MLatom: A program package for quantum chemical research assisted by machine learning

MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine‐learning (ML) algorithms. It can be used out‐of‐the‐box as a stand‐alone program with a user‐friendly online manual. The use of MLatom does not require extensive knowledge of machine lear...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational chemistry Vol. 40; no. 26; pp. 2339 - 2347
Main Author Dral, Pavlo O.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 05.10.2019
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0192-8651
1096-987X
1096-987X
DOI10.1002/jcc.26004

Cover

Abstract MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine‐learning (ML) algorithms. It can be used out‐of‐the‐box as a stand‐alone program with a user‐friendly online manual. The use of MLatom does not require extensive knowledge of machine learning, programming, or scripting. The user need only prepare input files and choose appropriate options. The program implements kernel ridge regression and supports Gaussian, Laplacian, and Matérn kernels. It can use arbitrary, user‐provided input vectors and can convert molecular geometries into input vectors corresponding to several types of built‐in molecular descriptors. MLatom saves and re‐uses trained ML models as needed, in addition to estimating the generalization error of ML setups. Various sampling procedures are supported and the gradients of output properties can be calculated. The core part of MLatom is written in Fortran, uses standard libraries for linear algebra, and is optimized for shared‐memory parallel computations. © 2019 Wiley Periodicals, Inc. An out‐of‐the‐box, stand‐alone program package MLatom with a user‐friendly online manual is presented for computationally efficient atomistic simulations with machine learning. MLatom supports kernel ridge regression, various sampling procedures including structure‐based sampling, model selection and evaluation, and conversion of molecular coordinates to several built‐in molecular descriptors. The program can be used for solving generic machine‐learning tasks, constructing molecular potential energy surfaces and calculating energy gradients, and exploring chemical space.
AbstractList MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine‐learning (ML) algorithms. It can be used out‐of‐the‐box as a stand‐alone program with a user‐friendly online manual. The use of MLatom does not require extensive knowledge of machine learning, programming, or scripting. The user need only prepare input files and choose appropriate options. The program implements kernel ridge regression and supports Gaussian, Laplacian, and Matérn kernels. It can use arbitrary, user‐provided input vectors and can convert molecular geometries into input vectors corresponding to several types of built‐in molecular descriptors. MLatom saves and re‐uses trained ML models as needed, in addition to estimating the generalization error of ML setups. Various sampling procedures are supported and the gradients of output properties can be calculated. The core part of MLatom is written in Fortran, uses standard libraries for linear algebra, and is optimized for shared‐memory parallel computations. © 2019 Wiley Periodicals, Inc. An out‐of‐the‐box, stand‐alone program package MLatom with a user‐friendly online manual is presented for computationally efficient atomistic simulations with machine learning. MLatom supports kernel ridge regression, various sampling procedures including structure‐based sampling, model selection and evaluation, and conversion of molecular coordinates to several built‐in molecular descriptors. The program can be used for solving generic machine‐learning tasks, constructing molecular potential energy surfaces and calculating energy gradients, and exploring chemical space.
MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine-learning (ML) algorithms. It can be used out-of-the-box as a stand-alone program with a user-friendly online manual. The use of MLatom does not require extensive knowledge of machine learning, programming, or scripting. The user need only prepare input files and choose appropriate options. The program implements kernel ridge regression and supports Gaussian, Laplacian, and Matérn kernels. It can use arbitrary, user-provided input vectors and can convert molecular geometries into input vectors corresponding to several types of built-in molecular descriptors. MLatom saves and re-uses trained ML models as needed, in addition to estimating the generalization error of ML setups. Various sampling procedures are supported and the gradients of output properties can be calculated. The core part of MLatom is written in Fortran, uses standard libraries for linear algebra, and is optimized for shared-memory parallel computations. © 2019 Wiley Periodicals, Inc.MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine-learning (ML) algorithms. It can be used out-of-the-box as a stand-alone program with a user-friendly online manual. The use of MLatom does not require extensive knowledge of machine learning, programming, or scripting. The user need only prepare input files and choose appropriate options. The program implements kernel ridge regression and supports Gaussian, Laplacian, and Matérn kernels. It can use arbitrary, user-provided input vectors and can convert molecular geometries into input vectors corresponding to several types of built-in molecular descriptors. MLatom saves and re-uses trained ML models as needed, in addition to estimating the generalization error of ML setups. Various sampling procedures are supported and the gradients of output properties can be calculated. The core part of MLatom is written in Fortran, uses standard libraries for linear algebra, and is optimized for shared-memory parallel computations. © 2019 Wiley Periodicals, Inc.
MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine‐learning (ML) algorithms. It can be used out‐of‐the‐box as a stand‐alone program with a user‐friendly online manual. The use of MLatom does not require extensive knowledge of machine learning, programming, or scripting. The user need only prepare input files and choose appropriate options. The program implements kernel ridge regression and supports Gaussian, Laplacian, and Matérn kernels. It can use arbitrary, user‐provided input vectors and can convert molecular geometries into input vectors corresponding to several types of built‐in molecular descriptors. MLatom saves and re‐uses trained ML models as needed, in addition to estimating the generalization error of ML setups. Various sampling procedures are supported and the gradients of output properties can be calculated. The core part of MLatom is written in Fortran, uses standard libraries for linear algebra, and is optimized for shared‐memory parallel computations. © 2019 Wiley Periodicals, Inc.
MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine‐learning (ML) algorithms. It can be used out‐of‐the‐box as a stand‐alone program with a user‐friendly online manual. The use of MLatom does not require extensive knowledge of machine learning, programming, or scripting. The user need only prepare input files and choose appropriate options. The program implements kernel ridge regression and supports Gaussian, Laplacian, and Matérn kernels. It can use arbitrary, user‐provided input vectors and can convert molecular geometries into input vectors corresponding to several types of built‐in molecular descriptors. MLatom saves and re‐uses trained ML models as needed, in addition to estimating the generalization error of ML setups. Various sampling procedures are supported and the gradients of output properties can be calculated. The core part of MLatom is written in Fortran, uses standard libraries for linear algebra, and is optimized for shared‐memory parallel computations. © 2019 Wiley Periodicals, Inc.
Author Dral, Pavlo O.
Author_xml – sequence: 1
  givenname: Pavlo O.
  orcidid: 0000-0002-2975-9876
  surname: Dral
  fullname: Dral, Pavlo O.
  email: dral@kofo.mpg.de
  organization: Max‐Planck‐Institut für Kohlenforschung
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31219626$$D View this record in MEDLINE/PubMed
BookMark eNp90UFP2zAUB3ALgdbSceALTJZ22Q4pthPbyW6oYhuoaBeQuEUvzkvrLnGKnWjqt8fQsgMSnN7h_d7T0_ufkmPXOyTknLM5Z0xcbIyZC8VYdkSmnBUqKXL9cEymjBciyZXkE3IawoYxlkqVfSKTlAteKKGm5O52CUPf_aCXdOv7lYeObsH8hRXSpvf0cQQ3jB01a-ysgZZ6DAjerCmEYMOANa12tAOztg5pG1vOutVnctJAG_DsUGfk_ufV3eJ3svzz63pxuUxMKtMsMaAkCoUaTa1k0bBKm7quaoapKnLUUmGOwACw4Tk2tU6NKiDPRKUbXXCZzsi3_d54-uOIYSg7Gwy2LTjsx1AKkWWRZVke6dc3dNOP3sXrotKploJJHdWXgxqrDuty620Hfle-_iuC73tgfB-Cx-Y_4ax8zqKMWZQvWUR78cYaO8Bgezd4sO1HE_9si7v3V5c3i8V-4gmmUJmI
CitedBy_id crossref_primary_10_1039_D1SC03564A
crossref_primary_10_1021_acs_est_1c05970
crossref_primary_10_3389_fphy_2023_1223973
crossref_primary_10_1063_5_0080506
crossref_primary_10_1039_D4DD00153B
crossref_primary_10_1063_5_0006498
crossref_primary_10_1515_pac_2022_0202
crossref_primary_10_1063_5_0089200
crossref_primary_10_1002_advs_202204902
crossref_primary_10_1039_D3CP04046A
crossref_primary_10_1016_j_mtcomm_2024_111437
crossref_primary_10_1021_acs_chemrev_0c00749
crossref_primary_10_1039_D3CP05685F
crossref_primary_10_1021_acs_jctc_2c01038
crossref_primary_10_1039_D4CC00010B
crossref_primary_10_1088_2632_2153_ac9a9d
crossref_primary_10_1063_5_0159247
crossref_primary_10_1002_jcc_26128
crossref_primary_10_1039_D2RA05643G
crossref_primary_10_1063_5_0230176
crossref_primary_10_1007_s10915_022_01999_1
crossref_primary_10_1088_2632_2153_abfe3f
crossref_primary_10_1016_j_physrep_2021_08_002
crossref_primary_10_1021_acs_jpca_0c05310
crossref_primary_10_1021_acs_jctc_4c00801
crossref_primary_10_3390_pr11102897
crossref_primary_10_1021_acs_jpclett_2c01242
crossref_primary_10_1002_adma_202305758
crossref_primary_10_1021_acs_jpclett_2c02299
crossref_primary_10_1021_acs_jctc_2c00718
crossref_primary_10_1002_jcc_26790
crossref_primary_10_1038_s41570_021_00278_1
crossref_primary_10_3390_ijms25031448
crossref_primary_10_1063_5_0210866
crossref_primary_10_1063_5_0023697
crossref_primary_10_1063_5_0080766
crossref_primary_10_1063_5_0137101
crossref_primary_10_1063_5_0155377
crossref_primary_10_1038_s41467_022_29621_w
crossref_primary_10_1007_s41061_021_00339_5
crossref_primary_10_1021_acs_jctc_4c00054
crossref_primary_10_1002_wcms_1645
crossref_primary_10_1021_acs_jctc_4c00932
crossref_primary_10_1021_acs_jctc_4c00977
crossref_primary_10_1016_j_aichem_2024_100059
crossref_primary_10_1021_prechem_4c00060
crossref_primary_10_1021_acs_jctc_2c00004
crossref_primary_10_1021_acs_jctc_3c01203
crossref_primary_10_1039_D3CP05865D
crossref_primary_10_1063_5_0136404
crossref_primary_10_1039_D3CP03515H
crossref_primary_10_1021_acs_jpclett_9b03664
crossref_primary_10_1088_1367_2630_ac3261
crossref_primary_10_1016_j_cpc_2023_108940
crossref_primary_10_1021_acs_jpclett_2c00734
Cites_doi 10.1002/qua.24954
10.1063/1.5092228
10.1126/sciadv.1603015
10.1126/sciadv.1701816
10.1088/0953-4075/49/22/224001
10.1126/science.aar6404
10.1063/1.5043213
10.1063/1.5024577
10.1198/jasa.2010.tm09420
10.1063/1.4922890
10.1103/RevModPhys.84.1527
10.1063/1.5017103
10.1007/s10822-018-0169-z
10.1021/acs.jctc.5b00141
10.1063/1.4966192
10.1063/1.4989536
10.1007/978-0-387-84858-7
10.1021/acs.jpclett.8b02469
10.1002/qua.24927
10.1038/s41586-018-0337-2
10.1063/1.5009347
10.1021/acs.jcim.7b00090
10.1021/acs.jctc.5b00099
10.1021/acs.jctc.8b00708
10.1021/acs.jctc.8b00636
10.1109/TIT.2018.2881749
10.1103/PhysRevLett.108.058301
10.1021/acs.jpca.9b01006
10.1021/ct400195d
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
NPM
JQ2
7X8
DOI 10.1002/jcc.26004
DatabaseName CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
ProQuest Computer Science Collection
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
ProQuest Computer Science Collection
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1096-987X
EndPage 2347
ExternalDocumentID 31219626
10_1002_jcc_26004
JCC26004
Genre article
Journal Article
GroupedDBID ---
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
36B
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWK
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YQT
ZZTAW
~IA
~KM
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
NPM
JQ2
7X8
ID FETCH-LOGICAL-c3534-ca65e26e7ecd659f0b7cddbd0e3698e756e8ea0aaef18efd73c69a842b7f79153
IEDL.DBID DR2
ISSN 0192-8651
1096-987X
IngestDate Fri Jul 11 06:45:15 EDT 2025
Fri Jul 25 19:12:23 EDT 2025
Thu Apr 03 06:59:39 EDT 2025
Wed Oct 01 02:49:08 EDT 2025
Thu Apr 24 22:57:47 EDT 2025
Wed Jan 22 16:39:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 26
Keywords sampling
quantum chemistry
molecular descriptor
machine learning
Fortran
Python
kernel ridge regression
Language English
License 2019 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3534-ca65e26e7ecd659f0b7cddbd0e3698e756e8ea0aaef18efd73c69a842b7f79153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2975-9876
PMID 31219626
PQID 2273752057
PQPubID 48816
PageCount 9
ParticipantIDs proquest_miscellaneous_2244153448
proquest_journals_2273752057
pubmed_primary_31219626
crossref_primary_10_1002_jcc_26004
crossref_citationtrail_10_1002_jcc_26004
wiley_primary_10_1002_jcc_26004_JCC26004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 5, 2019
PublicationDateYYYYMMDD 2019-10-05
PublicationDate_xml – month: 10
  year: 2019
  text: October 5, 2019
  day: 05
PublicationDecade 2010
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: New York
PublicationTitle Journal of computational chemistry
PublicationTitleAlternate J Comput Chem
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2018; 362
2017; 3
2010; 105
2018; 148
2015; 11
2015; 142
2009
2016; 145
2006
2011; 12
2012; 108
2019; 123
2013; 9
2018; 9
2015; 115
2018; 559
2019; 65
2017; 57
2017
2015
2013
2017; 146
2016; 49
2018; 32
2019; 150
2018; 14
2012; 84
e_1_2_6_32_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
Pedregosa F. (e_1_2_6_5_1) 2011; 12
Paszke A. (e_1_2_6_7_1) 2017
e_1_2_6_13_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_16_1
e_1_2_6_21_1
e_1_2_6_20_1
Hastie T. (e_1_2_6_10_1) 2009
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_1_1
Rasmussen C. E. (e_1_2_6_23_1) 2006
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
Dral P. O. (e_1_2_6_9_1) 2013
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 559
  start-page: 547
  year: 2018
  publication-title: Nature
– volume: 148
  start-page: 241704
  year: 2018
  publication-title: J. Chem. Phys.
– volume: 14
  start-page: 4772
  year: 2018
  publication-title: J. Chem. Theory Comput.
– volume: 12
  start-page: 2825
  year: 2011
  publication-title: J. Mach. Learn. Res.
– start-page: 266
  year: 2006
– volume: 115
  start-page: 1051
  year: 2015
  publication-title: Int. J. Quantum Chem.
– volume: 9
  start-page: 5660
  year: 2018
  publication-title: J. Phys. Chem. Lett.
– volume: 148
  start-page: 094114
  year: 2018
  publication-title: J. Chem. Phys.
– volume: 148
  start-page: 241725
  year: 2018
  publication-title: J. Chem. Phys.
– volume: 123
  start-page: 4486
  year: 2019
  publication-title: J. Phys. Chem. A
– volume: 57
  start-page: 1923
  year: 2017
  publication-title: J. Chem. Inf. Model.
– volume: 108
  start-page: 058301
  year: 2012
  publication-title: Phys. Rev. Lett.
– volume: 105
  start-page: 1167
  year: 2010
  publication-title: J. Am. Stat. Assoc.
– volume: 32
  start-page: 1165
  year: 2018
  publication-title: J. Comput. Aided Mol. Des.
– volume: 65
  start-page: 3124
  year: 2019
  publication-title: IEEE Trans. Inf. Theory
– volume: 49
  start-page: 224001
  year: 2016
  publication-title: J. Phys. B: At. Mol. Opt. Phys.
– volume: 11
  start-page: 2120
  year: 2015
  publication-title: J. Chem. Theory Comput.
– volume: 150
  start-page: 131102
  year: 2019
  publication-title: J. Chem. Phys.
– volume: 148
  start-page: 241401
  year: 2018
  publication-title: J. Chem. Phys.
– volume: 146
  start-page: 244108
  year: 2017
  publication-title: J. Chem. Phys.
– volume: 9
  start-page: 3404
  year: 2013
  publication-title: J. Chem. Theory Comput.
– volume: 84
  start-page: 1527
  year: 2012
  publication-title: Rev. Mod. Phys.
– volume: 142
  start-page: 244306
  year: 2015
  publication-title: J. Chem. Phys.
– volume: 145
  start-page: 170901
  year: 2016
  publication-title: J. Chem. Phys.
– volume: 3
  year: 2017
  publication-title: Sci. Adv.
– start-page: 763
  year: 2009
– volume: 115
  start-page: 1058
  year: 2015
  publication-title: Int. J. Quantum Chem.
– year: 2017
– year: 2015
– volume: 14
  start-page: 5777
  year: 2018
  publication-title: J. Chem. Theory Comput.
– volume: 362
  start-page: 1140
  year: 2018
  publication-title: Science
– year: 2013
– volume: 11
  start-page: 2087
  year: 2015
  publication-title: J. Chem. Theory Comput.
– ident: e_1_2_6_8_1
  doi: 10.1002/qua.24954
– ident: e_1_2_6_30_1
  doi: 10.1063/1.5092228
– ident: e_1_2_6_26_1
  doi: 10.1126/sciadv.1603015
– ident: e_1_2_6_34_1
  doi: 10.1126/sciadv.1701816
– ident: e_1_2_6_25_1
  doi: 10.1088/0953-4075/49/22/224001
– ident: e_1_2_6_1_1
  doi: 10.1126/science.aar6404
– ident: e_1_2_6_3_1
  doi: 10.1063/1.5043213
– ident: e_1_2_6_13_1
  doi: 10.1063/1.5024577
– ident: e_1_2_6_24_1
  doi: 10.1198/jasa.2010.tm09420
– ident: e_1_2_6_35_1
  doi: 10.1063/1.4922890
– ident: e_1_2_6_21_1
  doi: 10.1103/RevModPhys.84.1527
– ident: e_1_2_6_27_1
  doi: 10.1063/1.5017103
– ident: e_1_2_6_31_1
  doi: 10.1007/s10822-018-0169-z
– ident: e_1_2_6_17_1
  doi: 10.1021/acs.jctc.5b00141
– volume-title: MLatom: A Package for Atomistic Simulations with Machine Learning, version 1.0
  year: 2013
  ident: e_1_2_6_9_1
– ident: e_1_2_6_19_1
– ident: e_1_2_6_4_1
  doi: 10.1063/1.4966192
– ident: e_1_2_6_18_1
  doi: 10.1063/1.4989536
– start-page: 763
  volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
  year: 2009
  ident: e_1_2_6_10_1
  doi: 10.1007/978-0-387-84858-7
– ident: e_1_2_6_14_1
  doi: 10.1021/acs.jpclett.8b02469
– ident: e_1_2_6_15_1
  doi: 10.1002/qua.24927
– ident: e_1_2_6_2_1
  doi: 10.1038/s41586-018-0337-2
– ident: e_1_2_6_29_1
  doi: 10.1063/1.5009347
– start-page: 266
  volume-title: Gaussian Processes for Machine Learning
  year: 2006
  ident: e_1_2_6_23_1
– volume: 12
  start-page: 2825
  year: 2011
  ident: e_1_2_6_5_1
  publication-title: J. Mach. Learn. Res.
– ident: e_1_2_6_11_1
  doi: 10.1021/acs.jcim.7b00090
– ident: e_1_2_6_16_1
  doi: 10.1021/acs.jctc.5b00099
– ident: e_1_2_6_28_1
  doi: 10.1021/acs.jctc.8b00708
– ident: e_1_2_6_33_1
  doi: 10.1021/acs.jctc.8b00636
– volume-title: NIPS‐W
  year: 2017
  ident: e_1_2_6_7_1
– ident: e_1_2_6_6_1
– ident: e_1_2_6_22_1
  doi: 10.1109/TIT.2018.2881749
– ident: e_1_2_6_20_1
  doi: 10.1103/PhysRevLett.108.058301
– ident: e_1_2_6_32_1
  doi: 10.1021/acs.jpca.9b01006
– ident: e_1_2_6_12_1
  doi: 10.1021/ct400195d
SSID ssj0003564
Score 2.5265145
Snippet MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine‐learning (ML) algorithms. It can be used...
MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine‐learning (ML) algorithms. It can be used...
MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine-learning (ML) algorithms. It can be used...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2339
SubjectTerms Algorithms
Artificial intelligence
Computer memory
Computer simulation
Fortran
kernel ridge regression
Kernels
Linear algebra
Machine learning
Mathematical analysis
molecular descriptor
Organic chemistry
Python
Quantum chemistry
sampling
Vectors (mathematics)
Title MLatom: A program package for quantum chemical research assisted by machine learning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.26004
https://www.ncbi.nlm.nih.gov/pubmed/31219626
https://www.proquest.com/docview/2273752057
https://www.proquest.com/docview/2244153448
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1096-987X
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0003564
  issn: 0192-8651
  databaseCode: ADMLS
  dateStart: 20050601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0192-8651
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1096-987X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003564
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hLnChUB7dFiqDOHDJksTxI3BCqyKEoIcKJA5Ike1MQKW7lLI5wK9n7DwQtEgVt0hxZMczHn9fMv4GYNtWPNM8cRHt1jrKKp5G1h92N4l2Ek1qRO4PJ59-l0fn2fGFuJiB_e4sTKMP0X9w8ysjxGu_wI29330WDf3p3NCrq3st0ITLQKd-PEtHcdFIRxGCibQUSacqFKe7_ZMv96K_AOZLvBo2nMMPcNkNtckzuRnWUzt0j69UHN_5Louw0AJRdtB4zhLM4OQjzI26-m_LcHZ6QoR8vMcOWJvExYhf31D8YQR02V1NNqnHzLWKA6yVDbpmBMe975TMPrBxyNVE1hanuFqB88NvZ6OjqK3BEDkueBY5IwWmEhW6Uoq8iq1yZWnLGLnMNSohUaOJjcEq0ViVijuZG52lVlUqp3C6CrOT2wl-AqaMNiavdIJxldnMWEVsybmMCBCi0uUAdjprFK4VKPd1Mn4VjbRyWtA0FWGaBrDVN_3dqHL8q9F6Z9KiXZj3RUpwTYmUUOoANvvbNLP-P4mZ4G3t23iSyYm4DmCtcYW-F55QiCcSSIMNBn27--J4NAoXn_-_6ReYJ0CWh2RBsQ6z0z81bhDomdqvwbufADXG_GI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPcCFvsvSbXErDlyyJPEzVS-rVdFCgQMCiUsV2c6kCLpLWzaH9td3nBeipVLVW6Q4cuIZj7_PGX8DsO1KLgxPfESrtYlEydPIhcPuNjFeoU2tzMLh5KNjNT0TB-fyfAned2dhGn2IfsMtzIw6XocJHjakd29VQy-9HwV5dbEMD4QinhIg0cmteBSXjXgUYZjIKJl0ukJxuts_enc1-gNi3kWs9ZKz9xA-dS_bZJpcjaqFG_mfv-k4_u_XPIL1FouyceM8j2EJ509gddKVgHsKp0eHxMln79iYtXlcjCj2FYUgRliXfavILNWM-VZ0gLXKQReMEHlwn4K5H2xWp2sia-tTfH4GZ3sfTifTqC3DEHkuuYi8VRJThRp9oWRWxk77onBFjFxlBrVUaNDG1mKZGCwLzb3KrBGp06XOKKI-h5X59Rw3gGlrrM1Kk2BcCies00SYvBfEgRC1KQaw05kj961GeSiV8SVv1JXTnIYpr4dpAG_7pl8bYY77Gg07m-bt3LzJU0JsWqYEVAfwpr9NIxt-ldg5XlehTeCZnLjrAF40vtD3whOK8sQD6WVri_69-_xgMqkvNv-96RasTsm6-eH-8ceXsEb4LKtzB-UQVhbfK3xFGGjhXteu_gsGUgCS
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkEvvCkLBQziwCXbJH4Gcam2rEppK4RaqRcU2c6YqmW3BTYH-us7zqsqDwlxi5SJ7MyMx98k428AXrnAheGZT2i3NokIPE9cPOxuM-MV2tzKIh5O3t1TWwdi-1AeLsHb_ixMyw8xfHCLK6OJ13GB41kV1i9ZQ4-9H0d6dXENrgtZmFjQt_npkjyKy5Y8ijBMYpTMel6hNF8fHr26G_0GMa8i1mbLmd6Gz_1k20qTk3G9cGN__guP4_--zR241WFRttE6z11Ywvk9uDnpW8Ddh_3dHcrJZ2_YBuvquBil2CcUghhhXfatJrPUM-Y70gHWMQcdMULk0X0q5n6yWVOuiazrT_HlARxM3-1PtpKuDUPiueQi8VZJzBVq9JWSRUid9lXlqhS5KgxqqdCgTa3FkBkMleZeFdaI3OmgC4qoD2F5fjrHR8C0NdYWwWSYBuGEdZoSJu8F5UCI2lQjeN2bo_QdR3lslfG1bNmV85LUVDZqGsHLQfSsJeb4k9Bab9OyW5s_ypwQm5Y5AdURvBhuk2bjrxI7x9M6ysQ8k1PuOoLV1heGUXhGUZ7yQJpsY9G_D19uTybNxeN_F30ONz5uTsud93sfnsAKwbOiKR2Ua7C8-F7jU4JAC_es8fQLraEAFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MLatom%3A+A+program+package+for+quantum+chemical+research+assisted+by+machine+learning&rft.jtitle=Journal+of+computational+chemistry&rft.au=Dral%2C+Pavlo+O.&rft.date=2019-10-05&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=40&rft.issue=26&rft.spage=2339&rft.epage=2347&rft_id=info:doi/10.1002%2Fjcc.26004&rft.externalDBID=10.1002%252Fjcc.26004&rft.externalDocID=JCC26004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon