HSF1 phosphorylation by ERK/GSK3 suppresses RNF126 to sustain IGF‐IIR expression for hypertension‐induced cardiomyocyte hypertrophy
Hypertension‐induced cardiac hypertrophy and apoptosis are major characteristics of early‐stage heart failure (HF). Inhibition of extracellular signal‐regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)‐induced cardiomyocyte hypertrophy and apoptosis by blocking insulin‐like gro...
Saved in:
Published in | Journal of cellular physiology Vol. 233; no. 2; pp. 979 - 989 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-9541 1097-4652 1097-4652 |
DOI | 10.1002/jcp.25945 |
Cover
Abstract | Hypertension‐induced cardiac hypertrophy and apoptosis are major characteristics of early‐stage heart failure (HF). Inhibition of extracellular signal‐regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)‐induced cardiomyocyte hypertrophy and apoptosis by blocking insulin‐like growth factor II receptor (IGF‐IIR) signaling. However, the detailed mechanism by which ANG II induces ERK‐mediated IGF‐IIR signaling remains elusive. Here, we found that ANG II activated ERK to upregulate IGF‐IIR expression via the angiotensin II type I receptor (AT1R). ERK activation subsequently phosphorylates HSF1 at serine 307, leading to a secondary phosphorylation by glycogen synthase kinase III (GSK3) at serine 303. Moreover, we found that ANG II mediated ERK/GSK3‐induced IGF‐IIR protein stability by downregulating the E3 ubiquitin ligase of IGF‐IIR RING finger protein CXXVI (RNF126). The expression of RNF126 decreased following ANG II‐induced HSF1S303 phosphorylation, resulting in IGF‐IIR protein stability and increased cardiomyocyte injury. Inhibition of GSK3 significantly alleviated ANG II‐induced cardiac hypertrophy in vivo and in vitro. Taken together, these results suggest that HSF1 phosphorylation stabilizes IGF‐IIR protein stability by downregulating RNF126 during cardiac hypertrophy. ANG II activates ERK/GSK3 to phosphorylate HSF1, resulting in RNF126 degradation, which stabilizes IGF‐IIR protein expression and eventually results in cardiac hypertrophy. HSF1 could be a valuable therapeutic target for cardiac diseases among hypertensive patients.
These results suggest that HSF1 phosphorylation stabilizes IGF‐IIR protein stability by downregulating RNF126 during cardiac hypertrophy. |
---|---|
AbstractList | Hypertension‐induced cardiac hypertrophy and apoptosis are major characteristics of early‐stage heart failure (HF). Inhibition of extracellular signal‐regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)‐induced cardiomyocyte hypertrophy and apoptosis by blocking insulin‐like growth factor II receptor (IGF‐IIR) signaling. However, the detailed mechanism by which ANG II induces ERK‐mediated IGF‐IIR signaling remains elusive. Here, we found that ANG II activated ERK to upregulate IGF‐IIR expression via the angiotensin II type I receptor (AT1R). ERK activation subsequently phosphorylates HSF1 at serine 307, leading to a secondary phosphorylation by glycogen synthase kinase III (GSK3) at serine 303. Moreover, we found that ANG II mediated ERK/GSK3‐induced IGF‐IIR protein stability by downregulating the E3 ubiquitin ligase of IGF‐IIR RING finger protein CXXVI (RNF126). The expression of RNF126 decreased following ANG II‐induced HSF1S303 phosphorylation, resulting in IGF‐IIR protein stability and increased cardiomyocyte injury. Inhibition of GSK3 significantly alleviated ANG II‐induced cardiac hypertrophy in vivo and in vitro. Taken together, these results suggest that HSF1 phosphorylation stabilizes IGF‐IIR protein stability by downregulating RNF126 during cardiac hypertrophy. ANG II activates ERK/GSK3 to phosphorylate HSF1, resulting in RNF126 degradation, which stabilizes IGF‐IIR protein expression and eventually results in cardiac hypertrophy. HSF1 could be a valuable therapeutic target for cardiac diseases among hypertensive patients.
These results suggest that HSF1 phosphorylation stabilizes IGF‐IIR protein stability by downregulating RNF126 during cardiac hypertrophy. Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure (HF). Inhibition of extracellular signal-regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)-induced cardiomyocyte hypertrophy and apoptosis by blocking insulin-like growth factor II receptor (IGF-IIR) signaling. However, the detailed mechanism by which ANG II induces ERK-mediated IGF-IIR signaling remains elusive. Here, we found that ANG II activated ERK to upregulate IGF-IIR expression via the angiotensin II type I receptor (AT R). ERK activation subsequently phosphorylates HSF1 at serine 307, leading to a secondary phosphorylation by glycogen synthase kinase III (GSK3) at serine 303. Moreover, we found that ANG II mediated ERK/GSK3-induced IGF-IIR protein stability by downregulating the E3 ubiquitin ligase of IGF-IIR RING finger protein CXXVI (RNF126). The expression of RNF126 decreased following ANG II-induced HSF1 phosphorylation, resulting in IGF-IIR protein stability and increased cardiomyocyte injury. Inhibition of GSK3 significantly alleviated ANG II-induced cardiac hypertrophy in vivo and in vitro. Taken together, these results suggest that HSF1 phosphorylation stabilizes IGF-IIR protein stability by downregulating RNF126 during cardiac hypertrophy. ANG II activates ERK/GSK3 to phosphorylate HSF1, resulting in RNF126 degradation, which stabilizes IGF-IIR protein expression and eventually results in cardiac hypertrophy. HSF1 could be a valuable therapeutic target for cardiac diseases among hypertensive patients. Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure (HF). Inhibition of extracellular signal-regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)-induced cardiomyocyte hypertrophy and apoptosis by blocking insulin-like growth factor II receptor (IGF-IIR) signaling. However, the detailed mechanism by which ANG II induces ERK-mediated IGF-IIR signaling remains elusive. Here, we found that ANG II activated ERK to upregulate IGF-IIR expression via the angiotensin II type I receptor (AT1 R). ERK activation subsequently phosphorylates HSF1 at serine 307, leading to a secondary phosphorylation by glycogen synthase kinase III (GSK3) at serine 303. Moreover, we found that ANG II mediated ERK/GSK3-induced IGF-IIR protein stability by downregulating the E3 ubiquitin ligase of IGF-IIR RING finger protein CXXVI (RNF126). The expression of RNF126 decreased following ANG II-induced HSF1S303 phosphorylation, resulting in IGF-IIR protein stability and increased cardiomyocyte injury. Inhibition of GSK3 significantly alleviated ANG II-induced cardiac hypertrophy in vivo and in vitro. Taken together, these results suggest that HSF1 phosphorylation stabilizes IGF-IIR protein stability by downregulating RNF126 during cardiac hypertrophy. ANG II activates ERK/GSK3 to phosphorylate HSF1, resulting in RNF126 degradation, which stabilizes IGF-IIR protein expression and eventually results in cardiac hypertrophy. HSF1 could be a valuable therapeutic target for cardiac diseases among hypertensive patients.Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure (HF). Inhibition of extracellular signal-regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)-induced cardiomyocyte hypertrophy and apoptosis by blocking insulin-like growth factor II receptor (IGF-IIR) signaling. However, the detailed mechanism by which ANG II induces ERK-mediated IGF-IIR signaling remains elusive. Here, we found that ANG II activated ERK to upregulate IGF-IIR expression via the angiotensin II type I receptor (AT1 R). ERK activation subsequently phosphorylates HSF1 at serine 307, leading to a secondary phosphorylation by glycogen synthase kinase III (GSK3) at serine 303. Moreover, we found that ANG II mediated ERK/GSK3-induced IGF-IIR protein stability by downregulating the E3 ubiquitin ligase of IGF-IIR RING finger protein CXXVI (RNF126). The expression of RNF126 decreased following ANG II-induced HSF1S303 phosphorylation, resulting in IGF-IIR protein stability and increased cardiomyocyte injury. Inhibition of GSK3 significantly alleviated ANG II-induced cardiac hypertrophy in vivo and in vitro. Taken together, these results suggest that HSF1 phosphorylation stabilizes IGF-IIR protein stability by downregulating RNF126 during cardiac hypertrophy. ANG II activates ERK/GSK3 to phosphorylate HSF1, resulting in RNF126 degradation, which stabilizes IGF-IIR protein expression and eventually results in cardiac hypertrophy. HSF1 could be a valuable therapeutic target for cardiac diseases among hypertensive patients. Hypertension‐induced cardiac hypertrophy and apoptosis are major characteristics of early‐stage heart failure (HF). Inhibition of extracellular signal‐regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)‐induced cardiomyocyte hypertrophy and apoptosis by blocking insulin‐like growth factor II receptor (IGF‐IIR) signaling. However, the detailed mechanism by which ANG II induces ERK‐mediated IGF‐IIR signaling remains elusive. Here, we found that ANG II activated ERK to upregulate IGF‐IIR expression via the angiotensin II type I receptor (AT1R). ERK activation subsequently phosphorylates HSF1 at serine 307, leading to a secondary phosphorylation by glycogen synthase kinase III (GSK3) at serine 303. Moreover, we found that ANG II mediated ERK/GSK3‐induced IGF‐IIR protein stability by downregulating the E3 ubiquitin ligase of IGF‐IIR RING finger protein CXXVI (RNF126). The expression of RNF126 decreased following ANG II‐induced HSF1S303 phosphorylation, resulting in IGF‐IIR protein stability and increased cardiomyocyte injury. Inhibition of GSK3 significantly alleviated ANG II‐induced cardiac hypertrophy in vivo and in vitro. Taken together, these results suggest that HSF1 phosphorylation stabilizes IGF‐IIR protein stability by downregulating RNF126 during cardiac hypertrophy. ANG II activates ERK/GSK3 to phosphorylate HSF1, resulting in RNF126 degradation, which stabilizes IGF‐IIR protein expression and eventually results in cardiac hypertrophy. HSF1 could be a valuable therapeutic target for cardiac diseases among hypertensive patients. |
Author | Padma, Vijaya V. Tsai, Fu‐Jen Huang, Chih‐Yang Ho, Tsung‐Jung Lin, Kuan‐Ho Kuo, Wei‐Wen Lee, Fa‐Lun Peng, Shu‐Fen Chen, Ray‐Jade |
Author_xml | – sequence: 1 givenname: Chih‐Yang orcidid: 0000-0002-0266-3233 surname: Huang fullname: Huang, Chih‐Yang email: T96752@mail.cmuh.org.tw organization: China Medical University – sequence: 2 givenname: Fa‐Lun surname: Lee fullname: Lee, Fa‐Lun organization: China Medical University – sequence: 3 givenname: Shu‐Fen surname: Peng fullname: Peng, Shu‐Fen organization: China Medical University – sequence: 4 givenname: Kuan‐Ho surname: Lin fullname: Lin, Kuan‐Ho organization: China Medical University Hospital – sequence: 5 givenname: Ray‐Jade surname: Chen fullname: Chen, Ray‐Jade organization: Taipei Medical University – sequence: 6 givenname: Tsung‐Jung surname: Ho fullname: Ho, Tsung‐Jung organization: China Medical University Beigang Hospital – sequence: 7 givenname: Fu‐Jen surname: Tsai fullname: Tsai, Fu‐Jen organization: China Medical University – sequence: 8 givenname: Vijaya V. surname: Padma fullname: Padma, Vijaya V. organization: Bharathiar University – sequence: 9 givenname: Wei‐Wen surname: Kuo fullname: Kuo, Wei‐Wen organization: China Medical University – sequence: 10 givenname: Chih‐Yang surname: Huang fullname: Huang, Chih‐Yang organization: Asia University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28383811$$D View this record in MEDLINE/PubMed |
BookMark | eNp90c9v0zAUB3ALDbFucOAfQJa4jENWO3bs-IiqtSubAHVwtlznRXWVxsFOBLlx48rfyF-C-wMOk0CWZen5854sfy_QWetbQOglJdeUkHy6td11XihePEETSpTMuCjyMzRJdzRTBafn6CLGLSFEKcaeofO8ZGlROkE_bh_mFHcbH9MOY2N651u8HvHN6m66eLhjOA5dFyBGiHj1fk5zgXufirE3rsXLxfzX95_L5QrDt4Pad9c-4M3YQeih3ReScG01WKiwNaFyfjd6O_ZwQsF3m_E5elqbJsKL03mJPs9vPs1us_sPi-Xs7X1mWcGKzPKaszo31PBKSDDWAq9yKrmVsmCsFoRJIoTheSFLUcg1t1ZVrDIEmOGUsUt0dZzbBf9lgNjrnYsWmsa04IeoaVnyUipSikRfP6JbP4Q2vU5TJQhXJO2kXp3UsN5BpbvgdiaM-s8XJ_DmCGzwMQao_xJK9D4-neLTh_iSnT6y1vWHSPpgXPO_jq-ugfHfo_W72cdjx2_p0q0C |
CitedBy_id | crossref_primary_10_1038_s41419_021_03521_1 crossref_primary_10_1161_CIRCRESAHA_119_315558 crossref_primary_10_1016_j_phymed_2020_153450 crossref_primary_10_1111_jcmm_14485 crossref_primary_10_1134_S0006297924080042 crossref_primary_10_1016_j_jep_2017_04_028 crossref_primary_10_3390_ijms20133182 crossref_primary_10_1016_j_bbcan_2020_188390 crossref_primary_10_3390_cells11213336 crossref_primary_10_1038_s41388_024_02949_x crossref_primary_10_3389_fragi_2022_861686 crossref_primary_10_1152_ajpheart_00318_2018 crossref_primary_10_18632_aging_102361 crossref_primary_10_1016_j_ijcard_2017_10_102 crossref_primary_10_1093_gbe_evz180 crossref_primary_10_1371_journal_pone_0216285 crossref_primary_10_1016_j_freeradbiomed_2023_10_395 crossref_primary_10_3892_ijmm_2020_4472 crossref_primary_10_3390_ijms231911226 crossref_primary_10_1002_jcp_27639 crossref_primary_10_1111_jcmm_14330 crossref_primary_10_15212_CVIA_2023_0043 crossref_primary_10_1016_j_phrs_2020_104748 crossref_primary_10_1007_s11626_024_00960_w crossref_primary_10_3390_ijms20092164 crossref_primary_10_3390_cancers15215167 crossref_primary_10_1002_jcp_26346 crossref_primary_10_3389_fimmu_2023_1226057 crossref_primary_10_1016_j_yjmcc_2018_08_006 crossref_primary_10_1186_s13578_019_0348_1 |
Cites_doi | 10.3389/fcell.2016.00053 10.1038/nrc2945 10.1161/CIRCRESAHA.109.210914 10.1152/ajpendo.00127.2005 10.1152/ajpheart.01047.2009 10.1074/jbc.M002169200 10.1128/MCB.23.17.6013-6026.2003 10.3390/ijms161126067 10.1210/en.2008-0975 10.4149/endo_2013_01_39 10.1128/MCB.17.4.2107 10.1016/j.yjmcc.2005.06.005 10.1093/emboj/19.23.6341 10.1016/j.bbamcr.2010.12.012 10.1038/cdd.2014.46 10.1016/j.yexcr.2013.11.013 10.1177/1535370216649259 10.1124/jpet.112.192245 10.1074/jbc.271.48.30847 10.1152/ajpheart.00921.2003 10.1101/gad.10.21.2782 10.1038/cddis.2016.356 10.1677/JME-08-0121 10.1161/01.RES.86.3.255 10.1007/s11010-012-1226-x |
ContentType | Journal Article |
Copyright | 2017 Wiley Periodicals, Inc. |
Copyright_xml | – notice: 2017 Wiley Periodicals, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
DOI | 10.1002/jcp.25945 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Neurosciences Abstracts Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Technology Research Database Toxicology Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Genetics Abstracts |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Biology |
EISSN | 1097-4652 |
EndPage | 989 |
ExternalDocumentID | 28383811 10_1002_jcp_25945 JCP25945 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: Ministry of Health and Welfare, Taiwan funderid: MOHW106‐TDU‐B‐212‐113004 |
GroupedDBID | --- -DZ -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 36B 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 9M8 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEFU ABEML ABIJN ABJNI ABPPZ ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACNCT ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BQCPF BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ H~9 IH2 IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M56 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ NNB O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RWR RX1 RYL S10 SAMSI SUPJJ SV3 TN5 TWZ UB1 UPT V2E V8K VQP W8V W99 WBKPD WH7 WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WXSBR WYB WYISQ X7M XG1 XJT XOL XPP XSW XV2 Y6R YQT YZZ ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX ADXHL AEFGJ AETEA AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY CITATION CGR CUY CVF ECM EIF NPM 7TK 7U7 8FD C1K FR3 K9. P64 RC3 7X8 |
ID | FETCH-LOGICAL-c3535-c4f43f2a1a4d67eacce4d2174c77533f6037066a42578657b4cc9d3da0e3a4133 |
IEDL.DBID | DR2 |
ISSN | 0021-9541 1097-4652 |
IngestDate | Fri Jul 11 06:10:58 EDT 2025 Sat Jul 26 01:25:21 EDT 2025 Thu Apr 03 06:57:05 EDT 2025 Wed Oct 01 02:15:37 EDT 2025 Thu Apr 24 22:53:16 EDT 2025 Wed Jan 22 16:32:13 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | RNF126 IGF-IIR cardiac hypertrophy hypertension HSF1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2017 Wiley Periodicals, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3535-c4f43f2a1a4d67eacce4d2174c77533f6037066a42578657b4cc9d3da0e3a4133 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0266-3233 |
PMID | 28383811 |
PQID | 1960490049 |
PQPubID | 1006363 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1884879086 proquest_journals_1960490049 pubmed_primary_28383811 crossref_primary_10_1002_jcp_25945 crossref_citationtrail_10_1002_jcp_25945 wiley_primary_10_1002_jcp_25945_JCP25945 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2018 2018-02-00 2018-Feb 20180201 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Journal of cellular physiology |
PublicationTitleAlternate | J Cell Physiol |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 287 2010; 10 2012; 341 2015; 16 2013; 47 2015; 5 2012; 364 2009; 43 2010; 106 2000; 86 2009; 150 2006; 291 2000; 275 1996; 10 2016; 241 2014; 21 2016; 4 2017; 9999 2016; 7 2000; 19 1996; 271 2010; 298 1997; 17 2011; 1813 2014; 320 2005; 39 2003; 23 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Huang C. Y. (e_1_2_7_12_1) 2017; 9999 e_1_2_7_25_1 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_20_1 Lin T. Y. (e_1_2_7_19_1) 2015; 5 Liua S. P. (e_1_2_7_21_1) 2015; 5 |
References_xml | – volume: 4 start-page: 53 year: 2016 article-title: ERK1 and ERK2 map kinases: Specific roles or functional redundancy publication-title: Frontiers in Cell and Developmental Biology – volume: 150 start-page: 2723 issue: 6 year: 2009 end-page: 2731 article-title: Activation of insulin‐like growth factor II receptor induces mitochondrial‐dependent apoptosis through G(alpha)q and downstream calcineurin signaling in myocardial cells publication-title: Endocrinology – volume: 106 start-page: 102 issue: 1 year: 2010 end-page: 110 article-title: Cardioprotection by CaMKII‐deltaB is mediated by phosphorylation of heat shock factor 1 and subsequent expression of inducible heat shock protein 70 publication-title: Circulation Research – volume: 7 start-page: 2455 issue: 11 year: 2016 article-title: Doxorubicin attenuates CHIP‐guarded HSF1 nuclear translocation and protein stability to trigger IGF‐IIR‐dependent cardiomyocyte death publication-title: Cell Death & Disease – volume: 17 start-page: 2107 issue: 4 year: 1997 end-page: 2115 article-title: Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation publication-title: Molecular and Cellular Biology – volume: 241 start-page: 1745 issue: 16 year: 2016 end-page: 1750 article-title: Atorvastatin prevents rat cardiomyocyte hypertrophy induced by parathyroid hormone 1–34 associated with the Ras‐ERK signaling publication-title: Experimental Biology and Medicine – volume: 5 start-page: 19 issue: 3 year: 2015 end-page: 23 article-title: Sambucus williamsii induced embryonic stem cells differentiated into neurons publication-title: Biomedicine – volume: 287 start-page: H1081 issue: 3 year: 2004 end-page: H1088 article-title: Radicicol activates heat shock protein expression and cardioprotection in neonatal rat cardiomyocytes publication-title: American Journal of Physiology Heart and Circulatory Physiology – volume: 19 start-page: 6341 issue: 23 year: 2000 end-page: 6350 article-title: The MEK1‐ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice publication-title: The EMBO Journal – volume: 23 start-page: 6013 issue: 17 year: 2003 end-page: 6026 article-title: Regulation of molecular chaperone gene transcription involves the serine phosphorylation, 14‐3‐3 epsilon binding, and cytoplasmic sequestration of heat shock factor 1 publication-title: Molecular and Cellular Biology – volume: 10 start-page: 745 issue: 11 year: 2010 end-page: 759 article-title: The renin‐angiotensin system and cancer: Old dog, new tricks publication-title: Nature Reviews Cancer – volume: 47 start-page: 39 issue: 1 year: 2013 end-page: 52 article-title: Renin‐angiotensin system: Upgrade of recent knowledge and perspectives publication-title: Endocrine Regulations – volume: 1813 start-page: 1619 issue: 9 year: 2011 end-page: 1633 article-title: The MAPK cascades: Signaling components, nuclear roles and mechanisms of nuclear translocation publication-title: Biochimica et Biophysica Acta – volume: 320 start-page: 219 issue: 2 year: 2014 end-page: 232 article-title: The ubiquitin ligase RNF126 regulates the retrograde sorting of the cation‐independent mannose 6‐phosphate receptor publication-title: Experimental Cell Research – volume: 9999 start-page: 1 year: 2017 end-page: 11 article-title: Mitochondrial ROS‐induced ERK1/2 activation and HSF2‐mediated AT1 R upregulation are required for doxorubicin‐induced cardiotoxicity publication-title: Journal of Cellular Physiology – volume: 298 start-page: H1832 issue: 6 year: 2010 end-page: H1841 article-title: Role of heat shock factor‐1 activation in the doxorubicin‐induced heart failure in mice publication-title: American Journal of Physiology Heart and Circulatory Physiology – volume: 275 start-page: 29147 issue: 37 year: 2000 end-page: 29152 article-title: Glycogen synthase kinase 3beta negatively regulates both DNA‐binding and transcriptional activities of heat shock factor 1 publication-title: The Journal of Biological Chemistry – volume: 364 start-page: 263 issue: 1–2 year: 2012 end-page: 269 article-title: Heat shock transcription factor 1 inhibits H2O2‐induced cardiomyocyte death through suppression of high‐mobility group box 1 publication-title: Molecular and Cellular Biochemistry – volume: 86 start-page: 255 issue: 3 year: 2000 end-page: 263 article-title: Calcineurin‐mediated hypertrophy protects cardiomyocytes from apoptosis in vitro and in vivo: An apoptosis‐independent model of dilated heart failure publication-title: Circulation Research – volume: 341 start-page: 829 issue: 3 year: 2012 end-page: 839 article-title: Heat shock protein 25‐enriched plasma transfusion preconditions the heart against doxorubicin‐induced dilated cardiomyopathy in mice publication-title: The Journal of Pharmacology and Experimental Therapeutics – volume: 21 start-page: 1262 issue: 8 year: 2014 end-page: 1274 article-title: ANG II promotes IGF‐IIR expression and cardiomyocyte apoptosis by inhibiting HSF1 via JNK activation and SIRT1 degradation publication-title: Cell Death and Differentiation – volume: 291 start-page: E306 issue: 2 year: 2006 end-page: E314 article-title: Roles of insulin‐like growth factor II in cardiomyoblast apoptosis and in hypertensive rat heart with abdominal aorta ligation publication-title: American Journal of Physiology Endocrinology and Metabolism – volume: 39 start-page: 681 issue: 4 year: 2005 end-page: 689 article-title: Silencing heat shock factor 1 by small interfering RNA abrogates heat shock‐induced cardioprotection against ischemia‐reperfusion injury in mice publication-title: Journal of Molecular and Cellular Cardiology – volume: 271 start-page: 30847 issue: 48 year: 1996 end-page: 30857 article-title: Sequential phosphorylation by mitogen‐activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor‐1 publication-title: The Journal of Biological Chemistry – volume: 43 start-page: 221 issue: 6 year: 2009 end-page: 230 article-title: Leu27IGF2 plays an opposite role to IGF1 to induce H9c2 cardiomyoblast cell apoptosis via Galphaq signaling publication-title: Journal of Molecular Endocrinology – volume: 16 start-page: 27921 issue: 11 year: 2015 end-page: 27930 article-title: CREB negatively regulates IGF2R gene expression and downstream pathways to inhibit hypoxia‐Induced H9c2 cardiomyoblast cell death publication-title: International Journal of Molecular Sciences – volume: 10 start-page: 2782 issue: 21 year: 1996 end-page: 2793 article-title: Repression of human heat shock factor 1 activity at control temperature by phosphorylation publication-title: Genes & Development – volume: 5 start-page: 33 issue: 5 year: 2015 end-page: 38 article-title: Lipopolysaccharide‐promoted proliferation of Caco‐2 cells is mediated by c‐Src induction and ERK activation publication-title: Biomedicine – volume: 5 start-page: 19 issue: 3 year: 2015 ident: e_1_2_7_21_1 article-title: Sambucus williamsii induced embryonic stem cells differentiated into neurons publication-title: Biomedicine – ident: e_1_2_7_3_1 doi: 10.3389/fcell.2016.00053 – ident: e_1_2_7_9_1 doi: 10.1038/nrc2945 – ident: e_1_2_7_22_1 doi: 10.1161/CIRCRESAHA.109.210914 – ident: e_1_2_7_18_1 doi: 10.1152/ajpendo.00127.2005 – volume: 5 start-page: 33 issue: 5 year: 2015 ident: e_1_2_7_19_1 article-title: Lipopolysaccharide‐promoted proliferation of Caco‐2 cells is mediated by c‐Src induction and ERK activation publication-title: Biomedicine – ident: e_1_2_7_25_1 doi: 10.1152/ajpheart.01047.2009 – ident: e_1_2_7_27_1 doi: 10.1074/jbc.M002169200 – ident: e_1_2_7_26_1 doi: 10.1128/MCB.23.17.6013-6026.2003 – ident: e_1_2_7_5_1 doi: 10.3390/ijms161126067 – ident: e_1_2_7_7_1 doi: 10.1210/en.2008-0975 – ident: e_1_2_7_11_1 doi: 10.4149/endo_2013_01_39 – ident: e_1_2_7_15_1 doi: 10.1128/MCB.17.4.2107 – ident: e_1_2_7_28_1 doi: 10.1016/j.yjmcc.2005.06.005 – ident: e_1_2_7_2_1 doi: 10.1093/emboj/19.23.6341 – ident: e_1_2_7_23_1 doi: 10.1016/j.bbamcr.2010.12.012 – ident: e_1_2_7_14_1 doi: 10.1038/cdd.2014.46 – ident: e_1_2_7_24_1 doi: 10.1016/j.yexcr.2013.11.013 – ident: e_1_2_7_20_1 doi: 10.1177/1535370216649259 – ident: e_1_2_7_17_1 doi: 10.1124/jpet.112.192245 – ident: e_1_2_7_6_1 doi: 10.1074/jbc.271.48.30847 – ident: e_1_2_7_10_1 doi: 10.1152/ajpheart.00921.2003 – ident: e_1_2_7_16_1 doi: 10.1101/gad.10.21.2782 – ident: e_1_2_7_13_1 doi: 10.1038/cddis.2016.356 – ident: e_1_2_7_4_1 doi: 10.1677/JME-08-0121 – ident: e_1_2_7_8_1 doi: 10.1161/01.RES.86.3.255 – ident: e_1_2_7_29_1 doi: 10.1007/s11010-012-1226-x – volume: 9999 start-page: 1 year: 2017 ident: e_1_2_7_12_1 article-title: Mitochondrial ROS‐induced ERK1/2 activation and HSF2‐mediated AT1 R upregulation are required for doxorubicin‐induced cardiotoxicity publication-title: Journal of Cellular Physiology |
SSID | ssj0009933 |
Score | 2.3993917 |
Snippet | Hypertension‐induced cardiac hypertrophy and apoptosis are major characteristics of early‐stage heart failure (HF). Inhibition of extracellular... Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure (HF). Inhibition of extracellular... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 979 |
SubjectTerms | Angiotensin Angiotensin II Angiotensin II - pharmacology Angiotensin II Type 1 Receptor Blockers - pharmacology Animals Antihypertensive Agents - pharmacology Apoptosis Biphenyl Compounds - pharmacology cardiac hypertrophy Cardiomegaly - enzymology Cardiomegaly - etiology Cardiomegaly - pathology Cardiomegaly - prevention & control Cardiomyocytes Cell Line Coronary artery disease Disease Models, Animal Dose-Response Relationship, Drug Extracellular signal-regulated kinase Extracellular Signal-Regulated MAP Kinases - metabolism Female Glycogen Glycogen synthase kinase 3 Glycogen Synthase Kinase 3 beta - metabolism Heart Heart diseases Heat Shock Transcription Factors - metabolism Heat-Shock Proteins - metabolism HSF1 HSF1 protein Hypertension Hypertension - complications Hypertension - drug therapy Hypertension - enzymology Hypertension - pathology Hypertrophy IGF‐IIR Insulin Insulin-like growth factor II Insulin-like growth factors Kinases Lithium Chloride - pharmacology Myocytes, Cardiac - drug effects Myocytes, Cardiac - enzymology Myocytes, Cardiac - pathology Phosphorylation Protein Stability Protein Transport Proteins Rats, Inbred SHR Rats, Inbred WKY Receptor, Angiotensin, Type 1 - metabolism Receptor, IGF Type 2 - metabolism RNF126 Signal Transduction Signaling Stability Tetrazoles - pharmacology Time Factors Ubiquitin Ubiquitin-protein ligase Ubiquitin-Protein Ligases - metabolism |
Title | HSF1 phosphorylation by ERK/GSK3 suppresses RNF126 to sustain IGF‐IIR expression for hypertension‐induced cardiomyocyte hypertrophy |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.25945 https://www.ncbi.nlm.nih.gov/pubmed/28383811 https://www.proquest.com/docview/1960490049 https://www.proquest.com/docview/1884879086 |
Volume | 233 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0021-9541 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1097-4652 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009933 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB5KQfDFS-tltcooIr5kN5OZZBN8KqXpbotFthb6IIS50qpNlk0WjE---epv9Jd4ZiZJqRcQCYGQnDDJ5JyZ72S--QahFyGjIkyVCGRssoBpZgLBkyygmYo5pM1ECzs5-c1xMjtlh2fx2QZ63c-F8foQww83GxmuvbYBzkU9uRIN_SCXY8DuzE4wJzR2Q7SLK-morFtG3lEQYkZ6VaEwmgx3Xu-LfgOY1_Gq63Dy2-h9_6ieZ_JxvG7EWH75RcXxP9_lDrrVAVG86z3nLtrQ5Rba3i0hCb9s8UvsqKHun_sWuuFXrGy30bfZSU7w8ryqYV-1nkiHRYv3F0eTg5Mjiuv10nFrdY0XxzmJEtxUcNJN08Lzg_zH1-_z-QLrzx0Dt8QAm_E5pMMrR6avSrC4KBW4nMLSsWUv20q2je6MVhV4xj10mu-_25sF3VoOgaQxjQPJDKMm4oQzlUyhtZeaKZsOySkkTNQkIZ0C-uGuCUniqWBSZooqHmrKoaOl99FmWZX6IcI84iaTwtBUMiYJTVUY84QZmRqtAc-N0Kv-qxayEzq36218KrxEc1RAdReuukfo-WC69OoefzLa6V2j6AK8LogVtclsfjVCz4bLEJp2vIWXulqDTZpCOphB0jhCD7xLDaUAqoONEHhY5xh_L7443HvrDh79u-ljdBOAXerZ5Ttos1mt9RMAT4146qLkJ6NYF-M |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgQXHi2PhQIGIcQlu0lsZxOJS1Wa7nbbFdq2Ui8ocmxH5dFktZuVCCduXPmN_BLGzqMqDwmhKFKUTJTEmbG_sT9_BnjhMpq6oUodybPIYZplTiqCyKGR4gLTZk-nZnLy4TQYnbD9U366Bq_buTC1PkTX4WYiw9bXJsBNh_TgQjX0g5z3EbwzfgWumvE5E5ZvZhfiUVGzkLwlIXDmtbpCrj_obr3cGv0GMS8jVtvkxLfgXfuyNdPkY39Vpn355Rcdx__9mttws8GiZLt2njuwpvMN2NzOMQ8_r8hLYtmhttt9A67Vi1ZWm_BtdBR7ZH5WLHFfVDWXjqQV2Z1NBntHE0qWq7ml1-olmU1jzw9IWeBJO1OLjPfiH1-_j8czoj83JNycIHImZ5gRLyyfvsjR4n2u0OsUkZYwe14Vsip1Y7Qo0Dnuwkm8e7wzcprlHBxJOeWOZBmjmS88wVQwxApfaqZMRiSHmDPRLHDpEAGQsLVIwIcpkzJSVAlXU4FtLb0H63mR6wdAhC-ySKYZDSVj0qOhcrkIWCbDTGuEdD141f7WRDZa52bJjU9JrdLsJ1jciS3uHjzvTOe1wMefjLZa30iaGF8mntG1iUyK1YNn3WWMTjPkInJdrNAmDDEjjDBv7MH92qe6pyCww83z8GWtZ_z98cn-zlt78PDfTZ_C9dHx4UFyMJ5OHsENxHlhTTbfgvVysdKPEUuV6RMbMj8BBtYb_w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtNAFL0qrUBsoLQ8UgoMCCE2TmzP2LHFqip1kwaiKqVSF0jWeB5qC7WtxJFqVuzY8o18CdfjR1UeEkJWJMu51jj2vTPnOGfOALy0GU3sQCaW8HRoMcW0lXA_tGgoPY602VFJNTn5_dQfHbODE-9kBd60c2Fqf4juhVtVGaa_rgo8l3pwZRp6LvI-Ynfm3YA15iO7qhDR7Mo7KmzWkTcaBI85ra2Q7Q66U68PRr8hzOuA1Yw40V342F5rLTT51F8WSV98-cXG8T9_zDrcaZAo2alT5x6sqHQDNndSZOEXJXlFjDbUvHTfgJv1kpXlJnwbHUUOyU-zBX7mZa2kI0lJ9maTwf7RhJLFMjfiWrUgs2nkuD4pMjxo5mmR8X704-v38XhG1GUjwU0J4mZyinx4btT0WYoRZ6nEnJNEGLnsRZmJslBN0DzD1LgPx9Heh92R1SzmYAnqUc8STDOqXe5wJv0hdvdCMVnxITFExkS1b9Mhwh9u-hDfGyZMiFBSyW1FOY609AGsplmqHgHhLtehSDQNBGPCoYG0Pe4zLQKtFAK6Hrxun2osGqfzasGNz3Ht0ezGeLtjc7t78KILzWt7jz8FbbepETcVvoidytUmrAhWD553X2NtVn-48FRlS4wJAuSDIbLGHjysU6prBWEdbo6DF2sS4-_Nxwe7h2Zn699Dn8Gtw7dR_G48nTyG2wjyglppvg2rxXypniCQKpKnpmB-Aqc8Gq4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HSF1+phosphorylation+by+ERK%2FGSK3+suppresses+RNF126+to+sustain+IGF%E2%80%90IIR+expression+for+hypertension%E2%80%90induced+cardiomyocyte+hypertrophy&rft.jtitle=Journal+of+cellular+physiology&rft.au=Huang%2C+Chih%E2%80%90Yang&rft.au=Lee%2C+Fa%E2%80%90Lun&rft.au=Peng%2C+Shu%E2%80%90Fen&rft.au=Lin%2C+Kuan%E2%80%90Ho&rft.date=2018-02-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=233&rft.issue=2&rft.spage=979&rft.epage=989&rft_id=info:doi/10.1002%2Fjcp.25945&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jcp_25945 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon |