Data‐driven algorithm for myelin water imaging: Probing subvoxel compartmentation based on identification of spatially global tissue features

Purpose Multicomponent analysis of MRI T2 relaxation time (mcT2) is commonly used for estimating myelin content by separating the signal at each voxel into its underlying distribution of T2 values. This voxel‐based approach is challenging due to the large ambiguity in the multi‐T2 space and the low...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 87; no. 5; pp. 2521 - 2535
Main Authors Omer, Noam, Galun, Meirav, Stern, Neta, Blumenfeld‐Katzir, Tamar, Ben‐Eliezer, Noam
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.05.2022
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.29125

Cover

Abstract Purpose Multicomponent analysis of MRI T2 relaxation time (mcT2) is commonly used for estimating myelin content by separating the signal at each voxel into its underlying distribution of T2 values. This voxel‐based approach is challenging due to the large ambiguity in the multi‐T2 space and the low SNR of MRI signals. Herein, we present a data‐driven mcT2 analysis, which utilizes the statistical strength of identifying spatially global mcT2 motifs in white matter segments before deconvolving the local signal at each voxel. Methods Deconvolution is done using a tailored optimization scheme, which incorporates the global mcT2 motifs without additional prior assumptions regarding the number of microscopic components. The end results of this process are voxel‐wise myelin water fraction maps. Results Validations are shown for computer‐generated signals, uniquely designed subvoxel mcT2 phantoms, and in vivo human brain. Results demonstrated excellent fitting accuracy, both for the numerical and the physical mcT2 phantoms, exhibiting excellent agreement between calculated myelin water fraction and ground truth. Proof‐of‐concept in vivo validation is done by calculating myelin water fraction maps for white matter segments of the human brain. Interscan stability of myelin water fraction values was also estimated, showing good correlation between scans. Conclusion We conclude that studying global tissue motifs prior to performing voxel‐wise mcT2 analysis stabilizes the optimization scheme and efficiently overcomes the ambiguity in the T2 space. This new approach can improve myelin water imaging and the investigation of microstructural compartmentation in general.
AbstractList Multicomponent analysis of MRI T2 relaxation time (mcT2 ) is commonly used for estimating myelin content by separating the signal at each voxel into its underlying distribution of T2 values. This voxel-based approach is challenging due to the large ambiguity in the multi-T2 space and the low SNR of MRI signals. Herein, we present a data-driven mcT2 analysis, which utilizes the statistical strength of identifying spatially global mcT2 motifs in white matter segments before deconvolving the local signal at each voxel.PURPOSEMulticomponent analysis of MRI T2 relaxation time (mcT2 ) is commonly used for estimating myelin content by separating the signal at each voxel into its underlying distribution of T2 values. This voxel-based approach is challenging due to the large ambiguity in the multi-T2 space and the low SNR of MRI signals. Herein, we present a data-driven mcT2 analysis, which utilizes the statistical strength of identifying spatially global mcT2 motifs in white matter segments before deconvolving the local signal at each voxel.Deconvolution is done using a tailored optimization scheme, which incorporates the global mcT2 motifs without additional prior assumptions regarding the number of microscopic components. The end results of this process are voxel-wise myelin water fraction maps.METHODSDeconvolution is done using a tailored optimization scheme, which incorporates the global mcT2 motifs without additional prior assumptions regarding the number of microscopic components. The end results of this process are voxel-wise myelin water fraction maps.Validations are shown for computer-generated signals, uniquely designed subvoxel mcT2 phantoms, and in vivo human brain. Results demonstrated excellent fitting accuracy, both for the numerical and the physical mcT2 phantoms, exhibiting excellent agreement between calculated myelin water fraction and ground truth. Proof-of-concept in vivo validation is done by calculating myelin water fraction maps for white matter segments of the human brain. Interscan stability of myelin water fraction values was also estimated, showing good correlation between scans.RESULTSValidations are shown for computer-generated signals, uniquely designed subvoxel mcT2 phantoms, and in vivo human brain. Results demonstrated excellent fitting accuracy, both for the numerical and the physical mcT2 phantoms, exhibiting excellent agreement between calculated myelin water fraction and ground truth. Proof-of-concept in vivo validation is done by calculating myelin water fraction maps for white matter segments of the human brain. Interscan stability of myelin water fraction values was also estimated, showing good correlation between scans.We conclude that studying global tissue motifs prior to performing voxel-wise mcT2 analysis stabilizes the optimization scheme and efficiently overcomes the ambiguity in the T2 space. This new approach can improve myelin water imaging and the investigation of microstructural compartmentation in general.CONCLUSIONWe conclude that studying global tissue motifs prior to performing voxel-wise mcT2 analysis stabilizes the optimization scheme and efficiently overcomes the ambiguity in the T2 space. This new approach can improve myelin water imaging and the investigation of microstructural compartmentation in general.
Purpose Multicomponent analysis of MRI T2 relaxation time (mcT2) is commonly used for estimating myelin content by separating the signal at each voxel into its underlying distribution of T2 values. This voxel‐based approach is challenging due to the large ambiguity in the multi‐T2 space and the low SNR of MRI signals. Herein, we present a data‐driven mcT2 analysis, which utilizes the statistical strength of identifying spatially global mcT2 motifs in white matter segments before deconvolving the local signal at each voxel. Methods Deconvolution is done using a tailored optimization scheme, which incorporates the global mcT2 motifs without additional prior assumptions regarding the number of microscopic components. The end results of this process are voxel‐wise myelin water fraction maps. Results Validations are shown for computer‐generated signals, uniquely designed subvoxel mcT2 phantoms, and in vivo human brain. Results demonstrated excellent fitting accuracy, both for the numerical and the physical mcT2 phantoms, exhibiting excellent agreement between calculated myelin water fraction and ground truth. Proof‐of‐concept in vivo validation is done by calculating myelin water fraction maps for white matter segments of the human brain. Interscan stability of myelin water fraction values was also estimated, showing good correlation between scans. Conclusion We conclude that studying global tissue motifs prior to performing voxel‐wise mcT2 analysis stabilizes the optimization scheme and efficiently overcomes the ambiguity in the T2 space. This new approach can improve myelin water imaging and the investigation of microstructural compartmentation in general.
PurposeMulticomponent analysis of MRI T2 relaxation time (mcT2) is commonly used for estimating myelin content by separating the signal at each voxel into its underlying distribution of T2 values. This voxel‐based approach is challenging due to the large ambiguity in the multi‐T2 space and the low SNR of MRI signals. Herein, we present a data‐driven mcT2 analysis, which utilizes the statistical strength of identifying spatially global mcT2 motifs in white matter segments before deconvolving the local signal at each voxel.MethodsDeconvolution is done using a tailored optimization scheme, which incorporates the global mcT2 motifs without additional prior assumptions regarding the number of microscopic components. The end results of this process are voxel‐wise myelin water fraction maps.ResultsValidations are shown for computer‐generated signals, uniquely designed subvoxel mcT2 phantoms, and in vivo human brain. Results demonstrated excellent fitting accuracy, both for the numerical and the physical mcT2 phantoms, exhibiting excellent agreement between calculated myelin water fraction and ground truth. Proof‐of‐concept in vivo validation is done by calculating myelin water fraction maps for white matter segments of the human brain. Interscan stability of myelin water fraction values was also estimated, showing good correlation between scans.ConclusionWe conclude that studying global tissue motifs prior to performing voxel‐wise mcT2 analysis stabilizes the optimization scheme and efficiently overcomes the ambiguity in the T2 space. This new approach can improve myelin water imaging and the investigation of microstructural compartmentation in general.
Multicomponent analysis of MRI T relaxation time (mcT ) is commonly used for estimating myelin content by separating the signal at each voxel into its underlying distribution of T values. This voxel-based approach is challenging due to the large ambiguity in the multi-T space and the low SNR of MRI signals. Herein, we present a data-driven mcT analysis, which utilizes the statistical strength of identifying spatially global mcT motifs in white matter segments before deconvolving the local signal at each voxel. Deconvolution is done using a tailored optimization scheme, which incorporates the global mcT motifs without additional prior assumptions regarding the number of microscopic components. The end results of this process are voxel-wise myelin water fraction maps. Validations are shown for computer-generated signals, uniquely designed subvoxel mcT phantoms, and in vivo human brain. Results demonstrated excellent fitting accuracy, both for the numerical and the physical mcT phantoms, exhibiting excellent agreement between calculated myelin water fraction and ground truth. Proof-of-concept in vivo validation is done by calculating myelin water fraction maps for white matter segments of the human brain. Interscan stability of myelin water fraction values was also estimated, showing good correlation between scans. We conclude that studying global tissue motifs prior to performing voxel-wise mcT analysis stabilizes the optimization scheme and efficiently overcomes the ambiguity in the T space. This new approach can improve myelin water imaging and the investigation of microstructural compartmentation in general.
Author Ben‐Eliezer, Noam
Blumenfeld‐Katzir, Tamar
Omer, Noam
Stern, Neta
Galun, Meirav
Author_xml – sequence: 1
  givenname: Noam
  surname: Omer
  fullname: Omer, Noam
  organization: Tel‐Aviv University
– sequence: 2
  givenname: Meirav
  surname: Galun
  fullname: Galun, Meirav
  organization: Weitzman Institute of Science
– sequence: 3
  givenname: Neta
  surname: Stern
  fullname: Stern, Neta
  organization: Tel‐Aviv University
– sequence: 4
  givenname: Tamar
  surname: Blumenfeld‐Katzir
  fullname: Blumenfeld‐Katzir, Tamar
  organization: Tel‐Aviv University
– sequence: 5
  givenname: Noam
  orcidid: 0000-0003-2944-6412
  surname: Ben‐Eliezer
  fullname: Ben‐Eliezer, Noam
  email: noambe@tauex.tau.ac.il
  organization: New York University Langone Medical Center
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34958690$$D View this record in MEDLINE/PubMed
BookMark eNp1kc9uFSEUxompsbfVhS9gSNzoYlrgAjO4a-rfpI3G6JowzOFKwwxXYFrvzjfQZ_RJROd20-iKLye_7wvnfEfoYIoTIPSYkhNKCDsd03jCFGXiHlpRwVjDhOIHaEVaTpo1VfwQHeV8RQhRquUP0OGaK9FJRVbox0tTzK_vP4fkr2HCJmxi8uXLiF1MeNxB8BO-MQUS9qPZ-GnzAn9Isa8C57m_jt8gYBvHrUllhKmY4uOEe5NhwFX4oc6883aZR4fztkoTwg5vQuxNwMXnPAN2YMqcID9E950JGR7t32P0-fWrT-dvm4v3b96dn100di3WoqGEw6CGTjLZSxik49JRKwcqnbSStg4co9woIlrobCedbfsehOipaOvecn2Mni252xS_zpCLHn22EIKZIM5ZM0kFpVwyVtGnd9CrOKep_q5SrOOqsl2lnuypuR9h0NtUD5Z2-vbUFThdAJtizgmctn65V0nGB02J_lOmrmXqv2VWx_M7jtvQf7H79BsfYPd_UF9-vFwcvwGrYbG2
CitedBy_id crossref_primary_10_1002_mrm_29319
crossref_primary_10_1002_nbm_4947
crossref_primary_10_1002_mp_16551
crossref_primary_10_1002_mrm_29765
crossref_primary_10_1002_mrm_30239
crossref_primary_10_1162_imag_a_00254
Cites_doi 10.1016/j.arthro.2012.10.006
10.1002/jmri.21534
10.1016/j.neuroimage.2012.06.064
10.1002/mrm.25198
10.1097/RMR.0b013e31821e56d8
10.1016/j.jns.2008.08.022
10.3233/BPL-160033
10.1016/j.neurobiolaging.2015.02.029
10.1016/0010-4655(82)90173-4
10.1067/j.cpradiol.2004.01.001
10.1002/mrm.1910340618
10.1016/j.neuroimage.2007.12.008
10.1002/1522-2586(200006)11:6<586::AID-JMRI3>3.0.CO;2-V
10.1016/0022-2364(91)90134-F
10.1002/mrm.25583
10.1016/j.neuroimage.2019.03.049
10.1016/j.neuroimage.2016.12.067
10.1016/j.neuroimage.2015.10.034
10.1016/j.jalz.2018.03.007
10.1038/nature11971
10.1002/nbm.4537
10.1002/mrm.1910350315
10.1016/j.media.2021.102045
10.1002/mrm.25125
10.1002/(SICI)1522-2594(199907)42:1<150::AID-MRM20>3.0.CO;2-5
10.1002/jmri.27059
10.1007/978-3-319-10443-0_19
10.1148/radiol.12120896
10.1016/j.neuroimage.2017.12.087
10.1002/mrm.25558
10.1016/0022-2364(89)90011-5
10.1016/j.jmr.2007.11.007
10.1002/mrm.24395
10.1002/mrm.1910310614
10.1002/jmri.10230
10.1002/mrm.1910370107
10.1177/1352458506070928
10.1002/mrm.26629
10.1002/mrm.25520
10.1002/mrm.21704
10.1002/mrm.22244
10.1002/mrm.25156
10.3389/fnins.2020.00136
10.1002/mrm.27403
10.1007/978-3-030-32245-8_25
10.1016/j.mri.2005.12.037
10.1002/mrm.23157
10.1038/s41467-019-11319-1
ContentType Journal Article
Copyright 2021 International Society for Magnetic Resonance in Medicine
2021 International Society for Magnetic Resonance in Medicine.
2022 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2021 International Society for Magnetic Resonance in Medicine
– notice: 2021 International Society for Magnetic Resonance in Medicine.
– notice: 2022 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.29125
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Biochemistry Abstracts 1
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2535
ExternalDocumentID 34958690
10_1002_mrm_29125
MRM29125
Genre article
Journal Article
GrantInformation_xml – fundername: Israeli Science Foundation
  funderid: 2009/17
– fundername: Israeli Science Foundation
  grantid: 2009/17
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3535-104ed9d8626b6ed6f46f1c6d16f6c617fef214a9057e8c86fc7bbe55b15769063
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Jul 10 17:35:40 EDT 2025
Tue Oct 07 06:31:49 EDT 2025
Wed Feb 19 02:25:56 EST 2025
Wed Oct 01 05:05:37 EDT 2025
Thu Apr 24 23:08:21 EDT 2025
Wed Jan 22 16:27:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords multicomponent T2 relaxation analysis
myelin water fraction
myelin water imaging
subvoxel compartmentation
Language English
License 2021 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3535-104ed9d8626b6ed6f46f1c6d16f6c617fef214a9057e8c86fc7bbe55b15769063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2944-6412
PMID 34958690
PQID 2628492618
PQPubID 1016391
PageCount 15
ParticipantIDs proquest_miscellaneous_2615114622
proquest_journals_2628492618
pubmed_primary_34958690
crossref_citationtrail_10_1002_mrm_29125
crossref_primary_10_1002_mrm_29125
wiley_primary_10_1002_mrm_29125_MRM29125
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 1989; 84
2013; 29
2008; 190
2015; 36
2018; 182
2013; 69
2006; 12
2015; 73
2019; 10
1995; 34
2015; 74
1991; 94
2009; 276
2016; 75
2020; 14
2013; 267
2003; 17
2016; 127
1999; 1
2014; 8675
1996; 35
2021; 71
2010; 63
2004; 33
2010; 21
1982; 27
2019; 81
2021; 53
2016; 2
2021; 34
2006; 24
2020
1997; 37
2000; 11
2017; 78
2008; 28
2019
2013; 495
2019; 195
2008; 40
2012; 67
2008; 60
2018; 14
2012; 63
1994; 31
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_37_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_38_1
References_xml – volume: 21
  start-page: 101
  year: 2010
  end-page: 113
  article-title: Quantitative relaxometry of the brain
  publication-title: Top Magn Reson Imaging
– volume: 17
  start-page: 1
  year: 2003
  end-page: 10
  article-title: Three‐pool model of white matter
  publication-title: J Magn Reson Imaging
– volume: 10
  start-page: 3403
  year: 2019
  article-title: Disentangling molecular alterations from water‐content changes in the aging human brain using quantitative MRI
  publication-title: Nat Commun
– volume: 60
  start-page: 1372
  year: 2008
  end-page: 1387
  article-title: Gleaning multicomponent T1 and T2 information from steady‐state imaging data
  publication-title: Magn Reson Med
– volume: 71
  year: 2021
  article-title: Data‐driven multi‐contrast spectral microstructure imaging with InSpect: INtegrated SPECTral component estimation and mapping
  publication-title: Med Image Anal
– volume: 35
  start-page: 370
  year: 1996
  end-page: 378
  article-title: Criteria for analysis of multicomponent tissue T2 relaxation data
  publication-title: Magn Reson Med
– volume: 40
  start-page: 1575
  year: 2008
  end-page: 1580
  article-title: Myelin water imaging of multiple sclerosis at 7 T: correlations with histopathology
  publication-title: NeuroImage
– volume: 28
  start-page: 1166
  year: 2008
  end-page: 1172
  article-title: Prostate magnetic resonance imaging: multiexponential T2 decay in prostate tissue
  publication-title: J Magn Reson Imaging
– volume: 73
  start-page: 70
  year: 2015
  end-page: 81
  article-title: MRI‐based myelin water imaging: a technical review
  publication-title: Magn Reson Med
– volume: 2
  start-page: 71
  year: 2016
  end-page: 91
  article-title: Magnetic resonance of myelin water: an in vivo marker for myelin
  publication-title: Brain Plast
– volume: 63
  start-page: 533
  year: 2012
  end-page: 539
  article-title: Rapid whole cerebrum myelin water imaging using a 3D GRASE sequence
  publication-title: NeuroImage
– volume: 94
  start-page: 486
  year: 1991
  end-page: 492
  article-title: Recovering compartment sizes from NMR relaxation data
  publication-title: J Magn Reson
– volume: 63
  start-page: 633
  year: 2010
  end-page: 640
  article-title: Quantitative magnetization transfer and myelin water imaging of the evolution of acute multiple sclerosis lesions
  publication-title: Magn Reson Med
– volume: 34
  start-page: 1
  year: 2021
  end-page: 14
  article-title: Quantitative platform for accurate and reproducible assessment of transverse (T2) relaxation time
  publication-title: NMR Biomed
– volume: 495
  start-page: 187
  year: 2013
  end-page: 192
  article-title: Magnetic resonance fingerprinting
  publication-title: Nature
– volume: 14
  start-page: 136
  year: 2020
  article-title: The myelin water fraction serves as a marker for age‐related myelin alterations in the cerebral white matter – a multiparametric MRI aging study
  publication-title: Front Neurosci
– volume: 127
  start-page: 456
  year: 2016
  end-page: 471
  article-title: Improved determination of the myelin water fraction in human brain using magnetic resonance imaging through Bayesian analysis of mcDESPOT
  publication-title: NeuroImage
– volume: 34
  start-page: 910
  year: 1995
  end-page: 914
  article-title: The Rician distribution of noisy MRI data
  publication-title: Magn Reson Med
– volume: 11
  start-page: 586
  year: 2000
  end-page: 595
  article-title: Magnetization transfer and multicomponent T2 relaxation measurements with histopathologic correlation in an experimental model of MS
  publication-title: J Magn Reson Imaging
– start-page: 219
  year: 2019
  end-page: 227
– volume: 75
  start-page: 390
  year: 2016
  end-page: 402
  article-title: A multicomponent T2 relaxometry algorithm for myelin water imaging of the brain
  publication-title: Magn Reson Med
– volume: 267
  start-page: 422
  year: 2013
  end-page: 431
  article-title: Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis
  publication-title: Radiology
– volume: 24
  start-page: 515
  year: 2006
  end-page: 525
  article-title: Insights into brain microstructure from the T2 distribution
  publication-title: Magn Reson Imaging
– volume: 1
  start-page: 150
  year: 1999
  end-page: 157
  article-title: Multicomponent T2 relaxation of in vivo skeletal muscle
  publication-title: Magn Reson Med
– volume: 75
  start-page: 1346
  year: 2016
  end-page: 1354
  article-title: Accelerated and motion‐robust in vivo T2 mapping from radially undersampled data using Bloch‐simulation‐based iterative reconstruction
  publication-title: Magn Reson Med
– volume: 190
  start-page: 255
  year: 2008
  end-page: 270
  article-title: Anomalous diffusion expressed through fractional order differential operators in the Bloch‐Torrey equation
  publication-title: J Magn Reson
– volume: 182
  start-page: 136
  year: 2018
  end-page: 148
  article-title: Inferring brain tissue composition and microstructure via MR relaxometry
  publication-title: NeuroImage
– volume: 67
  start-page: 1803
  year: 2012
  end-page: 1814
  article-title: Applications of stimulated echo correction to multicomponent T2 analysis
  publication-title: Magn Reson Med
– volume: 69
  start-page: 1573
  year: 2013
  end-page: 1581
  article-title: Noninvasive mapping of water diffusional exchange in the human brain using filter‐exchange imaging
  publication-title: Magn Reson Med
– volume: 84
  start-page: 134
  year: 1989
  end-page: 152
  article-title: Quantitative interpretation of NMR relaxation data
  publication-title: J Magn Reson
– volume: 182
  start-page: 511
  year: 2018
  end-page: 521
  article-title: Myelin volume fraction imaging with MRI
  publication-title: NeuroImage
– volume: 81
  start-page: 25
  year: 2019
  end-page: 46
  article-title: Magnetic resonance fingerprinting: a technical review
  publication-title: Magn Reson Med
– volume: 27
  start-page: 213
  year: 1982
  end-page: 227
  article-title: A constrained regularization method for inverting data represented by linear algebraic or integral equations
  publication-title: Comput Phys Commun
– volume: 33
  start-page: 106
  year: 2004
  end-page: 126
  article-title: Fat necrosis of the breast: mammographic, sonographic, computed tomography, and magnetic resonance imaging findings
  publication-title: Curr Probl Diagn Radiol
– volume: 74
  start-page: 1327
  year: 2015
  end-page: 1335
  article-title: How does magnetization transfer influence mcDESPOT results?
  publication-title: Magn Reson Med
– volume: 276
  start-page: 49
  year: 2009
  end-page: 53
  article-title: Longitudinal changes in myelin water fraction in two MS patients with active disease
  publication-title: J Neurol Sci
– volume: 78
  start-page: 2236
  year: 2017
  end-page: 2249
  article-title: Diffusion‐relaxation correlation spectroscopic imaging: a multidimensional approach for probing microstructure
  publication-title: Magn Reson Med
– volume: 195
  start-page: 78
  year: 2019
  end-page: 88
  article-title: Inherent and unpredictable bias in multi‐component DESPOT myelin water fraction estimation
  publication-title: NeuroImage
– volume: 31
  start-page: 673
  year: 1994
  end-page: 677
  article-title: In vivo visualization of myelin water in brain by magnetic resonance
  publication-title: Magn Reson Med
– volume: 12
  start-page: 747
  year: 2006
  end-page: 753
  article-title: Myelin water imaging in multiple sclerosis: quantitative correlations with histopathology
  publication-title: Mult Scler
– volume: 8675
  start-page: 145
  year: 2014
  end-page: 152
  article-title: T2‐relaxometry for myelin water fraction extraction using Wald distribution and extended phase graph
  publication-title: Lect Notes Comput Sci
– volume: 14
  start-page: 998
  year: 2018
  end-page: 1004
  article-title: Evidence of demyelination in mild cognitive impairment and dementia using a direct and specific magnetic resonance imaging measure of myelin content
  publication-title: Alzheimer’s Dement
– volume: 73
  start-page: 809
  year: 2015
  end-page: 817
  article-title: Rapid and accurate T2 mapping from multi‐spin‐echo data using Bloch‐simulation‐based reconstruction
  publication-title: Magn Reson Med
– year: 2020
– volume: 53
  start-page: 360
  year: 2021
  end-page: 373
  article-title: So you want to image myelin using MRI: an overview and practical guide for myelin water imaging
  publication-title: J Magn Reson Imaging
– volume: 37
  start-page: 34
  year: 1997
  end-page: 43
  article-title: In vivo measurement of T2 distributions and water contents in normal human brain
  publication-title: Magn Reson Med
– volume: 73
  start-page: 223
  year: 2015
  end-page: 232
  article-title: Comparison of myelin water fraction from multiecho T2 decay curve and steady‐state methods
  publication-title: Magn Reson Med
– volume: 36
  start-page: 2107
  year: 2015
  end-page: 2121
  article-title: Age‐related microstructural differences quantified using myelin water imaging and advanced diffusion MRI
  publication-title: Neurobiol Aging
– volume: 29
  start-page: 449
  year: 2013
  end-page: 458
  article-title: Changes in appearance of fatty infiltration and muscle atrophy of rotator cuff muscles on magnetic resonance imaging after rotator cuff repair: establishing new time‐zero traits
  publication-title: Arthrosc: J Arthrosc Relat Surg
– ident: e_1_2_7_44_1
  doi: 10.1016/j.arthro.2012.10.006
– ident: e_1_2_7_48_1
  doi: 10.1002/jmri.21534
– ident: e_1_2_7_18_1
  doi: 10.1016/j.neuroimage.2012.06.064
– ident: e_1_2_7_4_1
  doi: 10.1002/mrm.25198
– ident: e_1_2_7_12_1
  doi: 10.1097/RMR.0b013e31821e56d8
– ident: e_1_2_7_15_1
  doi: 10.1016/j.jns.2008.08.022
– ident: e_1_2_7_14_1
  doi: 10.3233/BPL-160033
– ident: e_1_2_7_9_1
  doi: 10.1016/j.neurobiolaging.2015.02.029
– ident: e_1_2_7_37_1
  doi: 10.1016/0010-4655(82)90173-4
– ident: e_1_2_7_47_1
  doi: 10.1067/j.cpradiol.2004.01.001
– ident: e_1_2_7_36_1
  doi: 10.1002/mrm.1910340618
– ident: e_1_2_7_5_1
  doi: 10.1016/j.neuroimage.2007.12.008
– ident: e_1_2_7_16_1
  doi: 10.1002/1522-2586(200006)11:6<586::AID-JMRI3>3.0.CO;2-V
– ident: e_1_2_7_26_1
  doi: 10.1016/0022-2364(91)90134-F
– ident: e_1_2_7_28_1
  doi: 10.1002/mrm.25583
– ident: e_1_2_7_35_1
– ident: e_1_2_7_24_1
  doi: 10.1016/j.neuroimage.2019.03.049
– ident: e_1_2_7_6_1
  doi: 10.1016/j.neuroimage.2016.12.067
– ident: e_1_2_7_20_1
  doi: 10.1016/j.neuroimage.2015.10.034
– ident: e_1_2_7_17_1
  doi: 10.1016/j.jalz.2018.03.007
– ident: e_1_2_7_21_1
  doi: 10.1038/nature11971
– ident: e_1_2_7_33_1
  doi: 10.1002/nbm.4537
– ident: e_1_2_7_30_1
  doi: 10.1002/mrm.1910350315
– ident: e_1_2_7_39_1
  doi: 10.1016/j.media.2021.102045
– ident: e_1_2_7_23_1
  doi: 10.1002/mrm.25125
– ident: e_1_2_7_27_1
  doi: 10.1002/(SICI)1522-2594(199907)42:1<150::AID-MRM20>3.0.CO;2-5
– ident: e_1_2_7_42_1
  doi: 10.1002/jmri.27059
– ident: e_1_2_7_29_1
  doi: 10.1007/978-3-319-10443-0_19
– ident: e_1_2_7_46_1
  doi: 10.1148/radiol.12120896
– ident: e_1_2_7_13_1
  doi: 10.1016/j.neuroimage.2017.12.087
– ident: e_1_2_7_32_1
  doi: 10.1002/mrm.25558
– ident: e_1_2_7_25_1
  doi: 10.1016/0022-2364(89)90011-5
– ident: e_1_2_7_50_1
  doi: 10.1016/j.jmr.2007.11.007
– ident: e_1_2_7_49_1
  doi: 10.1002/mrm.24395
– ident: e_1_2_7_3_1
  doi: 10.1002/mrm.1910310614
– ident: e_1_2_7_2_1
  doi: 10.1002/jmri.10230
– ident: e_1_2_7_11_1
  doi: 10.1002/mrm.1910370107
– ident: e_1_2_7_7_1
  doi: 10.1177/1352458506070928
– ident: e_1_2_7_38_1
  doi: 10.1002/mrm.26629
– ident: e_1_2_7_41_1
  doi: 10.1002/mrm.25520
– ident: e_1_2_7_19_1
  doi: 10.1002/mrm.21704
– ident: e_1_2_7_8_1
  doi: 10.1002/mrm.22244
– ident: e_1_2_7_31_1
  doi: 10.1002/mrm.25156
– ident: e_1_2_7_10_1
  doi: 10.3389/fnins.2020.00136
– ident: e_1_2_7_22_1
  doi: 10.1002/mrm.27403
– ident: e_1_2_7_45_1
  doi: 10.1007/978-3-030-32245-8_25
– ident: e_1_2_7_34_1
  doi: 10.1016/j.mri.2005.12.037
– ident: e_1_2_7_40_1
  doi: 10.1002/mrm.23157
– ident: e_1_2_7_43_1
  doi: 10.1038/s41467-019-11319-1
SSID ssj0009974
Score 2.432948
Snippet Purpose Multicomponent analysis of MRI T2 relaxation time (mcT2) is commonly used for estimating myelin content by separating the signal at each voxel into its...
Multicomponent analysis of MRI T relaxation time (mcT ) is commonly used for estimating myelin content by separating the signal at each voxel into its...
PurposeMulticomponent analysis of MRI T2 relaxation time (mcT2) is commonly used for estimating myelin content by separating the signal at each voxel into its...
Multicomponent analysis of MRI T2 relaxation time (mcT2 ) is commonly used for estimating myelin content by separating the signal at each voxel into its...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2521
SubjectTerms Algorithms
Ambiguity
Brain
Brain - diagnostic imaging
Brain mapping
Humans
Magnetic resonance imaging
Magnetic Resonance Imaging - methods
Mathematical analysis
Medical imaging
multicomponent T2 relaxation analysis
Myelin
Myelin Sheath - chemistry
myelin water fraction
myelin water imaging
Neuroimaging
Optimization
Relaxation time
Segments
Substantia alba
subvoxel compartmentation
Water - chemistry
Title Data‐driven algorithm for myelin water imaging: Probing subvoxel compartmentation based on identification of spatially global tissue features
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29125
https://www.ncbi.nlm.nih.gov/pubmed/34958690
https://www.proquest.com/docview/2628492618
https://www.proquest.com/docview/2615114622
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0740-3194
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFH6qKoG4sJRtSqkM4sAl04mTeGI4IWhVIQ1CFZV6QIq8pR2RBSWZ0vbEP4DfyC_h2U5SlUVC3KLkOXbit3xO3vsM8CyPpUIUkQRahzyII4kmlYZ5kHBsEeGEz119xeId2z-M3x4lR2vwcqiF8fwQ4wc3axnOX1sDF7LduSQNLZtySjnGZ_S_Id7VAqKDS-oozj0DM_aFfobHA6vQjO6MLa_Got8A5lW86gLO3i34OAzV55l8mq46OVUXv7A4_uez3IabPRAlr7zm3IE1U23A9UX_q30DrrncUNXehW9vRCd-fP2uG-sZiSiO62bZnZQE8S4pz21BO_mCkLUhy9LtefSCvLfsTtUxaVfytD4zBfGp7i6j3akCsdFTEzxY6j5fyZ-vc9LaJG9RFOfEs5WQzikHyY0jIW3vweHe7ofX-0G_j0OgoiSyRKex0VzbtZNkRrM8ZnmomA5ZzhQiqNzkNIwFR-hoUpXa6iMpTZLIEBdDHDHUfViv6so8BILeSKUoIWYaoZBkYjY3cTLXVDliHjmB58OMZqonObd7bRSZp2emGb7qzL3qCTwdRT97Zo8_CW0NapH1xt1mlGFM57j0TCfwZLyMZmn_tYjK1Csrg1AKoxClE3jg1WnsJcJFqd0IDAfrlOLv3WeLg4U72Px30Udwg9oSDZeUuQXrXbMyjxE4dXLbWchPbMcWpw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEC2FIAgXlgBhIECDOHDxZLz1uBEXBEQDxBGKEimXyHIvTkbxEtmeQDjxB_CNfAnV3bajsEiIm2WX1V6qul51V70CeJYFXCCKCB0pXeYEPkeTitzMCRne4eMPn5r6inibzvaC9_vh_hK87GthLD_EsOCmLcPM19rA9YL0xjlraFEXY4-hg74ElwOKcYqGRDvn5FGMWQ5mHA1nGhb0vEITb2O49aI3-g1iXkSsxuVs3oCD_mFtpsnxeNHysfjyC4_j_77NTbjeYVHyyirPLVhS5Spcjbvd9lW4YtJDRXMbvr1J2_TH1--y1pMjSfPDqp63RwVByEuKM13TTj4haq3JvDBtj16Qj5rgqTwkzYKfVp9VTmy2u0lqN9pAtAOVBA_msktZsuerjDQ6zzvN8zNiCUtIa_SDZMrwkDZ3YG_z7e7rmdO1cnCEH_qa6zRQkkkdPnGqJM0CmrmCSpdmVCCIylTmuUHKED2qSES6AIlzFYbcxXiIIYy6C8tlVap7QHBCEhFKpBOJaIjTdDJVQTiVnjDcPHwEz_tfmoiO51y328gTy9DsJfipE_OpR_B0ED2x5B5_Elrv9SLp7LtJPIpunWH0GY3gyXAZLVNvt6SlqhZaBtEUOiLPG8Ga1adhFB_jUt0LDB_WaMXfh0_indgc3P930cewMtuNt5Ktd9sfHsA1T1dsmBzNdVhu64V6iDiq5Y-MufwEytUayA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIiouPMproYBBHLhku0mcbIy4IJZVeWxVVVTqBUXxq6zIo0qyQDnxD-A38ksY20mq8pAQNysZy4494_kcz3wGeKQpF4giIk9Kn3k05GhSia-9iGGNECd8avMrFrvxzgF9dRgdrsHTPhfG8UMMP9yMZdj12hi4OpZ6-5Q1tKiLccDQQZ-D8zRiiQnom-2fkkcx5jiYsTVcaRjteYUmwfZQ9aw3-g1inkWs1uXML8O7vrMu0uTDeNXysfjyC4_j_37NFbjUYVHyzCnPVVhT5SZsLLrT9k24YMNDRXMNvs2yNvvx9buszeJIsvyoqpft-4Ig5CXFiclpJ58QtdZkWdhrj56QPUPwVB6RZsU_Vp9VTly0uw1qt9pAjAOVBAtL2YUsueeVJo2J887y_IQ4whLSWv0gWlke0uY6HMxfvH2-43VXOXgijELDdUqVZNJsn3isZKxprH0RSz_WsUAQpZUOfJoxRI8qEYlJQOJcRRH3cT_EEEbdgPWyKtUtILggiQQlsolENMTjbDJVNJrKQFhuHj6Cx_2UpqLjOTfXbeSpY2gOUhzq1A71CB4OoseO3ONPQlu9XqSdfTdpEKNbZ7j7TEbwYHiNlmmOW7JSVSsjg2gKHVEQjOCm06ehlRD3peYuMOys1Yq_N58u9he2cPvfRe_Dxt5snr55ufv6DlwMTMKGDdHcgvW2Xqm7CKNafs9ay09PdxpM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data%E2%80%90driven+algorithm+for+myelin+water+imaging%3A+Probing+subvoxel+compartmentation+based+on+identification+of+spatially+global+tissue+features&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Omer%2C+Noam&rft.au=Galun%2C+Meirav&rft.au=Stern%2C+Neta&rft.au=Tamar+Blumenfeld%E2%80%90Katzir&rft.date=2022-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=87&rft.issue=5&rft.spage=2521&rft.epage=2535&rft_id=info:doi/10.1002%2Fmrm.29125&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon