4694(77)90235-8 10.1016/j.tics.2012.10.007 10.1016/j.neuroimage.2013.06.067 10.1126/science.1099745 10.1162/089976699300016719 10.1523/JNEUROSCI.3140-11.2011 10.1016/S0013-4694(96)95562-5 10.1142/S0219635207001416 10.1093/cercor/7.4.374 10.1027/0269-8803/a000052 10.1002/hipo.20689 10.1523/JNEUROSCI.21-11-03942.2001 10.1016/j.bandc.2009.10.003 10.1073/pnas.1604135113 10.3758/BF03193406 10.1016/j.tins.2015.11.004 10.1016/S1364-6613(00)01845-3 10.1016/j.biopsych.2008.07.029 10.1001/archneur.1992.00530340070020 10.1093/cercor/bhs007 10.1093/cercor/bhp118 10.1016/j.neuron.2015.09.020 10.1152/jn.1973.36.1.61 10.1523/JNEUROSCI.5309-07.2008 10.1073/pnas.0402680101 10.3389/fpsyg.2016.00830 10.3389/fpsyg.2017.01080 10.1093/cercor/bhn197 10.1523/JNEUROSCI.1623-09.2010 10.1016/j.jneumeth.2003.10.009 10.1186/1744-9081-1-20 10.1146/annurev.psych.59.103006.093615 10.1038/nrn2979 10.1016/j.neuroimage.2013.09.028 10.1016/j.neuroimage.2013.08.052 10.3389/fpsyg.2015.00696 10.1016/0013-4694(90)90096-3 10.3389/fpsyg.2010.00228 10.1523/JNEUROSCI.5302-10.2011 10.1038/nrn.2016.43 10.1016/S0926-6410(97)00018-9 10.1111/j.1469-8986.2010.01061.x 10.1016/j.tics.2013.10.010 10.1152/jn.1995.74.1.162 10.1111/j.1460-9568.2009.06871.x 10.1016/j.jecp.2006.03.009 10.3758/CABN.3.4.255 10.1016/j.neuroimage.2013.05.121 10.1002/hbm.20273 10.1016/j.jneumeth.2007.03.024 10.1016/j.neuropsychologia.2011.10.001 10.1016/j.neuropsychologia.2016.12.026 10.1162/jocn.2008.21028 10.3389/neuro.07.017.2009 10.1016/j.neuroimage.2013.04.121 10.1016/j.neuron.2013.03.007 10.1016/j.biopsych.2005.11.012 10.1016/j.brainres.2006.12.076 10.1152/jn.1990.63.4.814 |
ContentType | Journal Article |
Copyright | 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. Copyright © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd |
Copyright_xml | – notice: 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd – notice: 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. – notice: Copyright © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 P64 7X8 |
DOI | 10.1111/ejn.13897 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Chemoreception Abstracts Engineering Research Database Technology Research Database Calcium & Calcified Tissue Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Chemoreception Abstracts MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1460-9568 |
EndPage | 2536 |
ExternalDocumentID | 29514416 10_1111_ejn_13897 EJN13897 |
Genre | article Journal Article |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 7QP 7QR 7TK 8FD FR3 P64 7X8 |
ID | FETCH-LOGICAL-c3537-faba8ad7f8ff68d5bf923a1abed26b299e6bdc6f2c490fcdd4f1f1a0123332b53 |
IEDL.DBID | DR2 |
ISSN | 0953-816X 1460-9568 |
IngestDate | Fri Jul 11 16:48:38 EDT 2025 Fri Jul 25 20:13:28 EDT 2025 Mon Jul 21 06:05:57 EDT 2025 Wed Oct 01 03:43:56 EDT 2025 Thu Apr 24 23:00:24 EDT 2025 Wed Jan 22 16:54:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | electroencephalography adolescents working memory alpha-beta band oscillatory signatures young adults |
Language | English |
License | 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3537-faba8ad7f8ff68d5bf923a1abed26b299e6bdc6f2c490fcdd4f1f1a0123332b53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2694-8583 |
PMID | 29514416 |
PQID | 2124403794 |
PQPubID | 34057 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2012113401 proquest_journals_2124403794 pubmed_primary_29514416 crossref_primary_10_1111_ejn_13897 crossref_citationtrail_10_1111_ejn_13897 wiley_primary_10_1111_ejn_13897_EJN13897 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2018 2018-10-00 20181001 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: October 2018 |
PublicationDecade | 2010 |
PublicationPlace | France |
PublicationPlace_xml | – name: France – name: Chichester |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 1995; 74 2017; 8 2013; 4 2013; 25 2010; 14 2006; 34 2009a; 3 2013; 23 2011; 12 2012; 16 2016; 39 1997; 6 1992; 10 1993; 3 1997; 7 2004; 134 2007; 28 2006; 60 2010; 20 2010; 1 2015; 88 2008; 28 2016; 113 2016; 42 2003; 3 2007; 6 1999; 11 2014; 18 2011; 25 2008; 64 2009; 19 2010; 30 2010; 72 2004; 101 2007; 17 1990; 76 2015; 6 2009b; 106 2011; 2 2009; 21 2006; 95 1973; 36 2002; 6 2007; 164 1981; 7 2011; 31 2008; 59 1977; 42 2011; 37 1991 2014; 85 2007; 53 2016; 17 2014; 84 2004; 304 2003; 74 2011; 7 2001; 21 1996; 99 2017; 95 1990; 63 2011; 2011 2016; 7 2009; 30 2007; 316 2012; 3 1983; 287 2013; 77 2013; 33 2013; 79 2001; 4 1999; 110 2006; 1138 2005; 1 1996; 274 2011; 48 2008; 42 2012; 6 2011; 49 2007; 43 2003; 23 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_69_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 e_1_2_10_70_1 e_1_2_10_2_1 e_1_2_10_72_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_74_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_76_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_57_1 e_1_2_10_78_1 e_1_2_10_58_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 e_1_2_10_80_1 e_1_2_10_82_1 e_1_2_10_61_1 e_1_2_10_84_1 e_1_2_10_29_1 e_1_2_10_63_1 e_1_2_10_86_1 e_1_2_10_27_1 e_1_2_10_65_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_67_1 e_1_2_10_24_1 e_1_2_10_22_1 e_1_2_10_43_1 Martin J.H. (e_1_2_10_45_1) 1991 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_71_1 e_1_2_10_73_1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_75_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_77_1 e_1_2_10_56_1 e_1_2_10_79_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_59_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_60_1 e_1_2_10_81_1 e_1_2_10_62_1 e_1_2_10_83_1 e_1_2_10_64_1 e_1_2_10_85_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_66_1 e_1_2_10_26_1 e_1_2_10_47_1 e_1_2_10_68_1 |
References_xml | – volume: 31 start-page: 15674 year: 2011 end-page: 15680 article-title: The relationship between brain oscillations and BOLD signal during memory formation: a combined EEG–fMRI study publication-title: J. Neurosci. – volume: 95 start-page: 215 year: 2017 end-page: 226 article-title: Developmental trajectories of event related potentials related to working memory publication-title: Neuropsychologia – volume: 30 start-page: 924 year: 2009 end-page: 933 article-title: Neural generators of sustained activity differ for stimulus‐encoding and delay maintenance publication-title: Eur. J. Neurosci. – volume: 31 start-page: 10937 year: 2011 end-page: 10947 article-title: Longitudinal development of human brain wiring continues from childhood into adulthood publication-title: J. Neurosci. – volume: 23 start-page: 264 year: 2013 end-page: 282 article-title: A meta‐analysis of executive components of working memory publication-title: Cereb. Cortex – volume: 60 start-page: 11 year: 2006 end-page: 21 article-title: A functional magnetic resonance imaging study of working memory abnormalities in schizophrenia publication-title: Biol. Psychiat. – volume: 1 start-page: 1 year: 2005 end-page: 13 article-title: EEG correlates of verbal and nonverbal working memory publication-title: Behav. Brain Funct. – start-page: 777 year: 1991 end-page: 791 – volume: 6 start-page: 1 year: 2015 end-page: 10 article-title: Visual working memory continues to develop through adolescence publication-title: Front. Psychol. – volume: 42 start-page: 928 year: 2008 end-page: 935 article-title: Alpha phase coupling reflects object recognition publication-title: NeuroImage – volume: 25 start-page: 1611 year: 2013 end-page: 1623 article-title: Longitudinal working memory development is related to structural maturation of frontal and parietal cortices publication-title: J. Cognitive Neurosci. – volume: 316 start-page: 1609 year: 2007 end-page: 1612 article-title: Modulation of neuronal interactions through neuronal synchronization publication-title: Science – volume: 14 start-page: 72 year: 2010 end-page: 80 article-title: Neural synchrony and the development of cortical networks publication-title: Trends Cogn. Sci. – volume: 304 start-page: 1926 year: 2004 end-page: 1929 article-title: Neural oscillations in cortical networks publication-title: Science – volume: 12 start-page: 105 year: 2011 end-page: 118 article-title: The role of phase synchronization in memory processes publication-title: Nat. Rev. Neurosci. – volume: 4 start-page: 1 year: 2013 end-page: 5 article-title: Age‐related change in visual working memory: a study of 55,753 participants aged 8–75 publication-title: Front. Psychol. – volume: 6 start-page: 93 year: 2002 end-page: 102 article-title: Observing the transformation of experience into memory publication-title: Trends Cogn. Sci. – volume: 28 start-page: 3586 year: 2008 end-page: 3594 article-title: Neurodevelopmental trajectories of the human cerebral cortex publication-title: J. Neurosci. – volume: 7 start-page: 191 year: 1981 end-page: 203 article-title: Imagery and semantic elaboration in hypermnesia for words publication-title: J. Exp. Psychol. Learn. – volume: 84 start-page: 712 year: 2014 end-page: 723 article-title: Using single‐trial EEG to predict and analyze subsequent memory publication-title: NeuroImage – volume: 3 start-page: 255 year: 2003 end-page: 274 article-title: Neuroimaging studies of working memory: a meta‐analysis publication-title: Cogn. Affect. Behav. Ne. – volume: 17 start-page: 1190 year: 2007 end-page: 1196 article-title: Hippocampal and neocortical gamma oscillations predict memory formation in humans publication-title: Cereb. Cortex – volume: 16 start-page: 606 year: 2012 end-page: 617 article-title: Alpha‐band oscillations, attention, and controlled access to stored information publication-title: Trends Cogn. Sci. – volume: 42 start-page: 1121 year: 2016 end-page: 1138 article-title: The relationship between visual attention and visual working memory encoding: a dissociation between covert and overt orienting publication-title: J. Exp. Psychol. Human – volume: 3 start-page: 317 year: 1993 end-page: 330 article-title: Phase relationship between hippocampal place units and the EEG theta rhythm publication-title: Hippocampus – volume: 84 start-page: 488 year: 2014 end-page: 494 article-title: Subsequent memory effect in intracranial and scalp EEG publication-title: NeuroImage – volume: 59 start-page: 193 year: 2008 end-page: 224 article-title: The mind and brain of short‐term memory publication-title: Annu. Rev. Psychol. – volume: 74 start-page: 162 year: 1995 end-page: 178 article-title: Mnemonic firing of neurons in the monkey temporal pole during a visual recognition memory task publication-title: J. Neurophysiol. – volume: 30 start-page: 1250 year: 2010 end-page: 1257 article-title: Gamma‐phase shifting in awake monkey visual cortex publication-title: J. Neurosci. – volume: 33 start-page: 14211 year: 2013 end-page: 14224 article-title: Theta oscillations in the medial prefrontal cortex are modulated by spatial working memory and synchronize with the hippocampus through its ventral subregion publication-title: J. Neurosci. – volume: 85 start-page: 648 year: 2014 end-page: 655 article-title: How brain oscillations form memories – a processing based perspective on oscillatory subsequent memory effects publication-title: NeuroImage – volume: 21 start-page: 316 year: 2009 end-page: 332 article-title: Development of spatial and verbal working memory capacity in the human brain publication-title: J. Cognitive Neurosci. – volume: 113 start-page: E4885 year: 2016 end-page: E4894 article-title: Neural mechanisms of transient neocortical beta rhythms: converging evidence from humans, computational modeling, monkeys, and mice publication-title: Proc. Natl. Acad. Sci. USA – volume: 4 start-page: 194 year: 2001 end-page: 200 article-title: Rapid feature selective neuronal synchronization through correlated latency shifting publication-title: Nat. Neurosci. – volume: 1138 start-page: 171 year: 2006 end-page: 177 article-title: Brain oscillatory 4–30 Hz responses during a visual n‐back memory task with varying memory load publication-title: Brain Res. – volume: 99 start-page: 527 year: 1996 end-page: 538 article-title: Developmental changes in the alpha response system publication-title: Electroen. Clin. Neuro. – volume: 17 start-page: 438 year: 2016 end-page: 449 article-title: The neuroscience of working memory capacity and training publication-title: Nat. Rev. Neurosci. – volume: 72 start-page: 86 year: 2010 end-page: 100 article-title: Electrophysiological changes during adolescence: a review publication-title: Brain Cognition – volume: 88 start-page: 33 year: 2015 end-page: 46 article-title: Neurocognitive architecture of working memory publication-title: Neuron – volume: 42 start-page: 817 year: 1977 end-page: 826 article-title: Event‐related cortical desynchronization detected by power measurements of scalp EEG publication-title: Electroen. Clin. Neuro. – volume: 21 start-page: 3942 year: 2001 end-page: 3948 article-title: Transient interhemispheric neuronal synchrony correlates with object recognition publication-title: J. Neurosci. – volume: 2 start-page: 1 year: 2011 end-page: 11 article-title: Alpha oscillations and early stages of visual encoding publication-title: Front. Psychol. – volume: 164 start-page: 177 year: 2007 end-page: 190 article-title: Nonparametric statistical testing of EEG‐ and MEG‐data publication-title: J. Neurosci. Meth. – volume: 6 start-page: 205 year: 2007 end-page: 218 article-title: Integrating “brain” and “body” measures: correlations between EEG and metabolic changes over the human lifespan publication-title: J. Integr. Neurosci. – volume: 1 start-page: 1 year: 2010 end-page: 10 article-title: Semantic elaboration in auditory and visual spatial memory publication-title: Front. Psychol. – volume: 10 start-page: 1050 year: 1992 end-page: 1058 article-title: Contributions of the left intralaminar and medial thalamic nuclei to memory comparisons and report of a case publication-title: Arch. Neurol. – volume: 8 start-page: 1 year: 2017 end-page: 10 article-title: Retrieval and monitoring processes during visual working memory: an ERP study of the benefit of visual semantics publication-title: Front. Psychol. – volume: 37 start-page: 514 year: 2011 end-page: 523 article-title: The development of neural synchrony and large‐scale cortical networks during adolescence: relevance for the pathophysiology of schizophrenia and neurodevelopmental hypothesis publication-title: Schizophrenia Bull. – volume: 18 start-page: 16 year: 2014 end-page: 25 article-title: Working memory and neural oscillations: alpha–gamma versus theta–gamma codes for distinct WM information? publication-title: Trends Cogn. Sci. – volume: 7 start-page: 374 year: 1997 end-page: 385 article-title: High‐resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice publication-title: Cereb. Cortex – volume: 6 start-page: 1 year: 2012 end-page: 12 article-title: Oscillatory power decreases and long‐term memory: the information via desynchronization hypothesis publication-title: Front. Hum. Neurosci. – volume: 134 start-page: 9 year: 2004 end-page: 21 article-title: EEGLAB: an open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis publication-title: J. Neurosci. Meth. – volume: 39 start-page: 16 year: 2016 end-page: 25 article-title: Oscillations and episodic memory: addressing the synchronization/desynchronization conundrum publication-title: Trends Neurosci. – volume: 77 start-page: 1002 year: 2013 end-page: 1016 article-title: The theta‐gamma neural code publication-title: Neuron – volume: 23 start-page: 10809 year: 2003 end-page: 10814 article-title: Theta and gamma oscillations during encoding predict subsequent recall publication-title: J. Neurosci. – volume: 34 start-page: 277 year: 2006 end-page: 286 article-title: Beneficial effects of verbalization and visual distinctiveness on remembering and knowing faces publication-title: Mem. Cognition – volume: 7 start-page: 1 year: 2016 end-page: 15 article-title: A new conceptualization of human visual sensory‐memory publication-title: Front. Psychol. – volume: 53 start-page: 63 year: 2007 end-page: 88 article-title: EEG alpha oscillations: the inhibition‐timing hypothesis publication-title: Brain Res. Rev. – volume: 11 start-page: 417 year: 1999 end-page: 441 article-title: Independent component analysis using an extended infomax algorithm for mixed sub‐Gaussian and super‐Gaussian sources publication-title: Neural Comput. – volume: 101 start-page: 8174 year: 2004 end-page: 8179 article-title: Dynamic mapping of human cortical development during childhood through early adulthood publication-title: Proc. Natl. Acad. Sci. USA – volume: 20 start-page: 534 year: 2010 end-page: 548 article-title: Brain maturation in adolescence and young adulthood: regional age‐related changes in cortical thickness and white matter volume and microstructure publication-title: Cereb. Cortex – volume: 106 start-page: 9866 year: 2009b end-page: 9871 article-title: The development of neural synchrony reflects late maturation and restructuring of functional networks in humans publication-title: Proc. Natl. Acad. Sci. USA – volume: 64 start-page: 1026 year: 2008 end-page: 1034 article-title: Impairment of working memory maintenance and response in schizophrenia: functional magnetic resonance imaging evidence publication-title: Biol. Psychiat. – volume: 79 start-page: 361 year: 2013 end-page: 370 article-title: Brain oscillatory subsequent memory effects differ in power and long‐range synchronization between semantic and survival processing publication-title: NeuroImage – volume: 43 start-page: 38 year: 2007 end-page: 52 article-title: Relationship between prefrontal task‐related activity and information flow during spatial working memory performance publication-title: Cortex – volume: 36 start-page: 61 year: 1973 end-page: 78 article-title: Unit activity in prefrontal cortex during delayed response performance: neuronal correlates of transient memory publication-title: J. Neurophysiol. – volume: 76 start-page: 419 year: 1990 end-page: 439 article-title: Short‐term memory storage and retention: an event‐related brain potential study publication-title: Electroen. Clin. Neuro. – volume: 85 start-page: 834 year: 2014 end-page: 843 article-title: Human intracranial high‐frequency activity maps episodic memory formation in space and time publication-title: NeuroImage – volume: 20 start-page: 936 year: 2010 end-page: 948 article-title: Abnormal medial temporal activity for bound information during working memory maintenance in patients with schizophrenia publication-title: Hippocampus – volume: 49 start-page: 3854 year: 2011 end-page: 3862 article-title: Morphometry and connectivity of the fronto‐parietal verbal working memory network in development publication-title: Neuropsychologia – volume: 7 start-page: 1 year: 2011 end-page: 15 article-title: Automatic classification of artifactual ICA‐components for artifact removal in EEG signals publication-title: Behav. Brain Funct. – volume: 287 start-page: 139 year: 1983 end-page: 171 article-title: Cellular bases of hippocampal EEG in the behaving rat publication-title: Brain Res. – volume: 63 start-page: 814 year: 1990 end-page: 831 article-title: Visuospatial coding in primate prefrontal neurons revealed by oculomotor paradigms publication-title: J. Neurophysiol. – volume: 95 start-page: 18 year: 2006 end-page: 26 article-title: Changes in the capacity of visual working memory in 5‐ to 10‐year‐olds publication-title: J. Exp. Child Psychol. – volume: 3 start-page: 1 year: 2009a end-page: 19 article-title: Neural synchrony in cortical networks: history, concept and current status publication-title: Front. Integr. Neurosci. – volume: 274 start-page: 1133 year: 1996 end-page: 1138 article-title: Synaptic activity and the construction of cortical circuits publication-title: Science – volume: 6 start-page: 83 year: 1997 end-page: 94 article-title: Event‐related desynchronization in the alpha band and the processing of semantic information publication-title: Cognitive Brain Res. – volume: 2011 start-page: 1 year: 2011 end-page: 9 article-title: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data publication-title: Comput. Intel. Neurosc. – volume: 3 start-page: 1 year: 2012 end-page: 15 article-title: Too many betas do not spoil the broth: the role of beta brain oscillations in language processing publication-title: Front. Psychol. – volume: 110 start-page: 1399 year: 1999 end-page: 1409 article-title: Life‐span changes in EEG spectral amplitude, amplitude variability and mean frequency publication-title: Clin. Neurophysiol. – volume: 25 start-page: 143 year: 2011 end-page: 158 article-title: Developmental changes in the EEG rhythms of children and young adults: analyzed by means of correlational, brain topography and principal component analysis publication-title: Journal of Psychophysiology. – volume: 19 start-page: 1631 year: 2009 end-page: 1640 article-title: Brain oscillations dissociate between semantic and nonsemantic encoding of episodic memories publication-title: Cereb. Cortex – volume: 74 start-page: 1807 year: 2003 end-page: 1822 article-title: The development of visual short‐term memory capacity in infants publication-title: Child Dev. – volume: 48 start-page: 229 year: 2011 end-page: 240 article-title: ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features publication-title: Psychophysiology – volume: 28 start-page: 228 year: 2007 end-page: 237 article-title: Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology publication-title: Hum. Brain Mapp. – ident: e_1_2_10_65_1 doi: 10.1523/JNEUROSCI.23-34-10809.2003 – ident: e_1_2_10_84_1 doi: 10.1186/1744-9081-7-30 – ident: e_1_2_10_18_1 doi: 10.1016/j.neuroimage.2008.05.020 – ident: e_1_2_10_36_1 doi: 10.1016/j.brainresrev.2006.06.003 – ident: e_1_2_10_10_1 doi: 10.1016/0165-0173(83)90037-1 – ident: e_1_2_10_4_1 doi: 10.1037/0278-7393.7.3.191 – ident: e_1_2_10_19_1 doi: 10.1038/84032 – ident: e_1_2_10_66_1 doi: 10.1093/cercor/bhl030 – ident: e_1_2_10_55_1 doi: 10.1155/2011/156869 – ident: e_1_2_10_76_1 doi: 10.1093/schbul/sbr034 – ident: e_1_2_10_14_1 doi: 10.1016/S1388-2457(99)00102-9 – ident: e_1_2_10_78_1 doi: 10.1073/pnas.0900390106 – ident: e_1_2_10_62_1 doi: 10.1046/j.1467-8624.2003.00639.x – ident: e_1_2_10_73_1 doi: 10.1162/jocn_a_00434 – ident: e_1_2_10_74_1 doi: 10.1037/xhp0000212 – ident: e_1_2_10_27_1 doi: 10.3389/fnhum.2012.00074 – ident: e_1_2_10_54_1 doi: 10.1523/JNEUROSCI.2378-13.2013 – ident: e_1_2_10_6_1 doi: 10.3389/fpsyg.2013.00012 – ident: e_1_2_10_33_1 doi: 10.1126/science.274.5290.1133 – ident: e_1_2_10_37_1 doi: 10.3389/fpsyg.2011.00118 – ident: e_1_2_10_85_1 doi: 10.1126/science.1139597 – ident: e_1_2_10_53_1 doi: 10.1002/hipo.450030307 – ident: e_1_2_10_79_1 doi: 10.1016/j.tics.2009.12.002 – ident: e_1_2_10_71_1 doi: 10.1016/S0010-9452(08)70444-1 – ident: e_1_2_10_82_1 doi: 10.3389/fpsyg.2012.00201 – ident: e_1_2_10_60_1 doi: 10.1016/0013-4694(77)90235-8 – ident: e_1_2_10_34_1 doi: 10.1016/j.tics.2012.10.007 – ident: e_1_2_10_8_1 doi: 10.1016/j.neuroimage.2013.06.067 – ident: e_1_2_10_9_1 doi: 10.1126/science.1099745 – ident: e_1_2_10_39_1 doi: 10.1162/089976699300016719 – ident: e_1_2_10_26_1 doi: 10.1523/JNEUROSCI.3140-11.2011 – ident: e_1_2_10_86_1 doi: 10.1016/S0013-4694(96)95562-5 – ident: e_1_2_10_5_1 doi: 10.1142/S0219635207001416 – ident: e_1_2_10_22_1 doi: 10.1093/cercor/7.4.374 – ident: e_1_2_10_2_1 doi: 10.1027/0269-8803/a000052 – ident: e_1_2_10_42_1 doi: 10.1002/hipo.20689 – ident: e_1_2_10_47_1 doi: 10.1523/JNEUROSCI.21-11-03942.2001 – ident: e_1_2_10_67_1 doi: 10.1016/j.bandc.2009.10.003 – ident: e_1_2_10_69_1 doi: 10.1073/pnas.1604135113 – ident: e_1_2_10_7_1 doi: 10.3758/BF03193406 – ident: e_1_2_10_28_1 doi: 10.1016/j.tins.2015.11.004 – ident: e_1_2_10_58_1 doi: 10.1016/S1364-6613(00)01845-3 – ident: e_1_2_10_13_1 doi: 10.1016/j.biopsych.2008.07.029 – ident: e_1_2_10_46_1 doi: 10.1001/archneur.1992.00530340070020 – ident: e_1_2_10_50_1 doi: 10.1093/cercor/bhs007 – ident: e_1_2_10_72_1 doi: 10.1093/cercor/bhp118 – ident: e_1_2_10_15_1 doi: 10.1016/j.neuron.2015.09.020 – ident: e_1_2_10_21_1 doi: 10.1152/jn.1973.36.1.61 – ident: e_1_2_10_68_1 doi: 10.1523/JNEUROSCI.5309-07.2008 – ident: e_1_2_10_23_1 doi: 10.1073/pnas.0402680101 – start-page: 777 volume-title: Principles of Neural Science year: 1991 ident: e_1_2_10_45_1 – ident: e_1_2_10_52_1 doi: 10.3389/fpsyg.2016.00830 – ident: e_1_2_10_56_1 doi: 10.3389/fpsyg.2017.01080 – ident: e_1_2_10_25_1 doi: 10.1093/cercor/bhn197 – ident: e_1_2_10_80_1 doi: 10.1523/JNEUROSCI.1623-09.2010 – ident: e_1_2_10_12_1 doi: 10.1016/j.jneumeth.2003.10.009 – ident: e_1_2_10_29_1 doi: 10.1186/1744-9081-1-20 – ident: e_1_2_10_32_1 doi: 10.1146/annurev.psych.59.103006.093615 – ident: e_1_2_10_16_1 doi: 10.1038/nrn2979 – ident: e_1_2_10_51_1 doi: 10.1016/j.neuroimage.2013.09.028 – ident: e_1_2_10_41_1 doi: 10.1016/j.neuroimage.2013.08.052 – ident: e_1_2_10_30_1 doi: 10.3389/fpsyg.2015.00696 – ident: e_1_2_10_64_1 doi: 10.1016/0013-4694(90)90096-3 – ident: e_1_2_10_70_1 doi: 10.3389/fpsyg.2010.00228 – ident: e_1_2_10_38_1 doi: 10.1523/JNEUROSCI.5302-10.2011 – ident: e_1_2_10_11_1 doi: 10.1038/nrn.2016.43 – ident: e_1_2_10_35_1 doi: 10.1016/S0926-6410(97)00018-9 – ident: e_1_2_10_48_1 doi: 10.1111/j.1469-8986.2010.01061.x – ident: e_1_2_10_63_1 doi: 10.1016/j.tics.2013.10.010 – ident: e_1_2_10_49_1 doi: 10.1152/jn.1995.74.1.162 – ident: e_1_2_10_43_1 doi: 10.1111/j.1460-9568.2009.06871.x – ident: e_1_2_10_61_1 doi: 10.1016/j.jecp.2006.03.009 – ident: e_1_2_10_81_1 doi: 10.3758/CABN.3.4.255 – ident: e_1_2_10_24_1 doi: 10.1016/j.neuroimage.2013.05.121 – ident: e_1_2_10_83_1 doi: 10.1002/hbm.20273 – ident: e_1_2_10_44_1 doi: 10.1016/j.jneumeth.2007.03.024 – ident: e_1_2_10_57_1 doi: 10.1016/j.neuropsychologia.2011.10.001 – ident: e_1_2_10_3_1 doi: 10.1016/j.neuropsychologia.2016.12.026 – ident: e_1_2_10_75_1 doi: 10.1162/jocn.2008.21028 – ident: e_1_2_10_77_1 doi: 10.3389/neuro.07.017.2009 – ident: e_1_2_10_17_1 doi: 10.1016/j.neuroimage.2013.04.121 – ident: e_1_2_10_40_1 doi: 10.1016/j.neuron.2013.03.007 – ident: e_1_2_10_31_1 doi: 10.1016/j.biopsych.2005.11.012 – ident: e_1_2_10_59_1 doi: 10.1016/j.brainres.2006.12.076 – ident: e_1_2_10_20_1 doi: 10.1152/jn.1990.63.4.814 |
SSID | ssj0008645 |
Score | 2.3402054 |
Snippet | The timing of neural activity is an intriguing way of exposing behaviorally relevant neural activity, as neural populations exploit transient windows of... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2527 |
SubjectTerms | Adolescent Adolescents Adult Alpha Rhythm - physiology alpha–beta band oscillatory signatures Attention deficit hyperactivity disorder Beta Rhythm - physiology Brain - physiology Cognitive ability EEG electroencephalography Electroencephalography - methods Female Humans Male Memory Memory, Short-Term - physiology Mental disorders Reaction Time - physiology Rhythms Scalp Semantics Short term memory Synchronization Teenagers Visual stimuli working memory Young Adult young adults |
Title | Working memory alpha–beta band oscillatory signatures in adolescents and young adults |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fejn.13897 https://www.ncbi.nlm.nih.gov/pubmed/29514416 https://www.proquest.com/docview/2124403794 https://www.proquest.com/docview/2012113401 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1460-9568 dateEnd: 20241001 omitProxy: true ssIdentifier: ssj0008645 issn: 0953-816X databaseCode: ABDBF dateStart: 19980101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0953-816X databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1460-9568 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008645 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH4MXvTiNi51I4qIlw5t02YqnoZBGQb0IA7OQShJk4DLVHFmDuPJ_-A_9Jf4ki46LiDeCn0lafKWL8nL9wD2JRVoRp5wOcJpN2Q6dLnPuYuhUHmSKsosl97ZOev0wm4_6tfguLwLk_NDVBtuxjKsvzYGzsXwk5Gr26xhTtnMTXKfRvaI9uKDOipmtkCxoVNzY5_1C1Yhk8VTfTkdi74BzGm8agPO6QJcl13N80zuGuORaKTPX1gc__kvizBfAFHSyjVnCWoqW4Z6K8NF-GBCDohNDbV77ssw2y7LwtXhqtheJwOTozsh9rLu28urUCNOBM8kMfSYqFzm9J6Y9BBLHTokNxn5RB9FjOTEuBpiKUCGK9A7Pblsd9yiOoOb0og2Xc0Fj7ls6lhrFstIaMSKOM9CyYAJjHKKCZkyHaThkadTKUPta58bDEdpgBqyCjPZQ6bWgWhPMCpFpG3OXCTR8WHQVFQ2uacQlDlwWM5TkhbU5aaCxn1SLmFwABM7gA7sVaKPOV_HT0Jb5WQnhckOk8AgHY-if3Jgt3qNg2tOUHimHsYoYxnxKK5JHVjLlaRqJUCsitiSYWftVP_efHLSPbcPG38X3YQ5bDxn4vW3YGb0NFbbCIdGYsfq_Tvu0wfK |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB6V9hAu0AeU0AcGIcRlo931rrNIXKo2UZqmOaBW5IJW9tqWWsimapJDOPEf-g_5Jcx4H20KSFVvK-2s7LU9M589428A3muuUI185UmE014kbOTJQEoPXaHxNTdcOC6906HonUf9UTxagc_VXZiCH6I-cCPNcPaaFJwOpO9oubnMWxRmaz-BNYrPkVoefbklj0qEK1FMhGpeEohRyStEeTz1p8ve6C-IuYxYncvpPodvVWeLTJPvrflMtbKf93gcH_s36_CsxKLsoFg8G7Bi8k3YOshxHz5esA_MZYe6Y_dNaBxWleG24Gt5ws7GlKa7YO6-7u9fN8rMJFMy14wYMnF9UQCfUYaIYw-dsouc3WGQYiS5IGvDHAvI9AWcdztnhz2vLNDgZTzmbc9KJROp2zaxViQ6VhbhIk61MjoUCh2dEUpnwoZZ9Mm3mdaRDWwgCcZxHuIieQmr-SQ3r4BZXwmuVWxd2lys0fah3zRct6VvEJc14WM1UWlWspdTEY0fabWLwQFM3QA24V0telVQdvxLaLea7bTU2mkaEtjxOZqoJrytX-PgUhBF5mYyRxlHisdxW9qE7WKV1K2ECFcRXgrsrJvr_zefdvpD9_D64aJvoNE7Ox2kg-PhyQ48xY4UxLzBLqzOrudmD9HRTO07JfgDWL8L5g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFH64gHpxX8Y1ioiXDm3TZiqeRB1cBxHFOQglaRJwq-LMHMaT_8F_6C_xJV3cQbwV-krSvO1L8vIFYFVSgW7kCocjnHYCpgOHe5w7mAqVK6mizHLpHTfY3nlw0AybPbBZnIXJ-CHKBTfjGTZeGwd_kPqDk6vrtGp22Wq90B8wnF0ZRHT6zh0VMXtDseFTcyKPNXNaIVPGU376ORl9Q5ifAavNOPURuCz6mhWa3FQ7bVFNnr7QOP7zZ0ZhOEeiZCsznTHoUek4TGylOAu_65I1YmtD7aL7OAxuF_fCTcBFvr5O7kyRbpfY07qvzy9CtTkRPJXE8GOidZnte2LqQyx3aItcpeQDfxQxkl0Ta4jlAGlNwnl992x7z8mvZ3ASGtKao7ngEZc1HWnNIhkKjWARFS2U9JnANKeYkAnTfhJsuDqRMtCe9rgBcZT6aCJT0Jfep2oGiHYFo1KE2hbNhRIjH2ZNRWWNuwpRWQXWCz3FSc5dbq7QuI2LOQwOYGwHsAIrpehDRtjxk9B8oew499lW7Buo41IMUBVYLl_j4JotFJ6q-w7KWEo8ipPSCkxnRlK24iNYRXDJsLNW1b83H-8eNOzD7N9Fl2DgZKceH-03DudgCPuRsfJ689DXfuyoBYRGbbFoXeANNjEKlQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Working+memory+alpha%E2%80%93beta+band+oscillatory+signatures+in+adolescents+and+young+adults&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Zammit%2C+Nowell&rft.au=Falzon%2C+Owen&rft.au=Camilleri%2C+Kenneth&rft.au=Muscat%2C+Richard&rft.date=2018-10-01&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=48&rft.issue=7&rft.spage=2527&rft.epage=2536&rft_id=info:doi/10.1111%2Fejn.13897&rft.externalDBID=10.1111%252Fejn.13897&rft.externalDocID=EJN13897 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |