Interpretability analysis for thermal sensation machine learning models: An exploration based on the SHAP approach

Machine learning models have been widely used for studying thermal sensations. However, the black‐box properties of machine learning models lead to the lack of model transparency, and existing explanations for the thermal sensation models are generally flawed in terms of the perspectives of interpre...

Full description

Saved in:
Bibliographic Details
Published inIndoor air Vol. 32; no. 2; pp. e12984 - n/a
Main Authors Yang, Yuren, Yuan, Ye, Han, Zhen, Liu, Gang
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.02.2022
Subjects
Online AccessGet full text
ISSN0905-6947
1600-0668
1600-0668
DOI10.1111/ina.12984

Cover

Abstract Machine learning models have been widely used for studying thermal sensations. However, the black‐box properties of machine learning models lead to the lack of model transparency, and existing explanations for the thermal sensation models are generally flawed in terms of the perspectives of interpretable methods. In this study, we perform an interpretability analysis using the "SHapley Additive exPlanation" (SHAP) from game theory for thermal sensation machine learning models. The effects of different features on thermal sensations and typical decision routes in the models are investigated from both local and global perspectives, and the properties of correlation between features and thermal sensations and decision routes within machine learning models are summarized. The differences in the effects of features across samples reflect the effects of features on thermal sensations not only can be demonstrated by significant magnitudes but also by differentiation. The effects of features on thermal sensations often appear in the form of combinations of two to four features, which determine the final thermal sensation in most cases. Therefore, the neutral environment may actually be a dynamic high‐dimensional space consisting of certain combinations of features in certain ranges with changing shapes.
AbstractList Machine learning models have been widely used for studying thermal sensations. However, the black-box properties of machine learning models lead to the lack of model transparency, and existing explanations for the thermal sensation models are generally flawed in terms of the perspectives of interpretable methods. In this study, we perform an interpretability analysis using the "SHapley Additive exPlanation" (SHAP) from game theory for thermal sensation machine learning models. The effects of different features on thermal sensations and typical decision routes in the models are investigated from both local and global perspectives, and the properties of correlation between features and thermal sensations and decision routes within machine learning models are summarized. The differences in the effects of features across samples reflect the effects of features on thermal sensations not only can be demonstrated by significant magnitudes but also by differentiation. The effects of features on thermal sensations often appear in the form of combinations of two to four features, which determine the final thermal sensation in most cases. Therefore, the neutral environment may actually be a dynamic high-dimensional space consisting of certain combinations of features in certain ranges with changing shapes.
Machine learning models have been widely used for studying thermal sensations. However, the black-box properties of machine learning models lead to the lack of model transparency, and existing explanations for the thermal sensation models are generally flawed in terms of the perspectives of interpretable methods. In this study, we perform an interpretability analysis using the "SHapley Additive exPlanation" (SHAP) from game theory for thermal sensation machine learning models. The effects of different features on thermal sensations and typical decision routes in the models are investigated from both local and global perspectives, and the properties of correlation between features and thermal sensations and decision routes within machine learning models are summarized. The differences in the effects of features across samples reflect the effects of features on thermal sensations not only can be demonstrated by significant magnitudes but also by differentiation. The effects of features on thermal sensations often appear in the form of combinations of two to four features, which determine the final thermal sensation in most cases. Therefore, the neutral environment may actually be a dynamic high-dimensional space consisting of certain combinations of features in certain ranges with changing shapes.Machine learning models have been widely used for studying thermal sensations. However, the black-box properties of machine learning models lead to the lack of model transparency, and existing explanations for the thermal sensation models are generally flawed in terms of the perspectives of interpretable methods. In this study, we perform an interpretability analysis using the "SHapley Additive exPlanation" (SHAP) from game theory for thermal sensation machine learning models. The effects of different features on thermal sensations and typical decision routes in the models are investigated from both local and global perspectives, and the properties of correlation between features and thermal sensations and decision routes within machine learning models are summarized. The differences in the effects of features across samples reflect the effects of features on thermal sensations not only can be demonstrated by significant magnitudes but also by differentiation. The effects of features on thermal sensations often appear in the form of combinations of two to four features, which determine the final thermal sensation in most cases. Therefore, the neutral environment may actually be a dynamic high-dimensional space consisting of certain combinations of features in certain ranges with changing shapes.
Author Liu, Gang
Han, Zhen
Yuan, Ye
Yang, Yuren
Author_xml – sequence: 1
  givenname: Yuren
  orcidid: 0000-0001-6185-5297
  surname: Yang
  fullname: Yang, Yuren
  organization: Tianjin University
– sequence: 2
  givenname: Ye
  orcidid: 0000-0002-2277-5806
  surname: Yuan
  fullname: Yuan, Ye
  organization: Tianjin University
– sequence: 3
  givenname: Zhen
  surname: Han
  fullname: Han, Zhen
  organization: Tianjin University
– sequence: 4
  givenname: Gang
  orcidid: 0000-0002-7864-7846
  surname: Liu
  fullname: Liu, Gang
  email: lglgmike@163.com
  organization: Tianjin University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35048421$$D View this record in MEDLINE/PubMed
BookMark eNp1kU9vFCEcholpY7fVg1_AkHjRw7T8Gwa8bRq1mzRqop4JM_PD0jAwwmzqfntpd3tpLBc4PO9D8r6n6CimCAi9oeSc1nPhoz2nTCvxAq2oJKQhUqojtCKatI3UojtBp6XcEkI7rvlLdMJbIpRgdIXyJi6Q5wyL7X3wyw7baMOu-IJdyni5gTzZgAvEYhefIp7scOMj4AA2Rx9_4ymNEMpHvI4Y_s4h5T3X2wIjro-qwD-u1t-xneecavoVOnY2FHh9uM_Qr8-ffl5eNdffvmwu19fNwFsuGq0JZ5IO1CmpXCcca4mCkfWdBsUk65yjpGdOWsJ7okQ_tgC9ANFJO7Ta8TP0fu-t3_7ZQlnM5MsAIdgIaVtMdVDZaqFURd89QW_TNtci7inOOyY0EZV6e6C2_QSjmbOfbN6ZxzYrcLEHhpxKyeDM4JeHOpZsfTCUmPu9TN3LPOxVEx-eJB6l_2MP9jsfYPc8aDZf1_vEPwiupCY
CitedBy_id crossref_primary_10_1016_j_adapen_2023_100123
crossref_primary_10_1016_j_jenvman_2024_122864
crossref_primary_10_3389_fneur_2024_1305543
crossref_primary_10_1371_journal_pone_0294027
crossref_primary_10_1002_VIW_20240059
crossref_primary_10_1016_j_enbuild_2024_113997
crossref_primary_10_1016_j_ijpharm_2023_123458
crossref_primary_10_1016_j_ijpharm_2025_125207
crossref_primary_10_1016_j_rser_2025_115335
crossref_primary_10_1016_j_aei_2024_102359
crossref_primary_10_1016_j_engappai_2025_110140
crossref_primary_10_1186_s13662_024_03846_z
crossref_primary_10_1016_j_comptc_2024_115032
crossref_primary_10_3390_buildings13123107
crossref_primary_10_1002_biof_1995
crossref_primary_10_1016_j_powtec_2025_120638
crossref_primary_10_1016_j_jece_2024_114428
crossref_primary_10_1080_19475705_2023_2213807
crossref_primary_10_1016_j_jwpe_2023_104664
crossref_primary_10_1016_j_websem_2024_100854
crossref_primary_10_3390_rs14174169
crossref_primary_10_1016_j_coco_2024_102072
crossref_primary_10_3390_w16223247
crossref_primary_10_1190_geo2023_0657_1
crossref_primary_10_1007_s13753_024_00578_2
crossref_primary_10_3390_su16114609
crossref_primary_10_3390_en17030700
crossref_primary_10_1016_j_scs_2023_104751
crossref_primary_10_1016_j_enbuild_2023_113699
crossref_primary_10_1016_j_jece_2025_115946
crossref_primary_10_1002_dmrr_3801
crossref_primary_10_1016_j_geits_2024_100250
crossref_primary_10_1007_s12273_024_1142_5
crossref_primary_10_3390_f14122422
crossref_primary_10_3390_ma16124366
crossref_primary_10_1038_s41598_025_90459_5
crossref_primary_10_3389_fendo_2023_1292167
crossref_primary_10_1016_j_fuel_2024_131346
crossref_primary_10_3390_pr12071414
crossref_primary_10_1016_j_rineng_2024_103220
crossref_primary_10_1371_journal_pone_0281922
crossref_primary_10_1016_j_psep_2023_06_029
crossref_primary_10_1021_acsami_4c22272
crossref_primary_10_1016_j_precisioneng_2025_02_024
crossref_primary_10_1016_j_buildenv_2025_112824
crossref_primary_10_1016_j_trip_2024_101267
crossref_primary_10_1186_s12967_025_06102_4
crossref_primary_10_1007_s12020_023_03536_y
crossref_primary_10_1016_j_buildenv_2024_112127
crossref_primary_10_3389_fgene_2022_979529
crossref_primary_10_1016_j_jclepro_2023_138925
crossref_primary_10_1016_j_enbuild_2024_114153
Cites_doi 10.1016/j.buildenv.2020.106868
10.1016/j.enbuild.2018.02.035
10.1016/j.jobe.2019.101120
10.1016/S0378-7788(97)00053-4
10.1109/ACCESS.2020.3032756
10.1016/j.rser.2021.111359
10.1016/j.neuroimage.2013.10.067
10.1016/j.jtherbio.2020.102718
10.1109/ACCESS.2020.2988359
10.1016/j.buildenv.2019.03.010
10.1016/j.physbeh.2016.05.045
10.1080/00140139108967320
10.1016/j.enbuild.2020.109807
10.1016/j.buildenv.2020.106898
10.1016/S0378-7788(02)00018-X
10.1111/ina.12256
10.1016/j.buildenv.2018.11.017
10.1016/S0360-1323(00)00061-5
10.1007/BF01041840
10.1016/j.enbuild.2020.109937
10.1016/0003-6870(76)90104-6
10.1111/j.1600-0668.2006.00434.x
10.1111/j.1600-0668.2011.00747.x
10.1016/j.buildenv.2019.106286
10.1016/j.buildenv.2012.12.002
10.1016/j.engstruct.2020.110927
10.1016/j.enbuild.2014.08.051
10.1016/j.buildenv.2020.107486
10.1016/j.buildenv.2019.02.039
10.1016/S0378-7788(02)00003-8
10.1016/j.enbuild.2017.09.062
10.1016/j.buildenv.2019.01.055
10.1007/s00421-011-2206-7
10.1038/s42256-019-0138-9
10.1007/s00421-007-0609-2
10.1016/j.buildenv.2019.106231
10.1016/j.buildenv.2019.106640
10.1016/j.buildenv.2018.06.022
10.1016/j.enbuild.2020.110392
10.1016/S0378-7788(02)00014-2
10.1016/j.enbuild.2020.110017
10.1111/ina.12233
10.1016/j.buildenv.2010.08.011
10.1016/j.buildenv.2010.03.016
10.1007/978-3-030-64949-4_8
10.1016/j.enbuild.2020.109776
10.1111/ina.12792
10.1016/j.buildenv.2006.01.009
10.1016/j.buildenv.2018.04.040
10.1111/ina.12329
10.1111/j.1600-0668.2011.00758.x
ContentType Journal Article
Copyright 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright © 2022 John Wiley & Sons A/S
Copyright_xml – notice: 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
– notice: 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
– notice: Copyright © 2022 John Wiley & Sons A/S
DBID AAYXX
CITATION
NPM
7ST
8FD
C1K
FR3
KR7
SOI
7X8
DOI 10.1111/ina.12984
DatabaseName CrossRef
PubMed
Environment Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Environment Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Environment Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1600-0668
EndPage n/a
ExternalDocumentID 35048421
10_1111_ina_12984
INA12984
Genre article
Journal Article
GrantInformation_xml – fundername: National Key R&D Program of China
  funderid: 2016YFC0700200
– fundername: National Key R&D Program of China
  grantid: 2016YFC0700200
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29I
31~
33P
36B
3SF
4.4
4P2
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8C1
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAJEY
AAKAS
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABUWG
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACGFS
ACIWK
ACMXC
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZCM
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AEUYN
AFBPY
AFEBI
AFGKR
AFKRA
AFPWT
AFRAH
AFZJQ
AHEFC
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOETA
ASPBG
ATCPS
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMXJE
BROTX
BRXPI
BY8
C45
CAG
CCPQU
COF
CS3
D-6
D-7
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EAD
EAP
EBC
EBD
EBS
EDH
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FEDTE
FUBAC
FYUFA
FZ0
G-S
G.N
GODZA
H.X
H13
HCIFZ
HF~
HVGLF
HZI
HZ~
IHE
IX1
J0M
K48
KBYEO
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OVD
P2W
P2X
P2Z
P4B
P4D
PALCI
PATMY
PIMPY
PQQKQ
PYCSY
Q.N
Q11
QB0
R.K
RHX
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TEORI
UB1
UKHRP
W8V
W99
WBKPD
WIH
WIJ
WIK
WLBEL
WOHZO
WQJ
WRC
WUP
WXI
WXSBR
WYISQ
XG1
YFH
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
NPM
7ST
8FD
C1K
FR3
KR7
SOI
7X8
ID FETCH-LOGICAL-c3534-9903261c1f868f74f2508ed2b79e82627ff10b2f6a03b084bd5eeb4e476ac59f3
IEDL.DBID DR2
ISSN 0905-6947
1600-0668
IngestDate Thu Oct 02 05:41:46 EDT 2025
Fri Jul 25 21:06:40 EDT 2025
Mon Jul 21 05:40:45 EDT 2025
Wed Oct 01 03:05:31 EDT 2025
Thu Apr 24 23:03:59 EDT 2025
Wed Jan 22 16:25:31 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords neutral environment
SHAP
interpretability analysis
local explanations
thermal sensation
machine learning
Language English
License 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3534-9903261c1f868f74f2508ed2b79e82627ff10b2f6a03b084bd5eeb4e476ac59f3
Notes Yuren Yang and Ye Yuan contributed equally to this work.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6185-5297
0000-0002-2277-5806
0000-0002-7864-7846
PMID 35048421
PQID 2633724904
PQPubID 105551
PageCount 24
ParticipantIDs proquest_miscellaneous_2621659488
proquest_journals_2633724904
pubmed_primary_35048421
crossref_citationtrail_10_1111_ina_12984
crossref_primary_10_1111_ina_12984
wiley_primary_10_1111_ina_12984_INA12984
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
2022-Feb
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Malden
PublicationTitle Indoor air
PublicationTitleAlternate Indoor Air
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2018; 166
2013; 61
1970
2008; 102
2019; 162
2019; 161
2020; 8
2021; 31
2020; 2
2018; 138
2020; 176
2020; 93
2020; 171
2020; 217
2020; 211
2020; 177
2020; 210
2012; 22
2020; 219
2019; 155
2019; 156
2019; 153
2018; 142
1998; 27
1986; 92
2017; 2017
1991; 34
2002; 34
2006; 16
2021; 149
2015; 98
2020; 226
2019; 148
2021; 188
2020; 108
2016; 164
1976; 7
2014; 87
1953; 2
2010; 45
2004; 110
2020; 2020
2012; 112
2021
2018; 158
2019
2018
2016
2011; 46
2015
2013
2007; 42
2001; 36
2016; 26
2020; 29
Molnar C (e_1_2_11_21_1) 2019
Lundberg S (e_1_2_11_26_1) 2017; 2017
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_30_1
e_1_2_11_57_1
e_1_2_11_36_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_6_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_2_1
e_1_2_11_60_1
Fato I (e_1_2_11_45_1) 2004; 110
e_1_2_11_20_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
Gagge AP (e_1_2_11_8_1) 1986; 92
Olesen BW (e_1_2_11_33_1) 2015
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_54_1
Shapley LS (e_1_2_11_25_1) 1953; 2
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_3_1
e_1_2_11_49_1
Alvarez‐Melis D (e_1_2_11_51_1) 2018
e_1_2_11_61_1
Ole FP (e_1_2_11_7_1) 1970
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_40_1
e_1_2_11_63_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
References_xml – start-page: 217
  year: 2021
  end-page: 267
– volume: 164
  start-page: 86
  year: 2016
  end-page: 92
  article-title: Sex differences in age‐related changes on peripheral warm and cold innocuous thermal sensitivity
  publication-title: Physiol Behav
– volume: 188
  year: 2021
  article-title: Evaluation of individual thermal sensation at raised indoor temperatures based on skin temperature
  publication-title: Build Environ
– volume: 217
  year: 2020
  article-title: Using machine learning algorithms to predict occupants' thermal comfort in naturally ventilated residential buildings
  publication-title: Energy Build
– volume: 31
  start-page: 1227
  year: 2021
  article-title: Extended predicted mean vote of thermal adaptations reinforced around thermal neutrality
  publication-title: Indoor Air
– volume: 158
  start-page: 393
  year: 2018
  end-page: 405
  article-title: A modified method of evaluating the impact of air humidity on human acceptable air temperatures in hot‐humid environments
  publication-title: Energy Build
– volume: 177
  year: 2020
  article-title: The coupled effect of temperature, humidity, and air movement on human thermal response in hot–humid and hot–arid climates in summer in China
  publication-title: Build Environ
– volume: 26
  start-page: 820
  year: 2016
  end-page: 830
  article-title: Thermal comfort of people in the hot and humid area of China—impacts of season, climate, and thermal history
  publication-title: Indoor Air
– volume: 2
  start-page: 343
  year: 1953
  end-page: 360
  article-title: A value for n‐person Games. Contributions to the theory of games
  publication-title: Ann Math Stud
– volume: 22
  start-page: 253
  year: 2012
  end-page: 262
  article-title: Thermal sensation: a mathematical model based on neurophysiology
  publication-title: Indoor Air
– volume: 27
  start-page: 83
  year: 1998
  end-page: 96
  article-title: Thermal adaptation in the built environment: a literature review
  publication-title: Energy Build
– volume: 176
  year: 2020
  article-title: Modification of sweat evaporative heat loss in the PMV/PPD model to improve thermal comfort prediction in warm climates
  publication-title: Build Environ
– volume: 112
  start-page: 2313
  year: 2012
  end-page: 2321
  article-title: Influence of relative humidity on prolonged exercise capacity in a warm environment
  publication-title: Eur J Appl Physiol
– volume: 155
  start-page: 298
  year: 2019
  end-page: 307
  article-title: Effects of indoor humidity on building occupants' thermal comfort and evidence in terms of climate adaptation
  publication-title: Build Environ
– volume: 162
  year: 2019
  article-title: Impacts of demographic, contextual and interaction effects on thermal sensation—Evidence from a global database
  publication-title: Build Environ
– volume: 2017
  start-page: 680
  issue: 27
  year: 2017
  end-page: 689
  article-title: Thermal sensation models: a systematic comparison
  publication-title: Indoor Air
– volume: 34
  start-page: 667
  year: 2002
  end-page: 684
  article-title: The validity of ISO‐PMV for predicting comfort votes in every‐day thermal environments
  publication-title: Energy Build
– volume: 34
  start-page: 365
  year: 1991
  end-page: 378
  article-title: Ambient temperatures preferred by young European males and females at rest
  publication-title: Ergonomics
– volume: 98
  start-page: 100
  year: 2015
  end-page: 105
  article-title: Development of the adaptive PMV model for improving prediction performances
  publication-title: Energy Build
– volume: 211
  year: 2020
  article-title: The use of artificial intelligence (AI) methods in the prediction of thermal comfort in buildings: energy implications of AI‐based thermal comfort controls
  publication-title: Energy Build
– volume: 92
  start-page: 709
  year: 1986
  end-page: 731
  article-title: Standard predictive index of human response to the thermal environment
  publication-title: ASHRAE Trans
– volume: 2
  start-page: 56
  year: 2020
  end-page: 67
  article-title: From local explanations to global understanding with explainable AI for trees
  publication-title: Nat Mach Intell
– volume: 219
  year: 2020
  article-title: Failure mode and effects analysis of RC members based on machine‐learning‐based SHapley Additive exPlanations (SHAP) approach
  publication-title: Eng Struct
– volume: 149
  year: 2021
  article-title: Test rooms to study human comfort in buildings: a review of controlled experiments and facilities
  publication-title: Renew Sustain Energy Rev
– volume: 45
  start-page: 2177
  year: 2010
  end-page: 2183
  article-title: Thermal sensation of Hong Kong people with increased air speed, temperature and humidity in air‐conditioned environment
  publication-title: Build Environ
– year: 2019
– volume: 29
  year: 2020
  article-title: Dimension analysis of subjective thermal comfort metrics based on ASHRAE Global Thermal Comfort Database using machine learning
  publication-title: J Build Eng
– volume: 142
  start-page: 502
  year: 2018
  end-page: 512
  article-title: Development of the ASHRAE global thermal comfort database II
  publication-title: Build Environ
– year: 2015
– volume: 166
  start-page: 391
  year: 2018
  end-page: 406
  article-title: Random forest based thermal comfort prediction from gender‐specific physiological parameters using wearable sensing technology
  publication-title: Energy Build
– volume: 93
  year: 2020
  article-title: Thermal sensitivity mapping ‐ warmth and cold detection thresholds of the human torso
  publication-title: J Therm Biol
– volume: 171
  year: 2020
  article-title: Study on thermal sensation and thermal comfort in environment with moderate temperature ramps
  publication-title: Build Environ
– volume: 108
  start-page: 2907
  year: 2020
  end-page: 2916
– volume: 34
  start-page: 533
  year: 2002
  end-page: 536
  article-title: Extension of the PMV model to non‐air‐conditioned buildings in warm climates
  publication-title: Energy Build
– volume: 2017
  start-page: 4766
  year: 2017
  end-page: 4775
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv Neural Inf Process Syst
– year: 2018
  article-title: On the robustness of interpretability methods
  publication-title: arXiv
– volume: 153
  start-page: 205
  year: 2019
  end-page: 217
  article-title: Analysis of the accuracy on PMV – PPD model using the ASHRAE Global Thermal Comfort Database II
  publication-title: Build Environ
– volume: 7
  start-page: 230
  year: 1976
  article-title: Field studies of thermal comfort compared and applied
  publication-title: Appl Ergon
– volume: 34
  start-page: 259
  year: 1991
  end-page: 265
  article-title: Thermal comfort in the humid tropics: Field experiments in air conditioned and naturally ventilated buildings in Singapore
  publication-title: Int J Biometeorol
– volume: 36
  start-page: 691
  year: 2001
  end-page: 699
  article-title: A model of human physiology and comfort for assessing complex thermal environments
  publication-title: Build Environ
– volume: 46
  start-page: 478
  year: 2011
  end-page: 488
  article-title: Evaluation of calculation methods of mean skin temperature for use in thermal comfort study
  publication-title: Build Environ
– volume: 148
  start-page: 372
  year: 2019
  end-page: 383
  article-title: Machine learning method for real‐time non‐invasive prediction of individual thermal preference in transient conditions
  publication-title: Build Environ
– volume: 16
  start-page: 320
  year: 2006
  end-page: 326
  article-title: Field study of a thermal environment and adaptive model in Shanghai
  publication-title: Indoor Air
– volume: 156
  start-page: 137
  year: 2019
  end-page: 146
  article-title: Data‐driven simulation of a thermal comfort‐based temperature set‐point control with ASHRAE RP884
  publication-title: Build Environ
– year: 2016
– volume: 110
  start-page: 578
  year: 2004
  end-page: 593
  article-title: Thermal comfort in the climatic conditions of southern Italy
  publication-title: ASHRAE Trans
– volume: 22
  start-page: 96
  year: 2012
  end-page: 109
  article-title: Thermal comfort and gender: a literature review
  publication-title: Indoor Air
– volume: 219
  year: 2020
  article-title: Revisiting individual and group differences in thermal comfort based on ASHRAE database
  publication-title: Energy Build
– volume: 161
  year: 2019
  article-title: Predicting older people's thermal sensation in building environment through a machine learning approach: modelling, interpretation, and application
  publication-title: Build Environ
– volume: 42
  start-page: 1594
  year: 2007
  end-page: 1603
  article-title: Gender differences in thermal comfort and use of thermostats in everyday thermal environments
  publication-title: Build Environ
– volume: 87
  start-page: 96
  year: 2014
  end-page: 110
  article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging
  publication-title: NeuroImage
– volume: 210
  year: 2020
  article-title: Comparing machine learning algorithms in predicting thermal sensation using ASHRAE Comfort Database II
  publication-title: Energy Build
– volume: 226
  year: 2020
  article-title: Review on occupant‐centric thermal comfort sensing, predicting, and controlling
  publication-title: Energy Build
– volume: 2020
  start-page: 73127
  issue: 8
  year: 2020
  end-page: 73141
  article-title: An explainable machine learning framework for intrusion detection systems
  publication-title: IEEE Access
– volume: 34
  start-page: 637
  year: 2002
  end-page: 646
  article-title: Evaluation of thermal comfort using combined multi‐node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD)
  publication-title: Energy Build
– volume: 26
  start-page: 125
  year: 2016
  end-page: 137
  article-title: Dynamic thermal environment and thermal comfort
  publication-title: Indoor Air
– year: 1970
– volume: 138
  start-page: 181
  year: 2018
  end-page: 193
  article-title: Individual difference in thermal comfort: a literature review
  publication-title: Build Environ
– volume: 8
  start-page: 191969
  year: 2020
  end-page: 191985
  article-title: Review study of interpretation methods for future interpretable machine learning
  publication-title: IEEE Access
– volume: 102
  start-page: 471
  year: 2008
  end-page: 480
  article-title: Investigation of gender difference in thermal comfort for Chinese people
  publication-title: Eur J Appl Physiol
– volume: 61
  start-page: 27
  year: 2013
  end-page: 33
  article-title: A study about the demand for air movement in warm environment
  publication-title: Build Environ
– year: 2013
– ident: e_1_2_11_56_1
  doi: 10.1016/j.buildenv.2020.106868
– ident: e_1_2_11_36_1
  doi: 10.1016/j.enbuild.2018.02.035
– ident: e_1_2_11_2_1
  doi: 10.1016/j.jobe.2019.101120
– ident: e_1_2_11_54_1
  doi: 10.1016/S0378-7788(97)00053-4
– ident: e_1_2_11_12_1
  doi: 10.1109/ACCESS.2020.3032756
– ident: e_1_2_11_50_1
  doi: 10.1016/j.rser.2021.111359
– ident: e_1_2_11_23_1
  doi: 10.1016/j.neuroimage.2013.10.067
– ident: e_1_2_11_40_1
  doi: 10.1016/j.jtherbio.2020.102718
– ident: e_1_2_11_27_1
  doi: 10.1109/ACCESS.2020.2988359
– ident: e_1_2_11_62_1
  doi: 10.1016/j.buildenv.2019.03.010
– ident: e_1_2_11_32_1
– ident: e_1_2_11_41_1
  doi: 10.1016/j.physbeh.2016.05.045
– ident: e_1_2_11_44_1
  doi: 10.1080/00140139108967320
– ident: e_1_2_11_6_1
  doi: 10.1016/j.enbuild.2020.109807
– ident: e_1_2_11_52_1
  doi: 10.1016/j.buildenv.2020.106898
– ident: e_1_2_11_57_1
  doi: 10.1016/S0378-7788(02)00018-X
– volume-title: Interpretable Machine Learning. A Guide for Making Black Box Models Explainable
  year: 2019
  ident: e_1_2_11_21_1
– ident: e_1_2_11_58_1
  doi: 10.1111/ina.12256
– ident: e_1_2_11_63_1
  doi: 10.1016/j.buildenv.2018.11.017
– ident: e_1_2_11_9_1
  doi: 10.1016/S0360-1323(00)00061-5
– ident: e_1_2_11_38_1
  doi: 10.1007/BF01041840
– ident: e_1_2_11_24_1
  doi: 10.1016/j.enbuild.2020.109937
– volume: 2017
  start-page: 4766
  year: 2017
  ident: e_1_2_11_26_1
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv Neural Inf Process Syst
– ident: e_1_2_11_11_1
– ident: e_1_2_11_37_1
  doi: 10.1016/0003-6870(76)90104-6
– ident: e_1_2_11_53_1
  doi: 10.1111/j.1600-0668.2006.00434.x
– ident: e_1_2_11_43_1
  doi: 10.1111/j.1600-0668.2011.00747.x
– volume: 2
  start-page: 343
  year: 1953
  ident: e_1_2_11_25_1
  article-title: A value for n‐person Games. Contributions to the theory of games
  publication-title: Ann Math Stud
– ident: e_1_2_11_17_1
  doi: 10.1016/j.buildenv.2019.106286
– ident: e_1_2_11_46_1
  doi: 10.1016/j.buildenv.2012.12.002
– ident: e_1_2_11_28_1
  doi: 10.1016/j.engstruct.2020.110927
– ident: e_1_2_11_55_1
  doi: 10.1016/j.enbuild.2014.08.051
– ident: e_1_2_11_14_1
  doi: 10.1016/j.buildenv.2020.107486
– ident: e_1_2_11_49_1
  doi: 10.1016/j.buildenv.2019.02.039
– ident: e_1_2_11_61_1
  doi: 10.1016/S0378-7788(02)00003-8
– volume-title: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics
  year: 2015
  ident: e_1_2_11_33_1
– ident: e_1_2_11_48_1
  doi: 10.1016/j.enbuild.2017.09.062
– ident: e_1_2_11_29_1
  doi: 10.1016/j.buildenv.2019.01.055
– volume-title: Thermal Comfort. Analysis and Applications in Environmental Engineering
  year: 1970
  ident: e_1_2_11_7_1
– ident: e_1_2_11_47_1
  doi: 10.1007/s00421-011-2206-7
– volume: 92
  start-page: 709
  year: 1986
  ident: e_1_2_11_8_1
  article-title: Standard predictive index of human response to the thermal environment
  publication-title: ASHRAE Trans
– volume: 110
  start-page: 578
  year: 2004
  ident: e_1_2_11_45_1
  article-title: Thermal comfort in the climatic conditions of southern Italy
  publication-title: ASHRAE Trans
– ident: e_1_2_11_20_1
  doi: 10.1038/s42256-019-0138-9
– ident: e_1_2_11_42_1
  doi: 10.1007/s00421-007-0609-2
– ident: e_1_2_11_19_1
  doi: 10.1016/j.buildenv.2019.106231
– ident: e_1_2_11_15_1
  doi: 10.1016/j.buildenv.2019.106640
– ident: e_1_2_11_30_1
  doi: 10.1016/j.buildenv.2018.06.022
– ident: e_1_2_11_5_1
  doi: 10.1016/j.enbuild.2020.110392
– ident: e_1_2_11_10_1
  doi: 10.1016/S0378-7788(02)00014-2
– ident: e_1_2_11_13_1
  doi: 10.1016/j.enbuild.2020.110017
– ident: e_1_2_11_60_1
  doi: 10.1111/ina.12233
– ident: e_1_2_11_39_1
  doi: 10.1016/j.buildenv.2010.08.011
– ident: e_1_2_11_16_1
  doi: 10.1016/j.buildenv.2010.03.016
– year: 2018
  ident: e_1_2_11_51_1
  article-title: On the robustness of interpretability methods
  publication-title: arXiv
– ident: e_1_2_11_31_1
– ident: e_1_2_11_22_1
  doi: 10.1007/978-3-030-64949-4_8
– ident: e_1_2_11_18_1
  doi: 10.1016/j.enbuild.2020.109776
– ident: e_1_2_11_59_1
  doi: 10.1111/ina.12792
– ident: e_1_2_11_34_1
  doi: 10.1016/j.buildenv.2006.01.009
– ident: e_1_2_11_35_1
  doi: 10.1016/j.buildenv.2018.04.040
– ident: e_1_2_11_4_1
  doi: 10.1111/ina.12329
– ident: e_1_2_11_3_1
  doi: 10.1111/j.1600-0668.2011.00758.x
SSID ssj0017393
Score 2.592154
Snippet Machine learning models have been widely used for studying thermal sensations. However, the black‐box properties of machine learning models lead to the lack of...
Machine learning models have been widely used for studying thermal sensations. However, the black-box properties of machine learning models lead to the lack of...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e12984
SubjectTerms Game theory
interpretability analysis
Learning algorithms
local explanations
Machine learning
neutral environment
SHAP
thermal sensation
Title Interpretability analysis for thermal sensation machine learning models: An exploration based on the SHAP approach
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fina.12984
https://www.ncbi.nlm.nih.gov/pubmed/35048421
https://www.proquest.com/docview/2633724904
https://www.proquest.com/docview/2621659488
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1600-0668
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017393
  issn: 0905-6947
  databaseCode: ABDBF
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0905-6947
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1600-0668
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017393
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT90wEB4huMCh7OWVRQZx6CUojpckcArL0wMJhFqQOCBFdmJzAELFe-_Q_nrGzsJSkBA3R5nEjieT-SYefwOwrZTQxoYmkGUpAm5CEehS86A00mp0wLTwSzGnZ3JwyU-uxNUE7LV7YWp-iO6Hm7MM_712Bq708IWRu6oF6KwSxwVKmfTh1K-OOoo6pjfPs4e9y5THDauQy-Lprnzti_4DmK_xqnc4_Vm4boda55nc7oxHeqf494bF8YvPMgffGiBKsvrNmYcJUy3AzAt6wkV4fM5I9Cm0f4lqKEwIQl3ioOM93mKIkbDXL7n3mZmGNKUoboivszPcJVlFjE_2q-Wc6ywJNvAW5PcgOycttfkSXPaPLg4GQVOjISiYYDxAZ4YAkBbUJjKxMbcIqRJTRjpODUYuUWwtDXVkpQqZDhOuS2GM5obHUhUitWwZJquHyqwA0YWSDH1lWijNqY2TEtEDtkWKBzahPfjZaisvGgJzV0fjLm8DGZzG3E9jD7Y60T81a8d7QmutyvPGcId5JBmLMSQN8fRmdxpNzq2jqMo8jJ1MRKWjuUl68L1-VbpemMBPIo_cYL3CP-4-Pz7LfOPH50VXYTpy2y981vgaTI4ex2YdQdFIb8BUtn-439_wVvAEj0YKhg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHIAD-1JWgzhwCcpiOwniUiGqFtoKQZG4oChObA5AQLQ9wNczdhYoi4S4OcrETjwez5tk8gZgP46ZkMqWFk9TZlFpM0ukglqp5EqgA3YS8ymm0-XNa3p2w27G4Lj8Fybnh6heuGnLMPu1NnD9QvqTleuyBeitAjoOk5RjnKIh0WVFHuVorjfDtIfj85D6Ba-QzuOpLh31Rt8g5ihiNS6nMQe35c3mmSb3h8OBOEzevvA4_vdp5mG2wKKkni-eBRiT2SLMfGIoXIKXj6REk0X7SuKCxYQg2iUaPT5iF30Mho2KyaNJzpSkqEZxR0ypnf4RqWdEmny_XE57z5RgA7sgV836BSnZzZfhunHaO2laRZkGK_GYRy30Z4gBncRRAQ-UTxWiqkCmrvBDicGL6yvl2MJVPLY9YQdUpExKQSX1eZywUHkrMJE9ZXINiEhi7qG7DJNYUEf5QYoAAtssxAMVODU4KNUVJQWHuS6l8RCVsQxOY2SmsQZ7lehzTtzxk9BmqfOosN1-5HLP8zEqtfH0bnUarU5_Sokz-TTUMq7DNdNNUIPVfK1Uo3gMd0Xq6ps1Gv99-KjVrZvG-t9Fd2Cq2eu0o3are74B067-G8MkkW_CxOBlKLcQIw3EtjGFd9MxDTU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB4tWwnBAVpoy8JCDeLAJas8bMdBXCLa1fa1WkEr9VJFcWz3AJtd7eMAv56x82ALRaq4OfLEdmyP53M8_gbgfZ4zqY2vPa4U86j2mSeVpJ7S3Eg0wEHhjmLOx3x0SU-u2FUHPjV3YSp-iPaHm9UMt15bBddzZTa03IYtQGsl6APYoiwR1qHv8EtLHhVYrjfHtIf184TGNa-Q9eNpX71tjf6CmLcRqzM5w6dw3TS28jT5Nliv5KD4-QeP4_9-zTY8qbEoSavJswMdXT6DxxsMhc9h8dsp0XnR_iB5zWJCEO0Six6nWMQSN8NuiMnUOWdqUkejuCEu1M7yI0lLop2_XyVnracimMAiyNdROiENu_kuXA6PLj6PvDpMg1dELKIe2jPEgEERGMGFialBVCW0CmWcaNy8hLExgS9Dw3M_kr6gUjGtJdU05nnBEhPtQbeclfoFEFnkPEJzmRS5pIGJhUIAgWmW4IMRQQ8-NMOVFTWHuQ2l8T1r9jLYjZnrxh68a0XnFXHHXUL9ZsyzWneXWcijKMZdqY_Zb9ts1Dp7lJKXera2MmHALdON6MF-NVfaWiKGqyINbWPdiP-7-ux4nLrEy_uLHsDDyeEwOzsen76CR6G9jOF8yPvQXS3W-jVCpJV84zThF2njDLk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretability+analysis+for+thermal+sensation+machine+learning+models%3A+An+exploration+based+on+the+SHAP+approach&rft.jtitle=Indoor+air&rft.au=Yang%2C+Yuren&rft.au=Yuan%2C+Ye&rft.au=Han%2C+Zhen&rft.au=Liu%2C+Gang&rft.date=2022-02-01&rft.issn=0905-6947&rft.eissn=1600-0668&rft.volume=32&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fina.12984&rft.externalDBID=10.1111%252Fina.12984&rft.externalDocID=INA12984
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0905-6947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0905-6947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0905-6947&client=summon