StaTDS library: Statistical tests for Data Science

In Data Science, there is a continual demand for statistical comparison to identify the most advantageous algorithms. Finding a software tool that facilitates the execution of multiple tests on different Data Science experiments without relying on additional libraries poses a challenge. This paper i...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 595; p. 127877
Main Authors Luna, Christian, Moya, Antonio R., Luna, José María, Ventura, Sebastián
Format Journal Article
LanguageEnglish
Published Elsevier B.V 28.08.2024
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
1872-8286
DOI10.1016/j.neucom.2024.127877

Cover

Abstract In Data Science, there is a continual demand for statistical comparison to identify the most advantageous algorithms. Finding a software tool that facilitates the execution of multiple tests on different Data Science experiments without relying on additional libraries poses a challenge. This paper introduces StaTDS, an open-source library and web application implemented entirely in pure Python, designed to analyze, test, and compare Data Science algorithms. StaTDS implements all statistical tests without external dependencies. It ensures its durability and avoids future uncontrolled deprecated dependencies. With support for a wide variety of statistical tests (24 in total), StaTDS surpasses existing libraries dedicated to statistical testing. Moreover, the library incorporates tests to guide users in determining whether to employ parametric or non-parametric tests, such as the assessment of normality and homoscedasticity. This platform-independent library is available on GitHub under the GNU General Public License.
AbstractList In Data Science, there is a continual demand for statistical comparison to identify the most advantageous algorithms. Finding a software tool that facilitates the execution of multiple tests on different Data Science experiments without relying on additional libraries poses a challenge. This paper introduces StaTDS, an open-source library and web application implemented entirely in pure Python, designed to analyze, test, and compare Data Science algorithms. StaTDS implements all statistical tests without external dependencies. It ensures its durability and avoids future uncontrolled deprecated dependencies. With support for a wide variety of statistical tests (24 in total), StaTDS surpasses existing libraries dedicated to statistical testing. Moreover, the library incorporates tests to guide users in determining whether to employ parametric or non-parametric tests, such as the assessment of normality and homoscedasticity. This platform-independent library is available on GitHub under the GNU General Public License.
ArticleNumber 127877
Author Luna, Christian
Moya, Antonio R.
Luna, José María
Ventura, Sebastián
Author_xml – sequence: 1
  givenname: Christian
  orcidid: 0009-0005-7502-0254
  surname: Luna
  fullname: Luna, Christian
  email: i82luesc@uco.es
– sequence: 2
  givenname: Antonio R.
  orcidid: 0000-0002-3657-4749
  surname: Moya
  fullname: Moya, Antonio R.
  email: amoya@uco.es
– sequence: 3
  givenname: José María
  orcidid: 0000-0003-3537-2931
  surname: Luna
  fullname: Luna, José María
  email: jmluna@uco.es
– sequence: 4
  givenname: Sebastián
  orcidid: 0000-0003-4216-6378
  surname: Ventura
  fullname: Ventura, Sebastián
  email: sventura@uco.es
BookMark eNqNkMtOwzAQRS1UJNrCH7DIDyTY4zycLpBQy0uqxCJlbU39kFylSWW7oP49qcKKBbAazeLcmXNnZNL1nSHkltGMUVbe7bLOHFW_z4BCnjGoRFVdkCkTFaQCRDkhU1pDkQJncEVmIewoZRWDekqgibhZNUnrth79aZEMe3QhOoVtEk2IIbG9T1YYMWmUM50y1-TSYhvMzfeck_enx83yJV2_Pb8uH9ap4gXE1Ioty9k2R06ZrpnOAa2AnAu0trJ1ySpltB2eBQ28UJobpYtSKKpMWSIaPifFmHvsDnj6xLaVB-_2w5eSUXkWlzs5isuzuBzFB24xcsr3IXhjpXJnqb6LHl37F5z_gP95837EzFDIhzNehrEs7bxRUere_R7wBZKvic4
CitedBy_id crossref_primary_10_1016_j_eswa_2024_125955
crossref_primary_10_1016_j_ins_2024_120981
crossref_primary_10_1016_j_knosys_2024_112897
crossref_primary_10_1016_j_engappai_2025_110656
Cites_doi 10.1093/biomet/52.3-4.591
10.1093/biomet/58.2.341
10.1038/s41592-019-0686-2
10.1080/01621459.1986.10478341
10.1080/03610928008827904
10.1016/j.ins.2009.12.010
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.neucom.2024.127877
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
ExternalDocumentID 10.1016/j.neucom.2024.127877
10_1016_j_neucom_2024_127877
S0925231224006489
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
WUQ
XPP
~HD
ADTOC
AGCQF
UNPAY
ID FETCH-LOGICAL-c352t-f8b141b4a301d91d42af82438aff7f9617cedf1272d235cd3ecd568c0ce66aae3
IEDL.DBID .~1
ISSN 0925-2312
1872-8286
IngestDate Tue Aug 19 21:09:46 EDT 2025
Wed Oct 01 05:03:38 EDT 2025
Thu Apr 24 23:04:24 EDT 2025
Tue Jun 18 08:52:15 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Statistical tests
Data science comparison
Python
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-f8b141b4a301d91d42af82438aff7f9617cedf1272d235cd3ecd568c0ce66aae3
ORCID 0000-0003-4216-6378
0009-0005-7502-0254
0000-0003-3537-2931
0000-0002-3657-4749
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0925231224006489
ParticipantIDs unpaywall_primary_10_1016_j_neucom_2024_127877
crossref_citationtrail_10_1016_j_neucom_2024_127877
crossref_primary_10_1016_j_neucom_2024_127877
elsevier_sciencedirect_doi_10_1016_j_neucom_2024_127877
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-28
PublicationDateYYYYMMDD 2024-08-28
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-28
  day: 28
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rodríguez-Fdez, Canosa, Mucientes, Bugarín (b3) 2015
Snedecor, Cochran (b8) 1989
Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, van der Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, VanderPlas, Laxalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt, SciPy 1.0 Contributors (b2) 2020; 17
García, Fernández, Luengo, Herrera (b1) 2010; 180
(b6) 2023
Demšar (b10) 2006; 7
Levene (b7) 1960; vol. 278
Shaffer (b12) 1986; 81
Ss (b4) 1965; 52
Iman, Davenport (b11) 1980; 9
d’Agostino (b5) 1971; 58
Sheskin (b9) 2020
Ss (10.1016/j.neucom.2024.127877_b4) 1965; 52
Levene (10.1016/j.neucom.2024.127877_b7) 1960; vol. 278
Sheskin (10.1016/j.neucom.2024.127877_b9) 2020
García (10.1016/j.neucom.2024.127877_b1) 2010; 180
Rodríguez-Fdez (10.1016/j.neucom.2024.127877_b3) 2015
d’Agostino (10.1016/j.neucom.2024.127877_b5) 1971; 58
Snedecor (10.1016/j.neucom.2024.127877_b8) 1989
Demšar (10.1016/j.neucom.2024.127877_b10) 2006; 7
Virtanen (10.1016/j.neucom.2024.127877_b2) 2020; 17
Shaffer (10.1016/j.neucom.2024.127877_b12) 1986; 81
(10.1016/j.neucom.2024.127877_b6) 2023
Iman (10.1016/j.neucom.2024.127877_b11) 1980; 9
References_xml – volume: 52
  start-page: 591
  year: 1965
  end-page: 611
  ident: b4
  article-title: An analysis of variance test for normality (complete samples)
  publication-title: Biometrika
– year: 1989
  ident: b8
  publication-title: Statistical Methods
– volume: vol. 278
  start-page: 292
  year: 1960
  ident: b7
  article-title: Contributions to probability and statistics
  publication-title: Essays in Honor of Harold Hotelling
– start-page: 1
  year: 2015
  end-page: 8
  ident: b3
  article-title: STAC: a web platform for the comparison of algorithms using statistical tests
  publication-title: 2015 IEEE International Conference on Fuzzy Systems
– volume: 180
  start-page: 2044
  year: 2010
  end-page: 2064
  ident: b1
  article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
  publication-title: Inf. Sci.
– year: 2020
  ident: b9
  article-title: Handbook of Parametric and Nonparametric Statistical Procedures
– volume: 9
  start-page: 571
  year: 1980
  end-page: 595
  ident: b11
  article-title: Approximations of the critical region of the fbietkan statistic
  publication-title: Comm. Statist. Theory Methods
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b10
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 81
  start-page: 826
  year: 1986
  end-page: 831
  ident: b12
  article-title: Modified sequentially rejective multiple test procedures
  publication-title: J. Amer. Statist. Assoc.
– volume: 58
  start-page: 341
  year: 1971
  end-page: 348
  ident: b5
  article-title: An omnibus test of normality for moderate and large size samples
  publication-title: Biometrika
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: b2
  article-title: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
  publication-title: Nature Methods
– year: 2023
  ident: b6
  article-title: NIST/SEMATECH e-Handbook of Statistical Methods
– volume: 52
  start-page: 591
  year: 1965
  ident: 10.1016/j.neucom.2024.127877_b4
  article-title: An analysis of variance test for normality (complete samples)
  publication-title: Biometrika
  doi: 10.1093/biomet/52.3-4.591
– year: 2023
  ident: 10.1016/j.neucom.2024.127877_b6
– year: 2020
  ident: 10.1016/j.neucom.2024.127877_b9
– start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2024.127877_b3
  article-title: STAC: a web platform for the comparison of algorithms using statistical tests
– year: 1989
  ident: 10.1016/j.neucom.2024.127877_b8
– volume: 58
  start-page: 341
  issue: 2
  year: 1971
  ident: 10.1016/j.neucom.2024.127877_b5
  article-title: An omnibus test of normality for moderate and large size samples
  publication-title: Biometrika
  doi: 10.1093/biomet/58.2.341
– volume: 17
  start-page: 261
  year: 2020
  ident: 10.1016/j.neucom.2024.127877_b2
  article-title: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
  publication-title: Nature Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 81
  start-page: 826
  issue: 395
  year: 1986
  ident: 10.1016/j.neucom.2024.127877_b12
  article-title: Modified sequentially rejective multiple test procedures
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.1986.10478341
– volume: 9
  start-page: 571
  issue: 6
  year: 1980
  ident: 10.1016/j.neucom.2024.127877_b11
  article-title: Approximations of the critical region of the fbietkan statistic
  publication-title: Comm. Statist. Theory Methods
  doi: 10.1080/03610928008827904
– volume: vol. 278
  start-page: 292
  year: 1960
  ident: 10.1016/j.neucom.2024.127877_b7
  article-title: Contributions to probability and statistics
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.neucom.2024.127877_b10
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 180
  start-page: 2044
  issue: 10
  year: 2010
  ident: 10.1016/j.neucom.2024.127877_b1
  article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.12.010
SSID ssj0017129
Score 2.4756174
Snippet In Data Science, there is a continual demand for statistical comparison to identify the most advantageous algorithms. Finding a software tool that facilitates...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 127877
SubjectTerms Data science comparison
Python
Statistical tests
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMcfczvoxfkT5y968GjKmqZp6204xxA2BDeYp5KfBx11aIvoX2_SH0OFsXks5LXpey_k0-blG4ArX2jlU6kQ8UKKSBR0USQpRphQhTXBXBaiPqMxHU7J_SyYNeC63gvza_2-qMNKVW7rOsxHOnE9bPIr3IIWDQx5N6E1HT_0ngo5PRwggyrF4mYU4mJ3dL1TbsVtVs1E23m6YJ8fbD7_MdMM2jCq-1gWmLy4ecZd8fVHvnHTl9iD3Qo5nV6ZI_vQUOkBtOvjHJxqdB8CNuA56T861Y-dG8eCaKHjbKwNkWbvjiFcp88yVhsdwXRwN7kdoupIBSQMaWVIR9wjHifMjGsZe5JgpiNM_IhpHerY4IxQUpseYon9QEhfCRnQSHSFopQx5R9DM31N1Qk4MWWiy7o8JlYvJg65bcBNfLUwaeEFHfBr9yai0hu3x17Mk7qw7Dkp3ZJYtySlWzqAllaLUm9jTfuwjlxSMUPJAokJwhpLdxnojR51-l-DM9ixV_YPNI7OoZm95erCIEzGL6vM_QbZB-n9
  priority: 102
  providerName: Unpaywall
Title StaTDS library: Statistical tests for Data Science
URI https://dx.doi.org/10.1016/j.neucom.2024.127877
https://doi.org/10.1016/j.neucom.2024.127877
UnpaywallVersion publishedVersion
Volume 595
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier E-journals (Freedom Collection)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jHvTitzg_Rg9eszVpmqbexqZMxSHMwTyVNE1gMurQDvHi3-5Lmw49yMRTaXmPtL-XvPwa3gdCF4EyOuCZxoxEHDMR-lhknGLKuKaG0TQri_rcj_hwwm6n4bSB-nUujA2rdL6_8umlt3ZPug7N7mI26479mMJfFCmjIDkTNomPsch2Meh8rsI8SERoVW-PhthK1-lzZYxXrpc2ZoTCRtUhFOZu9Nv2tLnMF_LjXc7n37af61207Xij16tebQ81dL6PduqeDJ5bogeIAnt8HIw9dzpz6Vk2WRZjBm2glcWbBzTVG8hC1kqHaHJ99dgfYtcXASugSwU2IiWMpEzC4sxikjEqjaAsENKYyMTASQA8A99DMxqEKgu0ykIulK8051Lq4Ag185dcHyMv5lL50k9jZou-xFFqBVIwklFgWxK2UFDDkShXNNz2rpgndXTYc1KBmFgQkwrEFsIrrUVVNGONfFQjnfwwfgJ-fY1mZ2WYPw118u-hTtGWvbPnyVScoWbxutTnQEiKtF3OuDba6N3cDUdwnYweek9f9KvgaA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKGcrCG1GeGVjdxo7jOGyopSrQdmkrdbMcx5aKqlBBKsTCb8dOnAoGVMSa3MnJd_bdZ-t8B8BNILUKaKogQRGFhIU-ZCnFEBOqsCY4SYuiPsMR7U_J4yyc1UCnugtj0yqd7y99euGt3ZO2Q7O9nM_bYz_GZheFiixISli8BbZJiCO7A2t9rvM8UIRwWXAPh9CKV_fniiSvTK1s0gg2kaqFsJm80W_xqbHKluLjXSwW3-JPbx_sOuLo3ZXfdgBqKjsEe1VTBs-t0SOADX2cdMeeO5659SydLKoxG23DK_M3z_BUrytyUSkdg2nvftLpQ9cYAUrDl3KoWYIISogwqzONUUqw0AyTgAmtIx0bUmLQ0-Z_cIqDUKaBkmlImfSlolQIFZyAevaSqVPgxVRIX_hJTGzVlzhKrEBirKSlMS4KmyCo4ODSVQ23zSsWvEoPe-YliNyCyEsQmwCutZZl1YwN8lGFNP9hfW4c-wbN1towfxrq7N9DXYNGfzIc8MHD6Okc7Ng39nAZswtQz19X6tKwkzy5KmbfFzwX4E0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMcfczvoxfkT5y968GjKmqZp6204xxA2BDeYp5KfBx11aIvoX2_SH0OFsXks5LXpey_k0-blG4ArX2jlU6kQ8UKKSBR0USQpRphQhTXBXBaiPqMxHU7J_SyYNeC63gvza_2-qMNKVW7rOsxHOnE9bPIr3IIWDQx5N6E1HT_0ngo5PRwggyrF4mYU4mJ3dL1TbsVtVs1E23m6YJ8fbD7_MdMM2jCq-1gWmLy4ecZd8fVHvnHTl9iD3Qo5nV6ZI_vQUOkBtOvjHJxqdB8CNuA56T861Y-dG8eCaKHjbKwNkWbvjiFcp88yVhsdwXRwN7kdoupIBSQMaWVIR9wjHifMjGsZe5JgpiNM_IhpHerY4IxQUpseYon9QEhfCRnQSHSFopQx5R9DM31N1Qk4MWWiy7o8JlYvJg65bcBNfLUwaeEFHfBr9yai0hu3x17Mk7qw7Dkp3ZJYtySlWzqAllaLUm9jTfuwjlxSMUPJAokJwhpLdxnojR51-l-DM9ixV_YPNI7OoZm95erCIEzGL6vM_QbZB-n9
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=StaTDS+library%3A+Statistical+tests+for+Data+Science&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Luna%2C+Christian&rft.au=Moya%2C+Antonio+R.&rft.au=Luna%2C+Jos%C3%A9+Mar%C3%ADa&rft.au=Ventura%2C+Sebasti%C3%A1n&rft.date=2024-08-28&rft.issn=0925-2312&rft.volume=595&rft.spage=127877&rft_id=info:doi/10.1016%2Fj.neucom.2024.127877&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2024_127877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon