Phase distribution graphs for fast, differentiable, and spatially encoded Bloch simulations of arbitrary MRI sequences

Purpose An analytical approach to Bloch simulations for MRI sequences is introduced that enables time efficient calculations of signals free of Monte‐Carlo noise, while providing full flexibility and differentiability in RF flip angles, RF phases, magnetic field gradients and time, as well as insigh...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 92; no. 3; pp. 1189 - 1204
Main Authors Endres, Jonathan, Weinmüller, Simon, Dang, Hoai Nam, Zaiss, Moritz
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.09.2024
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.30055

Cover

Abstract Purpose An analytical approach to Bloch simulations for MRI sequences is introduced that enables time efficient calculations of signals free of Monte‐Carlo noise, while providing full flexibility and differentiability in RF flip angles, RF phases, magnetic field gradients and time, as well as insights into image formation. Theory and Methods We present an implementation of the extended phase graph (EPG) concept implemented in PyTorch, including an efficient state selection algorithm. This simulation is compared with an isochromat‐based Bloch simulation with random isochromat distribution as well as with in vivo measurements using the Pulseq standard. Additionally, different sequences are tested and analyzed using this novel simulation approach. Results Our simulation outperforms isochromat‐based simulations in terms of computation time as well as signal quality, without exhibiting any kind of Monte‐Carlo noise. The novel approach allows extracting useful information about the magnetization evolution not available otherwise. Our approach extends the common state‐tensor‐based EPG simulation approach for the contribution of dephased states including spatial encoding and T2′$$ {T}_2^{\prime } $$ effects, and arbitrary timing. This allows calculation of echo shapes in addition to echo amplitudes only. Our implementation provides full differentiability in all input parameters allowing gradient descent optimization. Simulation of non‐instantaneous pulses via hard‐pulse approximation is left for future work, as the performance and accuracy characteristics are not yet analyzed. Conclusions Phase distribution graphs provide fast, differentiable, and spatially encoded Bloch simulations for most MRI sequences. It allows efficient simulation and optimization of arbitrary MRI sequences, which was previously only possible via high isochromat counts.
AbstractList An analytical approach to Bloch simulations for MRI sequences is introduced that enables time efficient calculations of signals free of Monte-Carlo noise, while providing full flexibility and differentiability in RF flip angles, RF phases, magnetic field gradients and time, as well as insights into image formation.PURPOSEAn analytical approach to Bloch simulations for MRI sequences is introduced that enables time efficient calculations of signals free of Monte-Carlo noise, while providing full flexibility and differentiability in RF flip angles, RF phases, magnetic field gradients and time, as well as insights into image formation.We present an implementation of the extended phase graph (EPG) concept implemented in PyTorch, including an efficient state selection algorithm. This simulation is compared with an isochromat-based Bloch simulation with random isochromat distribution as well as with in vivo measurements using the Pulseq standard. Additionally, different sequences are tested and analyzed using this novel simulation approach.THEORY AND METHODSWe present an implementation of the extended phase graph (EPG) concept implemented in PyTorch, including an efficient state selection algorithm. This simulation is compared with an isochromat-based Bloch simulation with random isochromat distribution as well as with in vivo measurements using the Pulseq standard. Additionally, different sequences are tested and analyzed using this novel simulation approach.Our simulation outperforms isochromat-based simulations in terms of computation time as well as signal quality, without exhibiting any kind of Monte-Carlo noise. The novel approach allows extracting useful information about the magnetization evolution not available otherwise. Our approach extends the common state-tensor-based EPG simulation approach for the contribution of dephased states including spatial encoding and T 2 ' $$ {T}_2^{\prime } $$ effects, and arbitrary timing. This allows calculation of echo shapes in addition to echo amplitudes only. Our implementation provides full differentiability in all input parameters allowing gradient descent optimization. Simulation of non-instantaneous pulses via hard-pulse approximation is left for future work, as the performance and accuracy characteristics are not yet analyzed.RESULTSOur simulation outperforms isochromat-based simulations in terms of computation time as well as signal quality, without exhibiting any kind of Monte-Carlo noise. The novel approach allows extracting useful information about the magnetization evolution not available otherwise. Our approach extends the common state-tensor-based EPG simulation approach for the contribution of dephased states including spatial encoding and T 2 ' $$ {T}_2^{\prime } $$ effects, and arbitrary timing. This allows calculation of echo shapes in addition to echo amplitudes only. Our implementation provides full differentiability in all input parameters allowing gradient descent optimization. Simulation of non-instantaneous pulses via hard-pulse approximation is left for future work, as the performance and accuracy characteristics are not yet analyzed.Phase distribution graphs provide fast, differentiable, and spatially encoded Bloch simulations for most MRI sequences. It allows efficient simulation and optimization of arbitrary MRI sequences, which was previously only possible via high isochromat counts.CONCLUSIONSPhase distribution graphs provide fast, differentiable, and spatially encoded Bloch simulations for most MRI sequences. It allows efficient simulation and optimization of arbitrary MRI sequences, which was previously only possible via high isochromat counts.
PurposeAn analytical approach to Bloch simulations for MRI sequences is introduced that enables time efficient calculations of signals free of Monte‐Carlo noise, while providing full flexibility and differentiability in RF flip angles, RF phases, magnetic field gradients and time, as well as insights into image formation.Theory and MethodsWe present an implementation of the extended phase graph (EPG) concept implemented in PyTorch, including an efficient state selection algorithm. This simulation is compared with an isochromat‐based Bloch simulation with random isochromat distribution as well as with in vivo measurements using the Pulseq standard. Additionally, different sequences are tested and analyzed using this novel simulation approach.ResultsOur simulation outperforms isochromat‐based simulations in terms of computation time as well as signal quality, without exhibiting any kind of Monte‐Carlo noise. The novel approach allows extracting useful information about the magnetization evolution not available otherwise. Our approach extends the common state‐tensor‐based EPG simulation approach for the contribution of dephased states including spatial encoding and T2′$$ {T}_2^{\prime } $$ effects, and arbitrary timing. This allows calculation of echo shapes in addition to echo amplitudes only. Our implementation provides full differentiability in all input parameters allowing gradient descent optimization. Simulation of non‐instantaneous pulses via hard‐pulse approximation is left for future work, as the performance and accuracy characteristics are not yet analyzed.ConclusionsPhase distribution graphs provide fast, differentiable, and spatially encoded Bloch simulations for most MRI sequences. It allows efficient simulation and optimization of arbitrary MRI sequences, which was previously only possible via high isochromat counts.
Purpose An analytical approach to Bloch simulations for MRI sequences is introduced that enables time efficient calculations of signals free of Monte‐Carlo noise, while providing full flexibility and differentiability in RF flip angles, RF phases, magnetic field gradients and time, as well as insights into image formation. Theory and Methods We present an implementation of the extended phase graph (EPG) concept implemented in PyTorch, including an efficient state selection algorithm. This simulation is compared with an isochromat‐based Bloch simulation with random isochromat distribution as well as with in vivo measurements using the Pulseq standard. Additionally, different sequences are tested and analyzed using this novel simulation approach. Results Our simulation outperforms isochromat‐based simulations in terms of computation time as well as signal quality, without exhibiting any kind of Monte‐Carlo noise. The novel approach allows extracting useful information about the magnetization evolution not available otherwise. Our approach extends the common state‐tensor‐based EPG simulation approach for the contribution of dephased states including spatial encoding and T2′$$ {T}_2^{\prime } $$ effects, and arbitrary timing. This allows calculation of echo shapes in addition to echo amplitudes only. Our implementation provides full differentiability in all input parameters allowing gradient descent optimization. Simulation of non‐instantaneous pulses via hard‐pulse approximation is left for future work, as the performance and accuracy characteristics are not yet analyzed. Conclusions Phase distribution graphs provide fast, differentiable, and spatially encoded Bloch simulations for most MRI sequences. It allows efficient simulation and optimization of arbitrary MRI sequences, which was previously only possible via high isochromat counts.
An analytical approach to Bloch simulations for MRI sequences is introduced that enables time efficient calculations of signals free of Monte-Carlo noise, while providing full flexibility and differentiability in RF flip angles, RF phases, magnetic field gradients and time, as well as insights into image formation. We present an implementation of the extended phase graph (EPG) concept implemented in PyTorch, including an efficient state selection algorithm. This simulation is compared with an isochromat-based Bloch simulation with random isochromat distribution as well as with in vivo measurements using the Pulseq standard. Additionally, different sequences are tested and analyzed using this novel simulation approach. Our simulation outperforms isochromat-based simulations in terms of computation time as well as signal quality, without exhibiting any kind of Monte-Carlo noise. The novel approach allows extracting useful information about the magnetization evolution not available otherwise. Our approach extends the common state-tensor-based EPG simulation approach for the contribution of dephased states including spatial encoding and effects, and arbitrary timing. This allows calculation of echo shapes in addition to echo amplitudes only. Our implementation provides full differentiability in all input parameters allowing gradient descent optimization. Simulation of non-instantaneous pulses via hard-pulse approximation is left for future work, as the performance and accuracy characteristics are not yet analyzed. Phase distribution graphs provide fast, differentiable, and spatially encoded Bloch simulations for most MRI sequences. It allows efficient simulation and optimization of arbitrary MRI sequences, which was previously only possible via high isochromat counts.
Author Dang, Hoai Nam
Endres, Jonathan
Weinmüller, Simon
Zaiss, Moritz
Author_xml – sequence: 1
  givenname: Jonathan
  orcidid: 0009-0005-0908-4153
  surname: Endres
  fullname: Endres, Jonathan
  email: jonathan.endres@uk-erlangen.de
  organization: Institute of Neuroradiology, University Hospital Erlangen, Friedrich‐Alexander University Erlangen‐Nürnberg (FAU)
– sequence: 2
  givenname: Simon
  orcidid: 0009-0002-1163-0772
  surname: Weinmüller
  fullname: Weinmüller, Simon
  organization: Institute of Neuroradiology, University Hospital Erlangen, Friedrich‐Alexander University Erlangen‐Nürnberg (FAU)
– sequence: 3
  givenname: Hoai Nam
  orcidid: 0000-0001-6321-9593
  surname: Dang
  fullname: Dang, Hoai Nam
  organization: Institute of Neuroradiology, University Hospital Erlangen, Friedrich‐Alexander University Erlangen‐Nürnberg (FAU)
– sequence: 4
  givenname: Moritz
  orcidid: 0000-0001-9780-3616
  surname: Zaiss
  fullname: Zaiss, Moritz
  organization: Friedrich‐Alexander‐Universität Erlangen‐Nürnberg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38576164$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFP3DAQha0KVBbaQ_9AZamXViJgx3a8OVJEWyRWVKg9R7Yz7ho58daTtNp_j2FpD0hwskb-5s3Me4dkb0wjEPKOsxPOWH065OFEMKbUK7Lgqq6rWrVyjyyYlqwSvJUH5BDxljHWtlq-JgdiqXTDG7kgf76vDQLtA0452HkKaaS_stmskfqUqTc4HZdf7yHDOAVjIxxTM_YUN6aUMW4pjC710NPPMbk1xTDM0dzrIE2emmzDlE3e0tXNJUX4PRcc8A3Z9yYivH18j8jPLxc_zr9VV9dfL8_PrionlFDV0mptdK-M9rr1ApwWlkPb8hqksJ4vnVZW8kZ52_peCF7udkqDrhuruGnEEfm4093kVEbj1A0BHcRoRkgzdoIJWUu1lLqgH56gt2nOY9muUJoLIRshC_X-kZrtAH23yWEo13X_HC3Apx3gckLM4P8jnHX3aXUlre4hrcKePmFdmB68K5aF-FLH3xBh-7x0t7pZ7TruAAOvpdk
CitedBy_id crossref_primary_10_1007_s10334_025_01236_4
crossref_primary_10_1002_mrm_30318
Cites_doi 10.1002/mrm.10410
10.1016/S0022‐510X(01)00486‐5
10.1002/mrm.28727
10.1002/mrm.24153
10.1016/0022‐2364(88)90128‐X
10.1002/mrm.27114
10.1109/TMI.2016.2620961
10.1016/j.mri.2016.08.021
10.1002/jmri.24619
10.1186/1532‐429X‐16‐48
10.1002/mrm.27040
10.1002/mrm.29635
10.1016/j.jmr.2010.05.011
10.1103/PhysRev.112.1693
10.1002/mrm.10351
10.4324/9780203763247
10.1002/cmr.1820030302
10.1002/mrm.22406
10.1063/1.1681477
10.1002/mrm.29710
10.1002/mrm.26235
10.1002/mrm.10658
10.1016/j.mri.2007.02.014
10.1063/1.1731821
10.1002/jmri.1076
10.1097/RMR.0000000000000204
ContentType Journal Article
Copyright 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Authors. published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
– notice: 2024. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.30055
DatabaseName (Open Access) Wiley Online Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Biochemistry Abstracts 1

MEDLINE
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1204
ExternalDocumentID 38576164
10_1002_mrm_30055
MRM30055
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: German Research Foundation
  funderid: ZA 814/5‐1
– fundername: German Research Foundation
  grantid: ZA 814/5-1
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
AAHHS
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3535-8b77a7d5a7f79f3ec73b1e9912e43bf18c75b4165fb9fd331594c57e726b51a63
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Sep 05 14:26:20 EDT 2025
Tue Oct 07 06:27:55 EDT 2025
Thu Apr 03 07:08:09 EDT 2025
Wed Oct 01 05:05:45 EDT 2025
Thu Apr 24 22:50:57 EDT 2025
Thu Sep 25 07:37:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Bloch simulation
sequence analysis
extended phase graphs
differentiable simulation
phase distribution graphs
Language English
License Attribution-NonCommercial
2024 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3535-8b77a7d5a7f79f3ec73b1e9912e43bf18c75b4165fb9fd331594c57e726b51a63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9780-3616
0009-0005-0908-4153
0000-0001-6321-9593
0009-0002-1163-0772
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30055
PMID 38576164
PQID 3071334634
PQPubID 1016391
PageCount 16
ParticipantIDs proquest_miscellaneous_3034245847
proquest_journals_3071334634
pubmed_primary_38576164
crossref_primary_10_1002_mrm_30055
crossref_citationtrail_10_1002_mrm_30055
wiley_primary_10_1002_mrm_30055_MRM30055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
2024-Sep
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2024
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1991; 3
2021; 86
2001; 186
1958; 112
2010; 205
1969; 78
2018; 80
2010; 64
2004; 51
2023
2017; 36
2022
2017; 77
2015; 41
2004; 34
2017; 35
2014; 16
2019; 28
2003; 49
2013
2003; 60
2012; 68
2023; 90
2001; 13
2007; 25
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
Cormen TH (e_1_2_9_21_1) 2022
e_1_2_9_34_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
Endres J (e_1_2_9_33_1) 2023
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 49
  start-page: 395
  year: 2003
  end-page: 397
  article-title: Is TrueFISP a gradient‐echo or a spin‐echo sequence?
  publication-title: Magn Reson Med
– volume: 16
  start-page: 48
  year: 2014
  article-title: High performance MRI simulations of motion on multi‐GPU systems
  publication-title: J Cardiovasc Magn Reson
– volume: 3
  start-page: 125
  year: 1991
  end-page: 143
  article-title: Echoes—how to generate, recognize, use or avoid them in MR‐imaging sequences. Part I: fundamental and not so fundamental properties of spin echoes
  publication-title: Concepts Magn Res
– volume: 28
  start-page: 159
  year: 2019
  end-page: 171
  article-title: Parallel transmission for ultrahigh field MRI
  publication-title: Top Magn Reson Imaging
– volume: 90
  start-page: 329
  year: 2023
  end-page: 342
  article-title: KomaMRI.Jl: an open‐source framework for general MRI simulations with GPU acceleration
  publication-title: Magnetic Resonance in Med
– volume: 36
  start-page: 527
  year: 2017
  end-page: 537
  article-title: Fast realistic MRI simulations based on generalized multi‐Pool exchange tissue model
  publication-title: IEEE Trans Med Imaging
– volume: 60
  start-page: 2966
  year: 2003
  end-page: 2979
  article-title: Diffusion and field‐gradient effects in NMR Fourier spectroscopy
  publication-title: J Chem Phys
– volume: 25
  start-page: 748
  year: 2007
  end-page: 753
  article-title: T2* measurements in human brain at 1.5, 3 and 7 T
  publication-title: Magn Reson Imaging
– volume: 51
  start-page: 68
  year: 2004
  end-page: 80
  article-title: Calculation of flip angles for echo trains with predefined amplitudes with the extended phase graph (EPG)‐algorithm: principles and applications to hyperecho and TRAPS sequences
  publication-title: Magn Reson Med
– volume: 86
  start-page: 709
  year: 2021
  end-page: 724
  article-title: MRzero ‐ automated discovery of MRI sequences using supervised learning
  publication-title: Magn Reson Med
– volume: 34
  start-page: 2057
  year: 2004
  end-page: 2061
  article-title: Effects of diffusion in nuclear magnetic resonance spin‐Echo experiments
  publication-title: J Chem Phys
– volume: 78
  start-page: 397
  year: 1969
  end-page: 407
  article-title: Multiecho imaging sequences with low refocusing flip angles
  publication-title: J Magn Reson
– volume: 90
  start-page: 1345
  year: 2023
  end-page: 1362
  article-title: MR‐zero meets RARE MRI: joint optimization of refocusing flip angles and neural networks to minimize T2‐induced blurring in spin echo sequences
  publication-title: Magn Reson Med
– volume: 49
  start-page: 771
  year: 2003
  end-page: 775
  article-title: An analytical solution for the SSFP signal in MRI
  publication-title: Magn Reson Med
– volume: 112
  start-page: 1693
  year: 1958
  end-page: 1701
  article-title: Steady‐state free precession in nuclear magnetic resonance
  publication-title: Phys Rev
– volume: 80
  start-page: 767
  year: 2018
  end-page: 779
  article-title: Extended phase graph formalism for systems with magnetization transfer and exchange
  publication-title: Magn Reson Med
– volume: 64
  start-page: 186
  year: 2010
  end-page: 193
  article-title: High‐performance computing MRI simulations
  publication-title: Magn Reson Med
– volume: 13
  start-page: 534
  year: 2001
  end-page: 546
  article-title: Diffusion tensor imaging: concepts and applications
  publication-title: J Magn Reson Imaging
– volume: 186
  start-page: S11
  year: 2001
  end-page: S14
  article-title: The physical basis of diffusion‐weighted MRI
  publication-title: J Neurol Sci
– volume: 68
  start-page: 1481
  year: 2012
  end-page: 1494
  article-title: Spatially resolved extended phase graphs: modeling and design of multipulse sequences with parallel transmission
  publication-title: Magn Reson Med
– volume: 80
  start-page: 1655
  year: 2018
  end-page: 1665
  article-title: Flow MRI simulation in complex 3D geometries: application to the cerebral venous network
  publication-title: Magn Reson Med
– year: 2022
– volume: 35
  start-page: 69
  year: 2017
  end-page: 80
  article-title: What are normal relaxation times of tissues at 3 T?
  publication-title: Magn Reson Imaging
– year: 2023
– volume: 41
  start-page: 266
  year: 2015
  end-page: 295
  article-title: Extended phase graphs: dephasing, RF pulses, and echoes—pure and simple
  publication-title: J Magn Reson Imaging
– volume: 77
  start-page: 1544
  year: 2017
  end-page: 1552
  article-title: Pulseq: a rapid and hardware‐independent pulse sequence prototyping framework
  publication-title: Magn Reson Med
– volume: 205
  start-page: 276
  year: 2010
  end-page: 285
  article-title: Extended phase graphs with anisotropic diffusion
  publication-title: J Magn Reson
– year: 2013
– ident: e_1_2_9_23_1
  doi: 10.1002/mrm.10410
– ident: e_1_2_9_16_1
  doi: 10.1016/S0022‐510X(01)00486‐5
– ident: e_1_2_9_31_1
– ident: e_1_2_9_20_1
  doi: 10.1002/mrm.28727
– ident: e_1_2_9_12_1
  doi: 10.1002/mrm.24153
– ident: e_1_2_9_14_1
  doi: 10.1016/0022‐2364(88)90128‐X
– ident: e_1_2_9_8_1
  doi: 10.1002/mrm.27114
– ident: e_1_2_9_4_1
  doi: 10.1109/TMI.2016.2620961
– volume-title: Presented at: ESMRMB ‐ The European Society for Magnetic Resonance in Medicine and Biology 2023
  year: 2023
  ident: e_1_2_9_33_1
– ident: e_1_2_9_34_1
  doi: 10.1016/j.mri.2016.08.021
– ident: e_1_2_9_9_1
  doi: 10.1002/jmri.24619
– ident: e_1_2_9_7_1
  doi: 10.1186/1532‐429X‐16‐48
– ident: e_1_2_9_29_1
  doi: 10.1002/mrm.27040
– ident: e_1_2_9_19_1
– ident: e_1_2_9_27_1
  doi: 10.1002/mrm.29635
– ident: e_1_2_9_6_1
  doi: 10.1016/j.jmr.2010.05.011
– ident: e_1_2_9_2_1
– ident: e_1_2_9_24_1
  doi: 10.1103/PhysRev.112.1693
– ident: e_1_2_9_25_1
  doi: 10.1002/mrm.10351
– ident: e_1_2_9_22_1
  doi: 10.4324/9780203763247
– ident: e_1_2_9_10_1
  doi: 10.1002/cmr.1820030302
– ident: e_1_2_9_5_1
  doi: 10.1002/mrm.22406
– ident: e_1_2_9_13_1
  doi: 10.1063/1.1681477
– ident: e_1_2_9_30_1
  doi: 10.1002/mrm.29710
– ident: e_1_2_9_11_1
  doi: 10.1002/cmr.1820030302
– ident: e_1_2_9_15_1
– ident: e_1_2_9_3_1
  doi: 10.1002/mrm.26235
– ident: e_1_2_9_28_1
  doi: 10.1002/mrm.10658
– volume-title: Introduction to Algorithms
  year: 2022
  ident: e_1_2_9_21_1
– ident: e_1_2_9_18_1
– ident: e_1_2_9_26_1
– ident: e_1_2_9_35_1
  doi: 10.1016/j.mri.2007.02.014
– ident: e_1_2_9_17_1
  doi: 10.1063/1.1731821
– ident: e_1_2_9_36_1
  doi: 10.1002/jmri.1076
– ident: e_1_2_9_32_1
  doi: 10.1097/RMR.0000000000000204
SSID ssj0009974
Score 2.479919
Snippet Purpose An analytical approach to Bloch simulations for MRI sequences is introduced that enables time efficient calculations of signals free of Monte‐Carlo...
An analytical approach to Bloch simulations for MRI sequences is introduced that enables time efficient calculations of signals free of Monte-Carlo noise,...
PurposeAn analytical approach to Bloch simulations for MRI sequences is introduced that enables time efficient calculations of signals free of Monte‐Carlo...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1189
SubjectTerms Algorithms
Bloch simulation
Brain - diagnostic imaging
Coding
Computer Simulation
differentiable simulation
extended phase graphs
Graphs
Humans
Image Processing, Computer-Assisted - methods
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mathematical analysis
Monte Carlo Method
Optimization
Phantoms, Imaging
Phase distribution
phase distribution graphs
sequence analysis
Signal quality
Signal-To-Noise Ratio
Simulation
Tensors
Title Phase distribution graphs for fast, differentiable, and spatially encoded Bloch simulations of arbitrary MRI sequences
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30055
https://www.ncbi.nlm.nih.gov/pubmed/38576164
https://www.proquest.com/docview/3071334634
https://www.proquest.com/docview/3034245847
Volume 92
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0740-3194
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZaxRBEC5iQPHFI16rMbTigw-ZTWb6msYnFUMURsJiIA_C0CcJ7s7Kzq6gv97qniPEA8S3ge6he7q7qr6arvoK4EUhgrBByozJUmUslCJTJga6FlaZnGvHaExOrj6K41P24YyfbcGrIRem44cYf7hFyUj6Ogq4Nu3BJWnoYrWYRq71mGCeU5HcqdkldZRSHQOzZFHPKDawCh0WB-ObV23RbwDzKl5NBufoNnweptrFmXyZbtZman_8wuL4n99yB271QJS87k7OXdjyzQ7cqPqr9h24nmJDbXsPvp2co6kjLlLs9tWxSOK5bgkiXhJ0u94nQ6EVVBhm7veJbhxpY7S2ns-_k8iW6bwjb9B0npP2YtEXDWvJMhC9Mhcp-Z9Us_dkjO2-D6dH7z69Pc76cg2ZpZzyrDRSaum4lkGqQL2V1OQe8WfhGTUhL63kBvEfD0YFRykCKWa59LIQhuda0Aew3Swb_wiILYWVjtrcUY0umS6dl9yictY6OEXDBF4OG1fbnss8ltSY1x0Lc1HjitZpRSfwfOz6tSPw-FOn3WH3616GW2yJDjwTlE3g2diM0hevVHTjl5vYh8arYzTxE3jYnZpxFFqiL4feKE427f3fh6-rWZUeHv971ydws0B81YW77cL2erXxTxEfrc0eXCvYyV4Sh58SMgyf
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS91AEB6s0suLWHs7Xtpt6UMfTG2ytwR8UakcWyMiCr6FvaJwTk45ORb6753dXERaoW-BnbAhs7Pzzc7sNwCfM-GF8VImTOZFwnwukkKHQtfMFDrlyjIaLieXp2J8yX5c8asl2OvvwrT8EMOBW7CMuF8HAw8H0rv3rKHT-fRrIFvnT2CFiVSE0CtjZ_eUu0XLwSxZ2GkK1vMKfct2h1cfeqO_IOZDxBpdztEarHZYkey3yn0JS65eh2dllw1fh6exfNM0r-D32TV6I2IDC27XwIpEKuqGICglXjWLHdL3QkGb1hO3Q1RtSRMKqtVk8ocEQkvrLDlA73ZNmptp19erITNP1FzfxPv5pDw_JkP59Wu4PPp-cThOuo4KiaGc8iTXUippuZJeFp46I6lOHULEzDGqfZobyTVCNO514S2liHWY4dLJTGieKkHfwHI9q907ICYXRlpqUksVRk0qt05yg_unUt4W1I_gS_9nK9PRjYeuF5OqJUrOKlRCFZUwgk-D6K-WY-NfQlu9eqrOzBocCTE2E5SN4OMwjAYSsh6qdrPbIENDdhe98AjetmodZqE5hlsYMOLHRj0_Pn1VnpfxYeP_RT_A8_FFeVKdHJ_-3IQXGcKhtjptC5YX81u3jXBmod_HVXsH4GnvHQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIqpeeJTXtgUM4sCh2ZLYjmOJC1BWLZCqWlGpFxT5qVbdzVab3Urw6zvOqyoPCXGL5Ins2J6Zb-LxNwCvk9SnxgsRMZHJiPksjaQOia6JkTrmyjIaLifnh-n-Mft8wk9W4F13F6bhh-h_uAXNqO11UHB3Yf3uNWvodD4dBrJ1fgtuMy6zkNC3N74mj5Ky4WAWLFgayTpeobfJbv_qTW_0G8S8iVhrlzO6B9-7wTaZJufD5UIPzc9feBz_92vuw90Wi5L3zeZ5ACuu3IC1vD1t34A7dXqoqR7C5dEpejtiA8tuWyCL1FTXFUHQS7yqFjukq7WCNkNP3A5RpSVVSNhWk8kPEggzrbPkA3rPU1KdTdu6YRWZeaLm-qy-_0_y8QHp07sfwfHo07eP-1FbsSEylFMeZVoIJSxXwgvpqTOC6tghBE0co9rHmRFcIwTkXktvKUUsxQwXTiSp5rFK6WNYLWelewrEZKkRlprYUoVRmcqsE9ygfVbKW0n9AN50K1eYls48VNWYFA0Rc1LgjBb1jA7gVS960XB4_Elou1v-olXjCltCDM9Sygbwsm9GBQynKqp0s2WQoeH0GL38AJ4026bvhWYYzmFAioOtF__v3Rf5OK8fNv9d9AWsHe2Niq8Hh1-2YD1BtNUkv23D6mK-dM8QLS3081oprgAZUw9t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+distribution+graphs+for+fast%2C+differentiable%2C+and+spatially+encoded+Bloch+simulations+of+arbitrary+MRI+sequences&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Endres%2C+Jonathan&rft.au=Weinm%C3%BCller%2C+Simon&rft.au=Dang%2C+Hoai+Nam&rft.au=Zaiss%2C+Moritz&rft.date=2024-09-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=92&rft.issue=3&rft.spage=1189&rft.epage=1204&rft_id=info:doi/10.1002%2Fmrm.30055&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_30055
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon