MLatom: A program package for quantum chemical research assisted by machine learning
MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine‐learning (ML) algorithms. It can be used out‐of‐the‐box as a stand‐alone program with a user‐friendly online manual. The use of MLatom does not require extensive knowledge of machine lear...
Saved in:
| Published in | Journal of computational chemistry Vol. 40; no. 26; pp. 2339 - 2347 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
05.10.2019
Wiley Subscription Services, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0192-8651 1096-987X 1096-987X |
| DOI | 10.1002/jcc.26004 |
Cover
| Abstract | MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine‐learning (ML) algorithms. It can be used out‐of‐the‐box as a stand‐alone program with a user‐friendly online manual. The use of MLatom does not require extensive knowledge of machine learning, programming, or scripting. The user need only prepare input files and choose appropriate options. The program implements kernel ridge regression and supports Gaussian, Laplacian, and Matérn kernels. It can use arbitrary, user‐provided input vectors and can convert molecular geometries into input vectors corresponding to several types of built‐in molecular descriptors. MLatom saves and re‐uses trained ML models as needed, in addition to estimating the generalization error of ML setups. Various sampling procedures are supported and the gradients of output properties can be calculated. The core part of MLatom is written in Fortran, uses standard libraries for linear algebra, and is optimized for shared‐memory parallel computations. © 2019 Wiley Periodicals, Inc.
An out‐of‐the‐box, stand‐alone program package MLatom with a user‐friendly online manual is presented for computationally efficient atomistic simulations with machine learning. MLatom supports kernel ridge regression, various sampling procedures including structure‐based sampling, model selection and evaluation, and conversion of molecular coordinates to several built‐in molecular descriptors. The program can be used for solving generic machine‐learning tasks, constructing molecular potential energy surfaces and calculating energy gradients, and exploring chemical space. |
|---|---|
| AbstractList | MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine‐learning (ML) algorithms. It can be used out‐of‐the‐box as a stand‐alone program with a user‐friendly online manual. The use of MLatom does not require extensive knowledge of machine learning, programming, or scripting. The user need only prepare input files and choose appropriate options. The program implements kernel ridge regression and supports Gaussian, Laplacian, and Matérn kernels. It can use arbitrary, user‐provided input vectors and can convert molecular geometries into input vectors corresponding to several types of built‐in molecular descriptors. MLatom saves and re‐uses trained ML models as needed, in addition to estimating the generalization error of ML setups. Various sampling procedures are supported and the gradients of output properties can be calculated. The core part of MLatom is written in Fortran, uses standard libraries for linear algebra, and is optimized for shared‐memory parallel computations. © 2019 Wiley Periodicals, Inc.
An out‐of‐the‐box, stand‐alone program package MLatom with a user‐friendly online manual is presented for computationally efficient atomistic simulations with machine learning. MLatom supports kernel ridge regression, various sampling procedures including structure‐based sampling, model selection and evaluation, and conversion of molecular coordinates to several built‐in molecular descriptors. The program can be used for solving generic machine‐learning tasks, constructing molecular potential energy surfaces and calculating energy gradients, and exploring chemical space. MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine-learning (ML) algorithms. It can be used out-of-the-box as a stand-alone program with a user-friendly online manual. The use of MLatom does not require extensive knowledge of machine learning, programming, or scripting. The user need only prepare input files and choose appropriate options. The program implements kernel ridge regression and supports Gaussian, Laplacian, and Matérn kernels. It can use arbitrary, user-provided input vectors and can convert molecular geometries into input vectors corresponding to several types of built-in molecular descriptors. MLatom saves and re-uses trained ML models as needed, in addition to estimating the generalization error of ML setups. Various sampling procedures are supported and the gradients of output properties can be calculated. The core part of MLatom is written in Fortran, uses standard libraries for linear algebra, and is optimized for shared-memory parallel computations. © 2019 Wiley Periodicals, Inc.MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine-learning (ML) algorithms. It can be used out-of-the-box as a stand-alone program with a user-friendly online manual. The use of MLatom does not require extensive knowledge of machine learning, programming, or scripting. The user need only prepare input files and choose appropriate options. The program implements kernel ridge regression and supports Gaussian, Laplacian, and Matérn kernels. It can use arbitrary, user-provided input vectors and can convert molecular geometries into input vectors corresponding to several types of built-in molecular descriptors. MLatom saves and re-uses trained ML models as needed, in addition to estimating the generalization error of ML setups. Various sampling procedures are supported and the gradients of output properties can be calculated. The core part of MLatom is written in Fortran, uses standard libraries for linear algebra, and is optimized for shared-memory parallel computations. © 2019 Wiley Periodicals, Inc. MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine‐learning (ML) algorithms. It can be used out‐of‐the‐box as a stand‐alone program with a user‐friendly online manual. The use of MLatom does not require extensive knowledge of machine learning, programming, or scripting. The user need only prepare input files and choose appropriate options. The program implements kernel ridge regression and supports Gaussian, Laplacian, and Matérn kernels. It can use arbitrary, user‐provided input vectors and can convert molecular geometries into input vectors corresponding to several types of built‐in molecular descriptors. MLatom saves and re‐uses trained ML models as needed, in addition to estimating the generalization error of ML setups. Various sampling procedures are supported and the gradients of output properties can be calculated. The core part of MLatom is written in Fortran, uses standard libraries for linear algebra, and is optimized for shared‐memory parallel computations. © 2019 Wiley Periodicals, Inc. MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine‐learning (ML) algorithms. It can be used out‐of‐the‐box as a stand‐alone program with a user‐friendly online manual. The use of MLatom does not require extensive knowledge of machine learning, programming, or scripting. The user need only prepare input files and choose appropriate options. The program implements kernel ridge regression and supports Gaussian, Laplacian, and Matérn kernels. It can use arbitrary, user‐provided input vectors and can convert molecular geometries into input vectors corresponding to several types of built‐in molecular descriptors. MLatom saves and re‐uses trained ML models as needed, in addition to estimating the generalization error of ML setups. Various sampling procedures are supported and the gradients of output properties can be calculated. The core part of MLatom is written in Fortran, uses standard libraries for linear algebra, and is optimized for shared‐memory parallel computations. © 2019 Wiley Periodicals, Inc. |
| Author | Dral, Pavlo O. |
| Author_xml | – sequence: 1 givenname: Pavlo O. orcidid: 0000-0002-2975-9876 surname: Dral fullname: Dral, Pavlo O. email: dral@kofo.mpg.de organization: Max‐Planck‐Institut für Kohlenforschung |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31219626$$D View this record in MEDLINE/PubMed |
| BookMark | eNp90UFP2zAUB3ALgdbSceALTJZ22Q4pthPbyW6oYhuoaBeQuEUvzkvrLnGKnWjqt8fQsgMSnN7h_d7T0_ufkmPXOyTknLM5Z0xcbIyZC8VYdkSmnBUqKXL9cEymjBciyZXkE3IawoYxlkqVfSKTlAteKKGm5O52CUPf_aCXdOv7lYeObsH8hRXSpvf0cQQ3jB01a-ysgZZ6DAjerCmEYMOANa12tAOztg5pG1vOutVnctJAG_DsUGfk_ufV3eJ3svzz63pxuUxMKtMsMaAkCoUaTa1k0bBKm7quaoapKnLUUmGOwACw4Tk2tU6NKiDPRKUbXXCZzsi3_d54-uOIYSg7Gwy2LTjsx1AKkWWRZVke6dc3dNOP3sXrotKploJJHdWXgxqrDuty620Hfle-_iuC73tgfB-Cx-Y_4ax8zqKMWZQvWUR78cYaO8Bgezd4sO1HE_9si7v3V5c3i8V-4gmmUJmI |
| CitedBy_id | crossref_primary_10_1039_D1SC03564A crossref_primary_10_1021_acs_est_1c05970 crossref_primary_10_3389_fphy_2023_1223973 crossref_primary_10_1063_5_0080506 crossref_primary_10_1039_D4DD00153B crossref_primary_10_1063_5_0006498 crossref_primary_10_1515_pac_2022_0202 crossref_primary_10_1063_5_0089200 crossref_primary_10_1002_advs_202204902 crossref_primary_10_1039_D3CP04046A crossref_primary_10_1016_j_mtcomm_2024_111437 crossref_primary_10_1021_acs_chemrev_0c00749 crossref_primary_10_1039_D3CP05685F crossref_primary_10_1021_acs_jctc_2c01038 crossref_primary_10_1039_D4CC00010B crossref_primary_10_1088_2632_2153_ac9a9d crossref_primary_10_1063_5_0159247 crossref_primary_10_1002_jcc_26128 crossref_primary_10_1039_D2RA05643G crossref_primary_10_1063_5_0230176 crossref_primary_10_1007_s10915_022_01999_1 crossref_primary_10_1088_2632_2153_abfe3f crossref_primary_10_1016_j_physrep_2021_08_002 crossref_primary_10_1021_acs_jpca_0c05310 crossref_primary_10_1021_acs_jctc_4c00801 crossref_primary_10_3390_pr11102897 crossref_primary_10_1021_acs_jpclett_2c01242 crossref_primary_10_1002_adma_202305758 crossref_primary_10_1021_acs_jpclett_2c02299 crossref_primary_10_1021_acs_jctc_2c00718 crossref_primary_10_1002_jcc_26790 crossref_primary_10_1038_s41570_021_00278_1 crossref_primary_10_3390_ijms25031448 crossref_primary_10_1063_5_0210866 crossref_primary_10_1063_5_0023697 crossref_primary_10_1063_5_0080766 crossref_primary_10_1063_5_0137101 crossref_primary_10_1063_5_0155377 crossref_primary_10_1038_s41467_022_29621_w crossref_primary_10_1007_s41061_021_00339_5 crossref_primary_10_1021_acs_jctc_4c00054 crossref_primary_10_1002_wcms_1645 crossref_primary_10_1021_acs_jctc_4c00932 crossref_primary_10_1021_acs_jctc_4c00977 crossref_primary_10_1016_j_aichem_2024_100059 crossref_primary_10_1021_prechem_4c00060 crossref_primary_10_1021_acs_jctc_2c00004 crossref_primary_10_1021_acs_jctc_3c01203 crossref_primary_10_1039_D3CP05865D crossref_primary_10_1063_5_0136404 crossref_primary_10_1039_D3CP03515H crossref_primary_10_1021_acs_jpclett_9b03664 crossref_primary_10_1088_1367_2630_ac3261 crossref_primary_10_1016_j_cpc_2023_108940 crossref_primary_10_1021_acs_jpclett_2c00734 |
| Cites_doi | 10.1002/qua.24954 10.1063/1.5092228 10.1126/sciadv.1603015 10.1126/sciadv.1701816 10.1088/0953-4075/49/22/224001 10.1126/science.aar6404 10.1063/1.5043213 10.1063/1.5024577 10.1198/jasa.2010.tm09420 10.1063/1.4922890 10.1103/RevModPhys.84.1527 10.1063/1.5017103 10.1007/s10822-018-0169-z 10.1021/acs.jctc.5b00141 10.1063/1.4966192 10.1063/1.4989536 10.1007/978-0-387-84858-7 10.1021/acs.jpclett.8b02469 10.1002/qua.24927 10.1038/s41586-018-0337-2 10.1063/1.5009347 10.1021/acs.jcim.7b00090 10.1021/acs.jctc.5b00099 10.1021/acs.jctc.8b00708 10.1021/acs.jctc.8b00636 10.1109/TIT.2018.2881749 10.1103/PhysRevLett.108.058301 10.1021/acs.jpca.9b01006 10.1021/ct400195d |
| ContentType | Journal Article |
| Copyright | 2019 Wiley Periodicals, Inc. |
| Copyright_xml | – notice: 2019 Wiley Periodicals, Inc. |
| DBID | AAYXX CITATION NPM JQ2 7X8 |
| DOI | 10.1002/jcc.26004 |
| DatabaseName | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed ProQuest Computer Science Collection MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef ProQuest Computer Science Collection PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1096-987X |
| EndPage | 2347 |
| ExternalDocumentID | 31219626 10_1002_jcc_26004 JCC26004 |
| Genre | article Journal Article |
| GroupedDBID | --- -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 36B 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACNCT ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AIAGR AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K RNS ROL RWI RWK RX1 RYL SUPJJ TN5 UB1 UPT V2E V8K W8V W99 WBFHL WBKPD WH7 WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YQT ZZTAW ~IA ~KM ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION NPM JQ2 7X8 |
| ID | FETCH-LOGICAL-c3534-ca65e26e7ecd659f0b7cddbd0e3698e756e8ea0aaef18efd73c69a842b7f79153 |
| IEDL.DBID | DR2 |
| ISSN | 0192-8651 1096-987X |
| IngestDate | Fri Jul 11 06:45:15 EDT 2025 Fri Jul 25 19:12:23 EDT 2025 Thu Apr 03 06:59:39 EDT 2025 Wed Oct 01 02:49:08 EDT 2025 Thu Apr 24 22:57:47 EDT 2025 Wed Jan 22 16:39:09 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 26 |
| Keywords | sampling quantum chemistry molecular descriptor machine learning Fortran Python kernel ridge regression |
| Language | English |
| License | 2019 Wiley Periodicals, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3534-ca65e26e7ecd659f0b7cddbd0e3698e756e8ea0aaef18efd73c69a842b7f79153 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2975-9876 |
| PMID | 31219626 |
| PQID | 2273752057 |
| PQPubID | 48816 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2244153448 proquest_journals_2273752057 pubmed_primary_31219626 crossref_primary_10_1002_jcc_26004 crossref_citationtrail_10_1002_jcc_26004 wiley_primary_10_1002_jcc_26004_JCC26004 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | October 5, 2019 |
| PublicationDateYYYYMMDD | 2019-10-05 |
| PublicationDate_xml | – month: 10 year: 2019 text: October 5, 2019 day: 05 |
| PublicationDecade | 2010 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: New York |
| PublicationTitle | Journal of computational chemistry |
| PublicationTitleAlternate | J Comput Chem |
| PublicationYear | 2019 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2018; 362 2017; 3 2010; 105 2018; 148 2015; 11 2015; 142 2009 2016; 145 2006 2011; 12 2012; 108 2019; 123 2013; 9 2018; 9 2015; 115 2018; 559 2019; 65 2017; 57 2017 2015 2013 2017; 146 2016; 49 2018; 32 2019; 150 2018; 14 2012; 84 e_1_2_6_32_1 e_1_2_6_31_1 e_1_2_6_30_1 e_1_2_6_19_1 Pedregosa F. (e_1_2_6_5_1) 2011; 12 Paszke A. (e_1_2_6_7_1) 2017 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_12_1 e_1_2_6_33_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 e_1_2_6_21_1 e_1_2_6_20_1 Hastie T. (e_1_2_6_10_1) 2009 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_1_1 Rasmussen C. E. (e_1_2_6_23_1) 2006 e_1_2_6_25_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_2_1 e_1_2_6_22_1 e_1_2_6_29_1 Dral P. O. (e_1_2_6_9_1) 2013 e_1_2_6_28_1 e_1_2_6_27_1 e_1_2_6_26_1 |
| References_xml | – volume: 559 start-page: 547 year: 2018 publication-title: Nature – volume: 148 start-page: 241704 year: 2018 publication-title: J. Chem. Phys. – volume: 14 start-page: 4772 year: 2018 publication-title: J. Chem. Theory Comput. – volume: 12 start-page: 2825 year: 2011 publication-title: J. Mach. Learn. Res. – start-page: 266 year: 2006 – volume: 115 start-page: 1051 year: 2015 publication-title: Int. J. Quantum Chem. – volume: 9 start-page: 5660 year: 2018 publication-title: J. Phys. Chem. Lett. – volume: 148 start-page: 094114 year: 2018 publication-title: J. Chem. Phys. – volume: 148 start-page: 241725 year: 2018 publication-title: J. Chem. Phys. – volume: 123 start-page: 4486 year: 2019 publication-title: J. Phys. Chem. A – volume: 57 start-page: 1923 year: 2017 publication-title: J. Chem. Inf. Model. – volume: 108 start-page: 058301 year: 2012 publication-title: Phys. Rev. Lett. – volume: 105 start-page: 1167 year: 2010 publication-title: J. Am. Stat. Assoc. – volume: 32 start-page: 1165 year: 2018 publication-title: J. Comput. Aided Mol. Des. – volume: 65 start-page: 3124 year: 2019 publication-title: IEEE Trans. Inf. Theory – volume: 49 start-page: 224001 year: 2016 publication-title: J. Phys. B: At. Mol. Opt. Phys. – volume: 11 start-page: 2120 year: 2015 publication-title: J. Chem. Theory Comput. – volume: 150 start-page: 131102 year: 2019 publication-title: J. Chem. Phys. – volume: 148 start-page: 241401 year: 2018 publication-title: J. Chem. Phys. – volume: 146 start-page: 244108 year: 2017 publication-title: J. Chem. Phys. – volume: 9 start-page: 3404 year: 2013 publication-title: J. Chem. Theory Comput. – volume: 84 start-page: 1527 year: 2012 publication-title: Rev. Mod. Phys. – volume: 142 start-page: 244306 year: 2015 publication-title: J. Chem. Phys. – volume: 145 start-page: 170901 year: 2016 publication-title: J. Chem. Phys. – volume: 3 year: 2017 publication-title: Sci. Adv. – start-page: 763 year: 2009 – volume: 115 start-page: 1058 year: 2015 publication-title: Int. J. Quantum Chem. – year: 2017 – year: 2015 – volume: 14 start-page: 5777 year: 2018 publication-title: J. Chem. Theory Comput. – volume: 362 start-page: 1140 year: 2018 publication-title: Science – year: 2013 – volume: 11 start-page: 2087 year: 2015 publication-title: J. Chem. Theory Comput. – ident: e_1_2_6_8_1 doi: 10.1002/qua.24954 – ident: e_1_2_6_30_1 doi: 10.1063/1.5092228 – ident: e_1_2_6_26_1 doi: 10.1126/sciadv.1603015 – ident: e_1_2_6_34_1 doi: 10.1126/sciadv.1701816 – ident: e_1_2_6_25_1 doi: 10.1088/0953-4075/49/22/224001 – ident: e_1_2_6_1_1 doi: 10.1126/science.aar6404 – ident: e_1_2_6_3_1 doi: 10.1063/1.5043213 – ident: e_1_2_6_13_1 doi: 10.1063/1.5024577 – ident: e_1_2_6_24_1 doi: 10.1198/jasa.2010.tm09420 – ident: e_1_2_6_35_1 doi: 10.1063/1.4922890 – ident: e_1_2_6_21_1 doi: 10.1103/RevModPhys.84.1527 – ident: e_1_2_6_27_1 doi: 10.1063/1.5017103 – ident: e_1_2_6_31_1 doi: 10.1007/s10822-018-0169-z – ident: e_1_2_6_17_1 doi: 10.1021/acs.jctc.5b00141 – volume-title: MLatom: A Package for Atomistic Simulations with Machine Learning, version 1.0 year: 2013 ident: e_1_2_6_9_1 – ident: e_1_2_6_19_1 – ident: e_1_2_6_4_1 doi: 10.1063/1.4966192 – ident: e_1_2_6_18_1 doi: 10.1063/1.4989536 – start-page: 763 volume-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction year: 2009 ident: e_1_2_6_10_1 doi: 10.1007/978-0-387-84858-7 – ident: e_1_2_6_14_1 doi: 10.1021/acs.jpclett.8b02469 – ident: e_1_2_6_15_1 doi: 10.1002/qua.24927 – ident: e_1_2_6_2_1 doi: 10.1038/s41586-018-0337-2 – ident: e_1_2_6_29_1 doi: 10.1063/1.5009347 – start-page: 266 volume-title: Gaussian Processes for Machine Learning year: 2006 ident: e_1_2_6_23_1 – volume: 12 start-page: 2825 year: 2011 ident: e_1_2_6_5_1 publication-title: J. Mach. Learn. Res. – ident: e_1_2_6_11_1 doi: 10.1021/acs.jcim.7b00090 – ident: e_1_2_6_16_1 doi: 10.1021/acs.jctc.5b00099 – ident: e_1_2_6_28_1 doi: 10.1021/acs.jctc.8b00708 – ident: e_1_2_6_33_1 doi: 10.1021/acs.jctc.8b00636 – volume-title: NIPS‐W year: 2017 ident: e_1_2_6_7_1 – ident: e_1_2_6_6_1 – ident: e_1_2_6_22_1 doi: 10.1109/TIT.2018.2881749 – ident: e_1_2_6_20_1 doi: 10.1103/PhysRevLett.108.058301 – ident: e_1_2_6_32_1 doi: 10.1021/acs.jpca.9b01006 – ident: e_1_2_6_12_1 doi: 10.1021/ct400195d |
| SSID | ssj0003564 |
| Score | 2.5265145 |
| Snippet | MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine‐learning (ML) algorithms. It can be used... MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine‐learning (ML) algorithms. It can be used... MLatom is a program package designed for computationally efficient simulations of atomistic systems with machine-learning (ML) algorithms. It can be used... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2339 |
| SubjectTerms | Algorithms Artificial intelligence Computer memory Computer simulation Fortran kernel ridge regression Kernels Linear algebra Machine learning Mathematical analysis molecular descriptor Organic chemistry Python Quantum chemistry sampling Vectors (mathematics) |
| Title | MLatom: A program package for quantum chemical research assisted by machine learning |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcc.26004 https://www.ncbi.nlm.nih.gov/pubmed/31219626 https://www.proquest.com/docview/2273752057 https://www.proquest.com/docview/2244153448 |
| Volume | 40 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1096-987X dateEnd: 20241101 omitProxy: false ssIdentifier: ssj0003564 issn: 0192-8651 databaseCode: ADMLS dateStart: 20050601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0192-8651 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1096-987X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003564 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hLnChUB7dFiqDOHDJksTxI3BCqyKEoIcKJA5Ike1MQKW7lLI5wK9n7DwQtEgVt0hxZMczHn9fMv4GYNtWPNM8cRHt1jrKKp5G1h92N4l2Ek1qRO4PJ59-l0fn2fGFuJiB_e4sTKMP0X9w8ysjxGu_wI29330WDf3p3NCrq3st0ITLQKd-PEtHcdFIRxGCibQUSacqFKe7_ZMv96K_AOZLvBo2nMMPcNkNtckzuRnWUzt0j69UHN_5Louw0AJRdtB4zhLM4OQjzI26-m_LcHZ6QoR8vMcOWJvExYhf31D8YQR02V1NNqnHzLWKA6yVDbpmBMe975TMPrBxyNVE1hanuFqB88NvZ6OjqK3BEDkueBY5IwWmEhW6Uoq8iq1yZWnLGLnMNSohUaOJjcEq0ViVijuZG52lVlUqp3C6CrOT2wl-AqaMNiavdIJxldnMWEVsybmMCBCi0uUAdjprFK4VKPd1Mn4VjbRyWtA0FWGaBrDVN_3dqHL8q9F6Z9KiXZj3RUpwTYmUUOoANvvbNLP-P4mZ4G3t23iSyYm4DmCtcYW-F55QiCcSSIMNBn27--J4NAoXn_-_6ReYJ0CWh2RBsQ6z0z81bhDomdqvwbufADXG_GI |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BPcCFvsvSbXErDlyyJPEzVS-rVdFCgQMCiUsV2c6kCLpLWzaH9td3nBeipVLVW6Q4cuIZj7_PGX8DsO1KLgxPfESrtYlEydPIhcPuNjFeoU2tzMLh5KNjNT0TB-fyfAned2dhGn2IfsMtzIw6XocJHjakd29VQy-9HwV5dbEMD4QinhIg0cmteBSXjXgUYZjIKJl0ukJxuts_enc1-gNi3kWs9ZKz9xA-dS_bZJpcjaqFG_mfv-k4_u_XPIL1FouyceM8j2EJ509gddKVgHsKp0eHxMln79iYtXlcjCj2FYUgRliXfavILNWM-VZ0gLXKQReMEHlwn4K5H2xWp2sia-tTfH4GZ3sfTifTqC3DEHkuuYi8VRJThRp9oWRWxk77onBFjFxlBrVUaNDG1mKZGCwLzb3KrBGp06XOKKI-h5X59Rw3gGlrrM1Kk2BcCies00SYvBfEgRC1KQaw05kj961GeSiV8SVv1JXTnIYpr4dpAG_7pl8bYY77Gg07m-bt3LzJU0JsWqYEVAfwpr9NIxt-ldg5XlehTeCZnLjrAF40vtD3whOK8sQD6WVri_69-_xgMqkvNv-96RasTsm6-eH-8ceXsEb4LKtzB-UQVhbfK3xFGGjhXteu_gsGUgCS |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIkEvvCkLBQziwCXbJH4Gcam2rEppK4RaqRcU2c6YqmW3BTYH-us7zqsqDwlxi5SJ7MyMx98k428AXrnAheGZT2i3NokIPE9cPOxuM-MV2tzKIh5O3t1TWwdi-1AeLsHb_ixMyw8xfHCLK6OJ13GB41kV1i9ZQ4-9H0d6dXENrgtZmFjQt_npkjyKy5Y8ijBMYpTMel6hNF8fHr26G_0GMa8i1mbLmd6Gz_1k20qTk3G9cGN__guP4_--zR241WFRttE6z11Ywvk9uDnpW8Ddh_3dHcrJZ2_YBuvquBil2CcUghhhXfatJrPUM-Y70gHWMQcdMULk0X0q5n6yWVOuiazrT_HlARxM3-1PtpKuDUPiueQi8VZJzBVq9JWSRUid9lXlqhS5KgxqqdCgTa3FkBkMleZeFdaI3OmgC4qoD2F5fjrHR8C0NdYWwWSYBuGEdZoSJu8F5UCI2lQjeN2bo_QdR3lslfG1bNmV85LUVDZqGsHLQfSsJeb4k9Bab9OyW5s_ypwQm5Y5AdURvBhuk2bjrxI7x9M6ysQ8k1PuOoLV1heGUXhGUZ7yQJpsY9G_D19uTybNxeN_F30ONz5uTsud93sfnsAKwbOiKR2Ua7C8-F7jU4JAC_es8fQLraEAFg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MLatom%3A+A+program+package+for+quantum+chemical+research+assisted+by+machine+learning&rft.jtitle=Journal+of+computational+chemistry&rft.au=Dral%2C+Pavlo+O.&rft.date=2019-10-05&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0192-8651&rft.eissn=1096-987X&rft.volume=40&rft.issue=26&rft.spage=2339&rft.epage=2347&rft_id=info:doi/10.1002%2Fjcc.26004&rft.externalDBID=10.1002%252Fjcc.26004&rft.externalDocID=JCC26004 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0192-8651&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0192-8651&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0192-8651&client=summon |