HSF1 phosphorylation by ERK/GSK3 suppresses RNF126 to sustain IGF‐IIR expression for hypertension‐induced cardiomyocyte hypertrophy

Hypertension‐induced cardiac hypertrophy and apoptosis are major characteristics of early‐stage heart failure (HF). Inhibition of extracellular signal‐regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)‐induced cardiomyocyte hypertrophy and apoptosis by blocking insulin‐like gro...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 233; no. 2; pp. 979 - 989
Main Authors Huang, Chih‐Yang, Lee, Fa‐Lun, Peng, Shu‐Fen, Lin, Kuan‐Ho, Chen, Ray‐Jade, Ho, Tsung‐Jung, Tsai, Fu‐Jen, Padma, Vijaya V., Kuo, Wei‐Wen
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.02.2018
Subjects
Online AccessGet full text
ISSN0021-9541
1097-4652
1097-4652
DOI10.1002/jcp.25945

Cover

Abstract Hypertension‐induced cardiac hypertrophy and apoptosis are major characteristics of early‐stage heart failure (HF). Inhibition of extracellular signal‐regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)‐induced cardiomyocyte hypertrophy and apoptosis by blocking insulin‐like growth factor II receptor (IGF‐IIR) signaling. However, the detailed mechanism by which ANG II induces ERK‐mediated IGF‐IIR signaling remains elusive. Here, we found that ANG II activated ERK to upregulate IGF‐IIR expression via the angiotensin II type I receptor (AT1R). ERK activation subsequently phosphorylates HSF1 at serine 307, leading to a secondary phosphorylation by glycogen synthase kinase III (GSK3) at serine 303. Moreover, we found that ANG II mediated ERK/GSK3‐induced IGF‐IIR protein stability by downregulating the E3 ubiquitin ligase of IGF‐IIR RING finger protein CXXVI (RNF126). The expression of RNF126 decreased following ANG II‐induced HSF1S303 phosphorylation, resulting in IGF‐IIR protein stability and increased cardiomyocyte injury. Inhibition of GSK3 significantly alleviated ANG II‐induced cardiac hypertrophy in vivo and in vitro. Taken together, these results suggest that HSF1 phosphorylation stabilizes IGF‐IIR protein stability by downregulating RNF126 during cardiac hypertrophy. ANG II activates ERK/GSK3 to phosphorylate HSF1, resulting in RNF126 degradation, which stabilizes IGF‐IIR protein expression and eventually results in cardiac hypertrophy. HSF1 could be a valuable therapeutic target for cardiac diseases among hypertensive patients. These results suggest that HSF1 phosphorylation stabilizes IGF‐IIR protein stability by downregulating RNF126 during cardiac hypertrophy.
AbstractList Hypertension‐induced cardiac hypertrophy and apoptosis are major characteristics of early‐stage heart failure (HF). Inhibition of extracellular signal‐regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)‐induced cardiomyocyte hypertrophy and apoptosis by blocking insulin‐like growth factor II receptor (IGF‐IIR) signaling. However, the detailed mechanism by which ANG II induces ERK‐mediated IGF‐IIR signaling remains elusive. Here, we found that ANG II activated ERK to upregulate IGF‐IIR expression via the angiotensin II type I receptor (AT1R). ERK activation subsequently phosphorylates HSF1 at serine 307, leading to a secondary phosphorylation by glycogen synthase kinase III (GSK3) at serine 303. Moreover, we found that ANG II mediated ERK/GSK3‐induced IGF‐IIR protein stability by downregulating the E3 ubiquitin ligase of IGF‐IIR RING finger protein CXXVI (RNF126). The expression of RNF126 decreased following ANG II‐induced HSF1S303 phosphorylation, resulting in IGF‐IIR protein stability and increased cardiomyocyte injury. Inhibition of GSK3 significantly alleviated ANG II‐induced cardiac hypertrophy in vivo and in vitro. Taken together, these results suggest that HSF1 phosphorylation stabilizes IGF‐IIR protein stability by downregulating RNF126 during cardiac hypertrophy. ANG II activates ERK/GSK3 to phosphorylate HSF1, resulting in RNF126 degradation, which stabilizes IGF‐IIR protein expression and eventually results in cardiac hypertrophy. HSF1 could be a valuable therapeutic target for cardiac diseases among hypertensive patients. These results suggest that HSF1 phosphorylation stabilizes IGF‐IIR protein stability by downregulating RNF126 during cardiac hypertrophy.
Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure (HF). Inhibition of extracellular signal-regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)-induced cardiomyocyte hypertrophy and apoptosis by blocking insulin-like growth factor II receptor (IGF-IIR) signaling. However, the detailed mechanism by which ANG II induces ERK-mediated IGF-IIR signaling remains elusive. Here, we found that ANG II activated ERK to upregulate IGF-IIR expression via the angiotensin II type I receptor (AT R). ERK activation subsequently phosphorylates HSF1 at serine 307, leading to a secondary phosphorylation by glycogen synthase kinase III (GSK3) at serine 303. Moreover, we found that ANG II mediated ERK/GSK3-induced IGF-IIR protein stability by downregulating the E3 ubiquitin ligase of IGF-IIR RING finger protein CXXVI (RNF126). The expression of RNF126 decreased following ANG II-induced HSF1 phosphorylation, resulting in IGF-IIR protein stability and increased cardiomyocyte injury. Inhibition of GSK3 significantly alleviated ANG II-induced cardiac hypertrophy in vivo and in vitro. Taken together, these results suggest that HSF1 phosphorylation stabilizes IGF-IIR protein stability by downregulating RNF126 during cardiac hypertrophy. ANG II activates ERK/GSK3 to phosphorylate HSF1, resulting in RNF126 degradation, which stabilizes IGF-IIR protein expression and eventually results in cardiac hypertrophy. HSF1 could be a valuable therapeutic target for cardiac diseases among hypertensive patients.
Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure (HF). Inhibition of extracellular signal-regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)-induced cardiomyocyte hypertrophy and apoptosis by blocking insulin-like growth factor II receptor (IGF-IIR) signaling. However, the detailed mechanism by which ANG II induces ERK-mediated IGF-IIR signaling remains elusive. Here, we found that ANG II activated ERK to upregulate IGF-IIR expression via the angiotensin II type I receptor (AT1 R). ERK activation subsequently phosphorylates HSF1 at serine 307, leading to a secondary phosphorylation by glycogen synthase kinase III (GSK3) at serine 303. Moreover, we found that ANG II mediated ERK/GSK3-induced IGF-IIR protein stability by downregulating the E3 ubiquitin ligase of IGF-IIR RING finger protein CXXVI (RNF126). The expression of RNF126 decreased following ANG II-induced HSF1S303 phosphorylation, resulting in IGF-IIR protein stability and increased cardiomyocyte injury. Inhibition of GSK3 significantly alleviated ANG II-induced cardiac hypertrophy in vivo and in vitro. Taken together, these results suggest that HSF1 phosphorylation stabilizes IGF-IIR protein stability by downregulating RNF126 during cardiac hypertrophy. ANG II activates ERK/GSK3 to phosphorylate HSF1, resulting in RNF126 degradation, which stabilizes IGF-IIR protein expression and eventually results in cardiac hypertrophy. HSF1 could be a valuable therapeutic target for cardiac diseases among hypertensive patients.Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure (HF). Inhibition of extracellular signal-regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)-induced cardiomyocyte hypertrophy and apoptosis by blocking insulin-like growth factor II receptor (IGF-IIR) signaling. However, the detailed mechanism by which ANG II induces ERK-mediated IGF-IIR signaling remains elusive. Here, we found that ANG II activated ERK to upregulate IGF-IIR expression via the angiotensin II type I receptor (AT1 R). ERK activation subsequently phosphorylates HSF1 at serine 307, leading to a secondary phosphorylation by glycogen synthase kinase III (GSK3) at serine 303. Moreover, we found that ANG II mediated ERK/GSK3-induced IGF-IIR protein stability by downregulating the E3 ubiquitin ligase of IGF-IIR RING finger protein CXXVI (RNF126). The expression of RNF126 decreased following ANG II-induced HSF1S303 phosphorylation, resulting in IGF-IIR protein stability and increased cardiomyocyte injury. Inhibition of GSK3 significantly alleviated ANG II-induced cardiac hypertrophy in vivo and in vitro. Taken together, these results suggest that HSF1 phosphorylation stabilizes IGF-IIR protein stability by downregulating RNF126 during cardiac hypertrophy. ANG II activates ERK/GSK3 to phosphorylate HSF1, resulting in RNF126 degradation, which stabilizes IGF-IIR protein expression and eventually results in cardiac hypertrophy. HSF1 could be a valuable therapeutic target for cardiac diseases among hypertensive patients.
Hypertension‐induced cardiac hypertrophy and apoptosis are major characteristics of early‐stage heart failure (HF). Inhibition of extracellular signal‐regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)‐induced cardiomyocyte hypertrophy and apoptosis by blocking insulin‐like growth factor II receptor (IGF‐IIR) signaling. However, the detailed mechanism by which ANG II induces ERK‐mediated IGF‐IIR signaling remains elusive. Here, we found that ANG II activated ERK to upregulate IGF‐IIR expression via the angiotensin II type I receptor (AT1R). ERK activation subsequently phosphorylates HSF1 at serine 307, leading to a secondary phosphorylation by glycogen synthase kinase III (GSK3) at serine 303. Moreover, we found that ANG II mediated ERK/GSK3‐induced IGF‐IIR protein stability by downregulating the E3 ubiquitin ligase of IGF‐IIR RING finger protein CXXVI (RNF126). The expression of RNF126 decreased following ANG II‐induced HSF1S303 phosphorylation, resulting in IGF‐IIR protein stability and increased cardiomyocyte injury. Inhibition of GSK3 significantly alleviated ANG II‐induced cardiac hypertrophy in vivo and in vitro. Taken together, these results suggest that HSF1 phosphorylation stabilizes IGF‐IIR protein stability by downregulating RNF126 during cardiac hypertrophy. ANG II activates ERK/GSK3 to phosphorylate HSF1, resulting in RNF126 degradation, which stabilizes IGF‐IIR protein expression and eventually results in cardiac hypertrophy. HSF1 could be a valuable therapeutic target for cardiac diseases among hypertensive patients.
Author Padma, Vijaya V.
Tsai, Fu‐Jen
Huang, Chih‐Yang
Ho, Tsung‐Jung
Lin, Kuan‐Ho
Kuo, Wei‐Wen
Lee, Fa‐Lun
Peng, Shu‐Fen
Chen, Ray‐Jade
Author_xml – sequence: 1
  givenname: Chih‐Yang
  orcidid: 0000-0002-0266-3233
  surname: Huang
  fullname: Huang, Chih‐Yang
  email: T96752@mail.cmuh.org.tw
  organization: China Medical University
– sequence: 2
  givenname: Fa‐Lun
  surname: Lee
  fullname: Lee, Fa‐Lun
  organization: China Medical University
– sequence: 3
  givenname: Shu‐Fen
  surname: Peng
  fullname: Peng, Shu‐Fen
  organization: China Medical University
– sequence: 4
  givenname: Kuan‐Ho
  surname: Lin
  fullname: Lin, Kuan‐Ho
  organization: China Medical University Hospital
– sequence: 5
  givenname: Ray‐Jade
  surname: Chen
  fullname: Chen, Ray‐Jade
  organization: Taipei Medical University
– sequence: 6
  givenname: Tsung‐Jung
  surname: Ho
  fullname: Ho, Tsung‐Jung
  organization: China Medical University Beigang Hospital
– sequence: 7
  givenname: Fu‐Jen
  surname: Tsai
  fullname: Tsai, Fu‐Jen
  organization: China Medical University
– sequence: 8
  givenname: Vijaya V.
  surname: Padma
  fullname: Padma, Vijaya V.
  organization: Bharathiar University
– sequence: 9
  givenname: Wei‐Wen
  surname: Kuo
  fullname: Kuo, Wei‐Wen
  organization: China Medical University
– sequence: 10
  givenname: Chih‐Yang
  surname: Huang
  fullname: Huang, Chih‐Yang
  organization: Asia University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28383811$$D View this record in MEDLINE/PubMed
BookMark eNp90c9v0zAUB3ALDbFucOAfQJa4jENWO3bs-IiqtSubAHVwtlznRXWVxsFOBLlx48rfyF-C-wMOk0CWZen5854sfy_QWetbQOglJdeUkHy6td11XihePEETSpTMuCjyMzRJdzRTBafn6CLGLSFEKcaeofO8ZGlROkE_bh_mFHcbH9MOY2N651u8HvHN6m66eLhjOA5dFyBGiHj1fk5zgXufirE3rsXLxfzX95_L5QrDt4Pad9c-4M3YQeih3ReScG01WKiwNaFyfjd6O_ZwQsF3m_E5elqbJsKL03mJPs9vPs1us_sPi-Xs7X1mWcGKzPKaszo31PBKSDDWAq9yKrmVsmCsFoRJIoTheSFLUcg1t1ZVrDIEmOGUsUt0dZzbBf9lgNjrnYsWmsa04IeoaVnyUipSikRfP6JbP4Q2vU5TJQhXJO2kXp3UsN5BpbvgdiaM-s8XJ_DmCGzwMQao_xJK9D4-neLTh_iSnT6y1vWHSPpgXPO_jq-ugfHfo_W72cdjx2_p0q0C
CitedBy_id crossref_primary_10_1038_s41419_021_03521_1
crossref_primary_10_1161_CIRCRESAHA_119_315558
crossref_primary_10_1016_j_phymed_2020_153450
crossref_primary_10_1111_jcmm_14485
crossref_primary_10_1134_S0006297924080042
crossref_primary_10_1016_j_jep_2017_04_028
crossref_primary_10_3390_ijms20133182
crossref_primary_10_1016_j_bbcan_2020_188390
crossref_primary_10_3390_cells11213336
crossref_primary_10_1038_s41388_024_02949_x
crossref_primary_10_3389_fragi_2022_861686
crossref_primary_10_1152_ajpheart_00318_2018
crossref_primary_10_18632_aging_102361
crossref_primary_10_1016_j_ijcard_2017_10_102
crossref_primary_10_1093_gbe_evz180
crossref_primary_10_1371_journal_pone_0216285
crossref_primary_10_1016_j_freeradbiomed_2023_10_395
crossref_primary_10_3892_ijmm_2020_4472
crossref_primary_10_3390_ijms231911226
crossref_primary_10_1002_jcp_27639
crossref_primary_10_1111_jcmm_14330
crossref_primary_10_15212_CVIA_2023_0043
crossref_primary_10_1016_j_phrs_2020_104748
crossref_primary_10_1007_s11626_024_00960_w
crossref_primary_10_3390_ijms20092164
crossref_primary_10_3390_cancers15215167
crossref_primary_10_1002_jcp_26346
crossref_primary_10_3389_fimmu_2023_1226057
crossref_primary_10_1016_j_yjmcc_2018_08_006
crossref_primary_10_1186_s13578_019_0348_1
Cites_doi 10.3389/fcell.2016.00053
10.1038/nrc2945
10.1161/CIRCRESAHA.109.210914
10.1152/ajpendo.00127.2005
10.1152/ajpheart.01047.2009
10.1074/jbc.M002169200
10.1128/MCB.23.17.6013-6026.2003
10.3390/ijms161126067
10.1210/en.2008-0975
10.4149/endo_2013_01_39
10.1128/MCB.17.4.2107
10.1016/j.yjmcc.2005.06.005
10.1093/emboj/19.23.6341
10.1016/j.bbamcr.2010.12.012
10.1038/cdd.2014.46
10.1016/j.yexcr.2013.11.013
10.1177/1535370216649259
10.1124/jpet.112.192245
10.1074/jbc.271.48.30847
10.1152/ajpheart.00921.2003
10.1101/gad.10.21.2782
10.1038/cddis.2016.356
10.1677/JME-08-0121
10.1161/01.RES.86.3.255
10.1007/s11010-012-1226-x
ContentType Journal Article
Copyright 2017 Wiley Periodicals, Inc.
Copyright_xml – notice: 2017 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
DOI 10.1002/jcp.25945
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Genetics Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 989
ExternalDocumentID 28383811
10_1002_jcp_25945
JCP25945
Genre article
Journal Article
GrantInformation_xml – fundername: Ministry of Health and Welfare, Taiwan
  funderid: MOHW106‐TDU‐B‐212‐113004
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADXHL
AEFGJ
AETEA
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c3535-c4f43f2a1a4d67eacce4d2174c77533f6037066a42578657b4cc9d3da0e3a4133
IEDL.DBID DR2
ISSN 0021-9541
1097-4652
IngestDate Fri Jul 11 06:10:58 EDT 2025
Sat Jul 26 01:25:21 EDT 2025
Thu Apr 03 06:57:05 EDT 2025
Wed Oct 01 02:15:37 EDT 2025
Thu Apr 24 22:53:16 EDT 2025
Wed Jan 22 16:32:13 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords RNF126
IGF-IIR
cardiac hypertrophy
hypertension
HSF1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
2017 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3535-c4f43f2a1a4d67eacce4d2174c77533f6037066a42578657b4cc9d3da0e3a4133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0266-3233
PMID 28383811
PQID 1960490049
PQPubID 1006363
PageCount 11
ParticipantIDs proquest_miscellaneous_1884879086
proquest_journals_1960490049
pubmed_primary_28383811
crossref_primary_10_1002_jcp_25945
crossref_citationtrail_10_1002_jcp_25945
wiley_primary_10_1002_jcp_25945_JCP25945
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2018
2018-02-00
2018-Feb
20180201
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 287
2010; 10
2012; 341
2015; 16
2013; 47
2015; 5
2012; 364
2009; 43
2010; 106
2000; 86
2009; 150
2006; 291
2000; 275
1996; 10
2016; 241
2014; 21
2016; 4
2017; 9999
2016; 7
2000; 19
1996; 271
2010; 298
1997; 17
2011; 1813
2014; 320
2005; 39
2003; 23
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Huang C. Y. (e_1_2_7_12_1) 2017; 9999
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_20_1
Lin T. Y. (e_1_2_7_19_1) 2015; 5
Liua S. P. (e_1_2_7_21_1) 2015; 5
References_xml – volume: 4
  start-page: 53
  year: 2016
  article-title: ERK1 and ERK2 map kinases: Specific roles or functional redundancy
  publication-title: Frontiers in Cell and Developmental Biology
– volume: 150
  start-page: 2723
  issue: 6
  year: 2009
  end-page: 2731
  article-title: Activation of insulin‐like growth factor II receptor induces mitochondrial‐dependent apoptosis through G(alpha)q and downstream calcineurin signaling in myocardial cells
  publication-title: Endocrinology
– volume: 106
  start-page: 102
  issue: 1
  year: 2010
  end-page: 110
  article-title: Cardioprotection by CaMKII‐deltaB is mediated by phosphorylation of heat shock factor 1 and subsequent expression of inducible heat shock protein 70
  publication-title: Circulation Research
– volume: 7
  start-page: 2455
  issue: 11
  year: 2016
  article-title: Doxorubicin attenuates CHIP‐guarded HSF1 nuclear translocation and protein stability to trigger IGF‐IIR‐dependent cardiomyocyte death
  publication-title: Cell Death & Disease
– volume: 17
  start-page: 2107
  issue: 4
  year: 1997
  end-page: 2115
  article-title: Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation
  publication-title: Molecular and Cellular Biology
– volume: 241
  start-page: 1745
  issue: 16
  year: 2016
  end-page: 1750
  article-title: Atorvastatin prevents rat cardiomyocyte hypertrophy induced by parathyroid hormone 1–34 associated with the Ras‐ERK signaling
  publication-title: Experimental Biology and Medicine
– volume: 5
  start-page: 19
  issue: 3
  year: 2015
  end-page: 23
  article-title: Sambucus williamsii induced embryonic stem cells differentiated into neurons
  publication-title: Biomedicine
– volume: 287
  start-page: H1081
  issue: 3
  year: 2004
  end-page: H1088
  article-title: Radicicol activates heat shock protein expression and cardioprotection in neonatal rat cardiomyocytes
  publication-title: American Journal of Physiology Heart and Circulatory Physiology
– volume: 19
  start-page: 6341
  issue: 23
  year: 2000
  end-page: 6350
  article-title: The MEK1‐ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice
  publication-title: The EMBO Journal
– volume: 23
  start-page: 6013
  issue: 17
  year: 2003
  end-page: 6026
  article-title: Regulation of molecular chaperone gene transcription involves the serine phosphorylation, 14‐3‐3 epsilon binding, and cytoplasmic sequestration of heat shock factor 1
  publication-title: Molecular and Cellular Biology
– volume: 10
  start-page: 745
  issue: 11
  year: 2010
  end-page: 759
  article-title: The renin‐angiotensin system and cancer: Old dog, new tricks
  publication-title: Nature Reviews Cancer
– volume: 47
  start-page: 39
  issue: 1
  year: 2013
  end-page: 52
  article-title: Renin‐angiotensin system: Upgrade of recent knowledge and perspectives
  publication-title: Endocrine Regulations
– volume: 1813
  start-page: 1619
  issue: 9
  year: 2011
  end-page: 1633
  article-title: The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation
  publication-title: Biochimica et Biophysica Acta
– volume: 320
  start-page: 219
  issue: 2
  year: 2014
  end-page: 232
  article-title: The ubiquitin ligase RNF126 regulates the retrograde sorting of the cation‐independent mannose 6‐phosphate receptor
  publication-title: Experimental Cell Research
– volume: 9999
  start-page: 1
  year: 2017
  end-page: 11
  article-title: Mitochondrial ROS‐induced ERK1/2 activation and HSF2‐mediated AT1 R upregulation are required for doxorubicin‐induced cardiotoxicity
  publication-title: Journal of Cellular Physiology
– volume: 298
  start-page: H1832
  issue: 6
  year: 2010
  end-page: H1841
  article-title: Role of heat shock factor‐1 activation in the doxorubicin‐induced heart failure in mice
  publication-title: American Journal of Physiology Heart and Circulatory Physiology
– volume: 275
  start-page: 29147
  issue: 37
  year: 2000
  end-page: 29152
  article-title: Glycogen synthase kinase 3beta negatively regulates both DNA‐binding and transcriptional activities of heat shock factor 1
  publication-title: The Journal of Biological Chemistry
– volume: 364
  start-page: 263
  issue: 1–2
  year: 2012
  end-page: 269
  article-title: Heat shock transcription factor 1 inhibits H2O2‐induced cardiomyocyte death through suppression of high‐mobility group box 1
  publication-title: Molecular and Cellular Biochemistry
– volume: 86
  start-page: 255
  issue: 3
  year: 2000
  end-page: 263
  article-title: Calcineurin‐mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: An apoptosis‐independent model of dilated heart failure
  publication-title: Circulation Research
– volume: 341
  start-page: 829
  issue: 3
  year: 2012
  end-page: 839
  article-title: Heat shock protein 25‐enriched plasma transfusion preconditions the heart against doxorubicin‐induced dilated cardiomyopathy in mice
  publication-title: The Journal of Pharmacology and Experimental Therapeutics
– volume: 21
  start-page: 1262
  issue: 8
  year: 2014
  end-page: 1274
  article-title: ANG II promotes IGF‐IIR expression and cardiomyocyte apoptosis by inhibiting HSF1 via JNK activation and SIRT1 degradation
  publication-title: Cell Death and Differentiation
– volume: 291
  start-page: E306
  issue: 2
  year: 2006
  end-page: E314
  article-title: Roles of insulin‐like growth factor II in cardiomyoblast apoptosis and in hypertensive rat heart with abdominal aorta ligation
  publication-title: American Journal of Physiology Endocrinology and Metabolism
– volume: 39
  start-page: 681
  issue: 4
  year: 2005
  end-page: 689
  article-title: Silencing heat shock factor 1 by small interfering RNA abrogates heat shock‐induced cardioprotection against ischemia‐reperfusion injury in mice
  publication-title: Journal of Molecular and Cellular Cardiology
– volume: 271
  start-page: 30847
  issue: 48
  year: 1996
  end-page: 30857
  article-title: Sequential phosphorylation by mitogen‐activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor‐1
  publication-title: The Journal of Biological Chemistry
– volume: 43
  start-page: 221
  issue: 6
  year: 2009
  end-page: 230
  article-title: Leu27IGF2 plays an opposite role to IGF1 to induce H9c2 cardiomyoblast cell apoptosis via Galphaq signaling
  publication-title: Journal of Molecular Endocrinology
– volume: 16
  start-page: 27921
  issue: 11
  year: 2015
  end-page: 27930
  article-title: CREB negatively regulates IGF2R gene expression and downstream pathways to inhibit hypoxia‐Induced H9c2 cardiomyoblast cell death
  publication-title: International Journal of Molecular Sciences
– volume: 10
  start-page: 2782
  issue: 21
  year: 1996
  end-page: 2793
  article-title: Repression of human heat shock factor 1 activity at control temperature by phosphorylation
  publication-title: Genes & Development
– volume: 5
  start-page: 33
  issue: 5
  year: 2015
  end-page: 38
  article-title: Lipopolysaccharide‐promoted proliferation of Caco‐2 cells is mediated by c‐Src induction and ERK activation
  publication-title: Biomedicine
– volume: 5
  start-page: 19
  issue: 3
  year: 2015
  ident: e_1_2_7_21_1
  article-title: Sambucus williamsii induced embryonic stem cells differentiated into neurons
  publication-title: Biomedicine
– ident: e_1_2_7_3_1
  doi: 10.3389/fcell.2016.00053
– ident: e_1_2_7_9_1
  doi: 10.1038/nrc2945
– ident: e_1_2_7_22_1
  doi: 10.1161/CIRCRESAHA.109.210914
– ident: e_1_2_7_18_1
  doi: 10.1152/ajpendo.00127.2005
– volume: 5
  start-page: 33
  issue: 5
  year: 2015
  ident: e_1_2_7_19_1
  article-title: Lipopolysaccharide‐promoted proliferation of Caco‐2 cells is mediated by c‐Src induction and ERK activation
  publication-title: Biomedicine
– ident: e_1_2_7_25_1
  doi: 10.1152/ajpheart.01047.2009
– ident: e_1_2_7_27_1
  doi: 10.1074/jbc.M002169200
– ident: e_1_2_7_26_1
  doi: 10.1128/MCB.23.17.6013-6026.2003
– ident: e_1_2_7_5_1
  doi: 10.3390/ijms161126067
– ident: e_1_2_7_7_1
  doi: 10.1210/en.2008-0975
– ident: e_1_2_7_11_1
  doi: 10.4149/endo_2013_01_39
– ident: e_1_2_7_15_1
  doi: 10.1128/MCB.17.4.2107
– ident: e_1_2_7_28_1
  doi: 10.1016/j.yjmcc.2005.06.005
– ident: e_1_2_7_2_1
  doi: 10.1093/emboj/19.23.6341
– ident: e_1_2_7_23_1
  doi: 10.1016/j.bbamcr.2010.12.012
– ident: e_1_2_7_14_1
  doi: 10.1038/cdd.2014.46
– ident: e_1_2_7_24_1
  doi: 10.1016/j.yexcr.2013.11.013
– ident: e_1_2_7_20_1
  doi: 10.1177/1535370216649259
– ident: e_1_2_7_17_1
  doi: 10.1124/jpet.112.192245
– ident: e_1_2_7_6_1
  doi: 10.1074/jbc.271.48.30847
– ident: e_1_2_7_10_1
  doi: 10.1152/ajpheart.00921.2003
– ident: e_1_2_7_16_1
  doi: 10.1101/gad.10.21.2782
– ident: e_1_2_7_13_1
  doi: 10.1038/cddis.2016.356
– ident: e_1_2_7_4_1
  doi: 10.1677/JME-08-0121
– ident: e_1_2_7_8_1
  doi: 10.1161/01.RES.86.3.255
– ident: e_1_2_7_29_1
  doi: 10.1007/s11010-012-1226-x
– volume: 9999
  start-page: 1
  year: 2017
  ident: e_1_2_7_12_1
  article-title: Mitochondrial ROS‐induced ERK1/2 activation and HSF2‐mediated AT1 R upregulation are required for doxorubicin‐induced cardiotoxicity
  publication-title: Journal of Cellular Physiology
SSID ssj0009933
Score 2.3993917
Snippet Hypertension‐induced cardiac hypertrophy and apoptosis are major characteristics of early‐stage heart failure (HF). Inhibition of extracellular...
Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure (HF). Inhibition of extracellular...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 979
SubjectTerms Angiotensin
Angiotensin II
Angiotensin II - pharmacology
Angiotensin II Type 1 Receptor Blockers - pharmacology
Animals
Antihypertensive Agents - pharmacology
Apoptosis
Biphenyl Compounds - pharmacology
cardiac hypertrophy
Cardiomegaly - enzymology
Cardiomegaly - etiology
Cardiomegaly - pathology
Cardiomegaly - prevention & control
Cardiomyocytes
Cell Line
Coronary artery disease
Disease Models, Animal
Dose-Response Relationship, Drug
Extracellular signal-regulated kinase
Extracellular Signal-Regulated MAP Kinases - metabolism
Female
Glycogen
Glycogen synthase kinase 3
Glycogen Synthase Kinase 3 beta - metabolism
Heart
Heart diseases
Heat Shock Transcription Factors - metabolism
Heat-Shock Proteins - metabolism
HSF1
HSF1 protein
Hypertension
Hypertension - complications
Hypertension - drug therapy
Hypertension - enzymology
Hypertension - pathology
Hypertrophy
IGF‐IIR
Insulin
Insulin-like growth factor II
Insulin-like growth factors
Kinases
Lithium Chloride - pharmacology
Myocytes, Cardiac - drug effects
Myocytes, Cardiac - enzymology
Myocytes, Cardiac - pathology
Phosphorylation
Protein Stability
Protein Transport
Proteins
Rats, Inbred SHR
Rats, Inbred WKY
Receptor, Angiotensin, Type 1 - metabolism
Receptor, IGF Type 2 - metabolism
RNF126
Signal Transduction
Signaling
Stability
Tetrazoles - pharmacology
Time Factors
Ubiquitin
Ubiquitin-protein ligase
Ubiquitin-Protein Ligases - metabolism
Title HSF1 phosphorylation by ERK/GSK3 suppresses RNF126 to sustain IGF‐IIR expression for hypertension‐induced cardiomyocyte hypertrophy
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.25945
https://www.ncbi.nlm.nih.gov/pubmed/28383811
https://www.proquest.com/docview/1960490049
https://www.proquest.com/docview/1884879086
Volume 233
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0021-9541
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-4652
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009933
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5KQfDFS-tltcooIr5kN5OZZBN8KqXpbotFthb6IIS50qpNlk0WjE---epv9Jd4ZiZJqRcQCYGQnDDJ5JyZ72S--QahFyGjIkyVCGRssoBpZgLBkyygmYo5pM1ECzs5-c1xMjtlh2fx2QZ63c-F8foQww83GxmuvbYBzkU9uRIN_SCXY8DuzE4wJzR2Q7SLK-morFtG3lEQYkZ6VaEwmgx3Xu-LfgOY1_Gq63Dy2-h9_6ieZ_JxvG7EWH75RcXxP9_lDrrVAVG86z3nLtrQ5Rba3i0hCb9s8UvsqKHun_sWuuFXrGy30bfZSU7w8ryqYV-1nkiHRYv3F0eTg5Mjiuv10nFrdY0XxzmJEtxUcNJN08Lzg_zH1-_z-QLrzx0Dt8QAm_E5pMMrR6avSrC4KBW4nMLSsWUv20q2je6MVhV4xj10mu-_25sF3VoOgaQxjQPJDKMm4oQzlUyhtZeaKZsOySkkTNQkIZ0C-uGuCUniqWBSZooqHmrKoaOl99FmWZX6IcI84iaTwtBUMiYJTVUY84QZmRqtAc-N0Kv-qxayEzq36218KrxEc1RAdReuukfo-WC69OoefzLa6V2j6AK8LogVtclsfjVCz4bLEJp2vIWXulqDTZpCOphB0jhCD7xLDaUAqoONEHhY5xh_L7443HvrDh79u-ljdBOAXerZ5Ttos1mt9RMAT4146qLkJ6NYF-M
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXHi2PhQIGIcQlu0lsZxOJS1Wa7nbbFdq2Ui8ocmxH5dFktZuVCCduXPmN_BLGzqMqDwmhKFKUTJTEmbG_sT9_BnjhMpq6oUodybPIYZplTiqCyKGR4gLTZk-nZnLy4TQYnbD9U366Bq_buTC1PkTX4WYiw9bXJsBNh_TgQjX0g5z3EbwzfgWumvE5E5ZvZhfiUVGzkLwlIXDmtbpCrj_obr3cGv0GMS8jVtvkxLfgXfuyNdPkY39Vpn355Rcdx__9mttws8GiZLt2njuwpvMN2NzOMQ8_r8hLYtmhttt9A67Vi1ZWm_BtdBR7ZH5WLHFfVDWXjqQV2Z1NBntHE0qWq7ml1-olmU1jzw9IWeBJO1OLjPfiH1-_j8czoj83JNycIHImZ5gRLyyfvsjR4n2u0OsUkZYwe14Vsip1Y7Qo0Dnuwkm8e7wzcprlHBxJOeWOZBmjmS88wVQwxApfaqZMRiSHmDPRLHDpEAGQsLVIwIcpkzJSVAlXU4FtLb0H63mR6wdAhC-ySKYZDSVj0qOhcrkIWCbDTGuEdD141f7WRDZa52bJjU9JrdLsJ1jciS3uHjzvTOe1wMefjLZa30iaGF8mntG1iUyK1YNn3WWMTjPkInJdrNAmDDEjjDBv7MH92qe6pyCww83z8GWtZ_z98cn-zlt78PDfTZ_C9dHx4UFyMJ5OHsENxHlhTTbfgvVysdKPEUuV6RMbMj8BBtYb_w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFL0qrUBsoLQ8UgoMCCE2TmzP2LHFqip1kwaiKqVSF0jWeB5qC7WtxJFqVuzY8o18CdfjR1UeEkJWJMu51jj2vTPnOGfOALy0GU3sQCaW8HRoMcW0lXA_tGgoPY602VFJNTn5_dQfHbODE-9kBd60c2Fqf4juhVtVGaa_rgo8l3pwZRp6LvI-Ynfm3YA15iO7qhDR7Mo7KmzWkTcaBI85ra2Q7Q66U68PRr8hzOuA1Yw40V342F5rLTT51F8WSV98-cXG8T9_zDrcaZAo2alT5x6sqHQDNndSZOEXJXlFjDbUvHTfgJv1kpXlJnwbHUUOyU-zBX7mZa2kI0lJ9maTwf7RhJLFMjfiWrUgs2nkuD4pMjxo5mmR8X704-v38XhG1GUjwU0J4mZyinx4btT0WYoRZ6nEnJNEGLnsRZmJslBN0DzD1LgPx9Heh92R1SzmYAnqUc8STDOqXe5wJv0hdvdCMVnxITFExkS1b9Mhwh9u-hDfGyZMiFBSyW1FOY609AGsplmqHgHhLtehSDQNBGPCoYG0Pe4zLQKtFAK6Hrxun2osGqfzasGNz3Ht0ezGeLtjc7t78KILzWt7jz8FbbepETcVvoidytUmrAhWD553X2NtVn-48FRlS4wJAuSDIbLGHjysU6prBWEdbo6DF2sS4-_Nxwe7h2Zn699Dn8Gtw7dR_G48nTyG2wjyglppvg2rxXypniCQKpKnpmB-Aqc8Gq4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HSF1+phosphorylation+by+ERK%2FGSK3+suppresses+RNF126+to+sustain+IGF%E2%80%90IIR+expression+for+hypertension%E2%80%90induced+cardiomyocyte+hypertrophy&rft.jtitle=Journal+of+cellular+physiology&rft.au=Huang%2C+Chih%E2%80%90Yang&rft.au=Lee%2C+Fa%E2%80%90Lun&rft.au=Peng%2C+Shu%E2%80%90Fen&rft.au=Lin%2C+Kuan%E2%80%90Ho&rft.date=2018-02-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=233&rft.issue=2&rft.spage=979&rft.epage=989&rft_id=info:doi/10.1002%2Fjcp.25945&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jcp_25945
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon