Data‐driven algorithm for myelin water imaging: Probing subvoxel compartmentation based on identification of spatially global tissue features
Purpose Multicomponent analysis of MRI T2 relaxation time (mcT2) is commonly used for estimating myelin content by separating the signal at each voxel into its underlying distribution of T2 values. This voxel‐based approach is challenging due to the large ambiguity in the multi‐T2 space and the low...
Saved in:
| Published in | Magnetic resonance in medicine Vol. 87; no. 5; pp. 2521 - 2535 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Wiley Subscription Services, Inc
01.05.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0740-3194 1522-2594 1522-2594 |
| DOI | 10.1002/mrm.29125 |
Cover
| Abstract | Purpose
Multicomponent analysis of MRI T2 relaxation time (mcT2) is commonly used for estimating myelin content by separating the signal at each voxel into its underlying distribution of T2 values. This voxel‐based approach is challenging due to the large ambiguity in the multi‐T2 space and the low SNR of MRI signals. Herein, we present a data‐driven mcT2 analysis, which utilizes the statistical strength of identifying spatially global mcT2 motifs in white matter segments before deconvolving the local signal at each voxel.
Methods
Deconvolution is done using a tailored optimization scheme, which incorporates the global mcT2 motifs without additional prior assumptions regarding the number of microscopic components. The end results of this process are voxel‐wise myelin water fraction maps.
Results
Validations are shown for computer‐generated signals, uniquely designed subvoxel mcT2 phantoms, and in vivo human brain. Results demonstrated excellent fitting accuracy, both for the numerical and the physical mcT2 phantoms, exhibiting excellent agreement between calculated myelin water fraction and ground truth. Proof‐of‐concept in vivo validation is done by calculating myelin water fraction maps for white matter segments of the human brain. Interscan stability of myelin water fraction values was also estimated, showing good correlation between scans.
Conclusion
We conclude that studying global tissue motifs prior to performing voxel‐wise mcT2 analysis stabilizes the optimization scheme and efficiently overcomes the ambiguity in the T2 space. This new approach can improve myelin water imaging and the investigation of microstructural compartmentation in general. |
|---|---|
| AbstractList | Multicomponent analysis of MRI T2 relaxation time (mcT2 ) is commonly used for estimating myelin content by separating the signal at each voxel into its underlying distribution of T2 values. This voxel-based approach is challenging due to the large ambiguity in the multi-T2 space and the low SNR of MRI signals. Herein, we present a data-driven mcT2 analysis, which utilizes the statistical strength of identifying spatially global mcT2 motifs in white matter segments before deconvolving the local signal at each voxel.PURPOSEMulticomponent analysis of MRI T2 relaxation time (mcT2 ) is commonly used for estimating myelin content by separating the signal at each voxel into its underlying distribution of T2 values. This voxel-based approach is challenging due to the large ambiguity in the multi-T2 space and the low SNR of MRI signals. Herein, we present a data-driven mcT2 analysis, which utilizes the statistical strength of identifying spatially global mcT2 motifs in white matter segments before deconvolving the local signal at each voxel.Deconvolution is done using a tailored optimization scheme, which incorporates the global mcT2 motifs without additional prior assumptions regarding the number of microscopic components. The end results of this process are voxel-wise myelin water fraction maps.METHODSDeconvolution is done using a tailored optimization scheme, which incorporates the global mcT2 motifs without additional prior assumptions regarding the number of microscopic components. The end results of this process are voxel-wise myelin water fraction maps.Validations are shown for computer-generated signals, uniquely designed subvoxel mcT2 phantoms, and in vivo human brain. Results demonstrated excellent fitting accuracy, both for the numerical and the physical mcT2 phantoms, exhibiting excellent agreement between calculated myelin water fraction and ground truth. Proof-of-concept in vivo validation is done by calculating myelin water fraction maps for white matter segments of the human brain. Interscan stability of myelin water fraction values was also estimated, showing good correlation between scans.RESULTSValidations are shown for computer-generated signals, uniquely designed subvoxel mcT2 phantoms, and in vivo human brain. Results demonstrated excellent fitting accuracy, both for the numerical and the physical mcT2 phantoms, exhibiting excellent agreement between calculated myelin water fraction and ground truth. Proof-of-concept in vivo validation is done by calculating myelin water fraction maps for white matter segments of the human brain. Interscan stability of myelin water fraction values was also estimated, showing good correlation between scans.We conclude that studying global tissue motifs prior to performing voxel-wise mcT2 analysis stabilizes the optimization scheme and efficiently overcomes the ambiguity in the T2 space. This new approach can improve myelin water imaging and the investigation of microstructural compartmentation in general.CONCLUSIONWe conclude that studying global tissue motifs prior to performing voxel-wise mcT2 analysis stabilizes the optimization scheme and efficiently overcomes the ambiguity in the T2 space. This new approach can improve myelin water imaging and the investigation of microstructural compartmentation in general. Purpose Multicomponent analysis of MRI T2 relaxation time (mcT2) is commonly used for estimating myelin content by separating the signal at each voxel into its underlying distribution of T2 values. This voxel‐based approach is challenging due to the large ambiguity in the multi‐T2 space and the low SNR of MRI signals. Herein, we present a data‐driven mcT2 analysis, which utilizes the statistical strength of identifying spatially global mcT2 motifs in white matter segments before deconvolving the local signal at each voxel. Methods Deconvolution is done using a tailored optimization scheme, which incorporates the global mcT2 motifs without additional prior assumptions regarding the number of microscopic components. The end results of this process are voxel‐wise myelin water fraction maps. Results Validations are shown for computer‐generated signals, uniquely designed subvoxel mcT2 phantoms, and in vivo human brain. Results demonstrated excellent fitting accuracy, both for the numerical and the physical mcT2 phantoms, exhibiting excellent agreement between calculated myelin water fraction and ground truth. Proof‐of‐concept in vivo validation is done by calculating myelin water fraction maps for white matter segments of the human brain. Interscan stability of myelin water fraction values was also estimated, showing good correlation between scans. Conclusion We conclude that studying global tissue motifs prior to performing voxel‐wise mcT2 analysis stabilizes the optimization scheme and efficiently overcomes the ambiguity in the T2 space. This new approach can improve myelin water imaging and the investigation of microstructural compartmentation in general. PurposeMulticomponent analysis of MRI T2 relaxation time (mcT2) is commonly used for estimating myelin content by separating the signal at each voxel into its underlying distribution of T2 values. This voxel‐based approach is challenging due to the large ambiguity in the multi‐T2 space and the low SNR of MRI signals. Herein, we present a data‐driven mcT2 analysis, which utilizes the statistical strength of identifying spatially global mcT2 motifs in white matter segments before deconvolving the local signal at each voxel.MethodsDeconvolution is done using a tailored optimization scheme, which incorporates the global mcT2 motifs without additional prior assumptions regarding the number of microscopic components. The end results of this process are voxel‐wise myelin water fraction maps.ResultsValidations are shown for computer‐generated signals, uniquely designed subvoxel mcT2 phantoms, and in vivo human brain. Results demonstrated excellent fitting accuracy, both for the numerical and the physical mcT2 phantoms, exhibiting excellent agreement between calculated myelin water fraction and ground truth. Proof‐of‐concept in vivo validation is done by calculating myelin water fraction maps for white matter segments of the human brain. Interscan stability of myelin water fraction values was also estimated, showing good correlation between scans.ConclusionWe conclude that studying global tissue motifs prior to performing voxel‐wise mcT2 analysis stabilizes the optimization scheme and efficiently overcomes the ambiguity in the T2 space. This new approach can improve myelin water imaging and the investigation of microstructural compartmentation in general. Multicomponent analysis of MRI T relaxation time (mcT ) is commonly used for estimating myelin content by separating the signal at each voxel into its underlying distribution of T values. This voxel-based approach is challenging due to the large ambiguity in the multi-T space and the low SNR of MRI signals. Herein, we present a data-driven mcT analysis, which utilizes the statistical strength of identifying spatially global mcT motifs in white matter segments before deconvolving the local signal at each voxel. Deconvolution is done using a tailored optimization scheme, which incorporates the global mcT motifs without additional prior assumptions regarding the number of microscopic components. The end results of this process are voxel-wise myelin water fraction maps. Validations are shown for computer-generated signals, uniquely designed subvoxel mcT phantoms, and in vivo human brain. Results demonstrated excellent fitting accuracy, both for the numerical and the physical mcT phantoms, exhibiting excellent agreement between calculated myelin water fraction and ground truth. Proof-of-concept in vivo validation is done by calculating myelin water fraction maps for white matter segments of the human brain. Interscan stability of myelin water fraction values was also estimated, showing good correlation between scans. We conclude that studying global tissue motifs prior to performing voxel-wise mcT analysis stabilizes the optimization scheme and efficiently overcomes the ambiguity in the T space. This new approach can improve myelin water imaging and the investigation of microstructural compartmentation in general. |
| Author | Ben‐Eliezer, Noam Blumenfeld‐Katzir, Tamar Omer, Noam Stern, Neta Galun, Meirav |
| Author_xml | – sequence: 1 givenname: Noam surname: Omer fullname: Omer, Noam organization: Tel‐Aviv University – sequence: 2 givenname: Meirav surname: Galun fullname: Galun, Meirav organization: Weitzman Institute of Science – sequence: 3 givenname: Neta surname: Stern fullname: Stern, Neta organization: Tel‐Aviv University – sequence: 4 givenname: Tamar surname: Blumenfeld‐Katzir fullname: Blumenfeld‐Katzir, Tamar organization: Tel‐Aviv University – sequence: 5 givenname: Noam orcidid: 0000-0003-2944-6412 surname: Ben‐Eliezer fullname: Ben‐Eliezer, Noam email: noambe@tauex.tau.ac.il organization: New York University Langone Medical Center |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34958690$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc9uFSEUxompsbfVhS9gSNzoYlrgAjO4a-rfpI3G6JowzOFKwwxXYFrvzjfQZ_RJROd20-iKLye_7wvnfEfoYIoTIPSYkhNKCDsd03jCFGXiHlpRwVjDhOIHaEVaTpo1VfwQHeV8RQhRquUP0OGaK9FJRVbox0tTzK_vP4fkr2HCJmxi8uXLiF1MeNxB8BO-MQUS9qPZ-GnzAn9Isa8C57m_jt8gYBvHrUllhKmY4uOEe5NhwFX4oc6883aZR4fztkoTwg5vQuxNwMXnPAN2YMqcID9E950JGR7t32P0-fWrT-dvm4v3b96dn100di3WoqGEw6CGTjLZSxik49JRKwcqnbSStg4co9woIlrobCedbfsehOipaOvecn2Mni252xS_zpCLHn22EIKZIM5ZM0kFpVwyVtGnd9CrOKep_q5SrOOqsl2lnuypuR9h0NtUD5Z2-vbUFThdAJtizgmctn65V0nGB02J_lOmrmXqv2VWx_M7jtvQf7H79BsfYPd_UF9-vFwcvwGrYbG2 |
| CitedBy_id | crossref_primary_10_1002_mrm_29319 crossref_primary_10_1002_nbm_4947 crossref_primary_10_1002_mp_16551 crossref_primary_10_1002_mrm_29765 crossref_primary_10_1002_mrm_30239 crossref_primary_10_1162_imag_a_00254 |
| Cites_doi | 10.1016/j.arthro.2012.10.006 10.1002/jmri.21534 10.1016/j.neuroimage.2012.06.064 10.1002/mrm.25198 10.1097/RMR.0b013e31821e56d8 10.1016/j.jns.2008.08.022 10.3233/BPL-160033 10.1016/j.neurobiolaging.2015.02.029 10.1016/0010-4655(82)90173-4 10.1067/j.cpradiol.2004.01.001 10.1002/mrm.1910340618 10.1016/j.neuroimage.2007.12.008 10.1002/1522-2586(200006)11:6<586::AID-JMRI3>3.0.CO;2-V 10.1016/0022-2364(91)90134-F 10.1002/mrm.25583 10.1016/j.neuroimage.2019.03.049 10.1016/j.neuroimage.2016.12.067 10.1016/j.neuroimage.2015.10.034 10.1016/j.jalz.2018.03.007 10.1038/nature11971 10.1002/nbm.4537 10.1002/mrm.1910350315 10.1016/j.media.2021.102045 10.1002/mrm.25125 10.1002/(SICI)1522-2594(199907)42:1<150::AID-MRM20>3.0.CO;2-5 10.1002/jmri.27059 10.1007/978-3-319-10443-0_19 10.1148/radiol.12120896 10.1016/j.neuroimage.2017.12.087 10.1002/mrm.25558 10.1016/0022-2364(89)90011-5 10.1016/j.jmr.2007.11.007 10.1002/mrm.24395 10.1002/mrm.1910310614 10.1002/jmri.10230 10.1002/mrm.1910370107 10.1177/1352458506070928 10.1002/mrm.26629 10.1002/mrm.25520 10.1002/mrm.21704 10.1002/mrm.22244 10.1002/mrm.25156 10.3389/fnins.2020.00136 10.1002/mrm.27403 10.1007/978-3-030-32245-8_25 10.1016/j.mri.2005.12.037 10.1002/mrm.23157 10.1038/s41467-019-11319-1 |
| ContentType | Journal Article |
| Copyright | 2021 International Society for Magnetic Resonance in Medicine 2021 International Society for Magnetic Resonance in Medicine. 2022 International Society for Magnetic Resonance in Medicine |
| Copyright_xml | – notice: 2021 International Society for Magnetic Resonance in Medicine – notice: 2021 International Society for Magnetic Resonance in Medicine. – notice: 2022 International Society for Magnetic Resonance in Medicine |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
| DOI | 10.1002/mrm.29125 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Biochemistry Abstracts 1 MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 2535 |
| ExternalDocumentID | 34958690 10_1002_mrm_29125 MRM29125 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Israeli Science Foundation funderid: 2009/17 – fundername: Israeli Science Foundation grantid: 2009/17 |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
| ID | FETCH-LOGICAL-c3535-104ed9d8626b6ed6f46f1c6d16f6c617fef214a9057e8c86fc7bbe55b15769063 |
| IEDL.DBID | DR2 |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Thu Jul 10 17:35:40 EDT 2025 Tue Oct 07 06:31:49 EDT 2025 Wed Feb 19 02:25:56 EST 2025 Wed Oct 01 05:05:37 EDT 2025 Thu Apr 24 23:08:21 EDT 2025 Wed Jan 22 16:27:14 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Keywords | multicomponent T2 relaxation analysis myelin water fraction myelin water imaging subvoxel compartmentation |
| Language | English |
| License | 2021 International Society for Magnetic Resonance in Medicine. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3535-104ed9d8626b6ed6f46f1c6d16f6c617fef214a9057e8c86fc7bbe55b15769063 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-2944-6412 |
| PMID | 34958690 |
| PQID | 2628492618 |
| PQPubID | 1016391 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2615114622 proquest_journals_2628492618 pubmed_primary_34958690 crossref_citationtrail_10_1002_mrm_29125 crossref_primary_10_1002_mrm_29125 wiley_primary_10_1002_mrm_29125_MRM29125 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | May 2022 2022-05-00 20220501 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 1989; 84 2013; 29 2008; 190 2015; 36 2018; 182 2013; 69 2006; 12 2015; 73 2019; 10 1995; 34 2015; 74 1991; 94 2009; 276 2016; 75 2020; 14 2013; 267 2003; 17 2016; 127 1999; 1 2014; 8675 1996; 35 2021; 71 2010; 63 2004; 33 2010; 21 1982; 27 2019; 81 2021; 53 2016; 2 2021; 34 2006; 24 2020 1997; 37 2000; 11 2017; 78 2008; 28 2019 2013; 495 2019; 195 2008; 40 2012; 67 2008; 60 2018; 14 2012; 63 1994; 31 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_47_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_37_1 e_1_2_7_39_1 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_42_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_38_1 |
| References_xml | – volume: 21 start-page: 101 year: 2010 end-page: 113 article-title: Quantitative relaxometry of the brain publication-title: Top Magn Reson Imaging – volume: 17 start-page: 1 year: 2003 end-page: 10 article-title: Three‐pool model of white matter publication-title: J Magn Reson Imaging – volume: 10 start-page: 3403 year: 2019 article-title: Disentangling molecular alterations from water‐content changes in the aging human brain using quantitative MRI publication-title: Nat Commun – volume: 60 start-page: 1372 year: 2008 end-page: 1387 article-title: Gleaning multicomponent T1 and T2 information from steady‐state imaging data publication-title: Magn Reson Med – volume: 71 year: 2021 article-title: Data‐driven multi‐contrast spectral microstructure imaging with InSpect: INtegrated SPECTral component estimation and mapping publication-title: Med Image Anal – volume: 35 start-page: 370 year: 1996 end-page: 378 article-title: Criteria for analysis of multicomponent tissue T2 relaxation data publication-title: Magn Reson Med – volume: 40 start-page: 1575 year: 2008 end-page: 1580 article-title: Myelin water imaging of multiple sclerosis at 7 T: correlations with histopathology publication-title: NeuroImage – volume: 28 start-page: 1166 year: 2008 end-page: 1172 article-title: Prostate magnetic resonance imaging: multiexponential T2 decay in prostate tissue publication-title: J Magn Reson Imaging – volume: 73 start-page: 70 year: 2015 end-page: 81 article-title: MRI‐based myelin water imaging: a technical review publication-title: Magn Reson Med – volume: 2 start-page: 71 year: 2016 end-page: 91 article-title: Magnetic resonance of myelin water: an in vivo marker for myelin publication-title: Brain Plast – volume: 63 start-page: 533 year: 2012 end-page: 539 article-title: Rapid whole cerebrum myelin water imaging using a 3D GRASE sequence publication-title: NeuroImage – volume: 94 start-page: 486 year: 1991 end-page: 492 article-title: Recovering compartment sizes from NMR relaxation data publication-title: J Magn Reson – volume: 63 start-page: 633 year: 2010 end-page: 640 article-title: Quantitative magnetization transfer and myelin water imaging of the evolution of acute multiple sclerosis lesions publication-title: Magn Reson Med – volume: 34 start-page: 1 year: 2021 end-page: 14 article-title: Quantitative platform for accurate and reproducible assessment of transverse (T2) relaxation time publication-title: NMR Biomed – volume: 495 start-page: 187 year: 2013 end-page: 192 article-title: Magnetic resonance fingerprinting publication-title: Nature – volume: 14 start-page: 136 year: 2020 article-title: The myelin water fraction serves as a marker for age‐related myelin alterations in the cerebral white matter – a multiparametric MRI aging study publication-title: Front Neurosci – volume: 127 start-page: 456 year: 2016 end-page: 471 article-title: Improved determination of the myelin water fraction in human brain using magnetic resonance imaging through Bayesian analysis of mcDESPOT publication-title: NeuroImage – volume: 34 start-page: 910 year: 1995 end-page: 914 article-title: The Rician distribution of noisy MRI data publication-title: Magn Reson Med – volume: 11 start-page: 586 year: 2000 end-page: 595 article-title: Magnetization transfer and multicomponent T2 relaxation measurements with histopathologic correlation in an experimental model of MS publication-title: J Magn Reson Imaging – start-page: 219 year: 2019 end-page: 227 – volume: 75 start-page: 390 year: 2016 end-page: 402 article-title: A multicomponent T2 relaxometry algorithm for myelin water imaging of the brain publication-title: Magn Reson Med – volume: 267 start-page: 422 year: 2013 end-page: 431 article-title: Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis publication-title: Radiology – volume: 24 start-page: 515 year: 2006 end-page: 525 article-title: Insights into brain microstructure from the T2 distribution publication-title: Magn Reson Imaging – volume: 1 start-page: 150 year: 1999 end-page: 157 article-title: Multicomponent T2 relaxation of in vivo skeletal muscle publication-title: Magn Reson Med – volume: 75 start-page: 1346 year: 2016 end-page: 1354 article-title: Accelerated and motion‐robust in vivo T2 mapping from radially undersampled data using Bloch‐simulation‐based iterative reconstruction publication-title: Magn Reson Med – volume: 190 start-page: 255 year: 2008 end-page: 270 article-title: Anomalous diffusion expressed through fractional order differential operators in the Bloch‐Torrey equation publication-title: J Magn Reson – volume: 182 start-page: 136 year: 2018 end-page: 148 article-title: Inferring brain tissue composition and microstructure via MR relaxometry publication-title: NeuroImage – volume: 67 start-page: 1803 year: 2012 end-page: 1814 article-title: Applications of stimulated echo correction to multicomponent T2 analysis publication-title: Magn Reson Med – volume: 69 start-page: 1573 year: 2013 end-page: 1581 article-title: Noninvasive mapping of water diffusional exchange in the human brain using filter‐exchange imaging publication-title: Magn Reson Med – volume: 84 start-page: 134 year: 1989 end-page: 152 article-title: Quantitative interpretation of NMR relaxation data publication-title: J Magn Reson – volume: 182 start-page: 511 year: 2018 end-page: 521 article-title: Myelin volume fraction imaging with MRI publication-title: NeuroImage – volume: 81 start-page: 25 year: 2019 end-page: 46 article-title: Magnetic resonance fingerprinting: a technical review publication-title: Magn Reson Med – volume: 27 start-page: 213 year: 1982 end-page: 227 article-title: A constrained regularization method for inverting data represented by linear algebraic or integral equations publication-title: Comput Phys Commun – volume: 33 start-page: 106 year: 2004 end-page: 126 article-title: Fat necrosis of the breast: mammographic, sonographic, computed tomography, and magnetic resonance imaging findings publication-title: Curr Probl Diagn Radiol – volume: 74 start-page: 1327 year: 2015 end-page: 1335 article-title: How does magnetization transfer influence mcDESPOT results? publication-title: Magn Reson Med – volume: 276 start-page: 49 year: 2009 end-page: 53 article-title: Longitudinal changes in myelin water fraction in two MS patients with active disease publication-title: J Neurol Sci – volume: 78 start-page: 2236 year: 2017 end-page: 2249 article-title: Diffusion‐relaxation correlation spectroscopic imaging: a multidimensional approach for probing microstructure publication-title: Magn Reson Med – volume: 195 start-page: 78 year: 2019 end-page: 88 article-title: Inherent and unpredictable bias in multi‐component DESPOT myelin water fraction estimation publication-title: NeuroImage – volume: 31 start-page: 673 year: 1994 end-page: 677 article-title: In vivo visualization of myelin water in brain by magnetic resonance publication-title: Magn Reson Med – volume: 12 start-page: 747 year: 2006 end-page: 753 article-title: Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology publication-title: Mult Scler – volume: 8675 start-page: 145 year: 2014 end-page: 152 article-title: T2‐relaxometry for myelin water fraction extraction using Wald distribution and extended phase graph publication-title: Lect Notes Comput Sci – volume: 14 start-page: 998 year: 2018 end-page: 1004 article-title: Evidence of demyelination in mild cognitive impairment and dementia using a direct and specific magnetic resonance imaging measure of myelin content publication-title: Alzheimer’s Dement – volume: 73 start-page: 809 year: 2015 end-page: 817 article-title: Rapid and accurate T2 mapping from multi‐spin‐echo data using Bloch‐simulation‐based reconstruction publication-title: Magn Reson Med – year: 2020 – volume: 53 start-page: 360 year: 2021 end-page: 373 article-title: So you want to image myelin using MRI: an overview and practical guide for myelin water imaging publication-title: J Magn Reson Imaging – volume: 37 start-page: 34 year: 1997 end-page: 43 article-title: In vivo measurement of T2 distributions and water contents in normal human brain publication-title: Magn Reson Med – volume: 73 start-page: 223 year: 2015 end-page: 232 article-title: Comparison of myelin water fraction from multiecho T2 decay curve and steady‐state methods publication-title: Magn Reson Med – volume: 36 start-page: 2107 year: 2015 end-page: 2121 article-title: Age‐related microstructural differences quantified using myelin water imaging and advanced diffusion MRI publication-title: Neurobiol Aging – volume: 29 start-page: 449 year: 2013 end-page: 458 article-title: Changes in appearance of fatty infiltration and muscle atrophy of rotator cuff muscles on magnetic resonance imaging after rotator cuff repair: establishing new time‐zero traits publication-title: Arthrosc: J Arthrosc Relat Surg – ident: e_1_2_7_44_1 doi: 10.1016/j.arthro.2012.10.006 – ident: e_1_2_7_48_1 doi: 10.1002/jmri.21534 – ident: e_1_2_7_18_1 doi: 10.1016/j.neuroimage.2012.06.064 – ident: e_1_2_7_4_1 doi: 10.1002/mrm.25198 – ident: e_1_2_7_12_1 doi: 10.1097/RMR.0b013e31821e56d8 – ident: e_1_2_7_15_1 doi: 10.1016/j.jns.2008.08.022 – ident: e_1_2_7_14_1 doi: 10.3233/BPL-160033 – ident: e_1_2_7_9_1 doi: 10.1016/j.neurobiolaging.2015.02.029 – ident: e_1_2_7_37_1 doi: 10.1016/0010-4655(82)90173-4 – ident: e_1_2_7_47_1 doi: 10.1067/j.cpradiol.2004.01.001 – ident: e_1_2_7_36_1 doi: 10.1002/mrm.1910340618 – ident: e_1_2_7_5_1 doi: 10.1016/j.neuroimage.2007.12.008 – ident: e_1_2_7_16_1 doi: 10.1002/1522-2586(200006)11:6<586::AID-JMRI3>3.0.CO;2-V – ident: e_1_2_7_26_1 doi: 10.1016/0022-2364(91)90134-F – ident: e_1_2_7_28_1 doi: 10.1002/mrm.25583 – ident: e_1_2_7_35_1 – ident: e_1_2_7_24_1 doi: 10.1016/j.neuroimage.2019.03.049 – ident: e_1_2_7_6_1 doi: 10.1016/j.neuroimage.2016.12.067 – ident: e_1_2_7_20_1 doi: 10.1016/j.neuroimage.2015.10.034 – ident: e_1_2_7_17_1 doi: 10.1016/j.jalz.2018.03.007 – ident: e_1_2_7_21_1 doi: 10.1038/nature11971 – ident: e_1_2_7_33_1 doi: 10.1002/nbm.4537 – ident: e_1_2_7_30_1 doi: 10.1002/mrm.1910350315 – ident: e_1_2_7_39_1 doi: 10.1016/j.media.2021.102045 – ident: e_1_2_7_23_1 doi: 10.1002/mrm.25125 – ident: e_1_2_7_27_1 doi: 10.1002/(SICI)1522-2594(199907)42:1<150::AID-MRM20>3.0.CO;2-5 – ident: e_1_2_7_42_1 doi: 10.1002/jmri.27059 – ident: e_1_2_7_29_1 doi: 10.1007/978-3-319-10443-0_19 – ident: e_1_2_7_46_1 doi: 10.1148/radiol.12120896 – ident: e_1_2_7_13_1 doi: 10.1016/j.neuroimage.2017.12.087 – ident: e_1_2_7_32_1 doi: 10.1002/mrm.25558 – ident: e_1_2_7_25_1 doi: 10.1016/0022-2364(89)90011-5 – ident: e_1_2_7_50_1 doi: 10.1016/j.jmr.2007.11.007 – ident: e_1_2_7_49_1 doi: 10.1002/mrm.24395 – ident: e_1_2_7_3_1 doi: 10.1002/mrm.1910310614 – ident: e_1_2_7_2_1 doi: 10.1002/jmri.10230 – ident: e_1_2_7_11_1 doi: 10.1002/mrm.1910370107 – ident: e_1_2_7_7_1 doi: 10.1177/1352458506070928 – ident: e_1_2_7_38_1 doi: 10.1002/mrm.26629 – ident: e_1_2_7_41_1 doi: 10.1002/mrm.25520 – ident: e_1_2_7_19_1 doi: 10.1002/mrm.21704 – ident: e_1_2_7_8_1 doi: 10.1002/mrm.22244 – ident: e_1_2_7_31_1 doi: 10.1002/mrm.25156 – ident: e_1_2_7_10_1 doi: 10.3389/fnins.2020.00136 – ident: e_1_2_7_22_1 doi: 10.1002/mrm.27403 – ident: e_1_2_7_45_1 doi: 10.1007/978-3-030-32245-8_25 – ident: e_1_2_7_34_1 doi: 10.1016/j.mri.2005.12.037 – ident: e_1_2_7_40_1 doi: 10.1002/mrm.23157 – ident: e_1_2_7_43_1 doi: 10.1038/s41467-019-11319-1 |
| SSID | ssj0009974 |
| Score | 2.432948 |
| Snippet | Purpose
Multicomponent analysis of MRI T2 relaxation time (mcT2) is commonly used for estimating myelin content by separating the signal at each voxel into its... Multicomponent analysis of MRI T relaxation time (mcT ) is commonly used for estimating myelin content by separating the signal at each voxel into its... PurposeMulticomponent analysis of MRI T2 relaxation time (mcT2) is commonly used for estimating myelin content by separating the signal at each voxel into its... Multicomponent analysis of MRI T2 relaxation time (mcT2 ) is commonly used for estimating myelin content by separating the signal at each voxel into its... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2521 |
| SubjectTerms | Algorithms Ambiguity Brain Brain - diagnostic imaging Brain mapping Humans Magnetic resonance imaging Magnetic Resonance Imaging - methods Mathematical analysis Medical imaging multicomponent T2 relaxation analysis Myelin Myelin Sheath - chemistry myelin water fraction myelin water imaging Neuroimaging Optimization Relaxation time Segments Substantia alba subvoxel compartmentation Water - chemistry |
| Title | Data‐driven algorithm for myelin water imaging: Probing subvoxel compartmentation based on identification of spatially global tissue features |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29125 https://www.ncbi.nlm.nih.gov/pubmed/34958690 https://www.proquest.com/docview/2628492618 https://www.proquest.com/docview/2615114622 |
| Volume | 87 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0740-3194 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH6qKoG4sJRtSqkM4sAl04mTeGI4IWhVIQ1CFZV6QIq8pR2RBSWZ0vbEP4DfyC_h2U5SlUVC3KLkOXbit3xO3vsM8CyPpUIUkQRahzyII4kmlYZ5kHBsEeGEz119xeId2z-M3x4lR2vwcqiF8fwQ4wc3axnOX1sDF7LduSQNLZtySjnGZ_S_Id7VAqKDS-oozj0DM_aFfobHA6vQjO6MLa_Got8A5lW86gLO3i34OAzV55l8mq46OVUXv7A4_uez3IabPRAlr7zm3IE1U23A9UX_q30DrrncUNXehW9vRCd-fP2uG-sZiSiO62bZnZQE8S4pz21BO_mCkLUhy9LtefSCvLfsTtUxaVfytD4zBfGp7i6j3akCsdFTEzxY6j5fyZ-vc9LaJG9RFOfEs5WQzikHyY0jIW3vweHe7ofX-0G_j0OgoiSyRKex0VzbtZNkRrM8ZnmomA5ZzhQiqNzkNIwFR-hoUpXa6iMpTZLIEBdDHDHUfViv6so8BILeSKUoIWYaoZBkYjY3cTLXVDliHjmB58OMZqonObd7bRSZp2emGb7qzL3qCTwdRT97Zo8_CW0NapH1xt1mlGFM57j0TCfwZLyMZmn_tYjK1Csrg1AKoxClE3jg1WnsJcJFqd0IDAfrlOLv3WeLg4U72Px30Udwg9oSDZeUuQXrXbMyjxE4dXLbWchPbMcWpw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEC2FIAgXlgBhIECDOHDxZLz1uBEXBEQDxBGKEimXyHIvTkbxEtmeQDjxB_CNfAnV3bajsEiIm2WX1V6qul51V70CeJYFXCCKCB0pXeYEPkeTitzMCRne4eMPn5r6inibzvaC9_vh_hK87GthLD_EsOCmLcPM19rA9YL0xjlraFEXY4-hg74ElwOKcYqGRDvn5FGMWQ5mHA1nGhb0vEITb2O49aI3-g1iXkSsxuVs3oCD_mFtpsnxeNHysfjyC4_j_77NTbjeYVHyyirPLVhS5Spcjbvd9lW4YtJDRXMbvr1J2_TH1--y1pMjSfPDqp63RwVByEuKM13TTj4haq3JvDBtj16Qj5rgqTwkzYKfVp9VTmy2u0lqN9pAtAOVBA_msktZsuerjDQ6zzvN8zNiCUtIa_SDZMrwkDZ3YG_z7e7rmdO1cnCEH_qa6zRQkkkdPnGqJM0CmrmCSpdmVCCIylTmuUHKED2qSES6AIlzFYbcxXiIIYy6C8tlVap7QHBCEhFKpBOJaIjTdDJVQTiVnjDcPHwEz_tfmoiO51y328gTy9DsJfipE_OpR_B0ED2x5B5_Elrv9SLp7LtJPIpunWH0GY3gyXAZLVNvt6SlqhZaBtEUOiLPG8Ga1adhFB_jUt0LDB_WaMXfh0_indgc3P930cewMtuNt5Ktd9sfHsA1T1dsmBzNdVhu64V6iDiq5Y-MufwEytUayA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouPMproYBBHLhku0mcbIy4IJZVeWxVVVTqBUXxq6zIo0qyQDnxD-A38ksY20mq8pAQNysZy4494_kcz3wGeKQpF4giIk9Kn3k05GhSia-9iGGNECd8avMrFrvxzgF9dRgdrsHTPhfG8UMMP9yMZdj12hi4OpZ6-5Q1tKiLccDQQZ-D8zRiiQnom-2fkkcx5jiYsTVcaRjteYUmwfZQ9aw3-g1inkWs1uXML8O7vrMu0uTDeNXysfjyC4_j_37NFbjUYVHyzCnPVVhT5SZsLLrT9k24YMNDRXMNvs2yNvvx9buszeJIsvyoqpft-4Ig5CXFiclpJ58QtdZkWdhrj56QPUPwVB6RZsU_Vp9VTly0uw1qt9pAjAOVBAtL2YUsueeVJo2J887y_IQ4whLSWv0gWlke0uY6HMxfvH2-43VXOXgijELDdUqVZNJsn3isZKxprH0RSz_WsUAQpZUOfJoxRI8qEYlJQOJcRRH3cT_EEEbdgPWyKtUtILggiQQlsolENMTjbDJVNJrKQFhuHj6Cx_2UpqLjOTfXbeSpY2gOUhzq1A71CB4OoseO3ONPQlu9XqSdfTdpEKNbZ7j7TEbwYHiNlmmOW7JSVSsjg2gKHVEQjOCm06ehlRD3peYuMOys1Yq_N58u9he2cPvfRe_Dxt5snr55ufv6DlwMTMKGDdHcgvW2Xqm7CKNafs9ay09PdxpM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data%E2%80%90driven+algorithm+for+myelin+water+imaging%3A+Probing+subvoxel+compartmentation+based+on+identification+of+spatially+global+tissue+features&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Omer%2C+Noam&rft.au=Galun%2C+Meirav&rft.au=Stern%2C+Neta&rft.au=Tamar+Blumenfeld%E2%80%90Katzir&rft.date=2022-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=87&rft.issue=5&rft.spage=2521&rft.epage=2535&rft_id=info:doi/10.1002%2Fmrm.29125&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |