The cationic cell‐penetrating KT2 peptide promotes cell membrane defects and apoptosis with autophagy inhibition in human HCT 116 colon cancer cells

The anticancer activity of cationic antimicrobial peptides (AMPs) has become more interesting because some AMPs have selective recognition against cancer cells. However, their antitumor properties and underlying mechanisms in cancer cells have not been clearly understood. In this study, we evaluated...

Full description

Saved in:
Bibliographic Details
Published inJournal of cellular physiology Vol. 234; no. 12; pp. 22116 - 22129
Main Authors Maraming, Pornsuda, Klaynongsruang, Sompong, Boonsiri, Patcharee, Peng, Shu‐Fen, Daduang, Sakda, Leelayuwat, Chanvit, Pientong, Chamsai, Chung, Jing‐Gung, Daduang, Jureerut
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.12.2019
Subjects
Online AccessGet full text
ISSN0021-9541
1097-4652
1097-4652
DOI10.1002/jcp.28774

Cover

Abstract The anticancer activity of cationic antimicrobial peptides (AMPs) has become more interesting because some AMPs have selective recognition against cancer cells. However, their antitumor properties and underlying mechanisms in cancer cells have not been clearly understood. In this study, we evaluated the effects of KT2 (lysine/tryptophan‐rich AMP) on the cellular uptake and internalization mechanism, cell viability, surface charge of the cell membrane, membrane integrity, apoptotic cell death, and autophagy in human HCT 116 colon cancer cells. We found that KT2 interacted with the cell membrane of HCT 116 cells and was internalized into HCT 116 cells via clathrin‐mediated and caveolae‐mediated endocytosis mechanisms. The interaction of KT2 with cells caused cell membrane structure change, elevated membrane permeability, and KT2 also affected the lipid component. The results of atomic force microscopy showed cellular membrane defects of KT2‐treated cells. The internalized KT2 induced nuclear condensation and apoptotic cell death. It elevated the apoptotic factor levels including those of cytochrome c and apoptosis‐inducing factor. Furthermore, KT2 inhibited autophagy by the suppression of autophagy‐related 5, autophagy‐related 7, autophagy‐related 16 like 1, and Beclin‐1 proteins. In conclusion, these results revealed the cytotoxicity of cationic KT2 against HCT 116 cells and may help to clarify the interactions between cationic AMPs and cancer cells. Our findings showed that KT2 interacts with the plasma membrane and is then internalized into cells. Moreover, the KT2 peptide increases membrane permeability and induces cytotoxicity against cancer cells through DNA condensation, the increase of apoptotic factor protein levels, and autophagy suppression.
AbstractList The anticancer activity of cationic antimicrobial peptides (AMPs) has become more interesting because some AMPs have selective recognition against cancer cells. However, their antitumor properties and underlying mechanisms in cancer cells have not been clearly understood. In this study, we evaluated the effects of KT2 (lysine/tryptophan-rich AMP) on the cellular uptake and internalization mechanism, cell viability, surface charge of the cell membrane, membrane integrity, apoptotic cell death, and autophagy in human HCT 116 colon cancer cells. We found that KT2 interacted with the cell membrane of HCT 116 cells and was internalized into HCT 116 cells via clathrin-mediated and caveolae-mediated endocytosis mechanisms. The interaction of KT2 with cells caused cell membrane structure change, elevated membrane permeability, and KT2 also affected the lipid component. The results of atomic force microscopy showed cellular membrane defects of KT2-treated cells. The internalized KT2 induced nuclear condensation and apoptotic cell death. It elevated the apoptotic factor levels including those of cytochrome c and apoptosis-inducing factor. Furthermore, KT2 inhibited autophagy by the suppression of autophagy-related 5, autophagy-related 7, autophagy-related 16 like 1, and Beclin-1 proteins. In conclusion, these results revealed the cytotoxicity of cationic KT2 against HCT 116 cells and may help to clarify the interactions between cationic AMPs and cancer cells.The anticancer activity of cationic antimicrobial peptides (AMPs) has become more interesting because some AMPs have selective recognition against cancer cells. However, their antitumor properties and underlying mechanisms in cancer cells have not been clearly understood. In this study, we evaluated the effects of KT2 (lysine/tryptophan-rich AMP) on the cellular uptake and internalization mechanism, cell viability, surface charge of the cell membrane, membrane integrity, apoptotic cell death, and autophagy in human HCT 116 colon cancer cells. We found that KT2 interacted with the cell membrane of HCT 116 cells and was internalized into HCT 116 cells via clathrin-mediated and caveolae-mediated endocytosis mechanisms. The interaction of KT2 with cells caused cell membrane structure change, elevated membrane permeability, and KT2 also affected the lipid component. The results of atomic force microscopy showed cellular membrane defects of KT2-treated cells. The internalized KT2 induced nuclear condensation and apoptotic cell death. It elevated the apoptotic factor levels including those of cytochrome c and apoptosis-inducing factor. Furthermore, KT2 inhibited autophagy by the suppression of autophagy-related 5, autophagy-related 7, autophagy-related 16 like 1, and Beclin-1 proteins. In conclusion, these results revealed the cytotoxicity of cationic KT2 against HCT 116 cells and may help to clarify the interactions between cationic AMPs and cancer cells.
The anticancer activity of cationic antimicrobial peptides (AMPs) has become more interesting because some AMPs have selective recognition against cancer cells. However, their antitumor properties and underlying mechanisms in cancer cells have not been clearly understood. In this study, we evaluated the effects of KT2 (lysine/tryptophan‐rich AMP) on the cellular uptake and internalization mechanism, cell viability, surface charge of the cell membrane, membrane integrity, apoptotic cell death, and autophagy in human HCT 116 colon cancer cells. We found that KT2 interacted with the cell membrane of HCT 116 cells and was internalized into HCT 116 cells via clathrin‐mediated and caveolae‐mediated endocytosis mechanisms. The interaction of KT2 with cells caused cell membrane structure change, elevated membrane permeability, and KT2 also affected the lipid component. The results of atomic force microscopy showed cellular membrane defects of KT2‐treated cells. The internalized KT2 induced nuclear condensation and apoptotic cell death. It elevated the apoptotic factor levels including those of cytochrome c and apoptosis‐inducing factor. Furthermore, KT2 inhibited autophagy by the suppression of autophagy‐related 5, autophagy‐related 7, autophagy‐related 16 like 1, and Beclin‐1 proteins. In conclusion, these results revealed the cytotoxicity of cationic KT2 against HCT 116 cells and may help to clarify the interactions between cationic AMPs and cancer cells.
The anticancer activity of cationic antimicrobial peptides (AMPs) has become more interesting because some AMPs have selective recognition against cancer cells. However, their antitumor properties and underlying mechanisms in cancer cells have not been clearly understood. In this study, we evaluated the effects of KT2 (lysine/tryptophan‐rich AMP) on the cellular uptake and internalization mechanism, cell viability, surface charge of the cell membrane, membrane integrity, apoptotic cell death, and autophagy in human HCT 116 colon cancer cells. We found that KT2 interacted with the cell membrane of HCT 116 cells and was internalized into HCT 116 cells via clathrin‐mediated and caveolae‐mediated endocytosis mechanisms. The interaction of KT2 with cells caused cell membrane structure change, elevated membrane permeability, and KT2 also affected the lipid component. The results of atomic force microscopy showed cellular membrane defects of KT2‐treated cells. The internalized KT2 induced nuclear condensation and apoptotic cell death. It elevated the apoptotic factor levels including those of cytochrome c and apoptosis‐inducing factor. Furthermore, KT2 inhibited autophagy by the suppression of autophagy‐related 5, autophagy‐related 7, autophagy‐related 16 like 1, and Beclin‐1 proteins. In conclusion, these results revealed the cytotoxicity of cationic KT2 against HCT 116 cells and may help to clarify the interactions between cationic AMPs and cancer cells.
The anticancer activity of cationic antimicrobial peptides (AMPs) has become more interesting because some AMPs have selective recognition against cancer cells. However, their antitumor properties and underlying mechanisms in cancer cells have not been clearly understood. In this study, we evaluated the effects of KT2 (lysine/tryptophan‐rich AMP) on the cellular uptake and internalization mechanism, cell viability, surface charge of the cell membrane, membrane integrity, apoptotic cell death, and autophagy in human HCT 116 colon cancer cells. We found that KT2 interacted with the cell membrane of HCT 116 cells and was internalized into HCT 116 cells via clathrin‐mediated and caveolae‐mediated endocytosis mechanisms. The interaction of KT2 with cells caused cell membrane structure change, elevated membrane permeability, and KT2 also affected the lipid component. The results of atomic force microscopy showed cellular membrane defects of KT2‐treated cells. The internalized KT2 induced nuclear condensation and apoptotic cell death. It elevated the apoptotic factor levels including those of cytochrome c and apoptosis‐inducing factor. Furthermore, KT2 inhibited autophagy by the suppression of autophagy‐related 5, autophagy‐related 7, autophagy‐related 16 like 1, and Beclin‐1 proteins. In conclusion, these results revealed the cytotoxicity of cationic KT2 against HCT 116 cells and may help to clarify the interactions between cationic AMPs and cancer cells. Our findings showed that KT2 interacts with the plasma membrane and is then internalized into cells. Moreover, the KT2 peptide increases membrane permeability and induces cytotoxicity against cancer cells through DNA condensation, the increase of apoptotic factor protein levels, and autophagy suppression.
Author Klaynongsruang, Sompong
Boonsiri, Patcharee
Daduang, Sakda
Maraming, Pornsuda
Daduang, Jureerut
Leelayuwat, Chanvit
Peng, Shu‐Fen
Pientong, Chamsai
Chung, Jing‐Gung
Author_xml – sequence: 1
  givenname: Pornsuda
  surname: Maraming
  fullname: Maraming, Pornsuda
  organization: Khon Kaen University
– sequence: 2
  givenname: Sompong
  surname: Klaynongsruang
  fullname: Klaynongsruang, Sompong
  organization: Khon Kaen University
– sequence: 3
  givenname: Patcharee
  surname: Boonsiri
  fullname: Boonsiri, Patcharee
  organization: Khon Kaen University
– sequence: 4
  givenname: Shu‐Fen
  surname: Peng
  fullname: Peng, Shu‐Fen
  organization: China Medical University Hospital
– sequence: 5
  givenname: Sakda
  surname: Daduang
  fullname: Daduang, Sakda
  organization: Khon Kaen University
– sequence: 6
  givenname: Chanvit
  surname: Leelayuwat
  fullname: Leelayuwat, Chanvit
  organization: Khon Kaen University
– sequence: 7
  givenname: Chamsai
  surname: Pientong
  fullname: Pientong, Chamsai
  organization: Khon Kaen University
– sequence: 8
  givenname: Jing‐Gung
  surname: Chung
  fullname: Chung, Jing‐Gung
  email: jgchung@mail.cmu.edu.tw
  organization: China Medical University
– sequence: 9
  givenname: Jureerut
  orcidid: 0000-0003-0977-4144
  surname: Daduang
  fullname: Daduang, Jureerut
  email: jurpoo@kku.ac.th
  organization: Khon Kaen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31073999$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1u1DAQxy3Uim4LB14AWeICh7T-SNbxEa2AQivBYTlbjj1pvErsEDuq9tZH6IkH5EnwfvRSgS-2xr_5z8x_ztGJDx4QekPJJSWEXW3MeMlqIcoXaEGJFEW5rNgJWuQ_WsiqpGfoPMYNIURKzl-iM06J4FLKBfq97gAbnVzwzmADff_n4XEED2nKQX-Hb9YMjzAmZwGPUxhCgrjn8ABDM2kP2EILJkWsvcV6DGMK0UV871KH9ZzC2Om7LXa-c43b1clP3M2D9vh6tcaULrEJfQ4b7Q1Me-34Cp22uo_w-nhfoJ-fP61X18Xt9y9fVx9vC8MrXhaUA9GytGAZrQgRpmoba4nWnNvaLtu6kW0-ogEpWWstq9tSN4aWFRGS1w2_QO8Punm0XzPEpAYXdx3kucIcFWOcyopWlGX03TN0E-bJ5-4yJWR2X3CaqbdHam4GsGqc3KCnrXpyPANXB8BMIcYJWmVc2vufHXe9okTtdqryTtV-pznjw7OMJ9F_sUf1e9fD9v-g-rb6ccj4C7mssvI
CitedBy_id crossref_primary_10_1016_j_ejps_2022_106336
crossref_primary_10_3390_toxins14070438
crossref_primary_10_1039_D1TB02134F
crossref_primary_10_1016_j_tiv_2021_105212
crossref_primary_10_1007_s10989_024_10602_0
crossref_primary_10_1002_tox_23864
crossref_primary_10_1021_acsomega_1c02569
crossref_primary_10_1186_s40779_021_00343_2
crossref_primary_10_3390_molecules25235778
crossref_primary_10_1111_cbdd_70018
crossref_primary_10_1021_acs_molpharmaceut_2c00359
crossref_primary_10_2147_IJN_S445333
crossref_primary_10_1007_s00210_023_02536_z
crossref_primary_10_1021_acsabm_1c00390
crossref_primary_10_1002_tox_23993
crossref_primary_10_1021_acs_jnatprod_1c00963
crossref_primary_10_1038_s41392_024_02035_4
crossref_primary_10_3389_fmicb_2022_879207
crossref_primary_10_1093_bbb_zbab153
crossref_primary_10_1016_j_bbcan_2024_189197
crossref_primary_10_1016_j_bbamem_2020_183447
crossref_primary_10_1016_j_ejcb_2022_151223
crossref_primary_10_3390_ijms242316718
crossref_primary_10_1111_1440_1681_13524
crossref_primary_10_3390_ijms22158231
crossref_primary_10_3390_jfb14110539
crossref_primary_10_1039_D1CP01326B
crossref_primary_10_1039_D1RA05980G
Cites_doi 10.3390/Ijms17030332
10.1016/j.bbagen.2012.02.015
10.1007/s00018‐017‐2604‐z
10.1021/acs.jmedchem.5b01264
10.1016/j.bbamem.2007.11.008
10.1074/jbc.C400051200
10.1016/j.bbamem.2012.06.006
10.1002/tox.22108
10.18632/oncotarget.16743
10.1128/CDLI.8.6.1131‐1135.2001
10.1038/S41598‐017‐02227‐9
10.1042/BJ20061100
10.3389/fchem.2017.00005
10.1096/fj.201600811R
10.1186/s12906‐015‐0940‐9
10.1016/j.etap.2018.07.007
10.1186/S12935‐018‐0646‐4
10.1021/acs.jmedchem.5b02016
10.1038/s41598‐017‐08963‐2
10.1016/j.ymthe.2005.03.038
10.2147/OTT.S100685
10.1002/jcp.25958
10.1016/j.febslet.2015.11.002
10.1016/j.bbamem.2016.06.025
10.1016/j.biomaterials.2013.10.082
10.1038/Srep11719
10.1007/s00726‐012‐1421‐9
10.1016/j.ijantimicag.2008.04.003
10.1016/j.bbamcr.2014.11.006
10.1007/s00726‐017‐2453‐y
10.3390/ijms17050701
10.1371/journal.pone.0126390
10.3892/ol.2016.4601
10.1371/journal.pone.0063641
10.1371/journal.pone.0057236
10.3389/fnins.2017.00073
10.3390/bios7040057
10.1016/j.cbpa.2017.03.014
10.3892/ijo.2017.3866
10.1002/smll.200900520
10.1007/s11274‐015‐1986‐z
10.1016/j.jinorgbio.2017.07.011
10.1002/tox.22568
10.1016/j.yexcr.2007.05.015
10.1158/1535‐7163.MCT‐04‐0077
10.1021/acsmedchemlett.5b00433
10.1016/j.bmcl.2013.06.005
10.1039/c7ob02233f
10.2147/IJN.S109795
10.1093/humupd/dmu065
10.18632/oncotarget.22890
10.1155/2015/735087
10.1016/j.bbamem.2014.11.013
10.1093/emboj/cdg423
10.4014/jmb.1411.11058
10.1016/j.ejphar.2009.08.043
ContentType Journal Article
Copyright 2019 Wiley Periodicals, Inc.
Copyright_xml – notice: 2019 Wiley Periodicals, Inc.
DBID AAYXX
CITATION
NPM
7TK
7U7
8FD
C1K
FR3
K9.
P64
RC3
7X8
DOI 10.1002/jcp.28774
DatabaseName CrossRef
PubMed
Neurosciences Abstracts
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Technology Research Database
Toxicology Abstracts
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4652
EndPage 22129
ExternalDocumentID 31073999
10_1002_jcp_28774
JCP28774
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: The Royal Golden Jubilee (RGJ) Ph.D. Scholarship
  funderid: PHD/0014/2558
– fundername: Khon Kaen University
  funderid: 61004605
– fundername: Synchrotron Light Research Institute
  funderid: 2559‐KKU‐SLRI‐01–09
– fundername: China Medical University, Taichung, Taiwan
  funderid: CMU107‐ASIA‐17
– fundername: Khon Kaen University (Synchrotron Light Research Institute )
  funderid: grant no. 2559‐KKU‐SLRI‐01‐09
– fundername: National Research Council of Thailand
  funderid: grant no. 2558; 2558
GroupedDBID ---
-DZ
-~X
.3N
.55
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
36B
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEFU
ABEML
ABIJN
ABJNI
ABPPZ
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIAGR
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BQCPF
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
H~9
IH2
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M56
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
NNB
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RWR
RX1
RYL
S10
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UPT
V2E
V8K
VQP
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYB
WYISQ
X7M
XG1
XJT
XOL
XPP
XSW
XV2
Y6R
YQT
YZZ
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
NPM
PKN
7TK
7U7
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
FR3
K9.
P64
RC3
7X8
ID FETCH-LOGICAL-c3534-13e0a94ded215007c5fbdd0aa33d8d6f8b9ffff7be992fdd28f4abc14507938b3
IEDL.DBID DR2
ISSN 0021-9541
1097-4652
IngestDate Fri Jul 11 11:24:56 EDT 2025
Fri Jul 25 22:43:56 EDT 2025
Wed Feb 19 02:30:48 EST 2025
Tue Jul 01 01:32:03 EDT 2025
Thu Apr 24 22:53:02 EDT 2025
Wed Jan 22 16:38:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords cationic cell-penetrating KT2
apoptosis
autophagy
antimicrobial peptide
membrane permeability
Language English
License 2019 Wiley Periodicals, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3534-13e0a94ded215007c5fbdd0aa33d8d6f8b9ffff7be992fdd28f4abc14507938b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0977-4144
PMID 31073999
PQID 2279774731
PQPubID 1006363
PageCount 14
ParticipantIDs proquest_miscellaneous_2231951512
proquest_journals_2279774731
pubmed_primary_31073999
crossref_citationtrail_10_1002_jcp_28774
crossref_primary_10_1002_jcp_28774
wiley_primary_10_1002_jcp_28774_JCP28774
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2019
2019-12-00
20191201
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: December 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Journal of cellular physiology
PublicationTitleAlternate J Cell Physiol
PublicationYear 2019
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References e_1_2_9_1_15_1
e_1_2_9_1_36_1
e_1_2_9_1_13_1
e_1_2_9_1_34_1
e_1_2_9_1_11_1
e_1_2_9_1_32_1
e_1_2_9_1_30_1
e_1_2_9_1_2_1
e_1_2_9_1_4_1
e_1_2_9_1_6_1
e_1_2_9_1_29_1
e_1_2_9_1_27_1
e_1_2_9_1_25_1
e_1_2_9_1_48_1
e_1_2_9_1_23_1
e_1_2_9_1_46_1
e_1_2_9_1_21_1
e_1_2_9_1_44_1
e_1_2_9_1_42_1
e_1_2_9_1_40_1
e_1_2_9_1_8_1
e_1_2_9_1_50_1
e_1_2_9_1_52_1
e_1_2_9_1_54_1
e_1_2_9_1_18_1
e_1_2_9_1_56_1
e_1_2_9_1_16_1
e_1_2_9_1_39_1
e_1_2_9_1_14_1
e_1_2_9_1_37_1
e_1_2_9_1_12_1
e_1_2_9_1_35_1
e_1_2_9_1_10_1
e_1_2_9_1_33_1
e_1_2_9_1_31_1
e_1_2_9_1_3_1
e_1_2_9_1_5_1
e_1_2_9_1_28_1
e_1_2_9_1_49_1
e_1_2_9_1_26_1
e_1_2_9_1_47_1
e_1_2_9_1_24_1
e_1_2_9_1_45_1
e_1_2_9_1_22_1
e_1_2_9_1_43_1
e_1_2_9_1_20_1
e_1_2_9_1_41_1
e_1_2_9_1_7_1
e_1_2_9_1_9_1
e_1_2_9_1_51_1
e_1_2_9_1_53_1
e_1_2_9_1_55_1
e_1_2_9_1_19_1
e_1_2_9_1_57_1
e_1_2_9_1_17_1
e_1_2_9_1_38_1
References_xml – ident: e_1_2_9_1_31_1
  doi: 10.3390/Ijms17030332
– ident: e_1_2_9_1_41_1
  doi: 10.1016/j.bbagen.2012.02.015
– ident: e_1_2_9_1_6_1
  doi: 10.1007/s00018‐017‐2604‐z
– ident: e_1_2_9_1_25_1
  doi: 10.1021/acs.jmedchem.5b01264
– ident: e_1_2_9_1_22_1
  doi: 10.1016/j.bbamem.2007.11.008
– ident: e_1_2_9_1_40_1
  doi: 10.1074/jbc.C400051200
– ident: e_1_2_9_1_3_1
  doi: 10.1016/j.bbamem.2012.06.006
– ident: e_1_2_9_1_42_1
  doi: 10.1002/tox.22108
– ident: e_1_2_9_1_15_1
  doi: 10.18632/oncotarget.16743
– ident: e_1_2_9_1_39_1
  doi: 10.1128/CDLI.8.6.1131‐1135.2001
– ident: e_1_2_9_1_53_1
  doi: 10.1038/S41598‐017‐02227‐9
– ident: e_1_2_9_1_21_1
  doi: 10.1042/BJ20061100
– ident: e_1_2_9_1_16_1
  doi: 10.3389/fchem.2017.00005
– ident: e_1_2_9_1_27_1
  doi: 10.1096/fj.201600811R
– ident: e_1_2_9_1_33_1
  doi: 10.1186/s12906‐015‐0940‐9
– ident: e_1_2_9_1_36_1
  doi: 10.1016/j.etap.2018.07.007
– ident: e_1_2_9_1_24_1
  doi: 10.1186/S12935‐018‐0646‐4
– ident: e_1_2_9_1_32_1
  doi: 10.1021/acs.jmedchem.5b02016
– ident: e_1_2_9_1_52_1
  doi: 10.1038/s41598‐017‐08963‐2
– ident: e_1_2_9_1_46_1
  doi: 10.1016/j.ymthe.2005.03.038
– ident: e_1_2_9_1_43_1
  doi: 10.2147/OTT.S100685
– ident: e_1_2_9_1_18_1
  doi: 10.1002/jcp.25958
– ident: e_1_2_9_1_13_1
  doi: 10.1016/j.febslet.2015.11.002
– ident: e_1_2_9_1_2_1
  doi: 10.1016/j.bbamem.2016.06.025
– ident: e_1_2_9_1_10_1
  doi: 10.1016/j.biomaterials.2013.10.082
– ident: e_1_2_9_1_28_1
  doi: 10.1038/Srep11719
– ident: e_1_2_9_1_51_1
  doi: 10.1007/s00726‐012‐1421‐9
– ident: e_1_2_9_1_11_1
  doi: 10.1016/j.ijantimicag.2008.04.003
– ident: e_1_2_9_1_17_1
  doi: 10.1016/j.bbamcr.2014.11.006
– ident: e_1_2_9_1_14_1
  doi: 10.1007/s00726‐017‐2453‐y
– ident: e_1_2_9_1_45_1
  doi: 10.3390/ijms17050701
– ident: e_1_2_9_1_12_1
  doi: 10.1371/journal.pone.0126390
– ident: e_1_2_9_1_54_1
  doi: 10.3892/ol.2016.4601
– ident: e_1_2_9_1_47_1
  doi: 10.1371/journal.pone.0063641
– ident: e_1_2_9_1_7_1
  doi: 10.1371/journal.pone.0057236
– ident: e_1_2_9_1_30_1
  doi: 10.3389/fnins.2017.00073
– ident: e_1_2_9_1_48_1
  doi: 10.3390/bios7040057
– ident: e_1_2_9_1_38_1
  doi: 10.1016/j.cbpa.2017.03.014
– ident: e_1_2_9_1_9_1
  doi: 10.3892/ijo.2017.3866
– ident: e_1_2_9_1_57_1
  doi: 10.1002/smll.200900520
– ident: e_1_2_9_1_50_1
  doi: 10.1007/s11274‐015‐1986‐z
– ident: e_1_2_9_1_19_1
  doi: 10.1016/j.jinorgbio.2017.07.011
– ident: e_1_2_9_1_23_1
  doi: 10.1002/tox.22568
– ident: e_1_2_9_1_34_1
  doi: 10.1016/j.yexcr.2007.05.015
– ident: e_1_2_9_1_35_1
  doi: 10.1158/1535‐7163.MCT‐04‐0077
– ident: e_1_2_9_1_37_1
  doi: 10.1021/acsmedchemlett.5b00433
– ident: e_1_2_9_1_4_1
  doi: 10.1016/j.bmcl.2013.06.005
– ident: e_1_2_9_1_56_1
  doi: 10.1039/c7ob02233f
– ident: e_1_2_9_1_44_1
  doi: 10.2147/IJN.S109795
– ident: e_1_2_9_1_55_1
  doi: 10.1093/humupd/dmu065
– ident: e_1_2_9_1_8_1
  doi: 10.18632/oncotarget.22890
– ident: e_1_2_9_1_20_1
  doi: 10.1155/2015/735087
– ident: e_1_2_9_1_26_1
  doi: 10.1016/j.bbamem.2014.11.013
– ident: e_1_2_9_1_5_1
  doi: 10.1093/emboj/cdg423
– ident: e_1_2_9_1_29_1
  doi: 10.4014/jmb.1411.11058
– ident: e_1_2_9_1_49_1
  doi: 10.1016/j.ejphar.2009.08.043
SSID ssj0009933
Score 2.4509552
Snippet The anticancer activity of cationic antimicrobial peptides (AMPs) has become more interesting because some AMPs have selective recognition against cancer...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 22116
SubjectTerms Anticancer properties
Antimicrobial agents
antimicrobial peptide
Antimicrobial peptides
Antitumor activity
Apoptosis
Atomic force microscopy
Autophagy
Cationic antimicrobial peptides
cationic cell‐penetrating KT2
Cations
Caveolae
Cell death
Cell membranes
Cell viability
Clathrin
Colon
Colon cancer
Colorectal cancer
Cytochrome c
Cytochromes
Cytotoxicity
Defects
Endocytosis
Internalization
Lipids
Lysine
Membrane permeability
Membrane structure
Membrane structures
Membranes
Peptides
Phagocytosis
Surface charge
Toxicity
Tryptophan
Title The cationic cell‐penetrating KT2 peptide promotes cell membrane defects and apoptosis with autophagy inhibition in human HCT 116 colon cancer cells
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjcp.28774
https://www.ncbi.nlm.nih.gov/pubmed/31073999
https://www.proquest.com/docview/2279774731
https://www.proquest.com/docview/2231951512
Volume 234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqSkhcoLQ8thQ0IIS4ZBsnThyLU7VQrYpACG2lHpAiv1IW2GzU7B6WEz-BEz-QX8LYTlKVh4TIyZInycSZsT-Pxt8Q8kTlnOLUqyOa5zJiivNIJiKOFJVcU_QnzdxB4ddv8ukpOznLzrbI8_4sTOCHGAJuzjP8fO0cXKr28JI09KNuxgj3ueMCpWnuePNfvLukjhJdGXmfgpAx2rMKxcnhcOfVteg3gHkVr_oF5_gmed-rGvJMPo3XKzXWX35hcfzPb9khNzogCkfBcm6RLVvvkr2jGjfhiw08BZ8a6mPuu-RaqFi52SPf0awgRPnmGlzU_8fXbw3Ol559tz6HV7MEGpcpYyw0PtXPtl4OFnaBKtYWjPUpJCBrA7JZNqtlO2_BBYRBrh3PgTzfwLz-MFc-nQyb4CsJwnQyA0pzcETbNWqB9nrhn93eJqfHL2eTadSVdoh0mqUsoqmNpWDGGoQcCFN0ViljYinT1BQmrwolKry4skIklTFJUTGpNGWZI_QrVHqHbNfL2t4jUPE4kSy1FrfUTBRCxornlY0dUZ8wOh6RZ_1PLnXHe-7Kb3wuA2NzUuLol370R-TxINoEso8_CR30llJ2_t6WjocR-3hKR-TR0I2e6gYBh3a5djI43WUOYY3I3WBhw1sQZHOEigKV9Xby99eXJ5O3vrH_76L3yXXEeSJk4RyQ7dXF2j5ALLVSD73T_ARPDh1L
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYILj5bCQoEBIcQl2zhx4ljiUq2olr6E0FbqBUV-pSyw2ajZPSwnfgInfiC_hLHzqMpDQuRkyZPYcWbsz5PxN4Q8VymnOPXqgKapDJjiPJCRCANFJdcU7Ukzd1D46Dgdn7D90-R0jbzqzsI0_BC9w81Zhp-vnYE7h_TOBWvoR10NEe9zdoVc9f_nHCR6d0EeJdpE8j4IIWG04xUKo53-1sur0W8Q8zJi9UvO3i3yvutsE2nyabhcqKH-8guP4_--zW1ys8WisNsozx2yZssNsrlb4j58toIX4KNDvdt9g1xrklauNsl31CxoHH1TDc7x_-PrtwqnTE_AW57BwSSCygXLGAuVj_aztZeDmZ1hH0sLxvooEpClAVnNq8W8ntbgfMIgl47qQJ6tYFp-mCofUYZF8MkEYTyaAKUpOK7tEnuBKnvun13fJSd7ryejcdBmdwh0nMQsoLENpWDGGkQdiFR0UihjQinj2GQmLTIlCry4skJEhTFRVjCpNGWJ4_TLVLxF1st5ae8TKHgYSRZbi7tqJjIhQ8XTwoaOq08YHQ7Iy-4r57qlPncZOD7nDWlzlOPo5370B-RZL1o1fB9_EtruVCVvTb7OHRUj1vGYDsjTvhqN1Q0CDu186WRwxkscyBqQe42K9a0gzuaIFgV21ivK35vP90dvfeHBv4s-IdfHk6PD_PDN8cFDcgNhn2iCcrbJ-uJ8aR8htFqox96CfgIM2iFp
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKEYgLj5bCQoEBIcQl2zhx4licqoXV0kJVoa3UA1LkV9otbDbq7h6WEz-BEz-QX8LYeVTlISFysuRJMnFm7M-j8TeEPFcppzj16oCmqQyY4jyQkQgDRSXXFP1JM3dQ-P1BOjpie8fJ8Rp51Z6FqfkhuoCb8ww_XzsHr0yxc0EaeqarPsJ9zq6QqyzFZdIhog8X3FGiqSPvcxASRltaoTDa6W69vBj9hjAvA1a_4gxvkY-trnWiyaf-cqH6-ssvNI7_-TG3yc0GicJubTp3yJotN8jmbom78OkKXoDPDfVB9w1yrS5Zudok39GuoA7zTTS4sP-Pr98qnDA9_W55AvvjCCqXKmMsVD7Xz869HEztFFUsLRjrc0hAlgZkNasWs_lkDi4iDHLpiA7kyQom5elE-XwybIIvJQijwRgoTcExbZeoBRrsuX_2_C45Gr4ZD0ZBU9sh0HESs4DGNpSCGWsQcyBO0UmhjAmljGOTmbTIlCjw4soKERXGRFnBpNKUJY7RL1PxFlkvZ6W9T6DgYSRZbC3uqZnIhAwVTwsbOqY-YXTYIy_bn5zrhvjc1d_4nNeUzVGOo5_70e-RZ51oVbN9_Elou7WUvHH4ee6IGLGPx7RHnnbd6KpuEHBoZ0sng_Nd4iBWj9yrLax7C6JsjlhRoLLeTv7--nxvcOgbD_5d9Am5fvh6mL97e7D_kNxAzCfqjJxtsr44X9pHiKsW6rH3n5-YzCAY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+cationic+cell%E2%80%90penetrating+KT2+peptide+promotes+cell+membrane+defects+and+apoptosis+with+autophagy+inhibition+in+human+HCT+116+colon+cancer+cells&rft.jtitle=Journal+of+cellular+physiology&rft.au=Maraming%2C+Pornsuda&rft.au=Klaynongsruang%2C+Sompong&rft.au=Boonsiri%2C+Patcharee&rft.au=Peng%2C+Shu%E2%80%90Fen&rft.date=2019-12-01&rft.issn=0021-9541&rft.eissn=1097-4652&rft.volume=234&rft.issue=12&rft.spage=22116&rft.epage=22129&rft_id=info:doi/10.1002%2Fjcp.28774&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jcp_28774
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9541&client=summon