A flexible framework for the design and optimization of water‐excitation RF pulses using B‐spline interpolation

Purpose To implement a flexible framework, named HydrOptiFrame, for the design and optimization of time‐efficient water‐excitation (WE) RF pulses using B‐spline interpolation, and to characterize their lipid suppression performance. Methods An evolutionary optimization algorithm was used to design W...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 93; no. 5; pp. 1896 - 1910
Main Authors Sieber, Xavier, Romanin, Ludovica, Bastiaansen, Jessica A. M., Roy, Christopher W., Yerly, Jérôme, Wenz, Daniel, Richiardi, Jonas, Stuber, Matthias, Heeswijk, Ruud B.
Format Journal Article
LanguageEnglish
Published United States Wiley Subscription Services, Inc 01.05.2025
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.30390

Cover

Abstract Purpose To implement a flexible framework, named HydrOptiFrame, for the design and optimization of time‐efficient water‐excitation (WE) RF pulses using B‐spline interpolation, and to characterize their lipid suppression performance. Methods An evolutionary optimization algorithm was used to design WE RF pulses. The algorithm minimizes a composite loss function that quantifies the fat–water contrast using Bloch equation simulations. In a first study, B‐spline interpolated optimized (BSIO) pulses designed with HydrOptiFrame with durations of 1 and 0.76 ms were generated for 3 T and characterized in healthy volunteers' knees. The femoral bone marrow SNR was compared to that obtained with to 1–1 WE and lipid insensitive binomial off resonant excitation (LIBRE) pulses. In a second study, in the heart at 1.5 T, the water–fat contrast ratio and coronary artery vessel length obtained with a 2.56 ms BSIO pulse was compared to 1–1 WE and LIBRE pulses in free‐running cardiovascular MR. Results The 1 ms BSIO pulse resulted in higher fat suppression and lower contrast ratio (CR) in the bone marrow than the state‐of‐the‐art pulses (4.1 ± 0.2 vs. 4.7 ± 0.4 and 4.4 ± 0.3 for the BSIO, the 1–1 WE and LIBRE respectively, p < 0.05 vs. both) at 3 T. At 1.5 T, the BSIO pulse resulted in a higher blood‐epicardial fat CR (3.8 ± 1.3 vs. 1.6 ± 0.6 and 2.4 ± 1.1 for the BSIO, 1–1 WE and LIBRE, respectively, p < 0.05 vs. both) and longer traceable left coronary artery vessel length (8.7 ± 1.4 cm vs. 7.0 ± 1.0 cm [p = 0.04] and 7.5 ± 1.2 cm [p = 0.09]). Conclusion The HydrOptiFrame framework offers a new opportunity to design WE RF pulses that are robust to B0 inhomogeneity at multiple magnetic field strengths and for variable RF pulse durations.
AbstractList To implement a flexible framework, named HydrOptiFrame, for the design and optimization of time-efficient water-excitation (WE) RF pulses using B-spline interpolation, and to characterize their lipid suppression performance.PURPOSETo implement a flexible framework, named HydrOptiFrame, for the design and optimization of time-efficient water-excitation (WE) RF pulses using B-spline interpolation, and to characterize their lipid suppression performance.An evolutionary optimization algorithm was used to design WE RF pulses. The algorithm minimizes a composite loss function that quantifies the fat-water contrast using Bloch equation simulations. In a first study, B-spline interpolated optimized (BSIO) pulses designed with HydrOptiFrame with durations of 1 and 0.76 ms were generated for 3 T and characterized in healthy volunteers' knees. The femoral bone marrow SNR was compared to that obtained with to 1-1 WE and lipid insensitive binomial off resonant excitation (LIBRE) pulses. In a second study, in the heart at 1.5 T, the water-fat contrast ratio and coronary artery vessel length obtained with a 2.56 ms BSIO pulse was compared to 1-1 WE and LIBRE pulses in free-running cardiovascular MR.METHODSAn evolutionary optimization algorithm was used to design WE RF pulses. The algorithm minimizes a composite loss function that quantifies the fat-water contrast using Bloch equation simulations. In a first study, B-spline interpolated optimized (BSIO) pulses designed with HydrOptiFrame with durations of 1 and 0.76 ms were generated for 3 T and characterized in healthy volunteers' knees. The femoral bone marrow SNR was compared to that obtained with to 1-1 WE and lipid insensitive binomial off resonant excitation (LIBRE) pulses. In a second study, in the heart at 1.5 T, the water-fat contrast ratio and coronary artery vessel length obtained with a 2.56 ms BSIO pulse was compared to 1-1 WE and LIBRE pulses in free-running cardiovascular MR.The 1 ms BSIO pulse resulted in higher fat suppression and lower contrast ratio (CR) in the bone marrow than the state-of-the-art pulses (4.1 ± 0.2 vs. 4.7 ± 0.4 and 4.4 ± 0.3 for the BSIO, the 1-1 WE and LIBRE respectively, p < 0.05 vs. both) at 3 T. At 1.5 T, the BSIO pulse resulted in a higher blood-epicardial fat CR (3.8 ± 1.3 vs. 1.6 ± 0.6 and 2.4 ± 1.1 for the BSIO, 1-1 WE and LIBRE, respectively, p < 0.05 vs. both) and longer traceable left coronary artery vessel length (8.7 ± 1.4 cm vs. 7.0 ± 1.0 cm [p = 0.04] and 7.5 ± 1.2 cm [p = 0.09]).RESULTSThe 1 ms BSIO pulse resulted in higher fat suppression and lower contrast ratio (CR) in the bone marrow than the state-of-the-art pulses (4.1 ± 0.2 vs. 4.7 ± 0.4 and 4.4 ± 0.3 for the BSIO, the 1-1 WE and LIBRE respectively, p < 0.05 vs. both) at 3 T. At 1.5 T, the BSIO pulse resulted in a higher blood-epicardial fat CR (3.8 ± 1.3 vs. 1.6 ± 0.6 and 2.4 ± 1.1 for the BSIO, 1-1 WE and LIBRE, respectively, p < 0.05 vs. both) and longer traceable left coronary artery vessel length (8.7 ± 1.4 cm vs. 7.0 ± 1.0 cm [p = 0.04] and 7.5 ± 1.2 cm [p = 0.09]).The HydrOptiFrame framework offers a new opportunity to design WE RF pulses that are robust to B0 inhomogeneity at multiple magnetic field strengths and for variable RF pulse durations.CONCLUSIONThe HydrOptiFrame framework offers a new opportunity to design WE RF pulses that are robust to B0 inhomogeneity at multiple magnetic field strengths and for variable RF pulse durations.
Purpose To implement a flexible framework, named HydrOptiFrame, for the design and optimization of time‐efficient water‐excitation (WE) RF pulses using B‐spline interpolation, and to characterize their lipid suppression performance. Methods An evolutionary optimization algorithm was used to design WE RF pulses. The algorithm minimizes a composite loss function that quantifies the fat–water contrast using Bloch equation simulations. In a first study, B‐spline interpolated optimized (BSIO) pulses designed with HydrOptiFrame with durations of 1 and 0.76 ms were generated for 3 T and characterized in healthy volunteers' knees. The femoral bone marrow SNR was compared to that obtained with to 1–1 WE and lipid insensitive binomial off resonant excitation (LIBRE) pulses. In a second study, in the heart at 1.5 T, the water–fat contrast ratio and coronary artery vessel length obtained with a 2.56 ms BSIO pulse was compared to 1–1 WE and LIBRE pulses in free‐running cardiovascular MR. Results The 1 ms BSIO pulse resulted in higher fat suppression and lower contrast ratio (CR) in the bone marrow than the state‐of‐the‐art pulses (4.1 ± 0.2 vs. 4.7 ± 0.4 and 4.4 ± 0.3 for the BSIO, the 1–1 WE and LIBRE respectively, p < 0.05 vs. both) at 3 T. At 1.5 T, the BSIO pulse resulted in a higher blood‐epicardial fat CR (3.8 ± 1.3 vs. 1.6 ± 0.6 and 2.4 ± 1.1 for the BSIO, 1–1 WE and LIBRE, respectively, p < 0.05 vs. both) and longer traceable left coronary artery vessel length (8.7 ± 1.4 cm vs. 7.0 ± 1.0 cm [p = 0.04] and 7.5 ± 1.2 cm [p = 0.09]). Conclusion The HydrOptiFrame framework offers a new opportunity to design WE RF pulses that are robust to B0 inhomogeneity at multiple magnetic field strengths and for variable RF pulse durations.
PurposeTo implement a flexible framework, named HydrOptiFrame, for the design and optimization of time‐efficient water‐excitation (WE) RF pulses using B‐spline interpolation, and to characterize their lipid suppression performance.MethodsAn evolutionary optimization algorithm was used to design WE RF pulses. The algorithm minimizes a composite loss function that quantifies the fat–water contrast using Bloch equation simulations. In a first study, B‐spline interpolated optimized (BSIO) pulses designed with HydrOptiFrame with durations of 1 and 0.76 ms were generated for 3 T and characterized in healthy volunteers' knees. The femoral bone marrow SNR was compared to that obtained with to 1–1 WE and lipid insensitive binomial off resonant excitation (LIBRE) pulses. In a second study, in the heart at 1.5 T, the water–fat contrast ratio and coronary artery vessel length obtained with a 2.56 ms BSIO pulse was compared to 1–1 WE and LIBRE pulses in free‐running cardiovascular MR.ResultsThe 1 ms BSIO pulse resulted in higher fat suppression and lower contrast ratio (CR) in the bone marrow than the state‐of‐the‐art pulses (4.1 ± 0.2 vs. 4.7 ± 0.4 and 4.4 ± 0.3 for the BSIO, the 1–1 WE and LIBRE respectively, p < 0.05 vs. both) at 3 T. At 1.5 T, the BSIO pulse resulted in a higher blood‐epicardial fat CR (3.8 ± 1.3 vs. 1.6 ± 0.6 and 2.4 ± 1.1 for the BSIO, 1–1 WE and LIBRE, respectively, p < 0.05 vs. both) and longer traceable left coronary artery vessel length (8.7 ± 1.4 cm vs. 7.0 ± 1.0 cm [p = 0.04] and 7.5 ± 1.2 cm [p = 0.09]).ConclusionThe HydrOptiFrame framework offers a new opportunity to design WE RF pulses that are robust to B0 inhomogeneity at multiple magnetic field strengths and for variable RF pulse durations.
To implement a flexible framework, named HydrOptiFrame, for the design and optimization of time-efficient water-excitation (WE) RF pulses using B-spline interpolation, and to characterize their lipid suppression performance. An evolutionary optimization algorithm was used to design WE RF pulses. The algorithm minimizes a composite loss function that quantifies the fat-water contrast using Bloch equation simulations. In a first study, B-spline interpolated optimized (BSIO) pulses designed with HydrOptiFrame with durations of 1 and 0.76 ms were generated for 3 T and characterized in healthy volunteers' knees. The femoral bone marrow SNR was compared to that obtained with to 1-1 WE and lipid insensitive binomial off resonant excitation (LIBRE) pulses. In a second study, in the heart at 1.5 T, the water-fat contrast ratio and coronary artery vessel length obtained with a 2.56 ms BSIO pulse was compared to 1-1 WE and LIBRE pulses in free-running cardiovascular MR. The 1 ms BSIO pulse resulted in higher fat suppression and lower contrast ratio (CR) in the bone marrow than the state-of-the-art pulses (4.1 ± 0.2 vs. 4.7 ± 0.4 and 4.4 ± 0.3 for the BSIO, the 1-1 WE and LIBRE respectively, p < 0.05 vs. both) at 3 T. At 1.5 T, the BSIO pulse resulted in a higher blood-epicardial fat CR (3.8 ± 1.3 vs. 1.6 ± 0.6 and 2.4 ± 1.1 for the BSIO, 1-1 WE and LIBRE, respectively, p < 0.05 vs. both) and longer traceable left coronary artery vessel length (8.7 ± 1.4 cm vs. 7.0 ± 1.0 cm [p = 0.04] and 7.5 ± 1.2 cm [p = 0.09]). The HydrOptiFrame framework offers a new opportunity to design WE RF pulses that are robust to B inhomogeneity at multiple magnetic field strengths and for variable RF pulse durations.
Author Sieber, Xavier
Stuber, Matthias
Heeswijk, Ruud B.
Roy, Christopher W.
Wenz, Daniel
Yerly, Jérôme
Bastiaansen, Jessica A. M.
Romanin, Ludovica
Richiardi, Jonas
Author_xml – sequence: 1
  givenname: Xavier
  orcidid: 0009-0002-4655-1265
  surname: Sieber
  fullname: Sieber, Xavier
  organization: Lausanne University Hospital (CHUV) and University of Lausanne (UNIL)
– sequence: 2
  givenname: Ludovica
  orcidid: 0000-0001-5031-3302
  surname: Romanin
  fullname: Romanin, Ludovica
  organization: Siemens Healthineers International AG
– sequence: 3
  givenname: Jessica A. M.
  orcidid: 0000-0002-5485-1308
  surname: Bastiaansen
  fullname: Bastiaansen, Jessica A. M.
  organization: Swiss Institute for Translational and Entrepreneurial Medicine
– sequence: 4
  givenname: Christopher W.
  orcidid: 0000-0002-3111-8840
  surname: Roy
  fullname: Roy, Christopher W.
  organization: Lausanne University Hospital (CHUV) and University of Lausanne (UNIL)
– sequence: 5
  givenname: Jérôme
  surname: Yerly
  fullname: Yerly, Jérôme
  organization: CIBM Center for Biomedical Imaging
– sequence: 6
  givenname: Daniel
  orcidid: 0000-0002-3216-7599
  surname: Wenz
  fullname: Wenz, Daniel
  organization: CIBM Animal Imaging and Technology, EPFL
– sequence: 7
  givenname: Jonas
  orcidid: 0000-0002-6975-5634
  surname: Richiardi
  fullname: Richiardi, Jonas
  organization: Lausanne University Hospital (CHUV) and University of Lausanne (UNIL)
– sequence: 8
  givenname: Matthias
  orcidid: 0000-0001-9843-2028
  surname: Stuber
  fullname: Stuber, Matthias
  organization: CIBM Center for Biomedical Imaging
– sequence: 9
  givenname: Ruud B.
  orcidid: 0000-0001-5028-4521
  surname: Heeswijk
  fullname: Heeswijk, Ruud B.
  email: ruud.mri@gmail.com
  organization: Lausanne University Hospital (CHUV) and University of Lausanne (UNIL)
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39652471$$D View this record in MEDLINE/PubMed
BookMark eNp10cFu1DAQBmALFdFt4cALIEtc6CGtnXES-9hWFJBaIVVwtpxkUlwcO9iJtuXEI_QZeRJMd_dSwcnS-PtHo5kDsueDR0Jec3bMGStPxjgeAwPFnpEVr8qyKCsl9siKNYIVwJXYJwcp3TLGlGrEC7IPqq5K0fAVSad0cHhnW4d0iGbEdYjf6RAinb8h7THZG0-N72mYZjvan2a2wdMw0LWZMf7-9YB3nZ031esLOi0uYaJLsv6GnuXvNDnrkVqf9RTcI3xJng8mu1fb95B8vXj_5fxjcfn5w6fz08uigwpYUQPwtgchBimkanolUGIlK5ASVGuMaatugF60DUjOeV9lwiRCrkFTlwCH5N2m7xTDjwXTrEebOnTOeAxL0sBFXbMGoM707RN6G5bo83RZNVXdCAUyqzdbtbQj9nqKdjTxXu_WmcHJBnQxpBRx0LvlzNFYpznTfw-m88H048Fy4uhJYtf0X3bbfW0d3v8f6qvrq03iD3P5pmc
CitedBy_id crossref_primary_10_1016_j_jocmr_2025_101863
crossref_primary_10_1002_mrm_30469
Cites_doi 10.1016/0730‐725x(93)90067‐n
10.1016/j.jmr.2011.09.023
10.1002/sapm1962411212
10.1002/mrm.28221
10.21037/qims‐23‐556
10.1002/mrm.22898
10.1002/mrm.27898
10.1097/00004728-198507010-00002
10.1002/jmri.24149
10.1002/mrm.26965
10.1002/mrm.30072
10.1016/j.jocmr.2024.101096
10.1002/jmri.21350
10.1002/nbm.1622
10.1016/j.jmr.2015.11.013
10.1186/s12968‐019‐0543‐6
10.1002/9781119382461
10.1109/TMI.2020.3018508
10.1148/radiographics.19.2.g99mr03373
10.1002/mrm.29376
10.1002/mrm.1910050606
10.1007/s00330‐023‐10350‐7
10.1002/mrm.20624
10.1109/TMI.1986.4307754
10.1016/j.jmr.2015.03.003
10.1109/ICEC.1996.542381
10.2214/ajr.158.2.1729800
10.1016/S0753‐3322(98)80006‐1
10.1002/jmri.1880080615
10.1016/S1090‐7807(03)00153‐8
10.1088/0031‐9155/30/4/008
10.1002/mrm.27124
10.1002/mrm.24978
10.1002/jmri.26322
10.1002/9780470034590.emrstm1138
10.1002/mrm.10253
10.1002/mrm.25681
10.1148/radiology.153.1.6089263
10.1002/mrm.27740
ContentType Journal Article
Copyright 2024 International Society for Magnetic Resonance in Medicine.
2025 International Society for Magnetic Resonance in Medicine.
Copyright_xml – notice: 2024 International Society for Magnetic Resonance in Medicine.
– notice: 2025 International Society for Magnetic Resonance in Medicine.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
DOI 10.1002/mrm.30390
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biochemistry Abstracts 1
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Biochemistry Abstracts 1
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Biochemistry Abstracts 1
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1910
ExternalDocumentID 39652471
10_1002_mrm_30390
MRM30390
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: Swiss National Science Foundation
  funderid: 173129; 182615; 194296; 201292; 202140
– fundername: Swiss National Science Foundation
  grantid: 201292
– fundername: Swiss National Science Foundation
  grantid: 202140
– fundername: Swiss National Science Foundation
  grantid: 182615
– fundername: Swiss National Science Foundation
  grantid: 173129
– fundername: Swiss National Science Foundation
  grantid: 194296
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AAHQN
AAIPD
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
CGR
CUY
CVF
ECM
EIF
NPM
8FD
FR3
K9.
M7Z
P64
7X8
ID FETCH-LOGICAL-c3530-6331bd344f84897d94e8e58538839baaab5cf3d4b738111d57d908e3f3d376233
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Thu Sep 04 23:12:58 EDT 2025
Fri Jul 25 12:07:04 EDT 2025
Mon Jul 21 06:04:20 EDT 2025
Thu Apr 24 22:55:22 EDT 2025
Tue Jul 01 05:20:20 EDT 2025
Tue Mar 11 09:30:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords 5D whole‐heart cardiovascular MRI
water‐excitation
WE pulse
fat suppression
free‐running cardiac imaging
RF pulse design
free‐running
numerical optimization
Language English
License 2024 International Society for Magnetic Resonance in Medicine.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3530-6331bd344f84897d94e8e58538839baaab5cf3d4b738111d57d908e3f3d376233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5031-3302
0000-0002-3111-8840
0009-0002-4655-1265
0000-0001-5028-4521
0000-0002-3216-7599
0000-0002-5485-1308
0000-0001-9843-2028
0000-0002-6975-5634
PMID 39652471
PQID 3175674938
PQPubID 1016391
PageCount 15
ParticipantIDs proquest_miscellaneous_3146607336
proquest_journals_3175674938
pubmed_primary_39652471
crossref_citationtrail_10_1002_mrm_30390
crossref_primary_10_1002_mrm_30390
wiley_primary_10_1002_mrm_30390_MRM30390
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2025
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May 2025
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn Reson Med
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2011; 213
2011
2020; 84
1985; 9
1987; 5
2020; 39
2018; 80
2016; 75
1996
2024; 34
2022; 88
2024; 14
2016; 263
2002; 48
2019; 82
1984; 153
1999; 19
2019; 21
1993; 11
2015; 254
1992; 158
2008; 27
2024; 92
2019; 49
2011; 66
2005; 54
2011; 24
1985; 30
2014; 39
1998; 52
1962; 41
2024; 26
2014; 72
1998; 8
2018; 79
2003; 163
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – year: 2011
– volume: 30
  start-page: 341
  year: 1985
  end-page: 344
  article-title: 1H NMR chemical shift selective (CHESS) imaging
  publication-title: Phys Med Biol
– volume: 39
  start-page: 4391
  year: 2020
  end-page: 4400
  article-title: Deep reinforcement learning designed Shinnar‐Le roux RF pulse using root‐flipping: DeepRFSLR
  publication-title: IEEE Trans Med Imaging
– volume: 254
  start-page: 110
  year: 2015
  end-page: 120
  article-title: Real‐time 2D spatially selective MRI experiments: comparative analysis of optimal control design methods
  publication-title: J Magn Reson
– volume: 75
  start-page: 845
  year: 2016
  end-page: 851
  article-title: Sensitivity of chemical shift‐encoded fat quantification to calibration of fat MR Spectrum
  publication-title: Magn Reson Med
– volume: 88
  start-page: 2564
  year: 2022
  end-page: 2572
  article-title: Interleaved binomial k‐points for water‐selective imaging at 7T
  publication-title: Magn Reson Med
– volume: 66
  start-page: 1049
  year: 2011
  end-page: 1056
  article-title: Spiral phyllotaxis: the natural way to construct a 3D radial trajectory in MRI
  publication-title: Magn Reson Med
– volume: 48
  start-page: 658
  year: 2002
  end-page: 666
  article-title: Soap‐bubble” visualization and quantitative analysis of 3D coronary magnetic resonance angiograms
  publication-title: Magn Reson Med
– volume: 82
  start-page: 586
  year: 2019
  end-page: 599
  article-title: Ultrafast (milliseconds), multidimensional RF pulse design with deep learning
  publication-title: Magn Reson Med
– volume: 158
  start-page: 369
  year: 1992
  end-page: 379
  article-title: Fat‐suppression MR imaging in neuroradiology: techniques and clinical application
  publication-title: AJR Am J Roentgenol
– volume: 24
  start-page: 784
  year: 2011
  end-page: 790
  article-title: In vivo characterization of the liver fat H MR spectrum
  publication-title: NMR Biomed
– volume: 5
  start-page: 555
  year: 1987
  end-page: 562
  article-title: An MRI phantom material for quantitative relaxometry
  publication-title: Magn Reson Med
– volume: 39
  start-page: 195
  year: 2014
  end-page: 202
  article-title: Robust selective signal suppression using binomial off‐resonant rectangular (BORR) pulses
  publication-title: J Magn Reson Imaging
– volume: 80
  start-page: 1416
  year: 2018
  end-page: 1428
  article-title: Simultaneous multislice refocusing via time optimal control
  publication-title: Magn Reson Med
– volume: 92
  start-page: 730
  year: 2024
  end-page: 740
  article-title: Tailored and universal parallel transmit broadband pulses for homogeneous 3D excitation of the human heart at 7T
  publication-title: Magn Reson Med
– volume: 153
  start-page: 189
  year: 1984
  end-page: 194
  article-title: Simple proton spectroscopic imaging
  publication-title: Radiology
– volume: 79
  start-page: 3007
  year: 2018
  end-page: 3017
  article-title: Flexible water excitation for fat‐free MRI at 3T using lipid insensitive binomial off‐resonant RF excitation (LIBRE) pulses
  publication-title: Magn Reson Med
– volume: 163
  start-page: 8
  year: 2003
  end-page: 15
  article-title: Application of optimal control theory to the design of broadband excitation pulses for high‐resolution NMR
  publication-title: J Magn Reson
– volume: 263
  start-page: 33
  year: 2016
  end-page: 44
  article-title: Efficient high‐resolution RF pulse design applied to simultaneous multi‐slice excitation
  publication-title: J Magn Reson
– volume: 27
  start-page: 1448
  year: 2008
  end-page: 1454
  article-title: Evaluation of optimized inversion‐recovery fat‐suppression techniques for T2‐weighted abdominal MR imaging
  publication-title: J Magn Reson Imaging
– volume: 72
  start-page: 800
  year: 2014
  end-page: 805
  article-title: Water‐selective excitation of short T2 species with binomial pulses
  publication-title: Magn Reson Med
– volume: 11
  start-page: 341
  year: 1993
  end-page: 355
  article-title: A chemical shift selective inversion recovery sequence for fat‐suppressed MRI: theory and experimental validation
  publication-title: Magn Reson Imaging
– volume: 26
  year: 2024
  article-title: Fat‐free noncontrast whole‐heart cardiovascular magnetic resonance imaging with fast and power‐optimized off‐resonant water‐excitation pulses
  publication-title: J Cardiovasc Magn Reson
– volume: 21
  start-page: 38
  year: 2019
  article-title: Noncontrast free‐breathing respiratory self‐navigated coronary artery cardiovascular magnetic resonance angiography at 3 T using lipid insensitive binomial off‐resonant excitation (LIBRE)
  publication-title: J Cardiovasc Magn Reson
– start-page: 312
  year: 1996
  end-page: 317
– volume: 19
  start-page: 373
  year: 1999
  end-page: 382
  article-title: Fat suppression in MR imaging: techniques and pitfalls
  publication-title: Radiographics
– volume: 52
  start-page: 69
  year: 1998
  end-page: 75
  article-title: Fat suppression techniques in MRI: an update
  publication-title: Biomed Pharmacother
– volume: 84
  start-page: 1470
  year: 2020
  end-page: 1485
  article-title: Free‐running 5D coronary MR angiography at 1.5T using LIBRE water excitation pulses
  publication-title: Magn Reson Med
– volume: 41
  start-page: 212
  year: 1962
  end-page: 218
  article-title: Bicubic spline interpolation
  publication-title: J Maths Phy
– volume: 34
  start-page: 3400
  year: 2024
  end-page: 3410
  article-title: Self‐navigated coronary MR angiography for coronary aneurysm detection in Kawasaki disease at 3T: comparison with conventional diaphragm‐navigated coronary MR angiography
  publication-title: Eur Radiol
– volume: 9
  start-page: 659
  year: 1985
  end-page: 675
  article-title: MR imaging: clinical use of the inversion recovery sequence
  publication-title: J Comput Assist Tomogr
– volume: 54
  start-page: 636
  year: 2005
  end-page: 644
  article-title: Iterative decomposition of water and fat with echo asymmetry and least‐squares estimation (IDEAL): application with fast spin‐echo imaging
  publication-title: Magn Reson Med
– volume: 14
  start-page: 61
  year: 2024
  end-page: 74
  article-title: Comparison between diaphragmatic‐navigated and self‐navigated coronary magnetic resonance angiography at 3T in pediatric patients with congenital coronary artery anomalies
  publication-title: Quant Imaging Med Surg
– volume: 49
  start-page: 1275
  year: 2019
  end-page: 1284
  article-title: Simultaneous fat‐free isotropic 3D anatomical imaging and T2 mapping of knee cartilage with lipid‐insensitive binomial off‐resonant RF excitation (LIBRE) pulses
  publication-title: J Magn Reson Imaging
– volume: 82
  start-page: 2118
  year: 2019
  end-page: 2132
  article-title: An automated approach to fully self‐gated free‐running cardiac and respiratory motion‐resolved 5D whole‐heart MRI
  publication-title: Magn Reson Med
– volume: 8
  start-page: 1279
  year: 1998
  end-page: 1287
  article-title: Fat suppressed MRI of articular cartilage with a spatial‐spectral excitation pulse
  publication-title: J Magn Reson Imaging
– volume: 213
  start-page: 544
  year: 2011
  end-page: 557
  article-title: A k‐space analysis of small‐tip‐angle excitation. 1989
  publication-title: J Magn Reson
– ident: e_1_2_7_7_1
  doi: 10.1016/0730‐725x(93)90067‐n
– ident: e_1_2_7_28_1
  doi: 10.1016/j.jmr.2011.09.023
– ident: e_1_2_7_27_1
  doi: 10.1002/sapm1962411212
– ident: e_1_2_7_35_1
  doi: 10.1002/mrm.28221
– ident: e_1_2_7_40_1
  doi: 10.21037/qims‐23‐556
– ident: e_1_2_7_36_1
  doi: 10.1002/mrm.22898
– ident: e_1_2_7_37_1
  doi: 10.1002/mrm.27898
– ident: e_1_2_7_6_1
  doi: 10.1097/00004728-198507010-00002
– ident: e_1_2_7_13_1
  doi: 10.1002/jmri.24149
– ident: e_1_2_7_14_1
  doi: 10.1002/mrm.26965
– ident: e_1_2_7_18_1
  doi: 10.1002/mrm.30072
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jocmr.2024.101096
– ident: e_1_2_7_8_1
  doi: 10.1002/jmri.21350
– ident: e_1_2_7_41_1
  doi: 10.1002/nbm.1622
– ident: e_1_2_7_23_1
  doi: 10.1016/j.jmr.2015.11.013
– ident: e_1_2_7_15_1
  doi: 10.1186/s12968‐019‐0543‐6
– ident: e_1_2_7_29_1
  doi: 10.1002/9781119382461
– ident: e_1_2_7_25_1
  doi: 10.1109/TMI.2020.3018508
– ident: e_1_2_7_2_1
  doi: 10.1148/radiographics.19.2.g99mr03373
– ident: e_1_2_7_17_1
  doi: 10.1002/mrm.29376
– ident: e_1_2_7_34_1
  doi: 10.1002/mrm.1910050606
– ident: e_1_2_7_39_1
  doi: 10.1007/s00330‐023‐10350‐7
– ident: e_1_2_7_10_1
  doi: 10.1002/mrm.20624
– ident: e_1_2_7_19_1
  doi: 10.1109/TMI.1986.4307754
– ident: e_1_2_7_21_1
  doi: 10.1016/j.jmr.2015.03.003
– ident: e_1_2_7_30_1
  doi: 10.1109/ICEC.1996.542381
– ident: e_1_2_7_3_1
  doi: 10.2214/ajr.158.2.1729800
– ident: e_1_2_7_4_1
  doi: 10.1016/S0753‐3322(98)80006‐1
– ident: e_1_2_7_12_1
  doi: 10.1002/jmri.1880080615
– ident: e_1_2_7_20_1
  doi: 10.1016/S1090‐7807(03)00153‐8
– ident: e_1_2_7_5_1
  doi: 10.1088/0031‐9155/30/4/008
– ident: e_1_2_7_22_1
  doi: 10.1002/mrm.27124
– ident: e_1_2_7_11_1
  doi: 10.1002/mrm.24978
– ident: e_1_2_7_33_1
  doi: 10.1002/jmri.26322
– ident: e_1_2_7_26_1
  doi: 10.1002/9780470034590.emrstm1138
– ident: e_1_2_7_38_1
  doi: 10.1002/mrm.10253
– ident: e_1_2_7_32_1
  doi: 10.1002/mrm.25681
– ident: e_1_2_7_9_1
  doi: 10.1148/radiology.153.1.6089263
– ident: e_1_2_7_31_1
– ident: e_1_2_7_24_1
  doi: 10.1002/mrm.27740
SSID ssj0009974
Score 2.4930825
Snippet Purpose To implement a flexible framework, named HydrOptiFrame, for the design and optimization of time‐efficient water‐excitation (WE) RF pulses using...
To implement a flexible framework, named HydrOptiFrame, for the design and optimization of time-efficient water-excitation (WE) RF pulses using B-spline...
PurposeTo implement a flexible framework, named HydrOptiFrame, for the design and optimization of time‐efficient water‐excitation (WE) RF pulses using B‐spline...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1896
SubjectTerms 5D whole‐heart cardiovascular MRI
Adipose Tissue - diagnostic imaging
Adult
Algorithms
Blood vessels
Bone marrow
Bone Marrow - diagnostic imaging
Coronary artery
Coronary vessels
Coronary Vessels - diagnostic imaging
Design optimization
Evolutionary algorithms
Excitation
fat suppression
Female
free‐running
free‐running cardiac imaging
Heart - diagnostic imaging
Humans
Image Processing, Computer-Assisted - methods
Inhomogeneity
Interpolation
Knee - diagnostic imaging
Lipids
Lipids - chemistry
Magnetic Resonance Imaging - methods
Male
numerical optimization
Optimization
Phantoms, Imaging
Radio Waves
RF pulse design
Signal-To-Noise Ratio
Water - chemistry
water‐excitation
WE pulse
Title A flexible framework for the design and optimization of water‐excitation RF pulses using B‐spline interpolation
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30390
https://www.ncbi.nlm.nih.gov/pubmed/39652471
https://www.proquest.com/docview/3175674938
https://www.proquest.com/docview/3146607336
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4hJCouLdDSLj-VQT30koXEjhOrJ6BdIaTlsCoSB6TIdmyEYLNosyuqnngEnpEn6dhOguiPhHqL4ons2J7xN_b4G4BPjOlcJ0kcqZLLiDErI2EzHiWJFjZnRlq_3zE85cdn7OQ8PV-AL-1dmMAP0W24Oc3w9topuFT13hNp6Hg67qP9Fc5fjyl3vPlfR0_UUUIEBuaMOTsjWMsqtJ_sdV8-X4v-AJjP8apfcAZv4KJtaogzue7PZ6qvf_7G4vif_7ICrxsgSg7CzFmFBVOtwathc9S-Bks-NlTXb6E-INbRZqobQ2wby0UQ7BIEj6T0ISBEViWZoPkZN_c6ycSSO8Sx08f7B_NDN0zgZDQgt3NcjWviAu4vySEW1-5SsCFXIeNXiM17B2eDb9-PjqMmV0OkaUrRA6U0ViXFwc5ZLrJSMJMbdEVojghMSSlVqi0tmcoQIsRxmaLIfm4ovkMTl1C6DovVpDIfgCBiyAS6PRptDcuMkXGJy6s1WnArJc978LkdtaJtvsuncVMECuakwO4sfHf2YLcTvQ3sHX8T2mqHvmgUuC4crOIZExSr2-mKUfXceYqszGTuZBjnLukl78H7MGW6WqjgKbY-xsb6gf939cVwNPQPGy8X3YTlxOUh9oGXW7A4m87NNoKjmfroteAXI-cMIA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB1VraC9FFooXWjBIA5cstvEjhNLvbRVV0tpeli1Ui8ochwbIbrZarMrECc-gW_kSxjbSapCkVBvUTyRHdszfmOP3wC8ZUylKorCoCi5DBgzMhAm4UEUKWFSpqVx-x3ZGR9dsJPL-HIJ9tu7MJ4fottws5rh7LVVcLshPbhhDZ3MJn00wAId9hV3Pmch0fiGPEoIz8GcMGtpBGt5hfaiQffp7dXoL4h5G7G6JWf4CD62jfWRJl_6i3nRV9__4HG87988hvUGi5IDP3k2YElXm_Awa07bN-GBCw9V9ROoD4ixzJnFlSamDeciiHcJ4kdSuigQIquSTNECTZqrnWRqyFeEsrNfP37qb6ohAyfjIble4IJcExtz_4kcYnFt7wVr8tkn_fLheU_hYnh8fjQKmnQNgaIxRSeU0rAoKY53ylKRlILpVKM3QlMEYYWUsoiVoSUrEkQJYVjGKLKXaorv0MpFlG7BcjWt9DYQBA2JQM9HoblhidYyLHGFNVoJbqTkaQ_etcOWt823KTWucs_CHOXYnbnrzh686USvPYHHXUI77djnjQ7XuUVWPGGCYnWvu2LUPnukIis9XVgZxrnNe8l78MzPma4WKniMrQ-xsW7k_119no0z9_D8_0VfweroPDvNT9-ffXgBa5FNS-ziMHdgeT5b6F3ESvPipVOJ39mlED4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRa24QClQFlowiAOXbJvYcWL11NeqPLZCKyr1gBQ5fiBEN7va7ArEqT-hv7G_pGM7SVUeEuIWxRPZsT0zn-3xNwCvGVO5SpI4KjWXEWNWRsJmPEoSJWzOjLR-v2N4wo9P2buz9GwJdtu7MIEfottwc5rh7bVT8Km22zekoePZuI_2V-B6_Q7j6CYdIhrdcEcJESiYM-YMjWAtrdBOst19etsZ_YYwbwNW73EG9-Fz29YQaPKtv5iXffXzFxrH__yZNbjXIFGyF6bOA1gy1TqsDpuz9nVY8cGhqn4I9R6xjjezPDfEtsFcBNEuQfRItI8BIbLSZIL2Z9xc7CQTS74jkJ1dXVyaH6qhAiejAZku0B3XxEXcfyH7WFy7W8GGfA0pv0Jw3iM4HRx9OjiOmmQNkaIpxSUopXGpKY52znKRacFMbnAtQnOEYKWUskyVpZqVGWKEONYpiuzkhuI7tHEJpY9huZpU5gkQhAyZwHWPQmPDMmNkrNG_WqMEt1LyvAdv2lEr2ua7hBrnReBgTgrszsJ3Zw9edaLTQN_xJ6HNduiLRoPrwuEqnjFBsbqXXTHqnjtQkZWZLJwM49xlveQ92AhTpquFCp5i62NsrB_4v1dfDEdD__D030VfwOrHw0Hx4e3J-2dwN3E5iX0Q5iYsz2cLs4VAaV4-9wpxDaS6Du0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+flexible+framework+for+the+design+and+optimization+of+water%E2%80%90excitation+RF+pulses+using+B%E2%80%90spline+interpolation&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Sieber%2C+Xavier&rft.au=Romanin%2C+Ludovica&rft.au=Bastiaansen%2C+Jessica+A+M&rft.au=Roy%2C+Christopher+W&rft.date=2025-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=93&rft.issue=5&rft.spage=1896&rft.epage=1910&rft_id=info:doi/10.1002%2Fmrm.30390&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon