Age‐ and gender‐adjusted estimated glomerular filtration rate definition reveals hyperfiltration as a risk factor for renal function deterioration in type 2 diabetes
Aim To assess the role of hyperfiltration for diabetic kidney disease (DKD) progression. Materials and Methods A retrospective observational cohort study enrolled type 2 diabetes (T2D) patients with an initial estimated glomerular filtration rate (eGFR) of 60 mL/min/1.73m2 or higher. Patients were c...
Saved in:
Published in | Diabetes, obesity & metabolism Vol. 26; no. 5; pp. 1636 - 1643 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.05.2024
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
ISSN | 1462-8902 1463-1326 1463-1326 |
DOI | 10.1111/dom.15465 |
Cover
Abstract | Aim
To assess the role of hyperfiltration for diabetic kidney disease (DKD) progression.
Materials and Methods
A retrospective observational cohort study enrolled type 2 diabetes (T2D) patients with an initial estimated glomerular filtration rate (eGFR) of 60 mL/min/1.73m2 or higher. Patients were categorized into two groups: hyperfiltration (eGFR exceeding the age‐ and gender‐specific 95th percentile values from a prior national cohort study) and normofiltration. Rapid DKD progression was defined as an eGFR decline of more than 5 mL/min/1.73m2/year. We used a linear mixed effect model and Cox regression with time‐varying covariate model to compare eGFR changes and identify factors associated with rapid DKD progression.
Results
Of the enrolled 7563 T2D patients, 7.2% had hyperfiltration. The hyperfiltration group exhibited a higher rate of eGFR decline compared with the normofiltration group (−2.0 ± 0.9 vs. −1.1 ± 0.9 mL/min/1.73m2/year; P < .001). During an average follow‐up period of 4.65 ± 3.86 years, 24.7% of patients with hyperfiltration experienced rapid DKD progression, compared with 15.7% of patients with normofiltration (P < .001). Cox regression analyses identified that initial hyperfiltration was a significant determinant of rapid DKD progression, with a hazard ratio of 1.66 (95% confidence interval: 1.41‐1.95; P < .001). When combined with albuminuria, the risk of progression was further compounded (hazard ratio 1.76‐3.11, all P < .001).
Conclusions
In addition to using the current Kidney Disease: Improving Global Outcomes CGA classification system, considering glomerular hyperfiltration status can improve the accuracy of predicting DKD progression. |
---|---|
AbstractList | AimTo assess the role of hyperfiltration for diabetic kidney disease (DKD) progression.Materials and MethodsA retrospective observational cohort study enrolled type 2 diabetes (T2D) patients with an initial estimated glomerular filtration rate (eGFR) of 60 mL/min/1.73m2 or higher. Patients were categorized into two groups: hyperfiltration (eGFR exceeding the age‐ and gender‐specific 95th percentile values from a prior national cohort study) and normofiltration. Rapid DKD progression was defined as an eGFR decline of more than 5 mL/min/1.73m2/year. We used a linear mixed effect model and Cox regression with time‐varying covariate model to compare eGFR changes and identify factors associated with rapid DKD progression.ResultsOf the enrolled 7563 T2D patients, 7.2% had hyperfiltration. The hyperfiltration group exhibited a higher rate of eGFR decline compared with the normofiltration group (−2.0 ± 0.9 vs. −1.1 ± 0.9 mL/min/1.73m2/year; P < .001). During an average follow‐up period of 4.65 ± 3.86 years, 24.7% of patients with hyperfiltration experienced rapid DKD progression, compared with 15.7% of patients with normofiltration (P < .001). Cox regression analyses identified that initial hyperfiltration was a significant determinant of rapid DKD progression, with a hazard ratio of 1.66 (95% confidence interval: 1.41‐1.95; P < .001). When combined with albuminuria, the risk of progression was further compounded (hazard ratio 1.76‐3.11, all P < .001).ConclusionsIn addition to using the current Kidney Disease: Improving Global Outcomes CGA classification system, considering glomerular hyperfiltration status can improve the accuracy of predicting DKD progression. Aim To assess the role of hyperfiltration for diabetic kidney disease (DKD) progression. Materials and Methods A retrospective observational cohort study enrolled type 2 diabetes (T2D) patients with an initial estimated glomerular filtration rate (eGFR) of 60 mL/min/1.73m2 or higher. Patients were categorized into two groups: hyperfiltration (eGFR exceeding the age‐ and gender‐specific 95th percentile values from a prior national cohort study) and normofiltration. Rapid DKD progression was defined as an eGFR decline of more than 5 mL/min/1.73m2/year. We used a linear mixed effect model and Cox regression with time‐varying covariate model to compare eGFR changes and identify factors associated with rapid DKD progression. Results Of the enrolled 7563 T2D patients, 7.2% had hyperfiltration. The hyperfiltration group exhibited a higher rate of eGFR decline compared with the normofiltration group (−2.0 ± 0.9 vs. −1.1 ± 0.9 mL/min/1.73m2/year; P < .001). During an average follow‐up period of 4.65 ± 3.86 years, 24.7% of patients with hyperfiltration experienced rapid DKD progression, compared with 15.7% of patients with normofiltration (P < .001). Cox regression analyses identified that initial hyperfiltration was a significant determinant of rapid DKD progression, with a hazard ratio of 1.66 (95% confidence interval: 1.41‐1.95; P < .001). When combined with albuminuria, the risk of progression was further compounded (hazard ratio 1.76‐3.11, all P < .001). Conclusions In addition to using the current Kidney Disease: Improving Global Outcomes CGA classification system, considering glomerular hyperfiltration status can improve the accuracy of predicting DKD progression. To assess the role of hyperfiltration for diabetic kidney disease (DKD) progression.AIMTo assess the role of hyperfiltration for diabetic kidney disease (DKD) progression.A retrospective observational cohort study enrolled type 2 diabetes (T2D) patients with an initial estimated glomerular filtration rate (eGFR) of 60 mL/min/1.73m2 or higher. Patients were categorized into two groups: hyperfiltration (eGFR exceeding the age- and gender-specific 95th percentile values from a prior national cohort study) and normofiltration. Rapid DKD progression was defined as an eGFR decline of more than 5 mL/min/1.73m2/year. We used a linear mixed effect model and Cox regression with time-varying covariate model to compare eGFR changes and identify factors associated with rapid DKD progression.MATERIALS AND METHODSA retrospective observational cohort study enrolled type 2 diabetes (T2D) patients with an initial estimated glomerular filtration rate (eGFR) of 60 mL/min/1.73m2 or higher. Patients were categorized into two groups: hyperfiltration (eGFR exceeding the age- and gender-specific 95th percentile values from a prior national cohort study) and normofiltration. Rapid DKD progression was defined as an eGFR decline of more than 5 mL/min/1.73m2/year. We used a linear mixed effect model and Cox regression with time-varying covariate model to compare eGFR changes and identify factors associated with rapid DKD progression.Of the enrolled 7563 T2D patients, 7.2% had hyperfiltration. The hyperfiltration group exhibited a higher rate of eGFR decline compared with the normofiltration group (-2.0 ± 0.9 vs. -1.1 ± 0.9 mL/min/1.73m2/year; P < .001). During an average follow-up period of 4.65 ± 3.86 years, 24.7% of patients with hyperfiltration experienced rapid DKD progression, compared with 15.7% of patients with normofiltration (P < .001). Cox regression analyses identified that initial hyperfiltration was a significant determinant of rapid DKD progression, with a hazard ratio of 1.66 (95% confidence interval: 1.41-1.95; P < .001). When combined with albuminuria, the risk of progression was further compounded (hazard ratio 1.76-3.11, all P < .001).RESULTSOf the enrolled 7563 T2D patients, 7.2% had hyperfiltration. The hyperfiltration group exhibited a higher rate of eGFR decline compared with the normofiltration group (-2.0 ± 0.9 vs. -1.1 ± 0.9 mL/min/1.73m2/year; P < .001). During an average follow-up period of 4.65 ± 3.86 years, 24.7% of patients with hyperfiltration experienced rapid DKD progression, compared with 15.7% of patients with normofiltration (P < .001). Cox regression analyses identified that initial hyperfiltration was a significant determinant of rapid DKD progression, with a hazard ratio of 1.66 (95% confidence interval: 1.41-1.95; P < .001). When combined with albuminuria, the risk of progression was further compounded (hazard ratio 1.76-3.11, all P < .001).In addition to using the current Kidney Disease: Improving Global Outcomes CGA classification system, considering glomerular hyperfiltration status can improve the accuracy of predicting DKD progression.CONCLUSIONSIn addition to using the current Kidney Disease: Improving Global Outcomes CGA classification system, considering glomerular hyperfiltration status can improve the accuracy of predicting DKD progression. To assess the role of hyperfiltration for diabetic kidney disease (DKD) progression. A retrospective observational cohort study enrolled type 2 diabetes (T2D) patients with an initial estimated glomerular filtration rate (eGFR) of 60 mL/min/1.73m or higher. Patients were categorized into two groups: hyperfiltration (eGFR exceeding the age- and gender-specific 95th percentile values from a prior national cohort study) and normofiltration. Rapid DKD progression was defined as an eGFR decline of more than 5 mL/min/1.73m /year. We used a linear mixed effect model and Cox regression with time-varying covariate model to compare eGFR changes and identify factors associated with rapid DKD progression. Of the enrolled 7563 T2D patients, 7.2% had hyperfiltration. The hyperfiltration group exhibited a higher rate of eGFR decline compared with the normofiltration group (-2.0 ± 0.9 vs. -1.1 ± 0.9 mL/min/1.73m /year; P < .001). During an average follow-up period of 4.65 ± 3.86 years, 24.7% of patients with hyperfiltration experienced rapid DKD progression, compared with 15.7% of patients with normofiltration (P < .001). Cox regression analyses identified that initial hyperfiltration was a significant determinant of rapid DKD progression, with a hazard ratio of 1.66 (95% confidence interval: 1.41-1.95; P < .001). When combined with albuminuria, the risk of progression was further compounded (hazard ratio 1.76-3.11, all P < .001). In addition to using the current Kidney Disease: Improving Global Outcomes CGA classification system, considering glomerular hyperfiltration status can improve the accuracy of predicting DKD progression. |
Author | Wen, Wei‐Lun Hwu, Der‐Wei Lee, Yau‐Jiunn Chang, Yu‐Hung |
Author_xml | – sequence: 1 givenname: Wei‐Lun orcidid: 0000-0002-8873-6068 surname: Wen fullname: Wen, Wei‐Lun organization: Lee's Endocrinology Clinic – sequence: 2 givenname: Yau‐Jiunn surname: Lee fullname: Lee, Yau‐Jiunn organization: Lee's Endocrinology Clinic – sequence: 3 givenname: Der‐Wei surname: Hwu fullname: Hwu, Der‐Wei organization: Lee's Endocrinology Clinic – sequence: 4 givenname: Yu‐Hung surname: Chang fullname: Chang, Yu‐Hung email: yuhungchang@leesclinic.org organization: Lee's Endocrinology Clinic |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38303103$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU1qHDEQhUVwiO1JFrlAEGTjLNrWX09PL42dP7DxxvtGLZUmmqilidSdMDsfwdfItXKSlGcmIRgcgagq9NUDvXdMDmKKQMhrzk45njObhlNeq3n9jBxxNZcVl2J-sO1FtWiZOCTHpawYY0oumhfkUC4kk5zJI_LzfAm_7u6pjpYuIVrIOGm7msoIlkIZ_aAfumVIA-Qp6EydD2PWo0-RYgFqwfnodzN8Bx0K_bJZQ_6H04Vqmn35Sp02Y0INvBmiDtRN0WwZCyNkn_YbPtIRRaig1usen8pL8tyhNrza1xm5_fD-9uJTdXXz8fPF-VVlZC3ryjbzGoQRmpteSsecNFKKnhkQWiuuDLTQN3WvXNs60XKlLGeNFEoBb2spZ-RkJ7vO6duEBnSDLwZC0BHSVDrR4pJkHK2ckbeP0FWaMn6qdGivwhDqpkHqzZ6a-gFst85oad50fzJA4N0OMDmVksH9RTjrHvLtMN9umy-yZ49Y48etY2i1D__b-OEDbJ6W7i5vrncbvwGfj7rW |
CitedBy_id | crossref_primary_10_1080_0886022X_2024_2398188 crossref_primary_10_1016_j_ejps_2025_107045 |
Cites_doi | 10.1016/S2213-8587(16)30316-3 10.1681/ASN.2019030238 10.1053/j.ajkd.2013.10.048 10.1177/1479164118776465 10.1001/jama.2015.18202 10.1111/dom.12583 10.1016/j.jdiacomp.2016.06.020 10.1681/ASN.V7122627 10.1007/BF00422325 10.1111/dom.14502 10.1016/j.kint.2021.05.021 10.1007/s40471-013-0004-y 10.1038/ki.2010.531 10.1007/s00467-020-04689-y 10.1093/ckj/sfaa242 10.1111/j.1463-1326.2009.01125.x 10.1111/j.1523-1755.2005.00590.x 10.1111/dom.12412 10.1056/NEJMoa1615692 10.3389/fendo.2022.872918 10.1111/dom.14888 10.1038/sj.ki.5000159 10.2215/CJN.14831218 10.1093/ndt/gfv385 10.2337/diacare.21.12.2129 10.1056/NEJMoa1203858 10.2337/diacare.13.11.1186 10.2215/CJN.03080314 10.1016/j.xkme.2019.12.008 10.1056/NEJM198503073121004 10.1007/s00125-010-1794-9 10.1093/ndt/gfv121 10.1681/ASN.2016060666 10.1016/0168-8227(90)90025-O 10.1111/jdi.12533 10.1053/j.ajkd.2014.10.013 10.2337/dc21-S009 |
ContentType | Journal Article |
Copyright | 2024 John Wiley & Sons Ltd. |
Copyright_xml | – notice: 2024 John Wiley & Sons Ltd. |
DBID | AAYXX CITATION NPM 7T5 7TK H94 K9. 7X8 |
DOI | 10.1111/dom.15465 |
DatabaseName | CrossRef PubMed Immunology Abstracts Neurosciences Abstracts AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Immunology Abstracts Neurosciences Abstracts MEDLINE - Academic |
DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1463-1326 |
EndPage | 1643 |
ExternalDocumentID | 38303103 10_1111_dom_15465 DOM15465 |
Genre | researchArticle Journal Article |
GroupedDBID | --- .3N .GA .GJ .Y3 05W 0R~ 10A 1OC 29F 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAKAS AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACGOF ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AHMBA AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FUBAC G-S G.N GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P2Z P4B P4D PQQKQ Q.N Q11 QB0 R.K ROL RX1 SUPJJ TEORI UB1 W8V W99 WBKPD WHWMO WIH WIJ WIK WOHZO WOW WQJ WRC WVDHM WXI WXSBR XG1 YFH ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION NPM 7T5 7TK AAMMB AEFGJ AGXDD AIDQK AIDYY H94 K9. 7X8 |
ID | FETCH-LOGICAL-c3535-d765e2c2a1cb33f0f3c332b0ce2aa414ce9eb75b4f99f29144d1073244e19533 |
IEDL.DBID | DR2 |
ISSN | 1462-8902 1463-1326 |
IngestDate | Fri Jul 11 09:25:03 EDT 2025 Fri Jul 25 22:53:10 EDT 2025 Thu Apr 03 07:02:24 EDT 2025 Tue Jul 01 02:58:02 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 Wed Jan 22 17:19:49 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | cohort study real‐world evidence diabetes complications diabetic nephropathy |
Language | English |
License | 2024 John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3535-d765e2c2a1cb33f0f3c332b0ce2aa414ce9eb75b4f99f29144d1073244e19533 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
ORCID | 0000-0002-8873-6068 |
PMID | 38303103 |
PQID | 3034132577 |
PQPubID | 1006516 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2929130104 proquest_journals_3034132577 pubmed_primary_38303103 crossref_primary_10_1111_dom_15465 crossref_citationtrail_10_1111_dom_15465 wiley_primary_10_1111_dom_15465_DOM15465 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 2024-May 20240501 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: England – name: Oxford |
PublicationTitle | Diabetes, obesity & metabolism |
PublicationTitleAlternate | Diabetes Obes Metab |
PublicationYear | 2024 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | 2010; 12 2017; 5 2002; 39 2010; 53 2017; 8 2013; 3 2015; 17 1990; 13 2021; 23 2021; 44 2019; 30 2017; 28 2011; 80 2015; 30 2015; 10 2019; 14 2016; 31 2020; 35 1975; 11 2021; 100 2016; 18 2012; 367 2014; 63 1998; 21 2017; 377 2016; 37 2005; 68 2014; 1 2021; 14 2017; 31 2023; 25 2020; 2 2023 2021 1986; 4 2006; 69 2015; 65 2022; 13 1985; 312 2016; 315 1990; 8 2018; 15 1996; 7 e_1_2_9_30_1 Kidney Disease: Improving Global Outcomes Glomerular Diseases Work Group (e_1_2_9_28_1) 2021; 100 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_10_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_33_1 (e_1_2_9_4_1) 2002; 39 Delanaye P (e_1_2_9_31_1) 2016; 37 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_39_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_37_1 e_1_2_9_19_1 e_1_2_9_41_1 e_1_2_9_42_1 e_1_2_9_20_1 e_1_2_9_40_1 e_1_2_9_22_1 Anderson S (e_1_2_9_18_1) 1986; 4 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_23_1 e_1_2_9_44_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_27_1 Kidney Disease: Improving Global Outcomes CKD Working Group (e_1_2_9_5_1) 2013; 3 e_1_2_9_29_1 |
References_xml | – volume: 1 start-page: 1 issue: 1 year: 2014 end-page: 8 article-title: Confounding by indication and related concepts publication-title: Curr Epidemiol Rep – volume: 8 start-page: 145 issue: 2 year: 1990 end-page: 153 article-title: The prevalence of micro‐albuminuria and glomerular hyperfiltration in young patients with IDDM publication-title: Diabetes Res Clin Pract – volume: 13 year: 2022 article-title: Update on pathogenesis of glomerular hyperfiltration in early diabetic kidney disease publication-title: Front Endocrinol – volume: 7 start-page: 2627 issue: 12 year: 1996 end-page: 2635 article-title: Renal findings in patients with short‐term type 2 diabetes publication-title: J Am Soc Nephrol – volume: 315 start-page: 164 issue: 2 year: 2016 end-page: 174 article-title: Multinational assessment of accuracy of equations for predicting risk of kidney failure: a meta‐analysis publication-title: JAMA – volume: 14 start-page: 1317 issue: 5 year: 2021 end-page: 1326 article-title: Pharmacoepidemiology for nephrologists (part 2): potential biases and how to overcome them publication-title: Clin Kidney J – volume: 31 start-page: 473 issue: 2 year: 2017 end-page: 478 article-title: Patients with type 2 diabetes having higher glomerular filtration rate showed rapid renal function decline followed by impaired glomerular filtration rate: Japan diabetes complications study publication-title: J Diabetes Complications – volume: 312 start-page: 617 issue: 10 year: 1985 end-page: 621 article-title: Effect of blood glucose control on increased glomerular filtration rate and kidney size in insulin‐dependent diabetes publication-title: N Engl J Med – volume: 65 start-page: 177 issue: 2 year: 2015 end-page: 205 article-title: Canadian Society of Nephrology commentary on the KDIGO clinical practice guideline for CKD evaluation and management publication-title: Am J Kidney Dis – volume: 44 start-page: S111 issue: Suppl 1 year: 2021 end-page: S124 article-title: 9. Pharmacologic approaches to glycemic treatment: standards of medical Care in Diabetes‐2021 publication-title: Diabetes Care – volume: 25 start-page: 444 issue: 2 year: 2023 end-page: 453 article-title: Effects of glucose‐lowering agents on cardiovascular and renal outcomes in subjects with type 2 diabetes: an updated meta‐analysis of randomized controlled trials with external adjudication of events publication-title: Diabetes Obes Metab – volume: 4 start-page: S236 issue: 5 year: 1986 end-page: S238 article-title: The role of intraglomerular pressure in the initiation and progression of renal disease publication-title: J Hypertens Suppl – volume: 21 start-page: 2129 issue: 12 year: 1998 end-page: 2134 article-title: Hyperfiltration in African‐American patients with type 2 diabetes. Cross‐sectional and longitudinal data publication-title: Diabetes Care – year: 2021 – volume: 30 start-page: 1785 issue: 10 year: 2019 end-page: 1805 article-title: CKD: a call for an age‐adapted definition publication-title: J Am Soc Nephrol – volume: 63 start-page: S39 issue: Suppl 2 year: 2014 end-page: S62 article-title: Markers of and risk factors for the development and progression of diabetic kidney disease publication-title: Am J Kidney Dis – volume: 23 start-page: 2551 issue: 11 year: 2021 end-page: 2560 article-title: High concentrations of triglycerides are associated with diabetic kidney disease in new‐onset type 2 diabetes in China: findings from the China Cardiometabolic Disease and cancer cohort (4C) study publication-title: Diabetes Obes Metab – volume: 39 start-page: S1 issue: Suppl 1 year: 2002 end-page: S266 article-title: K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification publication-title: Am J Kidney Dis – volume: 13 start-page: 1186 issue: 11 year: 1990 end-page: 1190 article-title: Cross‐sectional analysis of renal function in black Americans with NIDDM publication-title: Diabetes Care – volume: 37 start-page: 17 issue: 1 year: 2016 end-page: 26 article-title: An age‐calibrated definition of chronic kidney disease: rationale and benefits publication-title: Clin Biochem Rev – volume: 17 start-page: 350 issue: 4 year: 2015 end-page: 362 article-title: Glucose‐lowering with exogenous insulin monotherapy in type 2 diabetes: dose association with all‐cause mortality, cardiovascular events and cancer publication-title: Diabetes Obes Metab – volume: 100 start-page: S1 issue: 4S year: 2021 end-page: S276 article-title: KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases publication-title: Kidney Int – volume: 14 start-page: 854 issue: 6 year: 2019 end-page: 861 article-title: Early glomerular Hyperfiltration and long‐term kidney outcomes in type 1 diabetes: the DCCT/EDIC experience publication-title: Clin J Am Soc Nephrol – volume: 30 start-page: 1706 issue: 10 year: 2015 end-page: 1711 article-title: Rapid GFR decline is associated with renal hyperfiltration and impaired GFR in adults with type 1 diabetes publication-title: Nephrol Dial Transplant – volume: 31 start-page: 1295 issue: 8 year: 2016 end-page: 1301 article-title: Increased risk of glomerular hyperfiltration in subjects with impaired glucose tolerance and newly diagnosed diabetes publication-title: Nephrol Dial Transplant – volume: 15 start-page: 417 issue: 5 year: 2018 end-page: 423 article-title: Long‐term prospective observation suggests that glomerular hyperfiltration is associated with rapid decline in renal filtration function: a multiethnic study publication-title: Diabetes Vasc Dis Res – volume: 11 start-page: 221 issue: 3 year: 1975 end-page: 224 article-title: Increased kidney size and glomerular filtration rate in untreated juvenile diabetes: normalization by insulin‐treatment publication-title: Diabetologia – volume: 3 start-page: 1 issue: 1 year: 2013 end-page: 150 article-title: KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease publication-title: Kidney Int Suppl – volume: 5 start-page: 43 issue: 1 year: 2017 end-page: 52 article-title: Association of insulin dosage with mortality or major adverse cardiovascular events: a retrospective cohort study publication-title: Lancet Diabetes Endocrinol – volume: 8 start-page: 6 issue: 1 year: 2017 end-page: 18 article-title: Clinical predictive factors in diabetic kidney disease progression publication-title: J Diabetes Invest – volume: 69 start-page: 913 issue: 5 year: 2006 end-page: 919 article-title: ACE‐inhibitor use and the long‐term risk of renal failure in diabetes publication-title: Kidney Int – volume: 18 start-page: 64 issue: 1 year: 2016 end-page: 71 article-title: Early renin‐angiotensin system intervention is more beneficial than late intervention in delaying end‐stage renal disease in patients with type 2 diabetes publication-title: Diabetes Obes Metab – volume: 12 start-page: 47 issue: 1 year: 2010 end-page: 53 article-title: Insulin use and increased risk of mortality in type 2 diabetes: a cohort study publication-title: Diabetes Obes Metab – volume: 10 start-page: 382 issue: 3 year: 2015 end-page: 389 article-title: A systematic review of glomerular hyperfiltration assessment and definition in the medical literature publication-title: Clin J Am Soc Nephrol – volume: 28 start-page: 1023 issue: 4 year: 2017 end-page: 1039 article-title: Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment publication-title: J Am Soc Nephrol – volume: 68 start-page: 1740 issue: 4 year: 2005 end-page: 1749 article-title: The relationship between microalbuminuria and glomerular filtration rate in young type 1 diabetic subjects: the Oxford regional prospective study publication-title: Kidney Int – volume: 377 start-page: 723 issue: 8 year: 2017 end-page: 732 article-title: Efficacy and safety of Degludec versus glargine in type 2 diabetes publication-title: N Engl J Med – volume: 53 start-page: 2093 issue: 10 year: 2010 end-page: 2104 article-title: The clinical significance of hyperfiltration in diabetes publication-title: Diabetologia – volume: 35 start-page: 2191 issue: 12 year: 2020 end-page: 2200 article-title: Nomenclature for kidney function and disease: executive summary and glossary from a kidney Disease: improving global outcomes (KDIGO) consensus conference publication-title: Pediatr Nephrol – year: 2023 – volume: 367 start-page: 319 issue: 4 year: 2012 end-page: 328 article-title: Basal insulin and cardiovascular and other outcomes in dysglycemia publication-title: N Engl J Med – volume: 80 start-page: 93 issue: 1 year: 2011 end-page: 104 article-title: Lower estimated GFR and higher albuminuria are associated with adverse kidney outcomes. A collaborative meta‐analysis of general and high‐risk population cohorts publication-title: Kidney Int – volume: 2 start-page: 258 issue: 3 year: 2020 end-page: 266 article-title: Physicians' recognition and management of kidney disease: a randomized vignette study evaluating the impact of the KDIGO 2012 CKD classification system publication-title: Kidney Med – ident: e_1_2_9_41_1 doi: 10.1016/S2213-8587(16)30316-3 – ident: e_1_2_9_25_1 doi: 10.1681/ASN.2019030238 – ident: e_1_2_9_43_1 doi: 10.1053/j.ajkd.2013.10.048 – ident: e_1_2_9_20_1 doi: 10.1177/1479164118776465 – ident: e_1_2_9_30_1 doi: 10.1001/jama.2015.18202 – ident: e_1_2_9_33_1 doi: 10.1111/dom.12583 – ident: e_1_2_9_21_1 doi: 10.1016/j.jdiacomp.2016.06.020 – ident: e_1_2_9_3_1 – ident: e_1_2_9_7_1 doi: 10.1681/ASN.V7122627 – ident: e_1_2_9_12_1 doi: 10.1007/BF00422325 – ident: e_1_2_9_44_1 doi: 10.1111/dom.14502 – volume: 100 start-page: S1 issue: 4 year: 2021 ident: e_1_2_9_28_1 article-title: KDIGO 2021 Clinical Practice Guideline for the Management of Glomerular Diseases publication-title: Kidney Int doi: 10.1016/j.kint.2021.05.021 – ident: e_1_2_9_34_1 doi: 10.1007/s40471-013-0004-y – ident: e_1_2_9_29_1 doi: 10.1038/ki.2010.531 – ident: e_1_2_9_26_1 doi: 10.1007/s00467-020-04689-y – ident: e_1_2_9_35_1 doi: 10.1093/ckj/sfaa242 – volume: 3 start-page: 1 issue: 1 year: 2013 ident: e_1_2_9_5_1 article-title: KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease publication-title: Kidney Int Suppl – ident: e_1_2_9_37_1 doi: 10.1111/j.1463-1326.2009.01125.x – ident: e_1_2_9_10_1 doi: 10.1111/j.1523-1755.2005.00590.x – ident: e_1_2_9_38_1 doi: 10.1111/dom.12412 – ident: e_1_2_9_40_1 doi: 10.1056/NEJMoa1615692 – ident: e_1_2_9_17_1 doi: 10.3389/fendo.2022.872918 – ident: e_1_2_9_32_1 doi: 10.1111/dom.14888 – ident: e_1_2_9_36_1 doi: 10.1038/sj.ki.5000159 – ident: e_1_2_9_22_1 doi: 10.2215/CJN.14831218 – ident: e_1_2_9_2_1 – ident: e_1_2_9_16_1 doi: 10.1093/ndt/gfv385 – ident: e_1_2_9_23_1 doi: 10.2337/diacare.21.12.2129 – ident: e_1_2_9_39_1 doi: 10.1056/NEJMoa1203858 – ident: e_1_2_9_8_1 doi: 10.2337/diacare.13.11.1186 – volume: 37 start-page: 17 issue: 1 year: 2016 ident: e_1_2_9_31_1 article-title: An age‐calibrated definition of chronic kidney disease: rationale and benefits publication-title: Clin Biochem Rev – ident: e_1_2_9_15_1 doi: 10.2215/CJN.03080314 – ident: e_1_2_9_6_1 doi: 10.1016/j.xkme.2019.12.008 – ident: e_1_2_9_11_1 doi: 10.1056/NEJM198503073121004 – volume: 4 start-page: S236 issue: 5 year: 1986 ident: e_1_2_9_18_1 article-title: The role of intraglomerular pressure in the initiation and progression of renal disease publication-title: J Hypertens Suppl – ident: e_1_2_9_13_1 doi: 10.1007/s00125-010-1794-9 – ident: e_1_2_9_19_1 doi: 10.1093/ndt/gfv121 – ident: e_1_2_9_14_1 doi: 10.1681/ASN.2016060666 – volume: 39 start-page: S1 issue: 1 year: 2002 ident: e_1_2_9_4_1 article-title: K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification publication-title: Am J Kidney Dis – ident: e_1_2_9_9_1 doi: 10.1016/0168-8227(90)90025-O – ident: e_1_2_9_24_1 doi: 10.1111/jdi.12533 – ident: e_1_2_9_27_1 doi: 10.1053/j.ajkd.2014.10.013 – ident: e_1_2_9_42_1 doi: 10.2337/dc21-S009 |
SSID | ssj0004387 |
Score | 2.4300516 |
Snippet | Aim
To assess the role of hyperfiltration for diabetic kidney disease (DKD) progression.
Materials and Methods
A retrospective observational cohort study... To assess the role of hyperfiltration for diabetic kidney disease (DKD) progression. A retrospective observational cohort study enrolled type 2 diabetes (T2D)... AimTo assess the role of hyperfiltration for diabetic kidney disease (DKD) progression.Materials and MethodsA retrospective observational cohort study enrolled... To assess the role of hyperfiltration for diabetic kidney disease (DKD) progression.AIMTo assess the role of hyperfiltration for diabetic kidney disease (DKD)... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1636 |
SubjectTerms | Cohort analysis cohort study Diabetes diabetes complications Diabetes mellitus (non-insulin dependent) diabetic nephropathy Epidermal growth factor receptors Gender Glomerular filtration rate Kidney diseases real‐world evidence Renal function Risk factors |
Title | Age‐ and gender‐adjusted estimated glomerular filtration rate definition reveals hyperfiltration as a risk factor for renal function deterioration in type 2 diabetes |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fdom.15465 https://www.ncbi.nlm.nih.gov/pubmed/38303103 https://www.proquest.com/docview/3034132577 https://www.proquest.com/docview/2929130104 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VPVRc6INXoK2GqodeXNnejYPFKSKtKqRQqQpSD0jWPoNL6qA45tBTfwJ_g7_FL2Fm_aApIKHe_Bhr1_bM7jezs98wdqiJsnsQiSCULgmEjtCknDa0UiiEME45SbuRxx-Ss4_i_WX_co29bffC1PwQXcCNLMOP12TgUpV3jNzMryksktAG84gnxJs_uvhNHSW4L46HAwFafEpZPFttFk_35Opc9AfAXMWrfsI53WSf2q7WeSZfjqulOtY391gcH_guW-xxA0RhWGvONluzxQ7bGDdL7U_Yj-HU_rz9DrIwMPX15vBMmquK4qNA3ByIdfFoOptf2wUls4LLZw0JLxABBRjr8iKvz-03RKQlfEa3d3FHTpYggdLboS78A4ihUZh6RjOulzGUsZM3qgp5ARQ2hhjasPFTNjk9mbw7C5q6DgFqBu8HZpD0baxjGWnFuQsd15zHKqTaZFJEQtvUqkFfCZemLk7R5TPopCLyE5YW_fgztl7MC_uCgVNcWxlqI4lwXSWpThOFFxUBK3ymx47aH5zphvOcSm_Mstb3wS-f-S_fYwed6Nea6ONvQrutlmSNrZcZggBEAjj0YXOvu9topbT0Igs7r8osRhSKaAF93x57XmtX1wp_w4mflWNnvY78u_lsdD72By__X_QVexQjDqtzNHfZ-nJR2T3EUUu17w3mFwobHhA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIgGXUh6FQIEBceDiyvGuHSz1UgFVgKZIKEi9IGufwZA6VR4cOPET-Bv9W_wSZtYPWh4S4hLZzli7cWZ2v3n4G4DHhim7B30ZxcpnkTR9MilvLGcKpZTWa6_4beTRYTZ8J18dpUdrsNu-C1PzQ3QBN7aMsF6zgXNA-oyV29kxx0Wy9AJcpM84JGnf_iSPkiK0x6OlgGw-5zqezbaOp7v1_G70G8Q8j1jDlrN_Fd63k60rTT7trJZ6x3z5hcfxf3_NJmw0WBT3auW5Bmuuug6XRk22_Qac7k3c96_fUFUWJ6HlHJ0p-3HFIVJkeg6Cu3Q0mc6O3ZzrWdGX04aHF5mDAq3zZVXW5-4zgdIFfiDPd35GTi1QIVe4Y937BwlGkzDPjDfdIGO5aKdstBXLCjlyjAm2keObMN5_MX42jJrWDhEph0gjO8hSl5hE9Y0WwsdeGCESHXN7MiX70rjc6UGqpc9zn-Tk9VnyUwn8Scd5P7EF69WscrcBvRbGqdhYxZzrOstNnmm6qBlb0T09eNL-w4VpaM-5-8a0aN0fevJFePI9eNSJntRcH38S2m7VpGjMfVEQDiAwQKsfDfew-5oMlbMvqnKz1aJICIgSYCD3twe3avXqRhFPBVO0CppsUJK_D188fzMKB3f-XfQBXB6ORwfFwcvD13fhSkKwrC7Z3Ib15Xzl7hGsWur7wXp-AMreIi4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEC2FRIq4QNiSgQQKxIGLoxl324PFKSIZhWUCQkHKAcnqdWKYeKJZOHDiE_iN_Fa-hKr2koRFQty8lNVtu6r7VXX1K4Cnhim7-z0ZdZVPI2l6ZFLeWF4plFJar73i3cjDg3T_o3x9lBwtwYtmL0zFD9EG3NgywnjNBn5q_SUjt5MTDoukyTVYkSnNZIyIPlxwR0kRquPRSEAmn3Eaz1qTxtM-enUy-g1hXgWsYcYZ3IRPTV-rRJMv24u53jbffqFx_M-XWYMbNRLFnUp1bsGSK2_D6rBea78DZzsjd_79B6rS4igUnKMzZT8vOECKTM5BYJeORuPJiZtyNiv6Ylyz8CIzUKB1viiL6tx9JUg6w2Pye6eX5NQMFXJ-O1aVf5BANAlzz3jKDTKWU3aKWlexKJHjxhhjEze-C4eDvcOX-1Fd2CEi1RBJZPtp4mITq57RQviuF0aIWHe5OJmSPWlc5nQ_0dJnmY8z8vkseakE_aTjVT9xD5bLSek2AL0WxqmusYoZ13WamSzVdFEzsqJnOvCs-cG5qUnPufbGOG-cH_ryefjyHXjSip5WTB9_EtpstCSvjX2WEwogKEBjHzX3uL1NZsprL6p0k8UsjwmGElwg57cD65V2ta2I54IJWgV1NujI35vPd98Nw8H9fxd9BKvvdwf521cHbx7A9ZgwWZWvuQnL8-nCbRGmmuuHwXZ-AlrvIN0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Age-+and+gender-adjusted+estimated+glomerular+filtration+rate+definition+reveals+hyperfiltration+as+a+risk+factor+for+renal+function+deterioration+in+type+2+diabetes&rft.jtitle=Diabetes%2C+obesity+%26+metabolism&rft.au=Wen%2C+Wei-Lun&rft.au=Lee%2C+Yau-Jiunn&rft.au=Hwu%2C+Der-Wei&rft.au=Chang%2C+Yu-Hung&rft.date=2024-05-01&rft.issn=1463-1326&rft.eissn=1463-1326&rft.volume=26&rft.issue=5&rft.spage=1636&rft_id=info:doi/10.1111%2Fdom.15465&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1462-8902&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1462-8902&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1462-8902&client=summon |