Jointly estimating parametric maps of multiple diffusion models from undersampled q‐space data: A comparison of three deep learning approaches

Purpose While advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long scan times. Moreover, each diffusion technique can only extract a few relevant microstructural features. Using multiple diffusion methods may h...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 87; no. 6; pp. 2957 - 2971
Main Authors HashemizadehKolowri, SeyyedKazem, Chen, Rong‐Rong, Adluru, Ganesh, DiBella, Edward V. R.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.06.2022
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.29162

Cover

Abstract Purpose While advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long scan times. Moreover, each diffusion technique can only extract a few relevant microstructural features. Using multiple diffusion methods may help to better understand the brain microstructure, which requires multiple expensive model fittings. In this work, we compare deep learning (DL) approaches to jointly estimate parametric maps of multiple diffusion representations/models from highly undersampled q‐space data. Methods We implement three DL approaches to jointly estimate parametric maps of diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and multi‐compartment spherical mean technique (SMT). A per‐voxel q‐space deep learning (1D‐qDL), a per‐slice convolutional neural network (2D‐CNN), and a 3D‐patch‐based microstructure estimation with sparse coding using a separable dictionary (MESC‐SD) network are considered. Results The accuracy of estimated diffusion maps depends on the q‐space undersampling, the selected network architecture, and the region and the parameter of interest. The smallest errors are observed for the MESC‐SD network architecture (less than 10% normalized RMSE in most brain regions). Conclusion Our experiments show that DL methods are very efficient tools to simultaneously estimate several diffusion maps from undersampled q‐space data. These methods can significantly reduce both the scan (∼6‐fold) and processing times (∼25‐fold) for estimating advanced parametric diffusion maps while achieving a reasonable accuracy.
AbstractList While advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long scan times. Moreover, each diffusion technique can only extract a few relevant microstructural features. Using multiple diffusion methods may help to better understand the brain microstructure, which requires multiple expensive model fittings. In this work, we compare deep learning (DL) approaches to jointly estimate parametric maps of multiple diffusion representations/models from highly undersampled q-space data.PURPOSEWhile advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long scan times. Moreover, each diffusion technique can only extract a few relevant microstructural features. Using multiple diffusion methods may help to better understand the brain microstructure, which requires multiple expensive model fittings. In this work, we compare deep learning (DL) approaches to jointly estimate parametric maps of multiple diffusion representations/models from highly undersampled q-space data.We implement three DL approaches to jointly estimate parametric maps of diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and multi-compartment spherical mean technique (SMT). A per-voxel q-space deep learning (1D-qDL), a per-slice convolutional neural network (2D-CNN), and a 3D-patch-based microstructure estimation with sparse coding using a separable dictionary (MESC-SD) network are considered.METHODSWe implement three DL approaches to jointly estimate parametric maps of diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and multi-compartment spherical mean technique (SMT). A per-voxel q-space deep learning (1D-qDL), a per-slice convolutional neural network (2D-CNN), and a 3D-patch-based microstructure estimation with sparse coding using a separable dictionary (MESC-SD) network are considered.The accuracy of estimated diffusion maps depends on the q-space undersampling, the selected network architecture, and the region and the parameter of interest. The smallest errors are observed for the MESC-SD network architecture (less than 10 % normalized RMSE in most brain regions).RESULTSThe accuracy of estimated diffusion maps depends on the q-space undersampling, the selected network architecture, and the region and the parameter of interest. The smallest errors are observed for the MESC-SD network architecture (less than 10 % normalized RMSE in most brain regions).Our experiments show that DL methods are very efficient tools to simultaneously estimate several diffusion maps from undersampled q-space data. These methods can significantly reduce both the scan ( ∼ 6-fold) and processing times ( ∼ 25-fold) for estimating advanced parametric diffusion maps while achieving a reasonable accuracy.CONCLUSIONOur experiments show that DL methods are very efficient tools to simultaneously estimate several diffusion maps from undersampled q-space data. These methods can significantly reduce both the scan ( ∼ 6-fold) and processing times ( ∼ 25-fold) for estimating advanced parametric diffusion maps while achieving a reasonable accuracy.
PurposeWhile advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long scan times. Moreover, each diffusion technique can only extract a few relevant microstructural features. Using multiple diffusion methods may help to better understand the brain microstructure, which requires multiple expensive model fittings. In this work, we compare deep learning (DL) approaches to jointly estimate parametric maps of multiple diffusion representations/models from highly undersampled q‐space data.MethodsWe implement three DL approaches to jointly estimate parametric maps of diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and multi‐compartment spherical mean technique (SMT). A per‐voxel q‐space deep learning (1D‐qDL), a per‐slice convolutional neural network (2D‐CNN), and a 3D‐patch‐based microstructure estimation with sparse coding using a separable dictionary (MESC‐SD) network are considered.ResultsThe accuracy of estimated diffusion maps depends on the q‐space undersampling, the selected network architecture, and the region and the parameter of interest. The smallest errors are observed for the MESC‐SD network architecture (less than 10% normalized RMSE in most brain regions).ConclusionOur experiments show that DL methods are very efficient tools to simultaneously estimate several diffusion maps from undersampled q‐space data. These methods can significantly reduce both the scan (∼6‐fold) and processing times (∼25‐fold) for estimating advanced parametric diffusion maps while achieving a reasonable accuracy.
While advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long scan times. Moreover, each diffusion technique can only extract a few relevant microstructural features. Using multiple diffusion methods may help to better understand the brain microstructure, which requires multiple expensive model fittings. In this work, we compare deep learning (DL) approaches to jointly estimate parametric maps of multiple diffusion representations/models from highly undersampled q-space data. We implement three DL approaches to jointly estimate parametric maps of diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and multi-compartment spherical mean technique (SMT). A per-voxel q-space deep learning (1D-qDL), a per-slice convolutional neural network (2D-CNN), and a 3D-patch-based microstructure estimation with sparse coding using a separable dictionary (MESC-SD) network are considered. The accuracy of estimated diffusion maps depends on the q-space undersampling, the selected network architecture, and the region and the parameter of interest. The smallest errors are observed for the MESC-SD network architecture (less than 10 normalized RMSE in most brain regions). Our experiments show that DL methods are very efficient tools to simultaneously estimate several diffusion maps from undersampled q-space data. These methods can significantly reduce both the scan ( 6-fold) and processing times ( 25-fold) for estimating advanced parametric diffusion maps while achieving a reasonable accuracy.
Purpose While advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long scan times. Moreover, each diffusion technique can only extract a few relevant microstructural features. Using multiple diffusion methods may help to better understand the brain microstructure, which requires multiple expensive model fittings. In this work, we compare deep learning (DL) approaches to jointly estimate parametric maps of multiple diffusion representations/models from highly undersampled q‐space data. Methods We implement three DL approaches to jointly estimate parametric maps of diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and multi‐compartment spherical mean technique (SMT). A per‐voxel q‐space deep learning (1D‐qDL), a per‐slice convolutional neural network (2D‐CNN), and a 3D‐patch‐based microstructure estimation with sparse coding using a separable dictionary (MESC‐SD) network are considered. Results The accuracy of estimated diffusion maps depends on the q‐space undersampling, the selected network architecture, and the region and the parameter of interest. The smallest errors are observed for the MESC‐SD network architecture (less than 10% normalized RMSE in most brain regions). Conclusion Our experiments show that DL methods are very efficient tools to simultaneously estimate several diffusion maps from undersampled q‐space data. These methods can significantly reduce both the scan (∼6‐fold) and processing times (∼25‐fold) for estimating advanced parametric diffusion maps while achieving a reasonable accuracy.
Author HashemizadehKolowri, SeyyedKazem
DiBella, Edward V. R.
Adluru, Ganesh
Chen, Rong‐Rong
Author_xml – sequence: 1
  givenname: SeyyedKazem
  orcidid: 0000-0003-3947-1427
  surname: HashemizadehKolowri
  fullname: HashemizadehKolowri, SeyyedKazem
  email: s.hashemizadehkolowri@utah.edu
  organization: University of Utah
– sequence: 2
  givenname: Rong‐Rong
  surname: Chen
  fullname: Chen, Rong‐Rong
  organization: University of Utah
– sequence: 3
  givenname: Ganesh
  surname: Adluru
  fullname: Adluru, Ganesh
  organization: University of Utah
– sequence: 4
  givenname: Edward V. R.
  orcidid: 0000-0001-9196-3731
  surname: DiBella
  fullname: DiBella, Edward V. R.
  organization: University of Utah
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35081261$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1O3DAUha2Kqgy0i75AZambdhHwTxLH3SHUHxAIqWrXlse-KUb-CXYiNLs-As_YJ6npDBtUVl7c75zre84B2ospAkJvKTmihLDjkMMRk7RnL9CKdow1rJPtHloR0ZKGU9nuo4NSbgghUor2FdrnHRko6-kK3Z8nF2e_wVBmF_Ts4i886awDzNkZHPRUcBpxWPzsJg_YunFciksRh2TBFzzmFPASLeSiQyUsvv3z-75M2lRYz_oTPsEmherpSlVVr_k6Q50BTNiDzvFhpZ6mnLS5hvIavRy1L_Bm9x6in18-_zj91lxcfT07PbloDO84a0S75kwKAqYVIOplBGTb8UGu2QAwdJQB19ZaaInp2SgElV293VgrYBC95ofow9a3Lr5d6vUquGLAex0hLUWxnnHOOO2Gir5_gt6kJcf6u0q1nHRCclqpdztqWQewaso1z7xRj1lX4HgLmJxKyTAq4-aaeIpz1s4rStRDm6q2qf61WRUfnygeTf_H7tzvnIfN86C6_H65VfwFRbywpw
CitedBy_id crossref_primary_10_3389_fneur_2023_1168833
crossref_primary_10_1002_mrm_30186
crossref_primary_10_1016_j_media_2025_103535
crossref_primary_10_1016_j_nicl_2023_103483
crossref_primary_10_1162_imag_a_00353
Cites_doi 10.1016/j.neuroimage.2010.09.025
10.1002/jmri.1076
10.1002/hbm.10062
10.1109/ACCESS.2019.2919241
10.1016/j.neuroimage.2016.06.058
10.1016/j.neuroimage.2012.03.072
10.1016/j.neuroimage.2007.12.035
10.1016/j.neuroimage.2018.09.060
10.1148/radiol.2017170553
10.3389/fneur.2019.00072
10.1002/mrm.26054
10.1161/STROKEAHA.112.657742
10.1016/j.neuroimage.2019.116137
10.1002/mrm.20426
10.1016/j.mri.2019.11.017
10.3389/fninf.2014.00008
10.1016/j.neuroimage.2016.06.002
10.1016/j.media.2021.102085
10.1016/j.neuroimage.2011.09.015
10.1109/CVPR.2016.90
10.1016/j.neuroimage.2015.10.019
10.3174/ajnr.A7414
10.1016/j.nicl.2017.05.010
10.1002/mrm.27568
10.1002/mrm.25165
10.1109/EMBC.2014.6943697
10.1109/TMI.2016.2551324
10.1016/j.media.2019.04.006
10.1002/mrm.20508
10.1016/j.media.2020.101650
10.4103/1673-5374.244791
10.1016/j.media.2021.102000
10.1016/S0006-3495(94)80775-1
10.1016/j.neuroimage.2018.01.061
10.1016/j.neuroimage.2014.10.026
10.1016/j.neuroimage.2008.03.036
10.1016/j.media.2020.101885
10.1016/S1053-8119(03)00336-7
10.1002/hbm.24056
ContentType Journal Article
Copyright 2022 International Society for Magnetic Resonance in Medicine.
2022 International Society for Magnetic Resonance in Medicine
Copyright_xml – notice: 2022 International Society for Magnetic Resonance in Medicine.
– notice: 2022 International Society for Magnetic Resonance in Medicine
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.29162
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Biochemistry Abstracts 1
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 2971
ExternalDocumentID 35081261
10_1002_mrm_29162
MRM29162
Genre article
Journal Article
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AIQQE
CITATION
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
CGR
CUY
CVF
ECM
EIF
NPM
RGB
RWI
WRC
WUP
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3532-74b32970ec47e70000e945389b28ee8512e3addde40c62f77195974cdd7e876a3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Oct 02 11:47:22 EDT 2025
Tue Oct 07 06:02:56 EDT 2025
Wed Feb 19 02:27:00 EST 2025
Thu Apr 24 22:54:49 EDT 2025
Wed Oct 01 05:05:38 EDT 2025
Sun Jul 06 04:45:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords deep learning
undersampled q-Space
joint estimation
multiple diffusion models
Language English
License 2022 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3532-74b32970ec47e70000e945389b28ee8512e3addde40c62f77195974cdd7e876a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3947-1427
0000-0001-9196-3731
PMID 35081261
PQID 2643057931
PQPubID 1016391
PageCount 15
ParticipantIDs proquest_miscellaneous_2623323158
proquest_journals_2643057931
pubmed_primary_35081261
crossref_citationtrail_10_1002_mrm_29162
crossref_primary_10_1002_mrm_29162
wiley_primary_10_1002_mrm_29162_MRM29162
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
20220601
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2012; 61
2019; 7
2002; 17
2018; 287
2021; 67
2018; 183
2015; 105
2019; 55
2015; 73
2019; 10
2020; 61
2019; 14
2016; 76
1994; 66
2019; 202
2011; 54
2016; 125
2021; 71
2016; 35
2016; 141
2021; 70
2018; 39
2019; 81
2018; 172
2017; 15
2021
2005; 53
2016; 139
2016
2008; 41
2014
2020; 66
2014; 8
2008; 40
2001; 13
2012; 43
2003; 20
2012; 62
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_40_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 139
  start-page: 346
  year: 2016
  end-page: 359
  article-title: Multi‐compartment microscopic diffusion imaging
  publication-title: NeuroImage
– volume: 61
  year: 2020
  article-title: An improved deep network for tissue microstructure estimation with uncertainty quantification
  publication-title: Med Image Anal
– volume: 10
  start-page: 72
  year: 2019
  article-title: Predicting motor outcomes in stroke patients using diffusion spectrum MRI microstructural measures
  publication-title: Front Neurol
– volume: 54
  start-page: 2033
  year: 2011
  end-page: 2044
  article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration
  publication-title: NeuroImage
– volume: 141
  start-page: 556
  year: 2016
  end-page: 572
  article-title: Incorporating outlier detection and replacement into a non‐parametric framework for movement and distortion correction of diffusion MR images
  publication-title: NeuroImage
– volume: 202
  year: 2019
  article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation
  publication-title: NeuroImage
– volume: 183
  start-page: 972
  year: 2018
  end-page: 984
  article-title: Extending the human connectome project across ages: imaging protocols for the lifespan development and aging projects
  publication-title: NeuroImage
– volume: 8
  start-page: 8
  year: 2014
  article-title: Dipy, a library for the analysis of diffusion MRI data
  publication-title: Front Neuroinform
– volume: 43
  start-page: 2968
  year: 2012
  end-page: 2973
  article-title: Stroke assessment with diffusional kurtosis imaging
  publication-title: Stroke
– volume: 7
  start-page: 71398
  year: 2019
  end-page: 71411
  article-title: Fast and robust diffusion kurtosis parametric mapping using a three‐dimensional convolutional neural network
  publication-title: IEEE Access
– volume: 40
  start-page: 570
  year: 2008
  end-page: 582
  article-title: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template
  publication-title: NeuroImage
– volume: 67
  year: 2021
  article-title: Super‐resolved q‐space deep learning with uncertainty quantification
  publication-title: Med Image Anal
– volume: 66
  start-page: 259
  year: 1994
  end-page: 267
  article-title: MR diffusion tensor spectroscopy and imaging
  publication-title: Biophys J
– volume: 53
  start-page: 1432
  year: 2005
  end-page: 1440
  article-title: Diffusional kurtosis imaging: the quantification of non‐gaussian water diffusion by means of magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 41
  start-page: 1267
  year: 2008
  end-page: 1277
  article-title: Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers
  publication-title: NeuroImage
– volume: 172
  start-page: 357
  year: 2018
  end-page: 368
  article-title: Deciphering the microstructure of hippocampal subfields with in vivo DTI and NODDI: applications to experimental multiple sclerosis
  publication-title: NeuroImage
– year: 2016
– volume: 15
  start-page: 333
  year: 2017
  end-page: 342
  article-title: Application and evaluation of NODDI in the cervical spinal cord of multiple sclerosis patients
  publication-title: NeuroImage
– volume: 55
  start-page: 49
  year: 2019
  end-page: 64
  article-title: A deep network for tissue microstructure estimation using modified LSTM units
  publication-title: Med Image Anal
– volume: 70
  year: 2021
  article-title: Simultaneous multi‐slice image reconstruction using regularized image domain split slice‐GRAPPA for diffusion MRI
  publication-title: Med Image Anal
– volume: 73
  start-page: 794
  year: 2015
  end-page: 808
  article-title: Robust extraction of kurtosis INDices with linear estimation
  publication-title: Magn Reson Med
– volume: 76
  start-page: 1574
  year: 2016
  end-page: 1581
  article-title: Gibbs‐ringing artifact removal based on local subvoxel‐shifts
  publication-title: Magn Reson Med
– year: 2021
  article-title: Beyond diffusion tensor MRI methods for improved characterization of the brain after ischemic stroke: a Review
  publication-title: Am J Neuroradiol
– volume: 66
  start-page: 9
  year: 2020
  end-page: 21
  article-title: Coil‐combined split slice‐GRAPPA for simultaneous multi‐slice diffusion MRI
  publication-title: Magn Reson Imaging
– volume: 13
  start-page: 534
  year: 2001
  end-page: 546
  article-title: Diffusion tensor imaging: concepts and applications
  publication-title: J Magn Reson Imaging
– volume: 39
  start-page: 3005
  year: 2018
  end-page: 3017
  article-title: Cortical microstructure in young onset Alzheimer’s disease using neurite orientation dispersion and density imaging
  publication-title: Human Brain Mapping
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  article-title: How to correct susceptibility distortions in spin‐echo echo‐planar images: application to diffusion tensor imaging
  publication-title: NeuroImage
– volume: 105
  start-page: 32
  year: 2015
  end-page: 44
  article-title: Accelerated microstructure imaging via convex optimization (AMICO) from diffusion MRI data
  publication-title: NeuroImage
– volume: 125
  start-page: 1063
  year: 2016
  end-page: 1078
  article-title: An integrated approach to correction for off‐resonance effects and subject movement in diffusion MR imaging
  publication-title: NeuroImage
– volume: 17
  start-page: 143
  year: 2002
  end-page: 155
  article-title: Fast robust automated brain extraction
  publication-title: Human Brain Mapping
– volume: 53
  start-page: 1088
  year: 2005
  end-page: 1095
  article-title: Robust estimation of tensors by outlier rejection
  publication-title: Magn Reson Med
– volume: 81
  start-page: 2399
  year: 2019
  end-page: 2411
  article-title: Simultaneous NODDI and GFA parameter map generation from subsampled q‐space imaging using deep learning
  publication-title: Magn Reson Med
– volume: 287
  start-page: 651
  year: 2018
  end-page: 657
  article-title: Diffusion kurtosis imaging of acute infarction: comparison with routine diffusion and follow‐up MR imaging
  publication-title: Radiology
– volume: 61
  start-page: 1000
  year: 2012
  end-page: 1016
  article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain
  publication-title: NeuroImage
– start-page: 742
  year: 2014
  end-page: 745
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  article-title: FSL
  publication-title: NeuroImage
– volume: 71
  year: 2021
  article-title: Multimodal super‐resolved q‐space deep learning
  publication-title: Med Image Anal
– volume: 14
  start-page: 272
  year: 2019
  end-page: 279
  article-title: Diffusion kurtosis imaging of microstructural changes in brain tissue affected by acute ischemic stroke in different locations
  publication-title: Neural Regeneration Res
– volume: 35
  start-page: 1344
  year: 2016
  end-page: 1351
  article-title: q‐space deep learning: twelve‐fold shorter and model‐free diffusion MRI scans
  publication-title: IEEE Trans Med Imaging
– ident: e_1_2_8_38_1
  doi: 10.1016/j.neuroimage.2010.09.025
– ident: e_1_2_8_3_1
  doi: 10.1002/jmri.1076
– ident: e_1_2_8_30_1
  doi: 10.1002/hbm.10062
– ident: e_1_2_8_19_1
  doi: 10.1109/ACCESS.2019.2919241
– ident: e_1_2_8_33_1
  doi: 10.1016/j.neuroimage.2016.06.058
– ident: e_1_2_8_5_1
  doi: 10.1016/j.neuroimage.2012.03.072
– ident: e_1_2_8_37_1
  doi: 10.1016/j.neuroimage.2007.12.035
– ident: e_1_2_8_23_1
  doi: 10.1016/j.neuroimage.2018.09.060
– ident: e_1_2_8_9_1
  doi: 10.1148/radiol.2017170553
– ident: e_1_2_8_12_1
  doi: 10.3389/fneur.2019.00072
– ident: e_1_2_8_28_1
  doi: 10.1002/mrm.26054
– ident: e_1_2_8_8_1
  doi: 10.1161/STROKEAHA.112.657742
– ident: e_1_2_8_27_1
  doi: 10.1016/j.neuroimage.2019.116137
– ident: e_1_2_8_35_1
  doi: 10.1002/mrm.20426
– ident: e_1_2_8_25_1
  doi: 10.1016/j.mri.2019.11.017
– ident: e_1_2_8_34_1
  doi: 10.3389/fninf.2014.00008
– ident: e_1_2_8_6_1
  doi: 10.1016/j.neuroimage.2016.06.002
– ident: e_1_2_8_40_1
  doi: 10.1016/j.media.2021.102085
– ident: e_1_2_8_29_1
  doi: 10.1016/j.neuroimage.2011.09.015
– ident: e_1_2_8_24_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_8_32_1
  doi: 10.1016/j.neuroimage.2015.10.019
– ident: e_1_2_8_16_1
  doi: 10.3174/ajnr.A7414
– ident: e_1_2_8_14_1
  doi: 10.1016/j.nicl.2017.05.010
– ident: e_1_2_8_18_1
  doi: 10.1002/mrm.27568
– ident: e_1_2_8_36_1
  doi: 10.1002/mrm.25165
– ident: e_1_2_8_11_1
  doi: 10.1109/EMBC.2014.6943697
– ident: e_1_2_8_17_1
  doi: 10.1109/TMI.2016.2551324
– ident: e_1_2_8_20_1
  doi: 10.1016/j.media.2019.04.006
– ident: e_1_2_8_4_1
  doi: 10.1002/mrm.20508
– ident: e_1_2_8_21_1
  doi: 10.1016/j.media.2020.101650
– ident: e_1_2_8_10_1
  doi: 10.4103/1673-5374.244791
– ident: e_1_2_8_26_1
  doi: 10.1016/j.media.2021.102000
– ident: e_1_2_8_2_1
  doi: 10.1016/S0006-3495(94)80775-1
– ident: e_1_2_8_15_1
  doi: 10.1016/j.neuroimage.2018.01.061
– ident: e_1_2_8_22_1
  doi: 10.1016/j.neuroimage.2014.10.026
– ident: e_1_2_8_7_1
  doi: 10.1016/j.neuroimage.2008.03.036
– ident: e_1_2_8_39_1
  doi: 10.1016/j.media.2020.101885
– ident: e_1_2_8_31_1
  doi: 10.1016/S1053-8119(03)00336-7
– ident: e_1_2_8_13_1
  doi: 10.1002/hbm.24056
SSID ssj0009974
Score 2.4248617
Snippet Purpose While advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long...
While advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long scan...
PurposeWhile advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2957
SubjectTerms Algorithms
Artificial neural networks
Brain
Brain - diagnostic imaging
Computer architecture
Deep Learning
Diffusion
Diffusion Magnetic Resonance Imaging - methods
Diffusion Tensor Imaging
Estimation
Feature extraction
Image Processing, Computer-Assisted - methods
Imaging
joint estimation
Kurtosis
Magnetic resonance imaging
Microstructure
multiple diffusion models
Neural coding
Neural networks
Neural Networks, Computer
Neuroimaging
Tensors
undersampled q‐Space
Title Jointly estimating parametric maps of multiple diffusion models from undersampled q‐space data: A comparison of three deep learning approaches
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29162
https://www.ncbi.nlm.nih.gov/pubmed/35081261
https://www.proquest.com/docview/2643057931
https://www.proquest.com/docview/2623323158
Volume 87
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0740-3194
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hpFZcSoHSLqWVizj0kmXXduKEnhAqQkjbAwKJA1JkOw5CZbMLSQ5w4ifwG_tLmHEeCNpKVW-RMs5zHp_Hnm8Atm2YqVzlUSD1KAwklzZAHGcCy1GjuTQ88qvnkx_R4ak8OgvPFuBbVwvT8EP0CTeyDO-vycC1KXeeSEOnN9MhR3BD_ncsIj-dOn6ijkqShoFZSfIziexYhUZ8px_5PBb9BjCf41UfcA6W4bx71Gafyc9hXZmhvXvB4vif7_IW3rRAlO01mrMCC65YhdeTdql9FV75vaG2XIOHo9llUV3dMiLkIIBbXDBiDJ9SMy7LpnpeslnOuq2JjHqu1JSEY77NTsmohIXVvopGExlxxq5_3T-gK7MorCu9y_aY7fsh0rUq1DA859yctW0tLljHfu7Kd3B68P1k_zBoGzkEVoQCEbw0gidq5KxUTlGIdIlET5sYHjuHmI87gX42c3JkI54rRYw3StosUw69tRbrsFjMCvcBGA4QOjRxHgsrMZaaBMOrjWJNCTET8wF87X5paluWc2q2cZU2_Mw8xW-d-m89gK1edN5Qe_xJaLPTi7S17jJFECmoiFeMB_ClP412SYstunCzmmS4EAiew3gA7xt96u8iEBWPceqKD-u14u-3TyfHE3-w8e-iH2GJU42GTxVtwmJ1U7tPiJwq89mbyCOkrRV9
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrYBeeJRHtxQwiAOXbLe2EyeIS4WoltL0ULVSLyiyHadCdLNLkxzaEz-hv5FfwozzqMpDQtwiZRI7yTy-jD3fALy2Ya4KVUSB1JMwkFzaAHGcCSxHjebS8MivnqcH0fRY7p2EJ0vwrq-FafkhhoQbWYb312TglJDeumYNnZ3PxhzRDTrgFRnhfwpBosNr8qgkaTmYlSRPk8ieV2jCt4ZLb0aj3yDmTcTqQ87uPfjcT7bdafJ13NRmbC9_4XH836e5D3c7LMp2WuV5AEuuXIPbabfavga3_PZQWz2Eq735l7I-u2DEyUEYtzxlRBo-o35cls30omLzgvW7Exm1XWkoD8d8p52KURULa3whjSY-4px9-_H9Cr2ZRWFd67dsh9mhJSLdq0Ylw3POLVjX2eKU9QTornoEx7sfjt5Pg66XQ2BFKBDESyN4oibOSuUURUmXSHS2ieGxcwj7uBPoanMnJzbihVJEeqOkzXPl0GFr8RiWy3np1oHhBUKHJi5iYSWGU5NghLVRrCknZmI-gjf9N81sR3RO_TbOspaimWf4rjP_rkfwahBdtOwefxLa7BUj6wy8yhBHCqrjFdsjeDmcRtOk9RZdunlDMlwIxM9hPIInrUINowgExtv494qT9Wrx9-Gz9DD1Bxv_LvoC7kyP0v1s_-PBp6ewyqlkw2eONmG5Pm_cMwRStXnu7eUn9WQZng
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRVRceBRoF0oxiAOXbLe2EyeIS9Wy6oOtUEWlXlBkO05V0c0uTXKAEz-hv5FfwozzqMpDqnqL5HGcOPP4Ynu-AXhjw0zlKo8CqUdhILm0AeI4E1iOGs2l4ZHfPZ8cRrvHcv8kPFmA910uTMMP0S-4kWV4f00G7uZZvnHFGjq9mA45oht0wHdkmMR0oG_n6Io8KkkaDmYlydMksuMVGvGNvuv1aPQXxLyOWH3IGT-AL93DNidNvg7rygztjz94HG_7Ng_hfotF2VajPI9gwRXLsDRpd9uX4a4_HmrLx3C5PzsrqvPvjDg5COMWp4xIw6dUj8uyqZ6XbJaz7nQio7IrNa3DMV9pp2SUxcJqn0ijiY84Y99-_bxEb2ZRWFf6Hdtiti-JSPeqUMmwzbk5aytbnLKOAN2VT-B4_OHz9m7Q1nIIrAgFgnhpBE_UyFmpnKIo6RKJzjYxPHYOYR93Al1t5uTIRjxXikhvlLRZphw6bC2ewmIxK9wqMOwgdGjiPBZWYjg1CUZYG8Wa1sRMzAfwtvumqW2JzqnexnnaUDTzFOc69XM9gNe96Lxh9_iX0FqnGGlr4GWKOFJQHq_YHMCrvhlNk_ZbdOFmNclwIRA_h_EAVhqF6kcRCIw38e8VH9arxf-HTydHE3_x7OaiL2Hp0844_bh3ePAc7nHK2PALR2uwWF3U7gXiqMqse3P5DXsRGSI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jointly+estimating+parametric+maps+of+multiple+diffusion+models+from+undersampled+q%E2%80%90space+data%3A+A+comparison+of+three+deep+learning+approaches&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=HashemizadehKolowri%2C+SeyyedKazem&rft.au=Chen%2C+Rong%E2%80%90Rong&rft.au=Adluru%2C+Ganesh&rft.au=DiBella%2C+Edward+V.+R.&rft.date=2022-06-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=87&rft.issue=6&rft.spage=2957&rft.epage=2971&rft_id=info:doi/10.1002%2Fmrm.29162&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_29162
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon