Interpretability analysis for thermal sensation machine learning models: An exploration based on the SHAP approach
Machine learning models have been widely used for studying thermal sensations. However, the black‐box properties of machine learning models lead to the lack of model transparency, and existing explanations for the thermal sensation models are generally flawed in terms of the perspectives of interpre...
        Saved in:
      
    
          | Published in | Indoor air Vol. 32; no. 2; pp. e12984 - n/a | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          John Wiley & Sons, Inc
    
        01.02.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0905-6947 1600-0668 1600-0668  | 
| DOI | 10.1111/ina.12984 | 
Cover
| Abstract | Machine learning models have been widely used for studying thermal sensations. However, the black‐box properties of machine learning models lead to the lack of model transparency, and existing explanations for the thermal sensation models are generally flawed in terms of the perspectives of interpretable methods. In this study, we perform an interpretability analysis using the "SHapley Additive exPlanation" (SHAP) from game theory for thermal sensation machine learning models. The effects of different features on thermal sensations and typical decision routes in the models are investigated from both local and global perspectives, and the properties of correlation between features and thermal sensations and decision routes within machine learning models are summarized. The differences in the effects of features across samples reflect the effects of features on thermal sensations not only can be demonstrated by significant magnitudes but also by differentiation. The effects of features on thermal sensations often appear in the form of combinations of two to four features, which determine the final thermal sensation in most cases. Therefore, the neutral environment may actually be a dynamic high‐dimensional space consisting of certain combinations of features in certain ranges with changing shapes. | 
    
|---|---|
| AbstractList | Machine learning models have been widely used for studying thermal sensations. However, the black-box properties of machine learning models lead to the lack of model transparency, and existing explanations for the thermal sensation models are generally flawed in terms of the perspectives of interpretable methods. In this study, we perform an interpretability analysis using the "SHapley Additive exPlanation" (SHAP) from game theory for thermal sensation machine learning models. The effects of different features on thermal sensations and typical decision routes in the models are investigated from both local and global perspectives, and the properties of correlation between features and thermal sensations and decision routes within machine learning models are summarized. The differences in the effects of features across samples reflect the effects of features on thermal sensations not only can be demonstrated by significant magnitudes but also by differentiation. The effects of features on thermal sensations often appear in the form of combinations of two to four features, which determine the final thermal sensation in most cases. Therefore, the neutral environment may actually be a dynamic high-dimensional space consisting of certain combinations of features in certain ranges with changing shapes. Machine learning models have been widely used for studying thermal sensations. However, the black-box properties of machine learning models lead to the lack of model transparency, and existing explanations for the thermal sensation models are generally flawed in terms of the perspectives of interpretable methods. In this study, we perform an interpretability analysis using the "SHapley Additive exPlanation" (SHAP) from game theory for thermal sensation machine learning models. The effects of different features on thermal sensations and typical decision routes in the models are investigated from both local and global perspectives, and the properties of correlation between features and thermal sensations and decision routes within machine learning models are summarized. The differences in the effects of features across samples reflect the effects of features on thermal sensations not only can be demonstrated by significant magnitudes but also by differentiation. The effects of features on thermal sensations often appear in the form of combinations of two to four features, which determine the final thermal sensation in most cases. Therefore, the neutral environment may actually be a dynamic high-dimensional space consisting of certain combinations of features in certain ranges with changing shapes.Machine learning models have been widely used for studying thermal sensations. However, the black-box properties of machine learning models lead to the lack of model transparency, and existing explanations for the thermal sensation models are generally flawed in terms of the perspectives of interpretable methods. In this study, we perform an interpretability analysis using the "SHapley Additive exPlanation" (SHAP) from game theory for thermal sensation machine learning models. The effects of different features on thermal sensations and typical decision routes in the models are investigated from both local and global perspectives, and the properties of correlation between features and thermal sensations and decision routes within machine learning models are summarized. The differences in the effects of features across samples reflect the effects of features on thermal sensations not only can be demonstrated by significant magnitudes but also by differentiation. The effects of features on thermal sensations often appear in the form of combinations of two to four features, which determine the final thermal sensation in most cases. Therefore, the neutral environment may actually be a dynamic high-dimensional space consisting of certain combinations of features in certain ranges with changing shapes.  | 
    
| Author | Liu, Gang Han, Zhen Yuan, Ye Yang, Yuren  | 
    
| Author_xml | – sequence: 1 givenname: Yuren orcidid: 0000-0001-6185-5297 surname: Yang fullname: Yang, Yuren organization: Tianjin University – sequence: 2 givenname: Ye orcidid: 0000-0002-2277-5806 surname: Yuan fullname: Yuan, Ye organization: Tianjin University – sequence: 3 givenname: Zhen surname: Han fullname: Han, Zhen organization: Tianjin University – sequence: 4 givenname: Gang orcidid: 0000-0002-7864-7846 surname: Liu fullname: Liu, Gang email: lglgmike@163.com organization: Tianjin University  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35048421$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp1kU9vFCEcholpY7fVg1_AkHjRw7T8Gwa8bRq1mzRqop4JM_PD0jAwwmzqfntpd3tpLBc4PO9D8r6n6CimCAi9oeSc1nPhoz2nTCvxAq2oJKQhUqojtCKatI3UojtBp6XcEkI7rvlLdMJbIpRgdIXyJi6Q5wyL7X3wyw7baMOu-IJdyni5gTzZgAvEYhefIp7scOMj4AA2Rx9_4ymNEMpHvI4Y_s4h5T3X2wIjro-qwD-u1t-xneecavoVOnY2FHh9uM_Qr8-ffl5eNdffvmwu19fNwFsuGq0JZ5IO1CmpXCcca4mCkfWdBsUk65yjpGdOWsJ7okQ_tgC9ANFJO7Ta8TP0fu-t3_7ZQlnM5MsAIdgIaVtMdVDZaqFURd89QW_TNtci7inOOyY0EZV6e6C2_QSjmbOfbN6ZxzYrcLEHhpxKyeDM4JeHOpZsfTCUmPu9TN3LPOxVEx-eJB6l_2MP9jsfYPc8aDZf1_vEPwiupCY | 
    
| CitedBy_id | crossref_primary_10_1016_j_adapen_2023_100123 crossref_primary_10_1016_j_jenvman_2024_122864 crossref_primary_10_3389_fneur_2024_1305543 crossref_primary_10_1371_journal_pone_0294027 crossref_primary_10_1002_VIW_20240059 crossref_primary_10_1016_j_enbuild_2024_113997 crossref_primary_10_1016_j_ijpharm_2023_123458 crossref_primary_10_1016_j_ijpharm_2025_125207 crossref_primary_10_1016_j_rser_2025_115335 crossref_primary_10_1016_j_aei_2024_102359 crossref_primary_10_1016_j_engappai_2025_110140 crossref_primary_10_1186_s13662_024_03846_z crossref_primary_10_1016_j_comptc_2024_115032 crossref_primary_10_3390_buildings13123107 crossref_primary_10_1002_biof_1995 crossref_primary_10_1016_j_powtec_2025_120638 crossref_primary_10_1016_j_jece_2024_114428 crossref_primary_10_1080_19475705_2023_2213807 crossref_primary_10_1016_j_jwpe_2023_104664 crossref_primary_10_1016_j_websem_2024_100854 crossref_primary_10_3390_rs14174169 crossref_primary_10_1016_j_coco_2024_102072 crossref_primary_10_3390_w16223247 crossref_primary_10_1190_geo2023_0657_1 crossref_primary_10_1007_s13753_024_00578_2 crossref_primary_10_3390_su16114609 crossref_primary_10_3390_en17030700 crossref_primary_10_1016_j_scs_2023_104751 crossref_primary_10_1016_j_enbuild_2023_113699 crossref_primary_10_1016_j_jece_2025_115946 crossref_primary_10_1002_dmrr_3801 crossref_primary_10_1016_j_geits_2024_100250 crossref_primary_10_1007_s12273_024_1142_5 crossref_primary_10_3390_f14122422 crossref_primary_10_3390_ma16124366 crossref_primary_10_1038_s41598_025_90459_5 crossref_primary_10_3389_fendo_2023_1292167 crossref_primary_10_1016_j_fuel_2024_131346 crossref_primary_10_3390_pr12071414 crossref_primary_10_1016_j_rineng_2024_103220 crossref_primary_10_1371_journal_pone_0281922 crossref_primary_10_1016_j_psep_2023_06_029 crossref_primary_10_1021_acsami_4c22272 crossref_primary_10_1016_j_precisioneng_2025_02_024 crossref_primary_10_1016_j_buildenv_2025_112824 crossref_primary_10_1016_j_trip_2024_101267 crossref_primary_10_1186_s12967_025_06102_4 crossref_primary_10_1007_s12020_023_03536_y crossref_primary_10_1016_j_buildenv_2024_112127 crossref_primary_10_3389_fgene_2022_979529 crossref_primary_10_1016_j_jclepro_2023_138925 crossref_primary_10_1016_j_enbuild_2024_114153  | 
    
| Cites_doi | 10.1016/j.buildenv.2020.106868 10.1016/j.enbuild.2018.02.035 10.1016/j.jobe.2019.101120 10.1016/S0378-7788(97)00053-4 10.1109/ACCESS.2020.3032756 10.1016/j.rser.2021.111359 10.1016/j.neuroimage.2013.10.067 10.1016/j.jtherbio.2020.102718 10.1109/ACCESS.2020.2988359 10.1016/j.buildenv.2019.03.010 10.1016/j.physbeh.2016.05.045 10.1080/00140139108967320 10.1016/j.enbuild.2020.109807 10.1016/j.buildenv.2020.106898 10.1016/S0378-7788(02)00018-X 10.1111/ina.12256 10.1016/j.buildenv.2018.11.017 10.1016/S0360-1323(00)00061-5 10.1007/BF01041840 10.1016/j.enbuild.2020.109937 10.1016/0003-6870(76)90104-6 10.1111/j.1600-0668.2006.00434.x 10.1111/j.1600-0668.2011.00747.x 10.1016/j.buildenv.2019.106286 10.1016/j.buildenv.2012.12.002 10.1016/j.engstruct.2020.110927 10.1016/j.enbuild.2014.08.051 10.1016/j.buildenv.2020.107486 10.1016/j.buildenv.2019.02.039 10.1016/S0378-7788(02)00003-8 10.1016/j.enbuild.2017.09.062 10.1016/j.buildenv.2019.01.055 10.1007/s00421-011-2206-7 10.1038/s42256-019-0138-9 10.1007/s00421-007-0609-2 10.1016/j.buildenv.2019.106231 10.1016/j.buildenv.2019.106640 10.1016/j.buildenv.2018.06.022 10.1016/j.enbuild.2020.110392 10.1016/S0378-7788(02)00014-2 10.1016/j.enbuild.2020.110017 10.1111/ina.12233 10.1016/j.buildenv.2010.08.011 10.1016/j.buildenv.2010.03.016 10.1007/978-3-030-64949-4_8 10.1016/j.enbuild.2020.109776 10.1111/ina.12792 10.1016/j.buildenv.2006.01.009 10.1016/j.buildenv.2018.04.040 10.1111/ina.12329 10.1111/j.1600-0668.2011.00758.x  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. Copyright © 2022 John Wiley & Sons A/S  | 
    
| Copyright_xml | – notice: 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd – notice: 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. – notice: Copyright © 2022 John Wiley & Sons A/S  | 
    
| DBID | AAYXX CITATION NPM 7ST 8FD C1K FR3 KR7 SOI 7X8  | 
    
| DOI | 10.1111/ina.12984 | 
    
| DatabaseName | CrossRef PubMed Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Civil Engineering Abstracts Environment Abstracts MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed MEDLINE - Academic Civil Engineering Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1600-0668 | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | 35048421 10_1111_ina_12984 INA12984  | 
    
| Genre | article Journal Article  | 
    
| GrantInformation_xml | – fundername: National Key R&D Program of China funderid: 2016YFC0700200 – fundername: National Key R&D Program of China grantid: 2016YFC0700200  | 
    
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 24P 29I 31~ 33P 36B 3SF 4.4 4P2 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8C1 8UM 930 A01 A03 AAESR AAEVG AAHHS AAJEY AAKAS AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABUWG ABXGK ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACGFS ACIWK ACMXC ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZCM ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AEUYN AFBPY AFEBI AFGKR AFKRA AFPWT AFRAH AFZJQ AHEFC AIACR AIURR AIWBW AJBDE ALAGY ALIPV ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOETA ASPBG ATCPS ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BHPHI BMXJE BROTX BRXPI BY8 C45 CAG CCPQU COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EAD EAP EBC EBD EBS EDH EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FEDTE FUBAC FYUFA FZ0 G-S G.N GODZA H.X H13 HCIFZ HF~ HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2W P2X P2Z P4B P4D PALCI PATMY PIMPY PQQKQ PYCSY Q.N Q11 QB0 R.K RHX RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI UB1 UKHRP W8V W99 WBKPD WIH WIJ WIK WLBEL WOHZO WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION PHGZM PHGZT PJZUB PPXIY PUEGO NPM 7ST 8FD C1K FR3 KR7 SOI 7X8  | 
    
| ID | FETCH-LOGICAL-c3534-9903261c1f868f74f2508ed2b79e82627ff10b2f6a03b084bd5eeb4e476ac59f3 | 
    
| IEDL.DBID | DR2 | 
    
| ISSN | 0905-6947 1600-0668  | 
    
| IngestDate | Thu Oct 02 05:41:46 EDT 2025 Fri Jul 25 21:06:40 EDT 2025 Mon Jul 21 05:40:45 EDT 2025 Wed Oct 01 03:05:31 EDT 2025 Thu Apr 24 23:03:59 EDT 2025 Wed Jan 22 16:25:31 EST 2025  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | neutral environment SHAP interpretability analysis local explanations thermal sensation machine learning  | 
    
| Language | English | 
    
| License | 2022 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3534-9903261c1f868f74f2508ed2b79e82627ff10b2f6a03b084bd5eeb4e476ac59f3 | 
    
| Notes | Yuren Yang and Ye Yuan contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0001-6185-5297 0000-0002-2277-5806 0000-0002-7864-7846  | 
    
| PMID | 35048421 | 
    
| PQID | 2633724904 | 
    
| PQPubID | 105551 | 
    
| PageCount | 24 | 
    
| ParticipantIDs | proquest_miscellaneous_2621659488 proquest_journals_2633724904 pubmed_primary_35048421 crossref_citationtrail_10_1111_ina_12984 crossref_primary_10_1111_ina_12984 wiley_primary_10_1111_ina_12984_INA12984  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | February 2022 2022-02-00 2022-Feb 20220201  | 
    
| PublicationDateYYYYMMDD | 2022-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2022 text: February 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England – name: Malden  | 
    
| PublicationTitle | Indoor air | 
    
| PublicationTitleAlternate | Indoor Air | 
    
| PublicationYear | 2022 | 
    
| Publisher | John Wiley & Sons, Inc | 
    
| Publisher_xml | – name: John Wiley & Sons, Inc | 
    
| References | 2018; 166 2013; 61 1970 2008; 102 2019; 162 2019; 161 2020; 8 2021; 31 2020; 2 2018; 138 2020; 176 2020; 93 2020; 171 2020; 217 2020; 211 2020; 177 2020; 210 2012; 22 2020; 219 2019; 155 2019; 156 2019; 153 2018; 142 1998; 27 1986; 92 2017; 2017 1991; 34 2002; 34 2006; 16 2021; 149 2015; 98 2020; 226 2019; 148 2021; 188 2020; 108 2016; 164 1976; 7 2014; 87 1953; 2 2010; 45 2004; 110 2020; 2020 2012; 112 2021 2018; 158 2019 2018 2016 2011; 46 2015 2013 2007; 42 2001; 36 2016; 26 2020; 29 Molnar C (e_1_2_11_21_1) 2019 Lundberg S (e_1_2_11_26_1) 2017; 2017 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_30_1 e_1_2_11_57_1 e_1_2_11_36_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_6_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_2_1 e_1_2_11_60_1 Fato I (e_1_2_11_45_1) 2004; 110 e_1_2_11_20_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 Gagge AP (e_1_2_11_8_1) 1986; 92 Olesen BW (e_1_2_11_33_1) 2015 e_1_2_11_58_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_54_1 Shapley LS (e_1_2_11_25_1) 1953; 2 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_3_1 e_1_2_11_49_1 Alvarez‐Melis D (e_1_2_11_51_1) 2018 e_1_2_11_61_1 Ole FP (e_1_2_11_7_1) 1970 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_40_1 e_1_2_11_63_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1  | 
    
| References_xml | – start-page: 217 year: 2021 end-page: 267 – volume: 164 start-page: 86 year: 2016 end-page: 92 article-title: Sex differences in age‐related changes on peripheral warm and cold innocuous thermal sensitivity publication-title: Physiol Behav – volume: 188 year: 2021 article-title: Evaluation of individual thermal sensation at raised indoor temperatures based on skin temperature publication-title: Build Environ – volume: 217 year: 2020 article-title: Using machine learning algorithms to predict occupants' thermal comfort in naturally ventilated residential buildings publication-title: Energy Build – volume: 31 start-page: 1227 year: 2021 article-title: Extended predicted mean vote of thermal adaptations reinforced around thermal neutrality publication-title: Indoor Air – volume: 158 start-page: 393 year: 2018 end-page: 405 article-title: A modified method of evaluating the impact of air humidity on human acceptable air temperatures in hot‐humid environments publication-title: Energy Build – volume: 177 year: 2020 article-title: The coupled effect of temperature, humidity, and air movement on human thermal response in hot–humid and hot–arid climates in summer in China publication-title: Build Environ – volume: 26 start-page: 820 year: 2016 end-page: 830 article-title: Thermal comfort of people in the hot and humid area of China—impacts of season, climate, and thermal history publication-title: Indoor Air – volume: 2 start-page: 343 year: 1953 end-page: 360 article-title: A value for n‐person Games. Contributions to the theory of games publication-title: Ann Math Stud – volume: 22 start-page: 253 year: 2012 end-page: 262 article-title: Thermal sensation: a mathematical model based on neurophysiology publication-title: Indoor Air – volume: 27 start-page: 83 year: 1998 end-page: 96 article-title: Thermal adaptation in the built environment: a literature review publication-title: Energy Build – volume: 176 year: 2020 article-title: Modification of sweat evaporative heat loss in the PMV/PPD model to improve thermal comfort prediction in warm climates publication-title: Build Environ – volume: 112 start-page: 2313 year: 2012 end-page: 2321 article-title: Influence of relative humidity on prolonged exercise capacity in a warm environment publication-title: Eur J Appl Physiol – volume: 155 start-page: 298 year: 2019 end-page: 307 article-title: Effects of indoor humidity on building occupants' thermal comfort and evidence in terms of climate adaptation publication-title: Build Environ – volume: 162 year: 2019 article-title: Impacts of demographic, contextual and interaction effects on thermal sensation—Evidence from a global database publication-title: Build Environ – volume: 2017 start-page: 680 issue: 27 year: 2017 end-page: 689 article-title: Thermal sensation models: a systematic comparison publication-title: Indoor Air – volume: 34 start-page: 667 year: 2002 end-page: 684 article-title: The validity of ISO‐PMV for predicting comfort votes in every‐day thermal environments publication-title: Energy Build – volume: 34 start-page: 365 year: 1991 end-page: 378 article-title: Ambient temperatures preferred by young European males and females at rest publication-title: Ergonomics – volume: 98 start-page: 100 year: 2015 end-page: 105 article-title: Development of the adaptive PMV model for improving prediction performances publication-title: Energy Build – volume: 211 year: 2020 article-title: The use of artificial intelligence (AI) methods in the prediction of thermal comfort in buildings: energy implications of AI‐based thermal comfort controls publication-title: Energy Build – volume: 92 start-page: 709 year: 1986 end-page: 731 article-title: Standard predictive index of human response to the thermal environment publication-title: ASHRAE Trans – volume: 2 start-page: 56 year: 2020 end-page: 67 article-title: From local explanations to global understanding with explainable AI for trees publication-title: Nat Mach Intell – volume: 219 year: 2020 article-title: Failure mode and effects analysis of RC members based on machine‐learning‐based SHapley Additive exPlanations (SHAP) approach publication-title: Eng Struct – volume: 149 year: 2021 article-title: Test rooms to study human comfort in buildings: a review of controlled experiments and facilities publication-title: Renew Sustain Energy Rev – volume: 45 start-page: 2177 year: 2010 end-page: 2183 article-title: Thermal sensation of Hong Kong people with increased air speed, temperature and humidity in air‐conditioned environment publication-title: Build Environ – year: 2019 – volume: 29 year: 2020 article-title: Dimension analysis of subjective thermal comfort metrics based on ASHRAE Global Thermal Comfort Database using machine learning publication-title: J Build Eng – volume: 142 start-page: 502 year: 2018 end-page: 512 article-title: Development of the ASHRAE global thermal comfort database II publication-title: Build Environ – year: 2015 – volume: 166 start-page: 391 year: 2018 end-page: 406 article-title: Random forest based thermal comfort prediction from gender‐specific physiological parameters using wearable sensing technology publication-title: Energy Build – volume: 93 year: 2020 article-title: Thermal sensitivity mapping ‐ warmth and cold detection thresholds of the human torso publication-title: J Therm Biol – volume: 171 year: 2020 article-title: Study on thermal sensation and thermal comfort in environment with moderate temperature ramps publication-title: Build Environ – volume: 108 start-page: 2907 year: 2020 end-page: 2916 – volume: 34 start-page: 533 year: 2002 end-page: 536 article-title: Extension of the PMV model to non‐air‐conditioned buildings in warm climates publication-title: Energy Build – volume: 2017 start-page: 4766 year: 2017 end-page: 4775 article-title: A unified approach to interpreting model predictions publication-title: Adv Neural Inf Process Syst – year: 2018 article-title: On the robustness of interpretability methods publication-title: arXiv – volume: 153 start-page: 205 year: 2019 end-page: 217 article-title: Analysis of the accuracy on PMV – PPD model using the ASHRAE Global Thermal Comfort Database II publication-title: Build Environ – volume: 7 start-page: 230 year: 1976 article-title: Field studies of thermal comfort compared and applied publication-title: Appl Ergon – volume: 34 start-page: 259 year: 1991 end-page: 265 article-title: Thermal comfort in the humid tropics: Field experiments in air conditioned and naturally ventilated buildings in Singapore publication-title: Int J Biometeorol – volume: 36 start-page: 691 year: 2001 end-page: 699 article-title: A model of human physiology and comfort for assessing complex thermal environments publication-title: Build Environ – volume: 46 start-page: 478 year: 2011 end-page: 488 article-title: Evaluation of calculation methods of mean skin temperature for use in thermal comfort study publication-title: Build Environ – volume: 148 start-page: 372 year: 2019 end-page: 383 article-title: Machine learning method for real‐time non‐invasive prediction of individual thermal preference in transient conditions publication-title: Build Environ – volume: 16 start-page: 320 year: 2006 end-page: 326 article-title: Field study of a thermal environment and adaptive model in Shanghai publication-title: Indoor Air – volume: 156 start-page: 137 year: 2019 end-page: 146 article-title: Data‐driven simulation of a thermal comfort‐based temperature set‐point control with ASHRAE RP884 publication-title: Build Environ – year: 2016 – volume: 110 start-page: 578 year: 2004 end-page: 593 article-title: Thermal comfort in the climatic conditions of southern Italy publication-title: ASHRAE Trans – volume: 22 start-page: 96 year: 2012 end-page: 109 article-title: Thermal comfort and gender: a literature review publication-title: Indoor Air – volume: 219 year: 2020 article-title: Revisiting individual and group differences in thermal comfort based on ASHRAE database publication-title: Energy Build – volume: 161 year: 2019 article-title: Predicting older people's thermal sensation in building environment through a machine learning approach: modelling, interpretation, and application publication-title: Build Environ – volume: 42 start-page: 1594 year: 2007 end-page: 1603 article-title: Gender differences in thermal comfort and use of thermostats in everyday thermal environments publication-title: Build Environ – volume: 87 start-page: 96 year: 2014 end-page: 110 article-title: On the interpretation of weight vectors of linear models in multivariate neuroimaging publication-title: NeuroImage – volume: 210 year: 2020 article-title: Comparing machine learning algorithms in predicting thermal sensation using ASHRAE Comfort Database II publication-title: Energy Build – volume: 226 year: 2020 article-title: Review on occupant‐centric thermal comfort sensing, predicting, and controlling publication-title: Energy Build – volume: 2020 start-page: 73127 issue: 8 year: 2020 end-page: 73141 article-title: An explainable machine learning framework for intrusion detection systems publication-title: IEEE Access – volume: 34 start-page: 637 year: 2002 end-page: 646 article-title: Evaluation of thermal comfort using combined multi‐node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD) publication-title: Energy Build – volume: 26 start-page: 125 year: 2016 end-page: 137 article-title: Dynamic thermal environment and thermal comfort publication-title: Indoor Air – year: 1970 – volume: 138 start-page: 181 year: 2018 end-page: 193 article-title: Individual difference in thermal comfort: a literature review publication-title: Build Environ – volume: 8 start-page: 191969 year: 2020 end-page: 191985 article-title: Review study of interpretation methods for future interpretable machine learning publication-title: IEEE Access – volume: 102 start-page: 471 year: 2008 end-page: 480 article-title: Investigation of gender difference in thermal comfort for Chinese people publication-title: Eur J Appl Physiol – volume: 61 start-page: 27 year: 2013 end-page: 33 article-title: A study about the demand for air movement in warm environment publication-title: Build Environ – year: 2013 – ident: e_1_2_11_56_1 doi: 10.1016/j.buildenv.2020.106868 – ident: e_1_2_11_36_1 doi: 10.1016/j.enbuild.2018.02.035 – ident: e_1_2_11_2_1 doi: 10.1016/j.jobe.2019.101120 – ident: e_1_2_11_54_1 doi: 10.1016/S0378-7788(97)00053-4 – ident: e_1_2_11_12_1 doi: 10.1109/ACCESS.2020.3032756 – ident: e_1_2_11_50_1 doi: 10.1016/j.rser.2021.111359 – ident: e_1_2_11_23_1 doi: 10.1016/j.neuroimage.2013.10.067 – ident: e_1_2_11_40_1 doi: 10.1016/j.jtherbio.2020.102718 – ident: e_1_2_11_27_1 doi: 10.1109/ACCESS.2020.2988359 – ident: e_1_2_11_62_1 doi: 10.1016/j.buildenv.2019.03.010 – ident: e_1_2_11_32_1 – ident: e_1_2_11_41_1 doi: 10.1016/j.physbeh.2016.05.045 – ident: e_1_2_11_44_1 doi: 10.1080/00140139108967320 – ident: e_1_2_11_6_1 doi: 10.1016/j.enbuild.2020.109807 – ident: e_1_2_11_52_1 doi: 10.1016/j.buildenv.2020.106898 – ident: e_1_2_11_57_1 doi: 10.1016/S0378-7788(02)00018-X – volume-title: Interpretable Machine Learning. A Guide for Making Black Box Models Explainable year: 2019 ident: e_1_2_11_21_1 – ident: e_1_2_11_58_1 doi: 10.1111/ina.12256 – ident: e_1_2_11_63_1 doi: 10.1016/j.buildenv.2018.11.017 – ident: e_1_2_11_9_1 doi: 10.1016/S0360-1323(00)00061-5 – ident: e_1_2_11_38_1 doi: 10.1007/BF01041840 – ident: e_1_2_11_24_1 doi: 10.1016/j.enbuild.2020.109937 – volume: 2017 start-page: 4766 year: 2017 ident: e_1_2_11_26_1 article-title: A unified approach to interpreting model predictions publication-title: Adv Neural Inf Process Syst – ident: e_1_2_11_11_1 – ident: e_1_2_11_37_1 doi: 10.1016/0003-6870(76)90104-6 – ident: e_1_2_11_53_1 doi: 10.1111/j.1600-0668.2006.00434.x – ident: e_1_2_11_43_1 doi: 10.1111/j.1600-0668.2011.00747.x – volume: 2 start-page: 343 year: 1953 ident: e_1_2_11_25_1 article-title: A value for n‐person Games. Contributions to the theory of games publication-title: Ann Math Stud – ident: e_1_2_11_17_1 doi: 10.1016/j.buildenv.2019.106286 – ident: e_1_2_11_46_1 doi: 10.1016/j.buildenv.2012.12.002 – ident: e_1_2_11_28_1 doi: 10.1016/j.engstruct.2020.110927 – ident: e_1_2_11_55_1 doi: 10.1016/j.enbuild.2014.08.051 – ident: e_1_2_11_14_1 doi: 10.1016/j.buildenv.2020.107486 – ident: e_1_2_11_49_1 doi: 10.1016/j.buildenv.2019.02.039 – ident: e_1_2_11_61_1 doi: 10.1016/S0378-7788(02)00003-8 – volume-title: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics year: 2015 ident: e_1_2_11_33_1 – ident: e_1_2_11_48_1 doi: 10.1016/j.enbuild.2017.09.062 – ident: e_1_2_11_29_1 doi: 10.1016/j.buildenv.2019.01.055 – volume-title: Thermal Comfort. Analysis and Applications in Environmental Engineering year: 1970 ident: e_1_2_11_7_1 – ident: e_1_2_11_47_1 doi: 10.1007/s00421-011-2206-7 – volume: 92 start-page: 709 year: 1986 ident: e_1_2_11_8_1 article-title: Standard predictive index of human response to the thermal environment publication-title: ASHRAE Trans – volume: 110 start-page: 578 year: 2004 ident: e_1_2_11_45_1 article-title: Thermal comfort in the climatic conditions of southern Italy publication-title: ASHRAE Trans – ident: e_1_2_11_20_1 doi: 10.1038/s42256-019-0138-9 – ident: e_1_2_11_42_1 doi: 10.1007/s00421-007-0609-2 – ident: e_1_2_11_19_1 doi: 10.1016/j.buildenv.2019.106231 – ident: e_1_2_11_15_1 doi: 10.1016/j.buildenv.2019.106640 – ident: e_1_2_11_30_1 doi: 10.1016/j.buildenv.2018.06.022 – ident: e_1_2_11_5_1 doi: 10.1016/j.enbuild.2020.110392 – ident: e_1_2_11_10_1 doi: 10.1016/S0378-7788(02)00014-2 – ident: e_1_2_11_13_1 doi: 10.1016/j.enbuild.2020.110017 – ident: e_1_2_11_60_1 doi: 10.1111/ina.12233 – ident: e_1_2_11_39_1 doi: 10.1016/j.buildenv.2010.08.011 – ident: e_1_2_11_16_1 doi: 10.1016/j.buildenv.2010.03.016 – year: 2018 ident: e_1_2_11_51_1 article-title: On the robustness of interpretability methods publication-title: arXiv – ident: e_1_2_11_31_1 – ident: e_1_2_11_22_1 doi: 10.1007/978-3-030-64949-4_8 – ident: e_1_2_11_18_1 doi: 10.1016/j.enbuild.2020.109776 – ident: e_1_2_11_59_1 doi: 10.1111/ina.12792 – ident: e_1_2_11_34_1 doi: 10.1016/j.buildenv.2006.01.009 – ident: e_1_2_11_35_1 doi: 10.1016/j.buildenv.2018.04.040 – ident: e_1_2_11_4_1 doi: 10.1111/ina.12329 – ident: e_1_2_11_3_1 doi: 10.1111/j.1600-0668.2011.00758.x  | 
    
| SSID | ssj0017393 | 
    
| Score | 2.592154 | 
    
| Snippet | Machine learning models have been widely used for studying thermal sensations. However, the black‐box properties of machine learning models lead to the lack of... Machine learning models have been widely used for studying thermal sensations. However, the black-box properties of machine learning models lead to the lack of...  | 
    
| SourceID | proquest pubmed crossref wiley  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | e12984 | 
    
| SubjectTerms | Game theory interpretability analysis Learning algorithms local explanations Machine learning neutral environment SHAP thermal sensation  | 
    
| Title | Interpretability analysis for thermal sensation machine learning models: An exploration based on the SHAP approach | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fina.12984 https://www.ncbi.nlm.nih.gov/pubmed/35048421 https://www.proquest.com/docview/2633724904 https://www.proquest.com/docview/2621659488  | 
    
| Volume | 32 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1600-0668 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017393 issn: 0905-6947 databaseCode: ABDBF dateStart: 19980301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0905-6947 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1600-0668 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017393 providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT90wEB4huMCh7OWVRQZx6CUojpckcArL0wMJhFqQOCBFdmJzAELFe-_Q_nrGzsJSkBA3R5nEjieT-SYefwOwrZTQxoYmkGUpAm5CEehS86A00mp0wLTwSzGnZ3JwyU-uxNUE7LV7YWp-iO6Hm7MM_712Bq708IWRu6oF6KwSxwVKmfTh1K-OOoo6pjfPs4e9y5THDauQy-Lprnzti_4DmK_xqnc4_Vm4boda55nc7oxHeqf494bF8YvPMgffGiBKsvrNmYcJUy3AzAt6wkV4fM5I9Cm0f4lqKEwIQl3ioOM93mKIkbDXL7n3mZmGNKUoboivszPcJVlFjE_2q-Wc6ywJNvAW5PcgOycttfkSXPaPLg4GQVOjISiYYDxAZ4YAkBbUJjKxMbcIqRJTRjpODUYuUWwtDXVkpQqZDhOuS2GM5obHUhUitWwZJquHyqwA0YWSDH1lWijNqY2TEtEDtkWKBzahPfjZaisvGgJzV0fjLm8DGZzG3E9jD7Y60T81a8d7QmutyvPGcId5JBmLMSQN8fRmdxpNzq2jqMo8jJ1MRKWjuUl68L1-VbpemMBPIo_cYL3CP-4-Pz7LfOPH50VXYTpy2y981vgaTI4ex2YdQdFIb8BUtn-439_wVvAEj0YKhg | 
    
| linkProvider | Wiley-Blackwell | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2xHIAD-1JWgzhwCcpiOwniUiGqFtoKQZG4oChObA5AQLQ9wNczdhYoi4S4OcrETjwez5tk8gZgP46ZkMqWFk9TZlFpM0ukglqp5EqgA3YS8ymm0-XNa3p2w27G4Lj8Fybnh6heuGnLMPu1NnD9QvqTleuyBeitAjoOk5RjnKIh0WVFHuVorjfDtIfj85D6Ba-QzuOpLh31Rt8g5ihiNS6nMQe35c3mmSb3h8OBOEzevvA4_vdp5mG2wKKkni-eBRiT2SLMfGIoXIKXj6REk0X7SuKCxYQg2iUaPT5iF30Mho2KyaNJzpSkqEZxR0ypnf4RqWdEmny_XE57z5RgA7sgV836BSnZzZfhunHaO2laRZkGK_GYRy30Z4gBncRRAQ-UTxWiqkCmrvBDicGL6yvl2MJVPLY9YQdUpExKQSX1eZywUHkrMJE9ZXINiEhi7qG7DJNYUEf5QYoAAtssxAMVODU4KNUVJQWHuS6l8RCVsQxOY2SmsQZ7lehzTtzxk9BmqfOosN1-5HLP8zEqtfH0bnUarU5_Sokz-TTUMq7DNdNNUIPVfK1Uo3gMd0Xq6ps1Gv99-KjVrZvG-t9Fd2Cq2eu0o3are74B067-G8MkkW_CxOBlKLcQIw3EtjGFd9MxDTU | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB4tWwnBAVpoy8JCDeLAJas8bMdBXCLa1fa1WkEr9VJFcWz3AJtd7eMAv56x82ALRaq4OfLEdmyP53M8_gbgfZ4zqY2vPa4U86j2mSeVpJ7S3Eg0wEHhjmLOx3x0SU-u2FUHPjV3YSp-iPaHm9UMt15bBddzZTa03IYtQGsl6APYoiwR1qHv8EtLHhVYrjfHtIf184TGNa-Q9eNpX71tjf6CmLcRqzM5w6dw3TS28jT5Nliv5KD4-QeP4_9-zTY8qbEoSavJswMdXT6DxxsMhc9h8dsp0XnR_iB5zWJCEO0Six6nWMQSN8NuiMnUOWdqUkejuCEu1M7yI0lLop2_XyVnracimMAiyNdROiENu_kuXA6PLj6PvDpMg1dELKIe2jPEgEERGMGFialBVCW0CmWcaNy8hLExgS9Dw3M_kr6gUjGtJdU05nnBEhPtQbeclfoFEFnkPEJzmRS5pIGJhUIAgWmW4IMRQQ8-NMOVFTWHuQ2l8T1r9jLYjZnrxh68a0XnFXHHXUL9ZsyzWneXWcijKMZdqY_Zb9ts1Dp7lJKXera2MmHALdON6MF-NVfaWiKGqyINbWPdiP-7-ux4nLrEy_uLHsDDyeEwOzsen76CR6G9jOF8yPvQXS3W-jVCpJV84zThF2njDLk | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretability+analysis+for+thermal+sensation+machine+learning+models%3A+An+exploration+based+on+the+SHAP+approach&rft.jtitle=Indoor+air&rft.au=Yang%2C+Yuren&rft.au=Yuan%2C+Ye&rft.au=Han%2C+Zhen&rft.au=Liu%2C+Gang&rft.date=2022-02-01&rft.issn=0905-6947&rft.eissn=1600-0668&rft.volume=32&rft.issue=2&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fina.12984&rft.externalDBID=10.1111%252Fina.12984&rft.externalDocID=INA12984 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0905-6947&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0905-6947&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0905-6947&client=summon |