A flexible framework for the design and optimization of water‐excitation RF pulses using B‐spline interpolation
Purpose To implement a flexible framework, named HydrOptiFrame, for the design and optimization of time‐efficient water‐excitation (WE) RF pulses using B‐spline interpolation, and to characterize their lipid suppression performance. Methods An evolutionary optimization algorithm was used to design W...
Saved in:
Published in | Magnetic resonance in medicine Vol. 93; no. 5; pp. 1896 - 1910 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Wiley Subscription Services, Inc
01.05.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.30390 |
Cover
Abstract | Purpose
To implement a flexible framework, named HydrOptiFrame, for the design and optimization of time‐efficient water‐excitation (WE) RF pulses using B‐spline interpolation, and to characterize their lipid suppression performance.
Methods
An evolutionary optimization algorithm was used to design WE RF pulses. The algorithm minimizes a composite loss function that quantifies the fat–water contrast using Bloch equation simulations. In a first study, B‐spline interpolated optimized (BSIO) pulses designed with HydrOptiFrame with durations of 1 and 0.76 ms were generated for 3 T and characterized in healthy volunteers' knees. The femoral bone marrow SNR was compared to that obtained with to 1–1 WE and lipid insensitive binomial off resonant excitation (LIBRE) pulses. In a second study, in the heart at 1.5 T, the water–fat contrast ratio and coronary artery vessel length obtained with a 2.56 ms BSIO pulse was compared to 1–1 WE and LIBRE pulses in free‐running cardiovascular MR.
Results
The 1 ms BSIO pulse resulted in higher fat suppression and lower contrast ratio (CR) in the bone marrow than the state‐of‐the‐art pulses (4.1 ± 0.2 vs. 4.7 ± 0.4 and 4.4 ± 0.3 for the BSIO, the 1–1 WE and LIBRE respectively, p < 0.05 vs. both) at 3 T. At 1.5 T, the BSIO pulse resulted in a higher blood‐epicardial fat CR (3.8 ± 1.3 vs. 1.6 ± 0.6 and 2.4 ± 1.1 for the BSIO, 1–1 WE and LIBRE, respectively, p < 0.05 vs. both) and longer traceable left coronary artery vessel length (8.7 ± 1.4 cm vs. 7.0 ± 1.0 cm [p = 0.04] and 7.5 ± 1.2 cm [p = 0.09]).
Conclusion
The HydrOptiFrame framework offers a new opportunity to design WE RF pulses that are robust to B0 inhomogeneity at multiple magnetic field strengths and for variable RF pulse durations. |
---|---|
AbstractList | To implement a flexible framework, named HydrOptiFrame, for the design and optimization of time-efficient water-excitation (WE) RF pulses using B-spline interpolation, and to characterize their lipid suppression performance.PURPOSETo implement a flexible framework, named HydrOptiFrame, for the design and optimization of time-efficient water-excitation (WE) RF pulses using B-spline interpolation, and to characterize their lipid suppression performance.An evolutionary optimization algorithm was used to design WE RF pulses. The algorithm minimizes a composite loss function that quantifies the fat-water contrast using Bloch equation simulations. In a first study, B-spline interpolated optimized (BSIO) pulses designed with HydrOptiFrame with durations of 1 and 0.76 ms were generated for 3 T and characterized in healthy volunteers' knees. The femoral bone marrow SNR was compared to that obtained with to 1-1 WE and lipid insensitive binomial off resonant excitation (LIBRE) pulses. In a second study, in the heart at 1.5 T, the water-fat contrast ratio and coronary artery vessel length obtained with a 2.56 ms BSIO pulse was compared to 1-1 WE and LIBRE pulses in free-running cardiovascular MR.METHODSAn evolutionary optimization algorithm was used to design WE RF pulses. The algorithm minimizes a composite loss function that quantifies the fat-water contrast using Bloch equation simulations. In a first study, B-spline interpolated optimized (BSIO) pulses designed with HydrOptiFrame with durations of 1 and 0.76 ms were generated for 3 T and characterized in healthy volunteers' knees. The femoral bone marrow SNR was compared to that obtained with to 1-1 WE and lipid insensitive binomial off resonant excitation (LIBRE) pulses. In a second study, in the heart at 1.5 T, the water-fat contrast ratio and coronary artery vessel length obtained with a 2.56 ms BSIO pulse was compared to 1-1 WE and LIBRE pulses in free-running cardiovascular MR.The 1 ms BSIO pulse resulted in higher fat suppression and lower contrast ratio (CR) in the bone marrow than the state-of-the-art pulses (4.1 ± 0.2 vs. 4.7 ± 0.4 and 4.4 ± 0.3 for the BSIO, the 1-1 WE and LIBRE respectively, p < 0.05 vs. both) at 3 T. At 1.5 T, the BSIO pulse resulted in a higher blood-epicardial fat CR (3.8 ± 1.3 vs. 1.6 ± 0.6 and 2.4 ± 1.1 for the BSIO, 1-1 WE and LIBRE, respectively, p < 0.05 vs. both) and longer traceable left coronary artery vessel length (8.7 ± 1.4 cm vs. 7.0 ± 1.0 cm [p = 0.04] and 7.5 ± 1.2 cm [p = 0.09]).RESULTSThe 1 ms BSIO pulse resulted in higher fat suppression and lower contrast ratio (CR) in the bone marrow than the state-of-the-art pulses (4.1 ± 0.2 vs. 4.7 ± 0.4 and 4.4 ± 0.3 for the BSIO, the 1-1 WE and LIBRE respectively, p < 0.05 vs. both) at 3 T. At 1.5 T, the BSIO pulse resulted in a higher blood-epicardial fat CR (3.8 ± 1.3 vs. 1.6 ± 0.6 and 2.4 ± 1.1 for the BSIO, 1-1 WE and LIBRE, respectively, p < 0.05 vs. both) and longer traceable left coronary artery vessel length (8.7 ± 1.4 cm vs. 7.0 ± 1.0 cm [p = 0.04] and 7.5 ± 1.2 cm [p = 0.09]).The HydrOptiFrame framework offers a new opportunity to design WE RF pulses that are robust to B0 inhomogeneity at multiple magnetic field strengths and for variable RF pulse durations.CONCLUSIONThe HydrOptiFrame framework offers a new opportunity to design WE RF pulses that are robust to B0 inhomogeneity at multiple magnetic field strengths and for variable RF pulse durations. Purpose To implement a flexible framework, named HydrOptiFrame, for the design and optimization of time‐efficient water‐excitation (WE) RF pulses using B‐spline interpolation, and to characterize their lipid suppression performance. Methods An evolutionary optimization algorithm was used to design WE RF pulses. The algorithm minimizes a composite loss function that quantifies the fat–water contrast using Bloch equation simulations. In a first study, B‐spline interpolated optimized (BSIO) pulses designed with HydrOptiFrame with durations of 1 and 0.76 ms were generated for 3 T and characterized in healthy volunteers' knees. The femoral bone marrow SNR was compared to that obtained with to 1–1 WE and lipid insensitive binomial off resonant excitation (LIBRE) pulses. In a second study, in the heart at 1.5 T, the water–fat contrast ratio and coronary artery vessel length obtained with a 2.56 ms BSIO pulse was compared to 1–1 WE and LIBRE pulses in free‐running cardiovascular MR. Results The 1 ms BSIO pulse resulted in higher fat suppression and lower contrast ratio (CR) in the bone marrow than the state‐of‐the‐art pulses (4.1 ± 0.2 vs. 4.7 ± 0.4 and 4.4 ± 0.3 for the BSIO, the 1–1 WE and LIBRE respectively, p < 0.05 vs. both) at 3 T. At 1.5 T, the BSIO pulse resulted in a higher blood‐epicardial fat CR (3.8 ± 1.3 vs. 1.6 ± 0.6 and 2.4 ± 1.1 for the BSIO, 1–1 WE and LIBRE, respectively, p < 0.05 vs. both) and longer traceable left coronary artery vessel length (8.7 ± 1.4 cm vs. 7.0 ± 1.0 cm [p = 0.04] and 7.5 ± 1.2 cm [p = 0.09]). Conclusion The HydrOptiFrame framework offers a new opportunity to design WE RF pulses that are robust to B0 inhomogeneity at multiple magnetic field strengths and for variable RF pulse durations. PurposeTo implement a flexible framework, named HydrOptiFrame, for the design and optimization of time‐efficient water‐excitation (WE) RF pulses using B‐spline interpolation, and to characterize their lipid suppression performance.MethodsAn evolutionary optimization algorithm was used to design WE RF pulses. The algorithm minimizes a composite loss function that quantifies the fat–water contrast using Bloch equation simulations. In a first study, B‐spline interpolated optimized (BSIO) pulses designed with HydrOptiFrame with durations of 1 and 0.76 ms were generated for 3 T and characterized in healthy volunteers' knees. The femoral bone marrow SNR was compared to that obtained with to 1–1 WE and lipid insensitive binomial off resonant excitation (LIBRE) pulses. In a second study, in the heart at 1.5 T, the water–fat contrast ratio and coronary artery vessel length obtained with a 2.56 ms BSIO pulse was compared to 1–1 WE and LIBRE pulses in free‐running cardiovascular MR.ResultsThe 1 ms BSIO pulse resulted in higher fat suppression and lower contrast ratio (CR) in the bone marrow than the state‐of‐the‐art pulses (4.1 ± 0.2 vs. 4.7 ± 0.4 and 4.4 ± 0.3 for the BSIO, the 1–1 WE and LIBRE respectively, p < 0.05 vs. both) at 3 T. At 1.5 T, the BSIO pulse resulted in a higher blood‐epicardial fat CR (3.8 ± 1.3 vs. 1.6 ± 0.6 and 2.4 ± 1.1 for the BSIO, 1–1 WE and LIBRE, respectively, p < 0.05 vs. both) and longer traceable left coronary artery vessel length (8.7 ± 1.4 cm vs. 7.0 ± 1.0 cm [p = 0.04] and 7.5 ± 1.2 cm [p = 0.09]).ConclusionThe HydrOptiFrame framework offers a new opportunity to design WE RF pulses that are robust to B0 inhomogeneity at multiple magnetic field strengths and for variable RF pulse durations. To implement a flexible framework, named HydrOptiFrame, for the design and optimization of time-efficient water-excitation (WE) RF pulses using B-spline interpolation, and to characterize their lipid suppression performance. An evolutionary optimization algorithm was used to design WE RF pulses. The algorithm minimizes a composite loss function that quantifies the fat-water contrast using Bloch equation simulations. In a first study, B-spline interpolated optimized (BSIO) pulses designed with HydrOptiFrame with durations of 1 and 0.76 ms were generated for 3 T and characterized in healthy volunteers' knees. The femoral bone marrow SNR was compared to that obtained with to 1-1 WE and lipid insensitive binomial off resonant excitation (LIBRE) pulses. In a second study, in the heart at 1.5 T, the water-fat contrast ratio and coronary artery vessel length obtained with a 2.56 ms BSIO pulse was compared to 1-1 WE and LIBRE pulses in free-running cardiovascular MR. The 1 ms BSIO pulse resulted in higher fat suppression and lower contrast ratio (CR) in the bone marrow than the state-of-the-art pulses (4.1 ± 0.2 vs. 4.7 ± 0.4 and 4.4 ± 0.3 for the BSIO, the 1-1 WE and LIBRE respectively, p < 0.05 vs. both) at 3 T. At 1.5 T, the BSIO pulse resulted in a higher blood-epicardial fat CR (3.8 ± 1.3 vs. 1.6 ± 0.6 and 2.4 ± 1.1 for the BSIO, 1-1 WE and LIBRE, respectively, p < 0.05 vs. both) and longer traceable left coronary artery vessel length (8.7 ± 1.4 cm vs. 7.0 ± 1.0 cm [p = 0.04] and 7.5 ± 1.2 cm [p = 0.09]). The HydrOptiFrame framework offers a new opportunity to design WE RF pulses that are robust to B inhomogeneity at multiple magnetic field strengths and for variable RF pulse durations. |
Author | Sieber, Xavier Stuber, Matthias Heeswijk, Ruud B. Roy, Christopher W. Wenz, Daniel Yerly, Jérôme Bastiaansen, Jessica A. M. Romanin, Ludovica Richiardi, Jonas |
Author_xml | – sequence: 1 givenname: Xavier orcidid: 0009-0002-4655-1265 surname: Sieber fullname: Sieber, Xavier organization: Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) – sequence: 2 givenname: Ludovica orcidid: 0000-0001-5031-3302 surname: Romanin fullname: Romanin, Ludovica organization: Siemens Healthineers International AG – sequence: 3 givenname: Jessica A. M. orcidid: 0000-0002-5485-1308 surname: Bastiaansen fullname: Bastiaansen, Jessica A. M. organization: Swiss Institute for Translational and Entrepreneurial Medicine – sequence: 4 givenname: Christopher W. orcidid: 0000-0002-3111-8840 surname: Roy fullname: Roy, Christopher W. organization: Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) – sequence: 5 givenname: Jérôme surname: Yerly fullname: Yerly, Jérôme organization: CIBM Center for Biomedical Imaging – sequence: 6 givenname: Daniel orcidid: 0000-0002-3216-7599 surname: Wenz fullname: Wenz, Daniel organization: CIBM Animal Imaging and Technology, EPFL – sequence: 7 givenname: Jonas orcidid: 0000-0002-6975-5634 surname: Richiardi fullname: Richiardi, Jonas organization: Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) – sequence: 8 givenname: Matthias orcidid: 0000-0001-9843-2028 surname: Stuber fullname: Stuber, Matthias organization: CIBM Center for Biomedical Imaging – sequence: 9 givenname: Ruud B. orcidid: 0000-0001-5028-4521 surname: Heeswijk fullname: Heeswijk, Ruud B. email: ruud.mri@gmail.com organization: Lausanne University Hospital (CHUV) and University of Lausanne (UNIL) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39652471$$D View this record in MEDLINE/PubMed |
BookMark | eNp10cFu1DAQBmALFdFt4cALIEtc6CGtnXES-9hWFJBaIVVwtpxkUlwcO9iJtuXEI_QZeRJMd_dSwcnS-PtHo5kDsueDR0Jec3bMGStPxjgeAwPFnpEVr8qyKCsl9siKNYIVwJXYJwcp3TLGlGrEC7IPqq5K0fAVSad0cHhnW4d0iGbEdYjf6RAinb8h7THZG0-N72mYZjvan2a2wdMw0LWZMf7-9YB3nZ031esLOi0uYaJLsv6GnuXvNDnrkVqf9RTcI3xJng8mu1fb95B8vXj_5fxjcfn5w6fz08uigwpYUQPwtgchBimkanolUGIlK5ASVGuMaatugF60DUjOeV9lwiRCrkFTlwCH5N2m7xTDjwXTrEebOnTOeAxL0sBFXbMGoM707RN6G5bo83RZNVXdCAUyqzdbtbQj9nqKdjTxXu_WmcHJBnQxpBRx0LvlzNFYpznTfw-m88H048Fy4uhJYtf0X3bbfW0d3v8f6qvrq03iD3P5pmc |
CitedBy_id | crossref_primary_10_1016_j_jocmr_2025_101863 crossref_primary_10_1002_mrm_30469 |
Cites_doi | 10.1016/0730‐725x(93)90067‐n 10.1016/j.jmr.2011.09.023 10.1002/sapm1962411212 10.1002/mrm.28221 10.21037/qims‐23‐556 10.1002/mrm.22898 10.1002/mrm.27898 10.1097/00004728-198507010-00002 10.1002/jmri.24149 10.1002/mrm.26965 10.1002/mrm.30072 10.1016/j.jocmr.2024.101096 10.1002/jmri.21350 10.1002/nbm.1622 10.1016/j.jmr.2015.11.013 10.1186/s12968‐019‐0543‐6 10.1002/9781119382461 10.1109/TMI.2020.3018508 10.1148/radiographics.19.2.g99mr03373 10.1002/mrm.29376 10.1002/mrm.1910050606 10.1007/s00330‐023‐10350‐7 10.1002/mrm.20624 10.1109/TMI.1986.4307754 10.1016/j.jmr.2015.03.003 10.1109/ICEC.1996.542381 10.2214/ajr.158.2.1729800 10.1016/S0753‐3322(98)80006‐1 10.1002/jmri.1880080615 10.1016/S1090‐7807(03)00153‐8 10.1088/0031‐9155/30/4/008 10.1002/mrm.27124 10.1002/mrm.24978 10.1002/jmri.26322 10.1002/9780470034590.emrstm1138 10.1002/mrm.10253 10.1002/mrm.25681 10.1148/radiology.153.1.6089263 10.1002/mrm.27740 |
ContentType | Journal Article |
Copyright | 2024 International Society for Magnetic Resonance in Medicine. 2025 International Society for Magnetic Resonance in Medicine. |
Copyright_xml | – notice: 2024 International Society for Magnetic Resonance in Medicine. – notice: 2025 International Society for Magnetic Resonance in Medicine. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
DOI | 10.1002/mrm.30390 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Biochemistry Abstracts 1 MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1910 |
ExternalDocumentID | 39652471 10_1002_mrm_30390 MRM30390 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: Swiss National Science Foundation funderid: 173129; 182615; 194296; 201292; 202140 – fundername: Swiss National Science Foundation grantid: 201292 – fundername: Swiss National Science Foundation grantid: 202140 – fundername: Swiss National Science Foundation grantid: 182615 – fundername: Swiss National Science Foundation grantid: 173129 – fundername: Swiss National Science Foundation grantid: 194296 |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AAHQN AAIPD AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUYR AFBPY AFFNX AFFPM AFGKR AFRAH AFWVQ AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION AAMMB AEFGJ AGXDD AIDQK AIDYY CGR CUY CVF ECM EIF NPM 8FD FR3 K9. M7Z P64 7X8 |
ID | FETCH-LOGICAL-c3530-6331bd344f84897d94e8e58538839baaab5cf3d4b738111d57d908e3f3d376233 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Thu Sep 04 23:12:58 EDT 2025 Fri Jul 25 12:07:04 EDT 2025 Mon Jul 21 06:04:20 EDT 2025 Thu Apr 24 22:55:22 EDT 2025 Tue Jul 01 05:20:20 EDT 2025 Tue Mar 11 09:30:36 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | 5D whole‐heart cardiovascular MRI water‐excitation WE pulse fat suppression free‐running cardiac imaging RF pulse design free‐running numerical optimization |
Language | English |
License | 2024 International Society for Magnetic Resonance in Medicine. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3530-6331bd344f84897d94e8e58538839baaab5cf3d4b738111d57d908e3f3d376233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5031-3302 0000-0002-3111-8840 0009-0002-4655-1265 0000-0001-5028-4521 0000-0002-3216-7599 0000-0002-5485-1308 0000-0001-9843-2028 0000-0002-6975-5634 |
PMID | 39652471 |
PQID | 3175674938 |
PQPubID | 1016391 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_3146607336 proquest_journals_3175674938 pubmed_primary_39652471 crossref_citationtrail_10_1002_mrm_30390 crossref_primary_10_1002_mrm_30390 wiley_primary_10_1002_mrm_30390_MRM30390 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2025 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: May 2025 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn Reson Med |
PublicationYear | 2025 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2011; 213 2011 2020; 84 1985; 9 1987; 5 2020; 39 2018; 80 2016; 75 1996 2024; 34 2022; 88 2024; 14 2016; 263 2002; 48 2019; 82 1984; 153 1999; 19 2019; 21 1993; 11 2015; 254 1992; 158 2008; 27 2024; 92 2019; 49 2011; 66 2005; 54 2011; 24 1985; 30 2014; 39 1998; 52 1962; 41 2024; 26 2014; 72 1998; 8 2018; 79 2003; 163 e_1_2_7_6_1 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
References_xml | – year: 2011 – volume: 30 start-page: 341 year: 1985 end-page: 344 article-title: 1H NMR chemical shift selective (CHESS) imaging publication-title: Phys Med Biol – volume: 39 start-page: 4391 year: 2020 end-page: 4400 article-title: Deep reinforcement learning designed Shinnar‐Le roux RF pulse using root‐flipping: DeepRFSLR publication-title: IEEE Trans Med Imaging – volume: 254 start-page: 110 year: 2015 end-page: 120 article-title: Real‐time 2D spatially selective MRI experiments: comparative analysis of optimal control design methods publication-title: J Magn Reson – volume: 75 start-page: 845 year: 2016 end-page: 851 article-title: Sensitivity of chemical shift‐encoded fat quantification to calibration of fat MR Spectrum publication-title: Magn Reson Med – volume: 88 start-page: 2564 year: 2022 end-page: 2572 article-title: Interleaved binomial k‐points for water‐selective imaging at 7T publication-title: Magn Reson Med – volume: 66 start-page: 1049 year: 2011 end-page: 1056 article-title: Spiral phyllotaxis: the natural way to construct a 3D radial trajectory in MRI publication-title: Magn Reson Med – volume: 48 start-page: 658 year: 2002 end-page: 666 article-title: Soap‐bubble” visualization and quantitative analysis of 3D coronary magnetic resonance angiograms publication-title: Magn Reson Med – volume: 82 start-page: 586 year: 2019 end-page: 599 article-title: Ultrafast (milliseconds), multidimensional RF pulse design with deep learning publication-title: Magn Reson Med – volume: 158 start-page: 369 year: 1992 end-page: 379 article-title: Fat‐suppression MR imaging in neuroradiology: techniques and clinical application publication-title: AJR Am J Roentgenol – volume: 24 start-page: 784 year: 2011 end-page: 790 article-title: In vivo characterization of the liver fat H MR spectrum publication-title: NMR Biomed – volume: 5 start-page: 555 year: 1987 end-page: 562 article-title: An MRI phantom material for quantitative relaxometry publication-title: Magn Reson Med – volume: 39 start-page: 195 year: 2014 end-page: 202 article-title: Robust selective signal suppression using binomial off‐resonant rectangular (BORR) pulses publication-title: J Magn Reson Imaging – volume: 80 start-page: 1416 year: 2018 end-page: 1428 article-title: Simultaneous multislice refocusing via time optimal control publication-title: Magn Reson Med – volume: 92 start-page: 730 year: 2024 end-page: 740 article-title: Tailored and universal parallel transmit broadband pulses for homogeneous 3D excitation of the human heart at 7T publication-title: Magn Reson Med – volume: 153 start-page: 189 year: 1984 end-page: 194 article-title: Simple proton spectroscopic imaging publication-title: Radiology – volume: 79 start-page: 3007 year: 2018 end-page: 3017 article-title: Flexible water excitation for fat‐free MRI at 3T using lipid insensitive binomial off‐resonant RF excitation (LIBRE) pulses publication-title: Magn Reson Med – volume: 163 start-page: 8 year: 2003 end-page: 15 article-title: Application of optimal control theory to the design of broadband excitation pulses for high‐resolution NMR publication-title: J Magn Reson – volume: 263 start-page: 33 year: 2016 end-page: 44 article-title: Efficient high‐resolution RF pulse design applied to simultaneous multi‐slice excitation publication-title: J Magn Reson – volume: 27 start-page: 1448 year: 2008 end-page: 1454 article-title: Evaluation of optimized inversion‐recovery fat‐suppression techniques for T2‐weighted abdominal MR imaging publication-title: J Magn Reson Imaging – volume: 72 start-page: 800 year: 2014 end-page: 805 article-title: Water‐selective excitation of short T2 species with binomial pulses publication-title: Magn Reson Med – volume: 11 start-page: 341 year: 1993 end-page: 355 article-title: A chemical shift selective inversion recovery sequence for fat‐suppressed MRI: theory and experimental validation publication-title: Magn Reson Imaging – volume: 26 year: 2024 article-title: Fat‐free noncontrast whole‐heart cardiovascular magnetic resonance imaging with fast and power‐optimized off‐resonant water‐excitation pulses publication-title: J Cardiovasc Magn Reson – volume: 21 start-page: 38 year: 2019 article-title: Noncontrast free‐breathing respiratory self‐navigated coronary artery cardiovascular magnetic resonance angiography at 3 T using lipid insensitive binomial off‐resonant excitation (LIBRE) publication-title: J Cardiovasc Magn Reson – start-page: 312 year: 1996 end-page: 317 – volume: 19 start-page: 373 year: 1999 end-page: 382 article-title: Fat suppression in MR imaging: techniques and pitfalls publication-title: Radiographics – volume: 52 start-page: 69 year: 1998 end-page: 75 article-title: Fat suppression techniques in MRI: an update publication-title: Biomed Pharmacother – volume: 84 start-page: 1470 year: 2020 end-page: 1485 article-title: Free‐running 5D coronary MR angiography at 1.5T using LIBRE water excitation pulses publication-title: Magn Reson Med – volume: 41 start-page: 212 year: 1962 end-page: 218 article-title: Bicubic spline interpolation publication-title: J Maths Phy – volume: 34 start-page: 3400 year: 2024 end-page: 3410 article-title: Self‐navigated coronary MR angiography for coronary aneurysm detection in Kawasaki disease at 3T: comparison with conventional diaphragm‐navigated coronary MR angiography publication-title: Eur Radiol – volume: 9 start-page: 659 year: 1985 end-page: 675 article-title: MR imaging: clinical use of the inversion recovery sequence publication-title: J Comput Assist Tomogr – volume: 54 start-page: 636 year: 2005 end-page: 644 article-title: Iterative decomposition of water and fat with echo asymmetry and least‐squares estimation (IDEAL): application with fast spin‐echo imaging publication-title: Magn Reson Med – volume: 14 start-page: 61 year: 2024 end-page: 74 article-title: Comparison between diaphragmatic‐navigated and self‐navigated coronary magnetic resonance angiography at 3T in pediatric patients with congenital coronary artery anomalies publication-title: Quant Imaging Med Surg – volume: 49 start-page: 1275 year: 2019 end-page: 1284 article-title: Simultaneous fat‐free isotropic 3D anatomical imaging and T2 mapping of knee cartilage with lipid‐insensitive binomial off‐resonant RF excitation (LIBRE) pulses publication-title: J Magn Reson Imaging – volume: 82 start-page: 2118 year: 2019 end-page: 2132 article-title: An automated approach to fully self‐gated free‐running cardiac and respiratory motion‐resolved 5D whole‐heart MRI publication-title: Magn Reson Med – volume: 8 start-page: 1279 year: 1998 end-page: 1287 article-title: Fat suppressed MRI of articular cartilage with a spatial‐spectral excitation pulse publication-title: J Magn Reson Imaging – volume: 213 start-page: 544 year: 2011 end-page: 557 article-title: A k‐space analysis of small‐tip‐angle excitation. 1989 publication-title: J Magn Reson – ident: e_1_2_7_7_1 doi: 10.1016/0730‐725x(93)90067‐n – ident: e_1_2_7_28_1 doi: 10.1016/j.jmr.2011.09.023 – ident: e_1_2_7_27_1 doi: 10.1002/sapm1962411212 – ident: e_1_2_7_35_1 doi: 10.1002/mrm.28221 – ident: e_1_2_7_40_1 doi: 10.21037/qims‐23‐556 – ident: e_1_2_7_36_1 doi: 10.1002/mrm.22898 – ident: e_1_2_7_37_1 doi: 10.1002/mrm.27898 – ident: e_1_2_7_6_1 doi: 10.1097/00004728-198507010-00002 – ident: e_1_2_7_13_1 doi: 10.1002/jmri.24149 – ident: e_1_2_7_14_1 doi: 10.1002/mrm.26965 – ident: e_1_2_7_18_1 doi: 10.1002/mrm.30072 – ident: e_1_2_7_16_1 doi: 10.1016/j.jocmr.2024.101096 – ident: e_1_2_7_8_1 doi: 10.1002/jmri.21350 – ident: e_1_2_7_41_1 doi: 10.1002/nbm.1622 – ident: e_1_2_7_23_1 doi: 10.1016/j.jmr.2015.11.013 – ident: e_1_2_7_15_1 doi: 10.1186/s12968‐019‐0543‐6 – ident: e_1_2_7_29_1 doi: 10.1002/9781119382461 – ident: e_1_2_7_25_1 doi: 10.1109/TMI.2020.3018508 – ident: e_1_2_7_2_1 doi: 10.1148/radiographics.19.2.g99mr03373 – ident: e_1_2_7_17_1 doi: 10.1002/mrm.29376 – ident: e_1_2_7_34_1 doi: 10.1002/mrm.1910050606 – ident: e_1_2_7_39_1 doi: 10.1007/s00330‐023‐10350‐7 – ident: e_1_2_7_10_1 doi: 10.1002/mrm.20624 – ident: e_1_2_7_19_1 doi: 10.1109/TMI.1986.4307754 – ident: e_1_2_7_21_1 doi: 10.1016/j.jmr.2015.03.003 – ident: e_1_2_7_30_1 doi: 10.1109/ICEC.1996.542381 – ident: e_1_2_7_3_1 doi: 10.2214/ajr.158.2.1729800 – ident: e_1_2_7_4_1 doi: 10.1016/S0753‐3322(98)80006‐1 – ident: e_1_2_7_12_1 doi: 10.1002/jmri.1880080615 – ident: e_1_2_7_20_1 doi: 10.1016/S1090‐7807(03)00153‐8 – ident: e_1_2_7_5_1 doi: 10.1088/0031‐9155/30/4/008 – ident: e_1_2_7_22_1 doi: 10.1002/mrm.27124 – ident: e_1_2_7_11_1 doi: 10.1002/mrm.24978 – ident: e_1_2_7_33_1 doi: 10.1002/jmri.26322 – ident: e_1_2_7_26_1 doi: 10.1002/9780470034590.emrstm1138 – ident: e_1_2_7_38_1 doi: 10.1002/mrm.10253 – ident: e_1_2_7_32_1 doi: 10.1002/mrm.25681 – ident: e_1_2_7_9_1 doi: 10.1148/radiology.153.1.6089263 – ident: e_1_2_7_31_1 – ident: e_1_2_7_24_1 doi: 10.1002/mrm.27740 |
SSID | ssj0009974 |
Score | 2.4930825 |
Snippet | Purpose
To implement a flexible framework, named HydrOptiFrame, for the design and optimization of time‐efficient water‐excitation (WE) RF pulses using... To implement a flexible framework, named HydrOptiFrame, for the design and optimization of time-efficient water-excitation (WE) RF pulses using B-spline... PurposeTo implement a flexible framework, named HydrOptiFrame, for the design and optimization of time‐efficient water‐excitation (WE) RF pulses using B‐spline... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1896 |
SubjectTerms | 5D whole‐heart cardiovascular MRI Adipose Tissue - diagnostic imaging Adult Algorithms Blood vessels Bone marrow Bone Marrow - diagnostic imaging Coronary artery Coronary vessels Coronary Vessels - diagnostic imaging Design optimization Evolutionary algorithms Excitation fat suppression Female free‐running free‐running cardiac imaging Heart - diagnostic imaging Humans Image Processing, Computer-Assisted - methods Inhomogeneity Interpolation Knee - diagnostic imaging Lipids Lipids - chemistry Magnetic Resonance Imaging - methods Male numerical optimization Optimization Phantoms, Imaging Radio Waves RF pulse design Signal-To-Noise Ratio Water - chemistry water‐excitation WE pulse |
Title | A flexible framework for the design and optimization of water‐excitation RF pulses using B‐spline interpolation |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.30390 https://www.ncbi.nlm.nih.gov/pubmed/39652471 https://www.proquest.com/docview/3175674938 https://www.proquest.com/docview/3146607336 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtwwEB4hJCouLdDSLj-VQT30koXEjhOrJ6BdIaTlsCoSB6TIdmyEYLNosyuqnngEnpEn6dhOguiPhHqL4ons2J7xN_b4G4BPjOlcJ0kcqZLLiDErI2EzHiWJFjZnRlq_3zE85cdn7OQ8PV-AL-1dmMAP0W24Oc3w9topuFT13hNp6Hg67qP9Fc5fjyl3vPlfR0_UUUIEBuaMOTsjWMsqtJ_sdV8-X4v-AJjP8apfcAZv4KJtaogzue7PZ6qvf_7G4vif_7ICrxsgSg7CzFmFBVOtwathc9S-Bks-NlTXb6E-INbRZqobQ2wby0UQ7BIEj6T0ISBEViWZoPkZN_c6ycSSO8Sx08f7B_NDN0zgZDQgt3NcjWviAu4vySEW1-5SsCFXIeNXiM17B2eDb9-PjqMmV0OkaUrRA6U0ViXFwc5ZLrJSMJMbdEVojghMSSlVqi0tmcoQIsRxmaLIfm4ovkMTl1C6DovVpDIfgCBiyAS6PRptDcuMkXGJy6s1WnArJc978LkdtaJtvsuncVMECuakwO4sfHf2YLcTvQ3sHX8T2mqHvmgUuC4crOIZExSr2-mKUfXceYqszGTuZBjnLukl78H7MGW6WqjgKbY-xsb6gf939cVwNPQPGy8X3YTlxOUh9oGXW7A4m87NNoKjmfroteAXI-cMIA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BbtQwEB1VraC9FFooXWjBIA5cstvEjhNLvbRVV0tpeli1Ui8ochwbIbrZarMrECc-gW_kSxjbSapCkVBvUTyRHdszfmOP3wC8ZUylKorCoCi5DBgzMhAm4UEUKWFSpqVx-x3ZGR9dsJPL-HIJ9tu7MJ4fottws5rh7LVVcLshPbhhDZ3MJn00wAId9hV3Pmch0fiGPEoIz8GcMGtpBGt5hfaiQffp7dXoL4h5G7G6JWf4CD62jfWRJl_6i3nRV9__4HG87988hvUGi5IDP3k2YElXm_Awa07bN-GBCw9V9ROoD4ixzJnFlSamDeciiHcJ4kdSuigQIquSTNECTZqrnWRqyFeEsrNfP37qb6ohAyfjIble4IJcExtz_4kcYnFt7wVr8tkn_fLheU_hYnh8fjQKmnQNgaIxRSeU0rAoKY53ylKRlILpVKM3QlMEYYWUsoiVoSUrEkQJYVjGKLKXaorv0MpFlG7BcjWt9DYQBA2JQM9HoblhidYyLHGFNVoJbqTkaQ_etcOWt823KTWucs_CHOXYnbnrzh686USvPYHHXUI77djnjQ7XuUVWPGGCYnWvu2LUPnukIis9XVgZxrnNe8l78MzPma4WKniMrQ-xsW7k_119no0z9_D8_0VfweroPDvNT9-ffXgBa5FNS-ziMHdgeT5b6F3ESvPipVOJ39mlED4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5VRa24QClQFlowiAOXbJvYcWL11NeqPLZCKyr1gBQ5fiBEN7va7ArEqT-hv7G_pGM7SVUeEuIWxRPZsT0zn-3xNwCvGVO5SpI4KjWXEWNWRsJmPEoSJWzOjLR-v2N4wo9P2buz9GwJdtu7MIEfottwc5rh7bVT8Km22zekoePZuI_2V-B6_Q7j6CYdIhrdcEcJESiYM-YMjWAtrdBOst19etsZ_YYwbwNW73EG9-Fz29YQaPKtv5iXffXzFxrH__yZNbjXIFGyF6bOA1gy1TqsDpuz9nVY8cGhqn4I9R6xjjezPDfEtsFcBNEuQfRItI8BIbLSZIL2Z9xc7CQTS74jkJ1dXVyaH6qhAiejAZku0B3XxEXcfyH7WFy7W8GGfA0pv0Jw3iM4HRx9OjiOmmQNkaIpxSUopXGpKY52znKRacFMbnAtQnOEYKWUskyVpZqVGWKEONYpiuzkhuI7tHEJpY9huZpU5gkQhAyZwHWPQmPDMmNkrNG_WqMEt1LyvAdv2lEr2ua7hBrnReBgTgrszsJ3Zw9edaLTQN_xJ6HNduiLRoPrwuEqnjFBsbqXXTHqnjtQkZWZLJwM49xlveQ92AhTpquFCp5i62NsrB_4v1dfDEdD__D030VfwOrHw0Hx4e3J-2dwN3E5iX0Q5iYsz2cLs4VAaV4-9wpxDaS6Du0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+flexible+framework+for+the+design+and+optimization+of+water%E2%80%90excitation+RF+pulses+using+B%E2%80%90spline+interpolation&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Sieber%2C+Xavier&rft.au=Romanin%2C+Ludovica&rft.au=Bastiaansen%2C+Jessica+A+M&rft.au=Roy%2C+Christopher+W&rft.date=2025-05-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=93&rft.issue=5&rft.spage=1896&rft.epage=1910&rft_id=info:doi/10.1002%2Fmrm.30390&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |