Jointly estimating parametric maps of multiple diffusion models from undersampled q‐space data: A comparison of three deep learning approaches
Purpose While advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long scan times. Moreover, each diffusion technique can only extract a few relevant microstructural features. Using multiple diffusion methods may h...
Saved in:
| Published in | Magnetic resonance in medicine Vol. 87; no. 6; pp. 2957 - 2971 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Wiley Subscription Services, Inc
01.06.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0740-3194 1522-2594 1522-2594 |
| DOI | 10.1002/mrm.29162 |
Cover
| Abstract | Purpose
While advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long scan times. Moreover, each diffusion technique can only extract a few relevant microstructural features. Using multiple diffusion methods may help to better understand the brain microstructure, which requires multiple expensive model fittings. In this work, we compare deep learning (DL) approaches to jointly estimate parametric maps of multiple diffusion representations/models from highly undersampled q‐space data.
Methods
We implement three DL approaches to jointly estimate parametric maps of diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and multi‐compartment spherical mean technique (SMT). A per‐voxel q‐space deep learning (1D‐qDL), a per‐slice convolutional neural network (2D‐CNN), and a 3D‐patch‐based microstructure estimation with sparse coding using a separable dictionary (MESC‐SD) network are considered.
Results
The accuracy of estimated diffusion maps depends on the q‐space undersampling, the selected network architecture, and the region and the parameter of interest. The smallest errors are observed for the MESC‐SD network architecture (less than 10% normalized RMSE in most brain regions).
Conclusion
Our experiments show that DL methods are very efficient tools to simultaneously estimate several diffusion maps from undersampled q‐space data. These methods can significantly reduce both the scan (∼6‐fold) and processing times (∼25‐fold) for estimating advanced parametric diffusion maps while achieving a reasonable accuracy. |
|---|---|
| AbstractList | While advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long scan times. Moreover, each diffusion technique can only extract a few relevant microstructural features. Using multiple diffusion methods may help to better understand the brain microstructure, which requires multiple expensive model fittings. In this work, we compare deep learning (DL) approaches to jointly estimate parametric maps of multiple diffusion representations/models from highly undersampled q-space data.PURPOSEWhile advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long scan times. Moreover, each diffusion technique can only extract a few relevant microstructural features. Using multiple diffusion methods may help to better understand the brain microstructure, which requires multiple expensive model fittings. In this work, we compare deep learning (DL) approaches to jointly estimate parametric maps of multiple diffusion representations/models from highly undersampled q-space data.We implement three DL approaches to jointly estimate parametric maps of diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and multi-compartment spherical mean technique (SMT). A per-voxel q-space deep learning (1D-qDL), a per-slice convolutional neural network (2D-CNN), and a 3D-patch-based microstructure estimation with sparse coding using a separable dictionary (MESC-SD) network are considered.METHODSWe implement three DL approaches to jointly estimate parametric maps of diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and multi-compartment spherical mean technique (SMT). A per-voxel q-space deep learning (1D-qDL), a per-slice convolutional neural network (2D-CNN), and a 3D-patch-based microstructure estimation with sparse coding using a separable dictionary (MESC-SD) network are considered.The accuracy of estimated diffusion maps depends on the q-space undersampling, the selected network architecture, and the region and the parameter of interest. The smallest errors are observed for the MESC-SD network architecture (less than 10 % normalized RMSE in most brain regions).RESULTSThe accuracy of estimated diffusion maps depends on the q-space undersampling, the selected network architecture, and the region and the parameter of interest. The smallest errors are observed for the MESC-SD network architecture (less than 10 % normalized RMSE in most brain regions).Our experiments show that DL methods are very efficient tools to simultaneously estimate several diffusion maps from undersampled q-space data. These methods can significantly reduce both the scan ( ∼ 6-fold) and processing times ( ∼ 25-fold) for estimating advanced parametric diffusion maps while achieving a reasonable accuracy.CONCLUSIONOur experiments show that DL methods are very efficient tools to simultaneously estimate several diffusion maps from undersampled q-space data. These methods can significantly reduce both the scan ( ∼ 6-fold) and processing times ( ∼ 25-fold) for estimating advanced parametric diffusion maps while achieving a reasonable accuracy. PurposeWhile advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long scan times. Moreover, each diffusion technique can only extract a few relevant microstructural features. Using multiple diffusion methods may help to better understand the brain microstructure, which requires multiple expensive model fittings. In this work, we compare deep learning (DL) approaches to jointly estimate parametric maps of multiple diffusion representations/models from highly undersampled q‐space data.MethodsWe implement three DL approaches to jointly estimate parametric maps of diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and multi‐compartment spherical mean technique (SMT). A per‐voxel q‐space deep learning (1D‐qDL), a per‐slice convolutional neural network (2D‐CNN), and a 3D‐patch‐based microstructure estimation with sparse coding using a separable dictionary (MESC‐SD) network are considered.ResultsThe accuracy of estimated diffusion maps depends on the q‐space undersampling, the selected network architecture, and the region and the parameter of interest. The smallest errors are observed for the MESC‐SD network architecture (less than 10% normalized RMSE in most brain regions).ConclusionOur experiments show that DL methods are very efficient tools to simultaneously estimate several diffusion maps from undersampled q‐space data. These methods can significantly reduce both the scan (∼6‐fold) and processing times (∼25‐fold) for estimating advanced parametric diffusion maps while achieving a reasonable accuracy. While advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long scan times. Moreover, each diffusion technique can only extract a few relevant microstructural features. Using multiple diffusion methods may help to better understand the brain microstructure, which requires multiple expensive model fittings. In this work, we compare deep learning (DL) approaches to jointly estimate parametric maps of multiple diffusion representations/models from highly undersampled q-space data. We implement three DL approaches to jointly estimate parametric maps of diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and multi-compartment spherical mean technique (SMT). A per-voxel q-space deep learning (1D-qDL), a per-slice convolutional neural network (2D-CNN), and a 3D-patch-based microstructure estimation with sparse coding using a separable dictionary (MESC-SD) network are considered. The accuracy of estimated diffusion maps depends on the q-space undersampling, the selected network architecture, and the region and the parameter of interest. The smallest errors are observed for the MESC-SD network architecture (less than 10 normalized RMSE in most brain regions). Our experiments show that DL methods are very efficient tools to simultaneously estimate several diffusion maps from undersampled q-space data. These methods can significantly reduce both the scan ( 6-fold) and processing times ( 25-fold) for estimating advanced parametric diffusion maps while achieving a reasonable accuracy. Purpose While advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long scan times. Moreover, each diffusion technique can only extract a few relevant microstructural features. Using multiple diffusion methods may help to better understand the brain microstructure, which requires multiple expensive model fittings. In this work, we compare deep learning (DL) approaches to jointly estimate parametric maps of multiple diffusion representations/models from highly undersampled q‐space data. Methods We implement three DL approaches to jointly estimate parametric maps of diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), and multi‐compartment spherical mean technique (SMT). A per‐voxel q‐space deep learning (1D‐qDL), a per‐slice convolutional neural network (2D‐CNN), and a 3D‐patch‐based microstructure estimation with sparse coding using a separable dictionary (MESC‐SD) network are considered. Results The accuracy of estimated diffusion maps depends on the q‐space undersampling, the selected network architecture, and the region and the parameter of interest. The smallest errors are observed for the MESC‐SD network architecture (less than 10% normalized RMSE in most brain regions). Conclusion Our experiments show that DL methods are very efficient tools to simultaneously estimate several diffusion maps from undersampled q‐space data. These methods can significantly reduce both the scan (∼6‐fold) and processing times (∼25‐fold) for estimating advanced parametric diffusion maps while achieving a reasonable accuracy. |
| Author | HashemizadehKolowri, SeyyedKazem DiBella, Edward V. R. Adluru, Ganesh Chen, Rong‐Rong |
| Author_xml | – sequence: 1 givenname: SeyyedKazem orcidid: 0000-0003-3947-1427 surname: HashemizadehKolowri fullname: HashemizadehKolowri, SeyyedKazem email: s.hashemizadehkolowri@utah.edu organization: University of Utah – sequence: 2 givenname: Rong‐Rong surname: Chen fullname: Chen, Rong‐Rong organization: University of Utah – sequence: 3 givenname: Ganesh surname: Adluru fullname: Adluru, Ganesh organization: University of Utah – sequence: 4 givenname: Edward V. R. orcidid: 0000-0001-9196-3731 surname: DiBella fullname: DiBella, Edward V. R. organization: University of Utah |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35081261$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1kc1O3DAUha2Kqgy0i75AZambdhHwTxLH3SHUHxAIqWrXlse-KUb-CXYiNLs-As_YJ6npDBtUVl7c75zre84B2ospAkJvKTmihLDjkMMRk7RnL9CKdow1rJPtHloR0ZKGU9nuo4NSbgghUor2FdrnHRko6-kK3Z8nF2e_wVBmF_Ts4i886awDzNkZHPRUcBpxWPzsJg_YunFciksRh2TBFzzmFPASLeSiQyUsvv3z-75M2lRYz_oTPsEmherpSlVVr_k6Q50BTNiDzvFhpZ6mnLS5hvIavRy1L_Bm9x6in18-_zj91lxcfT07PbloDO84a0S75kwKAqYVIOplBGTb8UGu2QAwdJQB19ZaaInp2SgElV293VgrYBC95ofow9a3Lr5d6vUquGLAex0hLUWxnnHOOO2Gir5_gt6kJcf6u0q1nHRCclqpdztqWQewaso1z7xRj1lX4HgLmJxKyTAq4-aaeIpz1s4rStRDm6q2qf61WRUfnygeTf_H7tzvnIfN86C6_H65VfwFRbywpw |
| CitedBy_id | crossref_primary_10_3389_fneur_2023_1168833 crossref_primary_10_1002_mrm_30186 crossref_primary_10_1016_j_media_2025_103535 crossref_primary_10_1016_j_nicl_2023_103483 crossref_primary_10_1162_imag_a_00353 |
| Cites_doi | 10.1016/j.neuroimage.2010.09.025 10.1002/jmri.1076 10.1002/hbm.10062 10.1109/ACCESS.2019.2919241 10.1016/j.neuroimage.2016.06.058 10.1016/j.neuroimage.2012.03.072 10.1016/j.neuroimage.2007.12.035 10.1016/j.neuroimage.2018.09.060 10.1148/radiol.2017170553 10.3389/fneur.2019.00072 10.1002/mrm.26054 10.1161/STROKEAHA.112.657742 10.1016/j.neuroimage.2019.116137 10.1002/mrm.20426 10.1016/j.mri.2019.11.017 10.3389/fninf.2014.00008 10.1016/j.neuroimage.2016.06.002 10.1016/j.media.2021.102085 10.1016/j.neuroimage.2011.09.015 10.1109/CVPR.2016.90 10.1016/j.neuroimage.2015.10.019 10.3174/ajnr.A7414 10.1016/j.nicl.2017.05.010 10.1002/mrm.27568 10.1002/mrm.25165 10.1109/EMBC.2014.6943697 10.1109/TMI.2016.2551324 10.1016/j.media.2019.04.006 10.1002/mrm.20508 10.1016/j.media.2020.101650 10.4103/1673-5374.244791 10.1016/j.media.2021.102000 10.1016/S0006-3495(94)80775-1 10.1016/j.neuroimage.2018.01.061 10.1016/j.neuroimage.2014.10.026 10.1016/j.neuroimage.2008.03.036 10.1016/j.media.2020.101885 10.1016/S1053-8119(03)00336-7 10.1002/hbm.24056 |
| ContentType | Journal Article |
| Copyright | 2022 International Society for Magnetic Resonance in Medicine. 2022 International Society for Magnetic Resonance in Medicine |
| Copyright_xml | – notice: 2022 International Society for Magnetic Resonance in Medicine. – notice: 2022 International Society for Magnetic Resonance in Medicine |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
| DOI | 10.1002/mrm.29162 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Biochemistry Abstracts 1 MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1522-2594 |
| EndPage | 2971 |
| ExternalDocumentID | 35081261 10_1002_mrm_29162 MRM29162 |
| Genre | article Journal Article |
| GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHQN AAIPD AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AHMBA AIACR AIAGR AIDQK AIDYY AITYG AIURR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AIQQE CITATION 24P AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE CGR CUY CVF ECM EIF NPM RGB RWI WRC WUP 8FD FR3 K9. M7Z P64 7X8 |
| ID | FETCH-LOGICAL-c3532-74b32970ec47e70000e945389b28ee8512e3addde40c62f77195974cdd7e876a3 |
| IEDL.DBID | DR2 |
| ISSN | 0740-3194 1522-2594 |
| IngestDate | Thu Oct 02 11:47:22 EDT 2025 Tue Oct 07 06:02:56 EDT 2025 Wed Feb 19 02:27:00 EST 2025 Thu Apr 24 22:54:49 EDT 2025 Wed Oct 01 05:05:38 EDT 2025 Sun Jul 06 04:45:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | deep learning undersampled q-Space joint estimation multiple diffusion models |
| Language | English |
| License | 2022 International Society for Magnetic Resonance in Medicine. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3532-74b32970ec47e70000e945389b28ee8512e3addde40c62f77195974cdd7e876a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-3947-1427 0000-0001-9196-3731 |
| PMID | 35081261 |
| PQID | 2643057931 |
| PQPubID | 1016391 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_2623323158 proquest_journals_2643057931 pubmed_primary_35081261 crossref_citationtrail_10_1002_mrm_29162 crossref_primary_10_1002_mrm_29162 wiley_primary_10_1002_mrm_29162_MRM29162 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2022 2022-06-00 20220601 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: June 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: Hoboken |
| PublicationTitle | Magnetic resonance in medicine |
| PublicationTitleAlternate | Magn Reson Med |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2012; 61 2019; 7 2002; 17 2018; 287 2021; 67 2018; 183 2015; 105 2019; 55 2015; 73 2019; 10 2020; 61 2019; 14 2016; 76 1994; 66 2019; 202 2011; 54 2016; 125 2021; 71 2016; 35 2016; 141 2021; 70 2018; 39 2019; 81 2018; 172 2017; 15 2021 2005; 53 2016; 139 2016 2008; 41 2014 2020; 66 2014; 8 2008; 40 2001; 13 2012; 43 2003; 20 2012; 62 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 139 start-page: 346 year: 2016 end-page: 359 article-title: Multi‐compartment microscopic diffusion imaging publication-title: NeuroImage – volume: 61 year: 2020 article-title: An improved deep network for tissue microstructure estimation with uncertainty quantification publication-title: Med Image Anal – volume: 10 start-page: 72 year: 2019 article-title: Predicting motor outcomes in stroke patients using diffusion spectrum MRI microstructural measures publication-title: Front Neurol – volume: 54 start-page: 2033 year: 2011 end-page: 2044 article-title: A reproducible evaluation of ANTs similarity metric performance in brain image registration publication-title: NeuroImage – volume: 141 start-page: 556 year: 2016 end-page: 572 article-title: Incorporating outlier detection and replacement into a non‐parametric framework for movement and distortion correction of diffusion MR images publication-title: NeuroImage – volume: 202 year: 2019 article-title: MRtrix3: a fast, flexible and open software framework for medical image processing and visualisation publication-title: NeuroImage – volume: 183 start-page: 972 year: 2018 end-page: 984 article-title: Extending the human connectome project across ages: imaging protocols for the lifespan development and aging projects publication-title: NeuroImage – volume: 8 start-page: 8 year: 2014 article-title: Dipy, a library for the analysis of diffusion MRI data publication-title: Front Neuroinform – volume: 43 start-page: 2968 year: 2012 end-page: 2973 article-title: Stroke assessment with diffusional kurtosis imaging publication-title: Stroke – volume: 7 start-page: 71398 year: 2019 end-page: 71411 article-title: Fast and robust diffusion kurtosis parametric mapping using a three‐dimensional convolutional neural network publication-title: IEEE Access – volume: 40 start-page: 570 year: 2008 end-page: 582 article-title: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template publication-title: NeuroImage – volume: 67 year: 2021 article-title: Super‐resolved q‐space deep learning with uncertainty quantification publication-title: Med Image Anal – volume: 66 start-page: 259 year: 1994 end-page: 267 article-title: MR diffusion tensor spectroscopy and imaging publication-title: Biophys J – volume: 53 start-page: 1432 year: 2005 end-page: 1440 article-title: Diffusional kurtosis imaging: the quantification of non‐gaussian water diffusion by means of magnetic resonance imaging publication-title: Magn Reson Med – volume: 41 start-page: 1267 year: 2008 end-page: 1277 article-title: Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers publication-title: NeuroImage – volume: 172 start-page: 357 year: 2018 end-page: 368 article-title: Deciphering the microstructure of hippocampal subfields with in vivo DTI and NODDI: applications to experimental multiple sclerosis publication-title: NeuroImage – year: 2016 – volume: 15 start-page: 333 year: 2017 end-page: 342 article-title: Application and evaluation of NODDI in the cervical spinal cord of multiple sclerosis patients publication-title: NeuroImage – volume: 55 start-page: 49 year: 2019 end-page: 64 article-title: A deep network for tissue microstructure estimation using modified LSTM units publication-title: Med Image Anal – volume: 70 year: 2021 article-title: Simultaneous multi‐slice image reconstruction using regularized image domain split slice‐GRAPPA for diffusion MRI publication-title: Med Image Anal – volume: 73 start-page: 794 year: 2015 end-page: 808 article-title: Robust extraction of kurtosis INDices with linear estimation publication-title: Magn Reson Med – volume: 76 start-page: 1574 year: 2016 end-page: 1581 article-title: Gibbs‐ringing artifact removal based on local subvoxel‐shifts publication-title: Magn Reson Med – year: 2021 article-title: Beyond diffusion tensor MRI methods for improved characterization of the brain after ischemic stroke: a Review publication-title: Am J Neuroradiol – volume: 66 start-page: 9 year: 2020 end-page: 21 article-title: Coil‐combined split slice‐GRAPPA for simultaneous multi‐slice diffusion MRI publication-title: Magn Reson Imaging – volume: 13 start-page: 534 year: 2001 end-page: 546 article-title: Diffusion tensor imaging: concepts and applications publication-title: J Magn Reson Imaging – volume: 39 start-page: 3005 year: 2018 end-page: 3017 article-title: Cortical microstructure in young onset Alzheimer’s disease using neurite orientation dispersion and density imaging publication-title: Human Brain Mapping – volume: 20 start-page: 870 year: 2003 end-page: 888 article-title: How to correct susceptibility distortions in spin‐echo echo‐planar images: application to diffusion tensor imaging publication-title: NeuroImage – volume: 105 start-page: 32 year: 2015 end-page: 44 article-title: Accelerated microstructure imaging via convex optimization (AMICO) from diffusion MRI data publication-title: NeuroImage – volume: 125 start-page: 1063 year: 2016 end-page: 1078 article-title: An integrated approach to correction for off‐resonance effects and subject movement in diffusion MR imaging publication-title: NeuroImage – volume: 17 start-page: 143 year: 2002 end-page: 155 article-title: Fast robust automated brain extraction publication-title: Human Brain Mapping – volume: 53 start-page: 1088 year: 2005 end-page: 1095 article-title: Robust estimation of tensors by outlier rejection publication-title: Magn Reson Med – volume: 81 start-page: 2399 year: 2019 end-page: 2411 article-title: Simultaneous NODDI and GFA parameter map generation from subsampled q‐space imaging using deep learning publication-title: Magn Reson Med – volume: 287 start-page: 651 year: 2018 end-page: 657 article-title: Diffusion kurtosis imaging of acute infarction: comparison with routine diffusion and follow‐up MR imaging publication-title: Radiology – volume: 61 start-page: 1000 year: 2012 end-page: 1016 article-title: NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain publication-title: NeuroImage – start-page: 742 year: 2014 end-page: 745 – volume: 62 start-page: 782 year: 2012 end-page: 790 article-title: FSL publication-title: NeuroImage – volume: 71 year: 2021 article-title: Multimodal super‐resolved q‐space deep learning publication-title: Med Image Anal – volume: 14 start-page: 272 year: 2019 end-page: 279 article-title: Diffusion kurtosis imaging of microstructural changes in brain tissue affected by acute ischemic stroke in different locations publication-title: Neural Regeneration Res – volume: 35 start-page: 1344 year: 2016 end-page: 1351 article-title: q‐space deep learning: twelve‐fold shorter and model‐free diffusion MRI scans publication-title: IEEE Trans Med Imaging – ident: e_1_2_8_38_1 doi: 10.1016/j.neuroimage.2010.09.025 – ident: e_1_2_8_3_1 doi: 10.1002/jmri.1076 – ident: e_1_2_8_30_1 doi: 10.1002/hbm.10062 – ident: e_1_2_8_19_1 doi: 10.1109/ACCESS.2019.2919241 – ident: e_1_2_8_33_1 doi: 10.1016/j.neuroimage.2016.06.058 – ident: e_1_2_8_5_1 doi: 10.1016/j.neuroimage.2012.03.072 – ident: e_1_2_8_37_1 doi: 10.1016/j.neuroimage.2007.12.035 – ident: e_1_2_8_23_1 doi: 10.1016/j.neuroimage.2018.09.060 – ident: e_1_2_8_9_1 doi: 10.1148/radiol.2017170553 – ident: e_1_2_8_12_1 doi: 10.3389/fneur.2019.00072 – ident: e_1_2_8_28_1 doi: 10.1002/mrm.26054 – ident: e_1_2_8_8_1 doi: 10.1161/STROKEAHA.112.657742 – ident: e_1_2_8_27_1 doi: 10.1016/j.neuroimage.2019.116137 – ident: e_1_2_8_35_1 doi: 10.1002/mrm.20426 – ident: e_1_2_8_25_1 doi: 10.1016/j.mri.2019.11.017 – ident: e_1_2_8_34_1 doi: 10.3389/fninf.2014.00008 – ident: e_1_2_8_6_1 doi: 10.1016/j.neuroimage.2016.06.002 – ident: e_1_2_8_40_1 doi: 10.1016/j.media.2021.102085 – ident: e_1_2_8_29_1 doi: 10.1016/j.neuroimage.2011.09.015 – ident: e_1_2_8_24_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_8_32_1 doi: 10.1016/j.neuroimage.2015.10.019 – ident: e_1_2_8_16_1 doi: 10.3174/ajnr.A7414 – ident: e_1_2_8_14_1 doi: 10.1016/j.nicl.2017.05.010 – ident: e_1_2_8_18_1 doi: 10.1002/mrm.27568 – ident: e_1_2_8_36_1 doi: 10.1002/mrm.25165 – ident: e_1_2_8_11_1 doi: 10.1109/EMBC.2014.6943697 – ident: e_1_2_8_17_1 doi: 10.1109/TMI.2016.2551324 – ident: e_1_2_8_20_1 doi: 10.1016/j.media.2019.04.006 – ident: e_1_2_8_4_1 doi: 10.1002/mrm.20508 – ident: e_1_2_8_21_1 doi: 10.1016/j.media.2020.101650 – ident: e_1_2_8_10_1 doi: 10.4103/1673-5374.244791 – ident: e_1_2_8_26_1 doi: 10.1016/j.media.2021.102000 – ident: e_1_2_8_2_1 doi: 10.1016/S0006-3495(94)80775-1 – ident: e_1_2_8_15_1 doi: 10.1016/j.neuroimage.2018.01.061 – ident: e_1_2_8_22_1 doi: 10.1016/j.neuroimage.2014.10.026 – ident: e_1_2_8_7_1 doi: 10.1016/j.neuroimage.2008.03.036 – ident: e_1_2_8_39_1 doi: 10.1016/j.media.2020.101885 – ident: e_1_2_8_31_1 doi: 10.1016/S1053-8119(03)00336-7 – ident: e_1_2_8_13_1 doi: 10.1002/hbm.24056 |
| SSID | ssj0009974 |
| Score | 2.4248617 |
| Snippet | Purpose
While advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long... While advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long scan... PurposeWhile advanced diffusion techniques have been found valuable in many studies, their clinical availability has been hampered partly due to their long... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2957 |
| SubjectTerms | Algorithms Artificial neural networks Brain Brain - diagnostic imaging Computer architecture Deep Learning Diffusion Diffusion Magnetic Resonance Imaging - methods Diffusion Tensor Imaging Estimation Feature extraction Image Processing, Computer-Assisted - methods Imaging joint estimation Kurtosis Magnetic resonance imaging Microstructure multiple diffusion models Neural coding Neural networks Neural Networks, Computer Neuroimaging Tensors undersampled q‐Space |
| Title | Jointly estimating parametric maps of multiple diffusion models from undersampled q‐space data: A comparison of three deep learning approaches |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.29162 https://www.ncbi.nlm.nih.gov/pubmed/35081261 https://www.proquest.com/docview/2643057931 https://www.proquest.com/docview/2623323158 |
| Volume | 87 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0740-3194 databaseCode: DR2 dateStart: 19990101 customDbUrl: isFulltext: true eissn: 1522-2594 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009974 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4hpFZcSoHSLqWVizj0kmXXduKEnhAqQkjbAwKJA1JkOw5CZbMLSQ5w4ifwG_tLmHEeCNpKVW-RMs5zHp_Hnm8Atm2YqVzlUSD1KAwklzZAHGcCy1GjuTQ88qvnkx_R4ak8OgvPFuBbVwvT8EP0CTeyDO-vycC1KXeeSEOnN9MhR3BD_ncsIj-dOn6ijkqShoFZSfIziexYhUZ8px_5PBb9BjCf41UfcA6W4bx71Gafyc9hXZmhvXvB4vif7_IW3rRAlO01mrMCC65YhdeTdql9FV75vaG2XIOHo9llUV3dMiLkIIBbXDBiDJ9SMy7LpnpeslnOuq2JjHqu1JSEY77NTsmohIXVvopGExlxxq5_3T-gK7MorCu9y_aY7fsh0rUq1DA859yctW0tLljHfu7Kd3B68P1k_zBoGzkEVoQCEbw0gidq5KxUTlGIdIlET5sYHjuHmI87gX42c3JkI54rRYw3StosUw69tRbrsFjMCvcBGA4QOjRxHgsrMZaaBMOrjWJNCTET8wF87X5paluWc2q2cZU2_Mw8xW-d-m89gK1edN5Qe_xJaLPTi7S17jJFECmoiFeMB_ClP412SYstunCzmmS4EAiew3gA7xt96u8iEBWPceqKD-u14u-3TyfHE3-w8e-iH2GJU42GTxVtwmJ1U7tPiJwq89mbyCOkrRV9 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VrYBeeJRHtxQwiAOXbLe2EyeIS4WoltL0ULVSLyiyHadCdLNLkxzaEz-hv5FfwozzqMpDQtwiZRI7yTy-jD3fALy2Ya4KVUSB1JMwkFzaAHGcCSxHjebS8MivnqcH0fRY7p2EJ0vwrq-FafkhhoQbWYb312TglJDeumYNnZ3PxhzRDTrgFRnhfwpBosNr8qgkaTmYlSRPk8ieV2jCt4ZLb0aj3yDmTcTqQ87uPfjcT7bdafJ13NRmbC9_4XH836e5D3c7LMp2WuV5AEuuXIPbabfavga3_PZQWz2Eq735l7I-u2DEyUEYtzxlRBo-o35cls30omLzgvW7Exm1XWkoD8d8p52KURULa3whjSY-4px9-_H9Cr2ZRWFd67dsh9mhJSLdq0Ylw3POLVjX2eKU9QTornoEx7sfjt5Pg66XQ2BFKBDESyN4oibOSuUURUmXSHS2ieGxcwj7uBPoanMnJzbihVJEeqOkzXPl0GFr8RiWy3np1oHhBUKHJi5iYSWGU5NghLVRrCknZmI-gjf9N81sR3RO_TbOspaimWf4rjP_rkfwahBdtOwefxLa7BUj6wy8yhBHCqrjFdsjeDmcRtOk9RZdunlDMlwIxM9hPIInrUINowgExtv494qT9Wrx9-Gz9DD1Bxv_LvoC7kyP0v1s_-PBp6ewyqlkw2eONmG5Pm_cMwRStXnu7eUn9WQZng |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRVRceBRoF0oxiAOXbLe2EyeIS9Wy6oOtUEWlXlBkO05V0c0uTXKAEz-hv5FfwozzqMpDqnqL5HGcOPP4Ynu-AXhjw0zlKo8CqUdhILm0AeI4E1iOGs2l4ZHfPZ8cRrvHcv8kPFmA910uTMMP0S-4kWV4f00G7uZZvnHFGjq9mA45oht0wHdkmMR0oG_n6Io8KkkaDmYlydMksuMVGvGNvuv1aPQXxLyOWH3IGT-AL93DNidNvg7rygztjz94HG_7Ng_hfotF2VajPI9gwRXLsDRpd9uX4a4_HmrLx3C5PzsrqvPvjDg5COMWp4xIw6dUj8uyqZ6XbJaz7nQio7IrNa3DMV9pp2SUxcJqn0ijiY84Y99-_bxEb2ZRWFf6Hdtiti-JSPeqUMmwzbk5aytbnLKOAN2VT-B4_OHz9m7Q1nIIrAgFgnhpBE_UyFmpnKIo6RKJzjYxPHYOYR93Al1t5uTIRjxXikhvlLRZphw6bC2ewmIxK9wqMOwgdGjiPBZWYjg1CUZYG8Wa1sRMzAfwtvumqW2JzqnexnnaUDTzFOc69XM9gNe96Lxh9_iX0FqnGGlr4GWKOFJQHq_YHMCrvhlNk_ZbdOFmNclwIRA_h_EAVhqF6kcRCIw38e8VH9arxf-HTydHE3_x7OaiL2Hp0844_bh3ePAc7nHK2PALR2uwWF3U7gXiqMqse3P5DXsRGSI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Jointly+estimating+parametric+maps+of+multiple+diffusion+models+from+undersampled+q%E2%80%90space+data%3A+A+comparison+of+three+deep+learning+approaches&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=HashemizadehKolowri%2C+SeyyedKazem&rft.au=Chen%2C+Rong%E2%80%90Rong&rft.au=Adluru%2C+Ganesh&rft.au=DiBella%2C+Edward+V.+R.&rft.date=2022-06-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=87&rft.issue=6&rft.spage=2957&rft.epage=2971&rft_id=info:doi/10.1002%2Fmrm.29162&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mrm_29162 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |