Gait Variability in Spinocerebellar Ataxia Assessed Using Wearable Inertial Sensors

Background Quantitative assessment of severity of ataxia‐specific gait impairments from wearable technology could provide sensitive performance outcome measures with high face validity to power clinical trials. Objectives The aim of this study was to identify a set of gait measures from body‐worn in...

Full description

Saved in:
Bibliographic Details
Published inMovement disorders Vol. 36; no. 12; pp. 2922 - 2931
Main Authors Shah, Vrutangkumar V., Rodriguez‐Labrada, Roberto, Horak, Fay B., McNames, James, Casey, Hannah, Hansson Floyd, Kyra, El‐Gohary, Mahmoud, Schmahmann, Jeremy D., Rosenthal, Liana S., Perlman, Susan, Velázquez‐Pérez, Luis, Gomez, Christopher M.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.12.2021
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0885-3185
1531-8257
1531-8257
DOI10.1002/mds.28740

Cover

Abstract Background Quantitative assessment of severity of ataxia‐specific gait impairments from wearable technology could provide sensitive performance outcome measures with high face validity to power clinical trials. Objectives The aim of this study was to identify a set of gait measures from body‐worn inertial sensors that best discriminate between people with prodromal or manifest spinocerebellar ataxia (SCA) and age‐matched, healthy control subjects (HC) and determine how these measures relate to disease severity. Methods One hundred and sixty‐three people with SCA (subtypes 1, 2, 3, and 6), 42 people with prodromal SCA, and 96 HC wore 6 inertial sensors while performing a natural pace, 2‐minute walk. Areas under the receiver operating characteristic curves (AUC) were compared for 25 gait measures, including standard deviations as variability, to discriminate between ataxic and normal gait. Pearson's correlation coefficient assessed the relationships between the gait measures and severity of ataxia. Results Increased gait variability was the most discriminative gait feature of SCA; toe‐out angle variability (AUC = 0.936; sensitivity = 0.871; specificity = 0.896) and double‐support time variability (AUC = 0.932; sensitivity = 0.834; specificity = 0.865) were the most sensitive and specific measures. These variability measures were also significantly correlated with the scale for the assessment and rating of ataxia (SARA) and disease duration. The same gait measures discriminated gait of people with prodromal SCA from the gait of HC (AUC = 0.610, and 0.670, respectively). Conclusions Wearable inertial sensors provide sensitive and specific measures of excessive gait variability in both manifest and prodromal SCAs that are reliable and related to the severity of the disease, suggesting they may be useful as clinical trial performance outcome measures. © 2021 International Parkinson and Movement Disorder Society
AbstractList Quantitative assessment of severity of ataxia-specific gait impairments from wearable technology could provide sensitive performance outcome measures with high face validity to power clinical trials.BACKGROUNDQuantitative assessment of severity of ataxia-specific gait impairments from wearable technology could provide sensitive performance outcome measures with high face validity to power clinical trials.The aim of this study was to identify a set of gait measures from body-worn inertial sensors that best discriminate between people with prodromal or manifest spinocerebellar ataxia (SCA) and age-matched, healthy control subjects (HC) and determine how these measures relate to disease severity.OBJECTIVESThe aim of this study was to identify a set of gait measures from body-worn inertial sensors that best discriminate between people with prodromal or manifest spinocerebellar ataxia (SCA) and age-matched, healthy control subjects (HC) and determine how these measures relate to disease severity.One hundred and sixty-three people with SCA (subtypes 1, 2, 3, and 6), 42 people with prodromal SCA, and 96 HC wore 6 inertial sensors while performing a natural pace, 2-minute walk. Areas under the receiver operating characteristic curves (AUC) were compared for 25 gait measures, including standard deviations as variability, to discriminate between ataxic and normal gait. Pearson's correlation coefficient assessed the relationships between the gait measures and severity of ataxia.METHODSOne hundred and sixty-three people with SCA (subtypes 1, 2, 3, and 6), 42 people with prodromal SCA, and 96 HC wore 6 inertial sensors while performing a natural pace, 2-minute walk. Areas under the receiver operating characteristic curves (AUC) were compared for 25 gait measures, including standard deviations as variability, to discriminate between ataxic and normal gait. Pearson's correlation coefficient assessed the relationships between the gait measures and severity of ataxia.Increased gait variability was the most discriminative gait feature of SCA; toe-out angle variability (AUC = 0.936; sensitivity = 0.871; specificity = 0.896) and double-support time variability (AUC = 0.932; sensitivity = 0.834; specificity = 0.865) were the most sensitive and specific measures. These variability measures were also significantly correlated with the scale for the assessment and rating of ataxia (SARA) and disease duration. The same gait measures discriminated gait of people with prodromal SCA from the gait of HC (AUC = 0.610, and 0.670, respectively).RESULTSIncreased gait variability was the most discriminative gait feature of SCA; toe-out angle variability (AUC = 0.936; sensitivity = 0.871; specificity = 0.896) and double-support time variability (AUC = 0.932; sensitivity = 0.834; specificity = 0.865) were the most sensitive and specific measures. These variability measures were also significantly correlated with the scale for the assessment and rating of ataxia (SARA) and disease duration. The same gait measures discriminated gait of people with prodromal SCA from the gait of HC (AUC = 0.610, and 0.670, respectively).Wearable inertial sensors provide sensitive and specific measures of excessive gait variability in both manifest and prodromal SCAs that are reliable and related to the severity of the disease, suggesting they may be useful as clinical trial performance outcome measures. © 2021 International Parkinson and Movement Disorder Society.CONCLUSIONSWearable inertial sensors provide sensitive and specific measures of excessive gait variability in both manifest and prodromal SCAs that are reliable and related to the severity of the disease, suggesting they may be useful as clinical trial performance outcome measures. © 2021 International Parkinson and Movement Disorder Society.
Quantitative assessment of severity of ataxia-specific gait impairments from wearable technology could provide sensitive performance outcome measures with high face validity to power clinical trials. The aim of this study was to identify a set of gait measures from body-worn inertial sensors that best discriminate between people with prodromal or manifest spinocerebellar ataxia (SCA) and age-matched, healthy control subjects (HC) and determine how these measures relate to disease severity. One hundred and sixty-three people with SCA (subtypes 1, 2, 3, and 6), 42 people with prodromal SCA, and 96 HC wore 6 inertial sensors while performing a natural pace, 2-minute walk. Areas under the receiver operating characteristic curves (AUC) were compared for 25 gait measures, including standard deviations as variability, to discriminate between ataxic and normal gait. Pearson's correlation coefficient assessed the relationships between the gait measures and severity of ataxia. Increased gait variability was the most discriminative gait feature of SCA; toe-out angle variability (AUC = 0.936; sensitivity = 0.871; specificity = 0.896) and double-support time variability (AUC = 0.932; sensitivity = 0.834; specificity = 0.865) were the most sensitive and specific measures. These variability measures were also significantly correlated with the scale for the assessment and rating of ataxia (SARA) and disease duration. The same gait measures discriminated gait of people with prodromal SCA from the gait of HC (AUC = 0.610, and 0.670, respectively). Wearable inertial sensors provide sensitive and specific measures of excessive gait variability in both manifest and prodromal SCAs that are reliable and related to the severity of the disease, suggesting they may be useful as clinical trial performance outcome measures. © 2021 International Parkinson and Movement Disorder Society.
Background Quantitative assessment of severity of ataxia‐specific gait impairments from wearable technology could provide sensitive performance outcome measures with high face validity to power clinical trials. Objectives The aim of this study was to identify a set of gait measures from body‐worn inertial sensors that best discriminate between people with prodromal or manifest spinocerebellar ataxia (SCA) and age‐matched, healthy control subjects (HC) and determine how these measures relate to disease severity. Methods One hundred and sixty‐three people with SCA (subtypes 1, 2, 3, and 6), 42 people with prodromal SCA, and 96 HC wore 6 inertial sensors while performing a natural pace, 2‐minute walk. Areas under the receiver operating characteristic curves (AUC) were compared for 25 gait measures, including standard deviations as variability, to discriminate between ataxic and normal gait. Pearson's correlation coefficient assessed the relationships between the gait measures and severity of ataxia. Results Increased gait variability was the most discriminative gait feature of SCA; toe‐out angle variability (AUC = 0.936; sensitivity = 0.871; specificity = 0.896) and double‐support time variability (AUC = 0.932; sensitivity = 0.834; specificity = 0.865) were the most sensitive and specific measures. These variability measures were also significantly correlated with the scale for the assessment and rating of ataxia (SARA) and disease duration. The same gait measures discriminated gait of people with prodromal SCA from the gait of HC (AUC = 0.610, and 0.670, respectively). Conclusions Wearable inertial sensors provide sensitive and specific measures of excessive gait variability in both manifest and prodromal SCAs that are reliable and related to the severity of the disease, suggesting they may be useful as clinical trial performance outcome measures. © 2021 International Parkinson and Movement Disorder Society
BackgroundQuantitative assessment of severity of ataxia‐specific gait impairments from wearable technology could provide sensitive performance outcome measures with high face validity to power clinical trials.ObjectivesThe aim of this study was to identify a set of gait measures from body‐worn inertial sensors that best discriminate between people with prodromal or manifest spinocerebellar ataxia (SCA) and age‐matched, healthy control subjects (HC) and determine how these measures relate to disease severity.MethodsOne hundred and sixty‐three people with SCA (subtypes 1, 2, 3, and 6), 42 people with prodromal SCA, and 96 HC wore 6 inertial sensors while performing a natural pace, 2‐minute walk. Areas under the receiver operating characteristic curves (AUC) were compared for 25 gait measures, including standard deviations as variability, to discriminate between ataxic and normal gait. Pearson's correlation coefficient assessed the relationships between the gait measures and severity of ataxia.ResultsIncreased gait variability was the most discriminative gait feature of SCA; toe‐out angle variability (AUC = 0.936; sensitivity = 0.871; specificity = 0.896) and double‐support time variability (AUC = 0.932; sensitivity = 0.834; specificity = 0.865) were the most sensitive and specific measures. These variability measures were also significantly correlated with the scale for the assessment and rating of ataxia (SARA) and disease duration. The same gait measures discriminated gait of people with prodromal SCA from the gait of HC (AUC = 0.610, and 0.670, respectively).ConclusionsWearable inertial sensors provide sensitive and specific measures of excessive gait variability in both manifest and prodromal SCAs that are reliable and related to the severity of the disease, suggesting they may be useful as clinical trial performance outcome measures. © 2021 International Parkinson and Movement Disorder Society
Author Shah, Vrutangkumar V.
Schmahmann, Jeremy D.
Horak, Fay B.
Hansson Floyd, Kyra
Rosenthal, Liana S.
Gomez, Christopher M.
Casey, Hannah
Rodriguez‐Labrada, Roberto
Velázquez‐Pérez, Luis
McNames, James
El‐Gohary, Mahmoud
Perlman, Susan
Author_xml – sequence: 1
  givenname: Vrutangkumar V.
  orcidid: 0000-0002-8626-1089
  surname: Shah
  fullname: Shah, Vrutangkumar V.
  email: shahvr@ohsu.edu
  organization: Oregon Health & Science University
– sequence: 2
  givenname: Roberto
  surname: Rodriguez‐Labrada
  fullname: Rodriguez‐Labrada, Roberto
  organization: Cuban Center for Neuroscience
– sequence: 3
  givenname: Fay B.
  surname: Horak
  fullname: Horak, Fay B.
  organization: APDM Wearable Technologies, an ERT company
– sequence: 4
  givenname: James
  surname: McNames
  fullname: McNames, James
  organization: Portland State University
– sequence: 5
  givenname: Hannah
  surname: Casey
  fullname: Casey, Hannah
  organization: The University of Chicago
– sequence: 6
  givenname: Kyra
  surname: Hansson Floyd
  fullname: Hansson Floyd, Kyra
  organization: The University of Chicago
– sequence: 7
  givenname: Mahmoud
  surname: El‐Gohary
  fullname: El‐Gohary, Mahmoud
  organization: APDM Wearable Technologies, an ERT company
– sequence: 8
  givenname: Jeremy D.
  surname: Schmahmann
  fullname: Schmahmann, Jeremy D.
  organization: Massachusetts General Hospital and Harvard Medical School
– sequence: 9
  givenname: Liana S.
  surname: Rosenthal
  fullname: Rosenthal, Liana S.
  organization: Johns Hopkins University School of Medicine
– sequence: 10
  givenname: Susan
  surname: Perlman
  fullname: Perlman, Susan
  organization: University of California
– sequence: 11
  givenname: Luis
  orcidid: 0000-0003-1628-2703
  surname: Velázquez‐Pérez
  fullname: Velázquez‐Pérez, Luis
  organization: Cuban Academy of Sciences
– sequence: 12
  givenname: Christopher M.
  surname: Gomez
  fullname: Gomez, Christopher M.
  organization: The University of Chicago
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34424581$$D View this record in MEDLINE/PubMed
BookMark eNp90UtLAzEQB_AgFa2Pg19AAl70sDaTbLLZY_FRCxUP9XEM2d1RUrbZmmzRfnu3Vj0ICgNz-c0wzH-P9HzjkZAjYOfAGB_Mq3jOdZayLdIHKSDRXGY90mday0SAlrtkL8YZYwAS1A7ZFWnKU6mhT6Yj61r6aIOzhatdu6LO0-nC-abEgAXWtQ102Np3Z-kwRuyqog_R-Rf6hDbYokY69hhaZ2s6RR-bEA_I9rOtIx5-9X3ycH11f3GTTO5G44vhJCmFFCwpMs11WUGKHEpVodSMCQa5BY1VjtJynlklcqkrBYoB11LpHBWXKtOYS7FPTjd7F6F5XWJszdzFcn2yx2YZTQdFxoRgvKMnv-isWQbfXWe4AuhElq3V8ZdaFnOszCK4uQ0r8_2uDpxtQBmaGAM-_xBgZh2F6aIwn1F0dvDLlq61rWt8G6yr_5t4czWu_l5tbi-nm4kPQWiXCw
CitedBy_id crossref_primary_10_1016_S1474_4422_23_00068_6
crossref_primary_10_1111_cts_70054
crossref_primary_10_1186_s13023_023_02813_3
crossref_primary_10_1007_s12311_022_01385_5
crossref_primary_10_1002_mds_29032
crossref_primary_10_1212_WNL_0000000000209749
crossref_primary_10_1016_j_nbd_2024_106422
crossref_primary_10_1016_j_jgo_2024_102180
crossref_primary_10_3390_s22134975
crossref_primary_10_1007_s12311_024_01663_4
crossref_primary_10_1007_s12311_024_01719_5
crossref_primary_10_1007_s12311_023_01625_2
crossref_primary_10_3390_s24113476
crossref_primary_10_1002_mds_29045
crossref_primary_10_1212_WNL_0000000000209887
crossref_primary_10_1002_mds_29206
crossref_primary_10_3389_fneur_2025_1544453
crossref_primary_10_1109_JBHI_2024_3470310
crossref_primary_10_3390_electronics13234739
crossref_primary_10_1109_ACCESS_2023_3243178
crossref_primary_10_1177_1877718X241305626
crossref_primary_10_1007_s12311_023_01604_7
crossref_primary_10_3390_s22207993
crossref_primary_10_3390_s24082586
crossref_primary_10_3389_fphar_2024_1342965
crossref_primary_10_1002_mds_30113
crossref_primary_10_1038_s41591_022_02159_6
crossref_primary_10_1007_s00415_023_11786_z
crossref_primary_10_1002_mds_29757
crossref_primary_10_1007_s12311_025_01820_3
crossref_primary_10_1016_j_jbiomech_2024_112225
crossref_primary_10_1002_mds_30118
crossref_primary_10_1007_s00415_024_12857_5
crossref_primary_10_1007_s12311_023_01635_0
crossref_primary_10_1002_mds_30117
crossref_primary_10_1080_14656566_2022_2135432
crossref_primary_10_5334_tohm_925
crossref_primary_10_1007_s12311_023_01578_6
crossref_primary_10_1002_mds_29876
crossref_primary_10_1007_s12311_022_01424_1
Cites_doi 10.1093/brain/122.7.1349
10.1093/brain/awy137
10.1002/mds.28478
10.1016/j.jns.2015.09.004
10.1007/s12311-011-0292-z
10.1186/s40673-015-0028-9
10.1002/ana.20424
10.1038/s41572-019-0074-3
10.1038/s41582-018-0051-6
10.1088/1361-6579/ab4023
10.1212/NXG.0000000000000155
10.1093/brain/awl376
10.1007/s12311-016-0837-2
10.1111/ene.12350
10.1007/s12311-011-0296-8
10.1007/s00415-017-8634-5
10.1212/01.wnl.0000219042.60538.92
10.1002/mds.23978
10.1177/1545968314522350
10.1016/j.gaitpost.2011.07.010
10.1007/s12311-017-0854-9
10.1016/S1388-2457(00)00467-3
10.1136/jnnp.73.3.310
10.1016/j.jbiomech.2016.11.059
10.1002/mds.22288
10.1016/j.nrl.2015.09.002
10.1186/s12984-016-0154-5
10.1002/mds.28343
10.1093/brain/awu174
10.1007/s00415-016-8142-z
10.1080/03091900500445353
10.1007/s00415-013-7189-3
10.1016/j.clinbiomech.2017.07.001
10.1016/j.gaitpost.2017.12.031
10.1002/mds.25706
10.4324/9780203771587
10.1080/14734220601187741
10.1016/S1474-4422(13)70104-2
10.3390/s19245571
10.1016/j.jcm.2016.02.012
10.1016/S1474-4422(15)00202-1
10.1016/j.gaitpost.2017.11.024
10.1007/s12311-016-0761-5
10.1109/ASSPCC.2000.882463
10.1002/mds.26835
10.1016/j.jns.2018.08.024
10.1212/WNL.0000000000010176
10.1212/WNL.0b013e3181c33adf
10.3389/fneur.2017.00472
10.1136/jmedgenet-2013-102200
10.1002/mds.870130616
10.1016/j.gaitpost.2017.04.013
ContentType Journal Article
Copyright 2021 International Parkinson and Movement Disorder Society
2021 International Parkinson and Movement Disorder Society.
Copyright_xml – notice: 2021 International Parkinson and Movement Disorder Society
– notice: 2021 International Parkinson and Movement Disorder Society.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
DOI 10.1002/mds.28740
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Nursing & Allied Health Premium
Genetics Abstracts
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Nursing & Allied Health Premium
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1531-8257
EndPage 2931
ExternalDocumentID 34424581
10_1002_mds_28740
MDS28740
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1CY
1L6
1OB
1OC
1ZS
31~
33P
3PY
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
6PF
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
FUBAC
FYBCS
G-S
G.N
GNP
GODZA
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6M
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWD
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TWZ
UB1
V2E
V9Y
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
XG1
XV2
YCJ
ZGI
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TK
8FD
FR3
K9.
NAPCQ
P64
RC3
7X8
ID FETCH-LOGICAL-c3530-b7828cd14e21c6de58003019a18ed9e5a227a63958d61601285689e625678e953
IEDL.DBID DR2
ISSN 0885-3185
1531-8257
IngestDate Thu Jul 10 22:51:17 EDT 2025
Sun Sep 07 05:32:14 EDT 2025
Wed Feb 19 02:26:01 EST 2025
Thu Apr 24 23:08:52 EDT 2025
Wed Oct 01 02:27:16 EDT 2025
Wed Jan 22 16:28:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords clinical trials
wearable sensors
gait
spinocerebellar ataxia
digital biomarker
Language English
License 2021 International Parkinson and Movement Disorder Society.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3530-b7828cd14e21c6de58003019a18ed9e5a227a63958d61601285689e625678e953
Notes None.
Funding agency
Relevant conflicts of interest/financial disclosures
J.M., M.E.G., and F.B.H. have a significant financial interest in APDM Wearable Technologies‐an ERT company, that may have a commercial interest in the results of this research and technology. F.B.H. also consults with Autobahn, Biogen, Pfizer, Medtronic, Neuropore, Sanofi, and Takeda. J.D.S. receives support as site principal investigator for a clinical trial with Biohaven Pharmaceuticals, and for service on the scientific advisory board of Cadent Therapeutics.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8626-1089
0000-0003-1628-2703
PMID 34424581
PQID 2611023772
PQPubID 1016421
PageCount 10
ParticipantIDs proquest_miscellaneous_2563703302
proquest_journals_2611023772
pubmed_primary_34424581
crossref_primary_10_1002_mds_28740
crossref_citationtrail_10_1002_mds_28740
wiley_primary_10_1002_mds_28740_MDS28740
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
20211201
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hoboken
PublicationTitle Movement disorders
PublicationTitleAlternate Mov Disord
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2017; 8
2006; 30
2017; 3
2017; 48
2016; 31
2019; 19
2014; 29
1999; 122
2014; 28
2012; 11
2016; 263
2012; s1
2014; 137
2014; 21
2021; 36
2000
2020; 95
2006; 66
2013; 12
2017; 32
2007; 130
2008; 23
2007; 6
2012; 27
2014; 51
1998; 13
2015; 2
2018; 141
2015; 14
2019; 5
2002; 3
2004
2011; 34
2018; 61
2000; 111
2018; 60
1991
2016; 15
2011; 8
2016; 13
2018; 394
2017; 53
2009; 73
2019; 40
2015; 358
2017; 16
2017; 55
2014; 261
2017; 264
2013
2018; 14
2005; 57
e_1_2_10_23_1
e_1_2_10_46_1
Winter DA (e_1_2_10_54_1) 1991
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Mancini M (e_1_2_10_31_1) 2012; 1
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_57_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Merwe R (e_1_2_10_29_1) 2004
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_50_1
Turck N (e_1_2_10_37_1) 2011; 8
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 29
  start-page: 252
  issue: 2
  year: 2014
  end-page: 255
  article-title: Gait impairment precedes clinical symptoms in spinocerebellar ataxia type 6
  publication-title: Mov Disord
– volume: 263
  start-page: 1409
  issue: 7
  year: 2016
  end-page: 1417
  article-title: The interrelationship between disease severity, dynamic stability, and falls in cerebellar ataxia
  publication-title: J Neurol
– volume: 122
  start-page: 1349
  year: 1999
  end-page: 1355
  article-title: Comparative analysis of gait in Parkinson's disease, cerebellar ataxia and subcortical arteriosclerotic encephalopathy
  publication-title: Brain
– volume: 57
  start-page: 505
  issue: 4
  year: 2005
  end-page: 512
  article-title: Age at onset variance analysis in spinocerebellar ataxias: a study in a Dutch‐French cohort
  publication-title: Ann Neurol
– volume: 30
  start-page: 382
  issue: 6
  year: 2006
  end-page: 389
  article-title: Ageing effects on knee and ankle joint angles at key events and phases of the gait cycle
  publication-title: J Med Eng Technol
– volume: 61
  start-page: 149
  issue: October 2017
  year: 2018
  end-page: 162
  article-title: Psychometric properties of outcome measures evaluating decline in gait in cerebellar ataxia: a systematic review
  publication-title: Gait Posture
– volume: 27
  start-page: 125
  issue: 1
  year: 2012
  end-page: 131
  article-title: Locomotion speed determines gait variability in cerebellar ataxia and vestibular failure
  publication-title: Mov Disord
– volume: 36
  start-page: 1242
  issue: 5
  year: 2021
  end-page: 1246
  article-title: Development of SARAhome, a new video‐based tool for the assessment of ataxia at home
  publication-title: Mov Disord
– volume: s1
  year: 2012
  end-page: 007
  article-title: Mobility lab to assess balance and gait with synchronized body‐worn sensors
  publication-title: J Bioeng Biomed Sci.
– volume: 3
  start-page: 1
  issue: 3
  year: 2017
  end-page: 7
  article-title: Genetic analysis of age at onset variation in spinocerebellar ataxia type 2
  publication-title: Neurol Genet
– start-page: 153
  year: 2000
  end-page: 158
– volume: 14
  start-page: 590
  issue: 10
  year: 2018
  end-page: 605
  article-title: Spinocerebellar ataxias: prospects and challenges for therapy development
  publication-title: Nat Rev Neurol
– volume: 28
  start-page: 770
  issue: 8
  year: 2014
  end-page: 778
  article-title: A home balance exercise program improves walking in people with cerebellar ataxia
  publication-title: Neurorehabil Neural Repair
– volume: 264
  start-page: 2322
  issue: 11
  year: 2017
  end-page: 2324
  article-title: Gait variability predicts a subset of falls in cerebellar gait disorders
  publication-title: J Neurol
– volume: 13
  start-page: 1
  issue: 1
  year: 2016
  end-page: 12
  article-title: Free‐living gait characteristics in ageing and Parkinson's disease: impact of environment and ambulatory bout length
  publication-title: J Neuroeng Rehabil
– volume: 16
  start-page: 629
  issue: 3
  year: 2017
  end-page: 637
  article-title: Progression of gait ataxia in patients with degenerative cerebellar disorders: a 4‐year follow‐up study
  publication-title: Cerebellum
– volume: 32
  start-page: 143
  issue: 3
  year: 2017
  end-page: 151
  article-title: Health‐related quality of life in patients with spinocerebellar ataxia
  publication-title: Neurologia
– volume: 40
  issue: 9
  year: 2019
  article-title: Validity of mobility lab (version 2) for gait assessment in young adults, older adults and Parkinson's disease
  publication-title: Physiol Meas
– volume: 394
  start-page: 14
  year: 2018
  end-page: 18
  article-title: Non‐ataxic manifestations of spinocerebellar ataxia‐2, their determinants and predictors
  publication-title: J Neurol Sci
– volume: 3
  start-page: 310
  issue: 73
  year: 2002
  end-page: 312
  article-title: Typical features of cerebellar ataxic gait
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 130
  start-page: 786
  issue: 3
  year: 2007
  end-page: 798
  article-title: Specific influences of cerebellar dysfunctions on gait
  publication-title: Brain
– volume: 15
  start-page: 155
  issue: 2
  year: 2016
  end-page: 163
  article-title: A guideline of selecting and reporting Intraclass correlation coefficients for reliability research
  publication-title: J Chiropr Med
– volume: 141
  start-page: 1981
  issue: 7
  year: 2018
  end-page: 1997
  article-title: Clinical, genetic and neuropathological characterization of spinocerebellar ataxia type 37
  publication-title: Brain
– volume: 358
  start-page: 253
  issue: 1–2
  year: 2015
  end-page: 258
  article-title: Quantitative evaluation of gait ataxia by accelerometers
  publication-title: J Neurol Sci
– year: 2004
– volume: 34
  start-page: 443
  issue: 4
  year: 2011
  end-page: 450
  article-title: Gait and Posture Gait variability in older adults: a structured review of testing protocol and clinimetric properties
  publication-title: Gait Posture
– volume: 2
  start-page: 1
  year: 2015
  end-page: 7
  article-title: Clinical assessment of standing and gait in ataxic patients using a triaxial accelerometer
  publication-title: Cerebellum Ataxias
– volume: 5
  start-page: 1
  issue: 1
  year: 2019
  end-page: 21
  article-title: Spinocerebellar ataxia
  publication-title: Nat Rev Dis Primers
– volume: 36
  start-page: 471
  year: 2021
  end-page: 480
  article-title: Prodromal spinocerebellar ataxia type 2 subjects have quantifiable gait and postural sway deficits
  publication-title: Mov Disord
– volume: 261
  start-page: 213
  year: 2014
  end-page: 223
  article-title: Increased gait variability is associated with the history of falls in patients with cerebellar ataxia
  publication-title: J Neurol
– volume: 60
  start-page: 154
  issue: November 2017
  year: 2018
  end-page: 163
  article-title: A systematic review of the gait characteristics associated with cerebellar ataxia
  publication-title: Gait Posture
– volume: 23
  start-page: 2232
  issue: 15
  year: 2008
  end-page: 2238
  article-title: Early symptoms in spinocerebellar ataxia type 1, 2, 3, and 6
  publication-title: Mov Disord
– volume: 13
  start-page: 958
  issue: 6
  year: 1998
  end-page: 964
  article-title: Gait in patients with cerebellar ataxia
  publication-title: Mov Disord
– volume: 48
  start-page: 15
  year: 2017
  end-page: 23
  article-title: Harmony as a convergence attractor that minimizes the energy expenditure and variability in physiological gait and the loss of harmony in cerebellar ataxia
  publication-title: Clin Biomech (Bristol, Avon)
– volume: 95
  start-page: e1199
  year: 2020
  end-page: e1210
  article-title: Real‐life gait assessment in degenerative cerebellar ataxia: towards ecologically valid biomarkers
  publication-title: Neurology
– volume: 31
  start-page: 1891
  issue: 12
  year: 2016
  end-page: 1900
  article-title: Individual changes in preclinical spinocerebellar ataxia identified via increased motor complexity
  publication-title: Mov Disord
– volume: 11
  start-page: 194
  issue: 1
  year: 2012
  end-page: 211
  article-title: Gait pattern in inherited cerebellar ataxias
  publication-title: Cerebellum
– volume: 51
  start-page: 479
  issue: 7
  year: 2014
  end-page: 486
  article-title: Prediction of the age at onset in spinocerebellar ataxia type 1, 2, 3 and 6
  publication-title: J Med Genet
– volume: 16
  start-page: 792
  issue: 4
  year: 2017
  end-page: 796
  article-title: Spinal cord damage in spinocerebellar ataxia type 1
  publication-title: Cerebellum
– volume: 21
  start-page: 607
  issue: 4
  year: 2014
  end-page: 615
  article-title: Autosomal dominant cerebellar ataxias: a systematic review of clinical features
  publication-title: Eur J Neurol
– volume: 8
  year: 2017
  article-title: Spinocerebellar ataxia type 2: clinicogenetic aspects, mechanistic insights, and management approaches
  publication-title: Front Neurol
– volume: 11
  start-page: 155
  issue: 1
  year: 2012
  end-page: 166
  article-title: Spinocerebellar ataxia types 1, 2, 3 and 6: the clinical spectrum of ataxia and morphometric brainstem and cerebellar findings
  publication-title: Cerebellum
– volume: 12
  start-page: 650
  issue: 7
  year: 2013
  end-page: 658
  article-title: Biological and clinical characteristics of individuals at risk for spinocerebellar ataxia types 1, 2, 3, and 6 in the longitudinal RISCA study: analysis of baseline data
  publication-title: Lancet Neurol
– volume: 66
  start-page: 1717
  issue: 11
  year: 2006
  end-page: 1720
  article-title: Scale for the assessment and rating of ataxia: development of a new clinical scale
  publication-title: Neurology
– volume: 55
  start-page: 87
  issue: October 2016
  year: 2017
  end-page: 93
  article-title: Validity and repeatability of inertial measurement units for measuring gait parameters
  publication-title: Gait Posture
– volume: 19
  start-page: 1
  issue: 24
  year: 2019
  end-page: 9
  article-title: Exploring risk of falls and dynamic unbalance in cerebellar ataxia by inertial sensor assessment
  publication-title: Sensors (Basel)
– volume: 137
  start-page: 2444
  issue: 9
  year: 2014
  end-page: 2455
  article-title: Modulation of the age at onset in spinocerebellar ataxia by CAG tracts in various genes
  publication-title: Brain
– volume: 16
  start-page: 34
  issue: 1
  year: 2017
  end-page: 39
  article-title: Non‐motor and Extracerebellar features in spinocerebellar ataxia type 2
  publication-title: Cerebellum
– volume: 14
  start-page: 1101
  issue: 11
  year: 2015
  end-page: 1108
  article-title: Long‐term disease progression in spinocerebellar ataxia types 1, 2, 3, and 6: a longitudinal cohort study
  publication-title: Lancet Neurol
– volume: 53
  start-page: 1
  year: 2017
  end-page: 8
  article-title: The stabilizing properties of foot yaw in human walking
  publication-title: J Biomech
– volume: 6
  start-page: 79
  issue: 1
  year: 2007
  end-page: 86
  article-title: Mechanisms of cerebellar gait ataxia
  publication-title: Cerebellum
– year: 1991
– volume: 73
  start-page: 1823
  issue: 22
  year: 2009
  end-page: 1830
  article-title: Intensive coordinative training improves motor performance in degenerative cerebellar disease
  publication-title: Neurology
– volume: 8
  start-page: 12
  year: 2011
  end-page: 77
  article-title: pROC: an open‐source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics
– volume: 111
  start-page: 2046
  issue: 11
  year: 2000
  end-page: 2056
  article-title: The dynamics of resting and postural tremor in Parkinson's disease
  publication-title: Clin Neurophysiol
– year: 2013
– ident: e_1_2_10_18_1
  doi: 10.1093/brain/122.7.1349
– ident: e_1_2_10_43_1
  doi: 10.1093/brain/awy137
– ident: e_1_2_10_57_1
  doi: 10.1002/mds.28478
– ident: e_1_2_10_12_1
  doi: 10.1016/j.jns.2015.09.004
– ident: e_1_2_10_46_1
  doi: 10.1007/s12311-011-0292-z
– ident: e_1_2_10_26_1
  doi: 10.1186/s40673-015-0028-9
– ident: e_1_2_10_47_1
  doi: 10.1002/ana.20424
– ident: e_1_2_10_56_1
  doi: 10.1038/s41572-019-0074-3
– ident: e_1_2_10_2_1
  doi: 10.1038/s41582-018-0051-6
– ident: e_1_2_10_33_1
  doi: 10.1088/1361-6579/ab4023
– ident: e_1_2_10_50_1
  doi: 10.1212/NXG.0000000000000155
– volume: 8
  start-page: 12
  year: 2011
  ident: e_1_2_10_37_1
  article-title: pROC: an open‐source package for R and S+ to analyze and compare ROC curves
  publication-title: BMC Bioinformatics
– ident: e_1_2_10_28_1
  doi: 10.1093/brain/awl376
– ident: e_1_2_10_21_1
  doi: 10.1007/s12311-016-0837-2
– ident: e_1_2_10_41_1
  doi: 10.1111/ene.12350
– ident: e_1_2_10_8_1
  doi: 10.1007/s12311-011-0296-8
– ident: e_1_2_10_24_1
  doi: 10.1007/s00415-017-8634-5
– ident: e_1_2_10_3_1
  doi: 10.1212/01.wnl.0000219042.60538.92
– ident: e_1_2_10_9_1
  doi: 10.1002/mds.23978
– ident: e_1_2_10_11_1
  doi: 10.1177/1545968314522350
– ident: e_1_2_10_34_1
  doi: 10.1016/j.gaitpost.2011.07.010
– ident: e_1_2_10_42_1
  doi: 10.1007/s12311-017-0854-9
– ident: e_1_2_10_55_1
  doi: 10.1016/S1388-2457(00)00467-3
– ident: e_1_2_10_6_1
  doi: 10.1136/jnnp.73.3.310
– ident: e_1_2_10_51_1
  doi: 10.1016/j.jbiomech.2016.11.059
– ident: e_1_2_10_15_1
  doi: 10.1002/mds.22288
– ident: e_1_2_10_14_1
  doi: 10.1016/j.nrl.2015.09.002
– ident: e_1_2_10_35_1
  doi: 10.1186/s12984-016-0154-5
– ident: e_1_2_10_20_1
  doi: 10.1002/mds.28343
– ident: e_1_2_10_36_1
  doi: 10.1093/brain/awu174
– ident: e_1_2_10_23_1
  doi: 10.1007/s00415-016-8142-z
– volume-title: Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological
  year: 1991
  ident: e_1_2_10_54_1
– ident: e_1_2_10_53_1
  doi: 10.1080/03091900500445353
– ident: e_1_2_10_22_1
  doi: 10.1007/s00415-013-7189-3
– ident: e_1_2_10_40_1
  doi: 10.1016/j.clinbiomech.2017.07.001
– ident: e_1_2_10_13_1
  doi: 10.1016/j.gaitpost.2017.12.031
– ident: e_1_2_10_10_1
  doi: 10.1002/mds.25706
– volume-title: Sigma‐Point Kalman Filters for Probabilistic Inference in Dynamic State‐Space Models
  year: 2004
  ident: e_1_2_10_29_1
– ident: e_1_2_10_38_1
  doi: 10.4324/9780203771587
– ident: e_1_2_10_52_1
  doi: 10.1080/14734220601187741
– ident: e_1_2_10_49_1
  doi: 10.1016/S1474-4422(13)70104-2
– ident: e_1_2_10_25_1
  doi: 10.3390/s19245571
– ident: e_1_2_10_39_1
  doi: 10.1016/j.jcm.2016.02.012
– ident: e_1_2_10_4_1
  doi: 10.1016/S1474-4422(15)00202-1
– ident: e_1_2_10_16_1
  doi: 10.1016/j.gaitpost.2017.11.024
– ident: e_1_2_10_44_1
  doi: 10.1007/s12311-016-0761-5
– ident: e_1_2_10_30_1
  doi: 10.1109/ASSPCC.2000.882463
– ident: e_1_2_10_17_1
  doi: 10.1002/mds.26835
– ident: e_1_2_10_45_1
  doi: 10.1016/j.jns.2018.08.024
– ident: e_1_2_10_27_1
  doi: 10.1212/WNL.0000000000010176
– ident: e_1_2_10_7_1
  doi: 10.1212/WNL.0b013e3181c33adf
– ident: e_1_2_10_5_1
  doi: 10.3389/fneur.2017.00472
– ident: e_1_2_10_48_1
  doi: 10.1136/jmedgenet-2013-102200
– volume: 1
  year: 2012
  ident: e_1_2_10_31_1
  article-title: Mobility lab to assess balance and gait with synchronized body‐worn sensors
  publication-title: J Bioeng Biomed Sci.
– ident: e_1_2_10_19_1
  doi: 10.1002/mds.870130616
– ident: e_1_2_10_32_1
  doi: 10.1016/j.gaitpost.2017.04.013
SSID ssj0011516
Score 2.566984
Snippet Background Quantitative assessment of severity of ataxia‐specific gait impairments from wearable technology could provide sensitive performance outcome...
Quantitative assessment of severity of ataxia-specific gait impairments from wearable technology could provide sensitive performance outcome measures with high...
BackgroundQuantitative assessment of severity of ataxia‐specific gait impairments from wearable technology could provide sensitive performance outcome measures...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2922
SubjectTerms Ataxia
Clinical trials
digital biomarker
Gait
Gait Disorders, Neurologic
Humans
Movement disorders
Sensors
spinocerebellar ataxia
Spinocerebellar Ataxias - diagnosis
Variability
Walking
Wearable Electronic Devices
wearable sensors
Title Gait Variability in Spinocerebellar Ataxia Assessed Using Wearable Inertial Sensors
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmds.28740
https://www.ncbi.nlm.nih.gov/pubmed/34424581
https://www.proquest.com/docview/2611023772
https://www.proquest.com/docview/2563703302
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0885-3185
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1531-8257
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011516
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jB_Hi98d0ShQPXrq1TdOleBrqnMI8WKc7CCVtIhS1G10H6l_vS_oh8wPEWyGvpE3ey_u9vJdfEDqyBWiB7AjDCUXHcJhaBx1KjMgVjArPkRFX-5CDa7c_dK5GdFRDJ-VZmJwfotpwU5ah12tl4Dyctj9JQ1_EtKXI2lW8bhGqU7Q3FXUUAB197SkYEdUnhEtWIdNuV2_O-6JvAHMer2qH01tGD-Wn5nUmT61ZFrai9y8sjv_8lxW0VABR3M01ZxXVZLKGFgZFqn0d-Rc8zvAdhNI5k_cbjhPsT-IEHF4qVbqCp7ib8deY4zxzLAXWBQj4HqxHncjCl4mq2oZefAiWx-l0Aw1757enfaO4gcGICCWmEQJ-YJGwHGlbMHuSMh1CedxiUniSctvucMA4lAnXcpWvoy7zJMRU4AOlR8kmqifjRG4jTEPGPcbc6JGZoAEh547glLsWIBIuqddAx-VcBFFBT65uyXgOcmJlO4BBCvQgNdBhJTrJOTl-EmqWExoUZgkt0B2AFIgoGuigagaDUlkSnsjxDGSoS2AZJCbIbOWKUPVCHJUoZhZ8rJ7O37sPBme-ftj5u-guWrRVxYwulmmiepbO5B5Anizc17r9AZ5g-fI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB2hIgEX9qVQwCAOXNI2i1NH4oLYylIOtIVeUOTERqqAtEpTCfh6xs6C2CTELZIncmLPeN54xs8Ae5ZALZANYTiBaBgOU-ugQ20jdAWjwnNkyNU-ZOvabXadix7tTcBBfhYm5YcoNtyUZej1Whm42pCufbCGPotRVbG1Y8A-qfJzyiyPbwryKIQ6-uJTNCOqzwjnvEJ1q1a8-tkbfYOYnxGrdjmnc3Cff2xaafJYHSdBNXz7wuP437-Zh9kMi5LDVHkWYEJGizDVyrLtS9A-4_2E3GI0nZJ5v5J-RNrDfoQ-L5YqY8Fjcpjwlz4nafJYCqJrEMgdGpA6lEXOI1W4jb20MV4exKNl6J6edI6aRnYJgxHa1K4bAUIIFgrTkZaJEygp01GUx00mhScpt6wGR5hDmXBNV7k76jJPYliFblB61F6BUjSI5BoQGjDuMeaGD6yOShBw7ghOuWsiKOGSemXYzyfDDzOGcnVRxpOfcitbPg6SrwepDLuF6DCl5fhJqJLPqJ9ZJrZgd4hTMKgow07RjDalEiU8koMxylDXxpXQrqPMaqoJRS-2o3LFzMSP1fP5e_d-67itH9b_LroN081O68q_Or--3IAZSxXQ6NqZCpSSeCw3EQElwZZW9HdBoP4O
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEB5EQXzxPtYzig--dN22STbFJ1HXc0VcrwehpE0WFrW7rF1Qf72T9BAvEN8KmZI2mcl8k5l8Adj0FGqBriuHRqruUGHWQcp8J-ZKMBVQHUuzD9k850fX9OSO3Q3BTnEWJuOHKDfcjGXY9doYeE-1tz9IQ5_Uc9WQtWO8PkI5RlcGEV2W3FGIdOy9p2hFzB4RLmiFat52-epnZ_QNYX4GrNbjNCbgvvjWrNDkoTpIo2r89oXG8Z8_MwnjORIlu5nqTMGQTqZhtJnn2megdSg7KbnBWDqj8n4lnYS0ep0EPV5fm3yF7JPdVL50JMlSx1oRW4FAbtF8zJEscpyYsm3spYXRcrf_PAvXjYOrvSMnv4LBiX3m15wIAYSIlUu15-L0aSZsDBVIV2gVaCY9ry4R5DChuMuNs2NcBBqDKnSCOmD-HAwn3UQvAGGRkIEQPG6LGqpAJCVVkknuIiSRmgUV2CrmIoxzfnJzTcZjmDEreyEOUmgHqQIbpWgvI-X4SWi5mNAwt0tswe4QpWBIUYH1shktyqRJZKK7A5Rh3Md10K-hzHymCGUvPjWZYuHix9rp_L37sLnfsg-Lfxddg9GL_UZ4dnx-ugRjnqmesYUzyzCc9gd6BeFPGq1aNX8HR6L8vQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gait+Variability+in+Spinocerebellar+Ataxia+Assessed+Using+Wearable+Inertial+Sensors&rft.jtitle=Movement+disorders&rft.au=Shah%2C+Vrutangkumar+V&rft.au=Rodriguez-Labrada%2C+Roberto&rft.au=Horak%2C+Fay+B&rft.au=McNames%2C+James&rft.date=2021-12-01&rft.issn=1531-8257&rft.eissn=1531-8257&rft.volume=36&rft.issue=12&rft.spage=2922&rft_id=info:doi/10.1002%2Fmds.28740&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-3185&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-3185&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-3185&client=summon