Evolutionary Multi-objective Optimization in Building Retrofit Planning Problem

Energy efficiency has been a primary subject of concern in the building sector, which consumes the largest portion of the world's total energy. Especially for existing buildings, retrofitting has been regarded as the most feasible and cost-effective method to improve energy efficiency. When pla...

Full description

Saved in:
Bibliographic Details
Published inProcedia engineering Vol. 145; pp. 565 - 570
Main Authors Son, Hyojoo, Kim, Changwan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2016
Subjects
Online AccessGet full text
ISSN1877-7058
1877-7058
DOI10.1016/j.proeng.2016.04.045

Cover

Abstract Energy efficiency has been a primary subject of concern in the building sector, which consumes the largest portion of the world's total energy. Especially for existing buildings, retrofitting has been regarded as the most feasible and cost-effective method to improve energy efficiency. When planning retrofit in public buildings, the most obvious objectives are to: (1) minimize energy consumption; (2) minimize CO2 emissions; (3) minimize retrofit costs; and (4) maximize thermal comfort; and one must consider these concerns together. The aim of this study is to apply evolutionary multi-objective optimization algorithm (NSGA-III) that can handle four objectives at a time to the application of building retrofit planning. A brief description of the algorithm is given, and the algorithm is examined using a building retrofit project, as a case study. The performance of the algorithm is evaluated using three measures: average distance to true Pareto-optimal front, hypervolume, and spacing. The results show that this study could be used to find a comprehensive set of trade-off scenarios for all possible retrofits, thereby providing references for building retrofit planners. These decision makers can then select the optimal retrofit strategy to satisfy stakeholders’ preferences.
AbstractList Energy efficiency has been a primary subject of concern in the building sector, which consumes the largest portion of the world's total energy. Especially for existing buildings, retrofitting has been regarded as the most feasible and cost-effective method to improve energy efficiency. When planning retrofit in public buildings, the most obvious objectives are to: (1) minimize energy consumption; (2) minimize CO2 emissions; (3) minimize retrofit costs; and (4) maximize thermal comfort; and one must consider these concerns together. The aim of this study is to apply evolutionary multi-objective optimization algorithm (NSGA-III) that can handle four objectives at a time to the application of building retrofit planning. A brief description of the algorithm is given, and the algorithm is examined using a building retrofit project, as a case study. The performance of the algorithm is evaluated using three measures: average distance to true Pareto-optimal front, hypervolume, and spacing. The results show that this study could be used to find a comprehensive set of trade-off scenarios for all possible retrofits, thereby providing references for building retrofit planners. These decision makers can then select the optimal retrofit strategy to satisfy stakeholders’ preferences.
Author Son, Hyojoo
Kim, Changwan
Author_xml – sequence: 1
  givenname: Hyojoo
  surname: Son
  fullname: Son, Hyojoo
– sequence: 2
  givenname: Changwan
  surname: Kim
  fullname: Kim, Changwan
  email: changwan@cau.ac.kr
BookMark eNqNkF9LwzAQwINMcM59Ax_6BVqTNm06HwQd8w8oG6LPIW3TcSVLSppO5qc3tT6ID-pxcJeE33H5naKJNloidE5wRDDJLpqotUbqbRT7U4Spz_QITUnOWMhwmk--9Sdo3nUNHoLhOCVTtF7tjeodGC3sIXjqlYPQFI0sHexlsG4d7OBdDO8B6OCmB1WB3gbP0llTgws2Smg93GysKZTcnaHjWqhOzr_qDL3erl6W9-Hj-u5hef0Ylkkau7DOclywJKsFTZNCEEwZzeOK1gXN5SLzy5FMkErESVzhJM0qmmAsWYaFWLC8jpMZSse5vW7F4U0oxVsLO_8JTjAfxPCGj2L4IIZj6jP1HB250pqus7L-L3b5AyvBfWpxVoD6C74aYemF7EFa3pUgdSkrsF40rwz8PuADDGWVWw
CitedBy_id crossref_primary_10_1007_s42107_024_01143_4
crossref_primary_10_1016_j_jobe_2024_110422
crossref_primary_10_1007_s42107_024_01138_1
crossref_primary_10_1007_s42107_024_01203_9
crossref_primary_10_1016_j_energy_2019_01_164
crossref_primary_10_1007_s42107_024_01102_z
crossref_primary_10_1016_j_enbuild_2024_114624
crossref_primary_10_1007_s42107_024_01157_y
crossref_primary_10_1007_s42107_025_01305_y
crossref_primary_10_1080_10286608_2019_1576646
crossref_primary_10_1007_s42107_025_01309_8
crossref_primary_10_1016_j_enbuild_2024_115216
crossref_primary_10_1016_j_heliyon_2025_e42480
crossref_primary_10_3390_su11051495
crossref_primary_10_1016_j_enbuild_2019_109690
crossref_primary_10_1016_j_jclepro_2022_133131
crossref_primary_10_1007_s42107_024_01014_y
crossref_primary_10_1007_s42107_024_01170_1
Cites_doi 10.1016/j.enbuild.2012.08.018
10.1109/TCYB.2014.2363878
10.1109/TEVC.2013.2281535
10.1016/j.enbuild.2014.11.003
10.1016/j.ress.2005.11.018
10.1016/S0965-9978(00)00110-1
10.1016/j.apenergy.2010.10.002
10.1057/jba.2009.34
10.1016/j.buildenv.2012.04.005
10.1007/978-3-642-37140-0_25
10.1007/s00158-003-0368-6
10.1016/j.eswa.2015.11.007
10.1016/j.engappai.2008.06.002
10.1007/978-3-642-14049-5_59
10.1016/j.enbuild.2014.06.009
10.1016/j.energy.2010.11.035
10.1016/j.enbuild.2004.07.005
10.1016/j.enbuild.2014.07.030
10.1016/S0377-2217(01)00123-0
10.1016/j.eswa.2009.02.080
10.1109/CEC.2001.934295
10.1109/4235.996017
10.1007/978-3-662-03315-9
10.1016/j.cie.2012.02.004
10.1002/9781118522516.ch8
10.1016/j.enbuild.2012.03.045
10.1016/j.enbuild.2014.11.058
ContentType Journal Article
Copyright 2016
Copyright_xml – notice: 2016
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.proeng.2016.04.045
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1877-7058
EndPage 570
ExternalDocumentID 10.1016/j.proeng.2016.04.045
10_1016_j_proeng_2016_04_045
S1877705816300509
GroupedDBID --K
0R~
0SF
1B1
4.4
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAFWJ
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADMUD
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FEDTE
FNPLU
HVGLF
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
OZT
P2P
RIG
ROL
SES
SSZ
XH2
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c352t-f680b736fa453ba1047482d4fb48e9670216a1da232d0356d4300e760aa978f23
IEDL.DBID IXB
ISSN 1877-7058
IngestDate Tue Aug 19 19:07:54 EDT 2025
Wed Oct 01 01:43:53 EDT 2025
Thu Apr 24 23:05:50 EDT 2025
Fri Feb 23 02:33:52 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Building retrofit
Energy consumption
Thermal comfort
CO2 emissions
Retrofit costs
Evolutionary multi-objective optimization
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-f680b736fa453ba1047482d4fb48e9670216a1da232d0356d4300e760aa978f23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877705816300509
PageCount 6
ParticipantIDs unpaywall_primary_10_1016_j_proeng_2016_04_045
crossref_primary_10_1016_j_proeng_2016_04_045
crossref_citationtrail_10_1016_j_proeng_2016_04_045
elsevier_sciencedirect_doi_10_1016_j_proeng_2016_04_045
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016
2016-00-00
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – year: 2016
  text: 2016
PublicationDecade 2010
PublicationTitle Procedia engineering
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References International Energy Agency (IEA), Worldwide trends in energy use and efficiency – Key insights from IEA indicator analysis, IEA, Paris, France, 2008.
Asadi, da Silva, Antunes, Dias, Glicksman (bib0105) 2014; 81
J. Krettek, J. Braun, F. Hoffmann, T. Bertram, Preference modeling and model management for interactive multi-objective evolutionary optimization, Computational Intelligence for Knowledge-Based Systems Design 6178 of the series Lecture Notes in Computer Science (2010) 574-583.
Jones, Mirrazavi, Tamiz (bib0140) 2002; 137
Bechikh, Chaabani, Said (bib0130) 2014; 45
Buildings Performance Institute Europe (BPIE), Europe's buildings under the microscope – A country-by-country review of the energy performance of buildings, BPIE, Brussels, Belgium, 2011.
A. L. Jaimes, C.A.C. Coello, Interactive approaches applied to multiobjective evolutionary algorithms, Multicriteria Decision Aid and Artificial Intelligence: Links, Theory and Applications, John Wiley & Sons, Ltd. New York, 2012.
Ma, Liu, Fu, Li, Ni (bib0025) 2011; 36
Behnamian, Ghomi, Zandieh (bib0190) 2009; 36
Tavana, Li, Mobin, Komaki, Teymourian (bib0125) 2016; 50
Public Procurement Service (2014), http://www.pps.go.kr/mobile/item/domesticView.dom?boardSeqNo=1091&pageIndex=1&boardId=PPS 056&type=2 (last accessed on January 2016).
Shao, Geyer, Lang (bib0055) 2014; 82
Ma, Copper, Daly, Ledo (bib0065) 2012; 55
K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable test problems for evolutionary multi-objective optimization. Technical report, Computer Engineering and Networks Lab (TIK), Zurich, Switzerland, 2001.
Penna, Parada, Cappelletti, Gasparella (bib0040) 2015; 95
Kaklauskas, Zavadskas, Raslanas (bib0035) 2005; 37
E. Asadi, M. Gameiro da Silva, C.H. Antunes, L. Dias, A multi-objective optimization model for building retrofit strategies using TRNSYS simulations, GenOpt and MATLAB, Building and Environment 56 (2012a) 370-378.
Chambari, Rahmati, Najafi, Karimi (bib0200) 2012; 63
1.J.R. Schott, Fault tolerant design using single and multicriteria genetic algorithm optimization, Master's Thesis, Department of Massachusetts Institute of Technology, Cambridge, MA, 1995.
Rahmat, Ali (bib0030) 2010; 5
Ascione, Bianco, de Stasio, Mauro, Vanoli (bib0110) 2015; 88
G. Hammond, C. Jones, Inventory of carbon & energy (ICE), version 1.5 beta, Bath, UK, 2006.
Chantrelle, Lahmidi, Keilholz, Mankibi, Michel (bib0050) 2011; 88
Deb, Jain (bib0120) 2014; 18
Saravanan, Ramabalan, Balamurugan (bib0100) 2009; 22
Konak, Coit, Smith (bib0145) 2006; 91
Svensson (bib0135) 2015
H.A. Abbass, R. Sarker, C. Newton, PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems, Proc. 2001 Congress on Evolutionary Computation, IEEE, San Francisco, CA, 2001, pp. 971-978.
Z. Michalewicz, Genetic algorithms + Data structures = Evolution programs, Springer Science & Business Media, 1996.
T. Goel, K. Deb, Hybrid methods for multi-objective evolutionary algorithms, Proc. 4th Asia-Pacific Conf. on Simulated Evolution and Learning (SEAL’02), Orchid Country Club, Singapore, 2002, pp. 188-192.
Marler, Arora (bib0075) 2004; 26
Construction Association of Korea (2014), http://cmpi.or.kr/main_new/sub.asp?part=price&page=sub_main (last accessed on January 2016).
H. Jain, K. Deb, An improved adaptive approach for elitist nondominated sorting genetic algorithm for many-objective optimization, Evolutionary Multi-Criterion Optimization 7811 of the series Lecture Notes in Computer Science (2013) 307-321.
United Nations Environment Programme (UNEP), Buildings and climate change – Summary for decision-makers, UNEP, Paris, France, 2009.
Deb (bib0175) 2002; 6
U.S. Energy Information Administration (EIA), Energy efficiency, https://www.iea.org/aboutus/faqs/energyefficiency/(last accessed on January 2016).
Bojić, Djordjević, Stefanović, Miletić, Cvetković (bib0045) 2012; 54
K. Deb, H. Jain, An improved NSGA-II procedure for many-objective optimization, Part I: Problems with box constraints. Technical Report KanGAL Report Number 2012009, Indian Institute of Technology Kanpur, Uttar Pradesh, India, 2012.
Branke, Kaußler, Schmeck (bib0080) 2001; 32
Reyes-Sierra, Coello Coello (bib0150) 2006
Marler (10.1016/j.proeng.2016.04.045_bib0075) 2004; 26
10.1016/j.proeng.2016.04.045_bib0005
Shao (10.1016/j.proeng.2016.04.045_bib0055) 2014; 82
Rahmat (10.1016/j.proeng.2016.04.045_bib0030) 2010; 5
Bechikh (10.1016/j.proeng.2016.04.045_bib0130) 2014; 45
Ma (10.1016/j.proeng.2016.04.045_bib0065) 2012; 55
10.1016/j.proeng.2016.04.045_bib0165
10.1016/j.proeng.2016.04.045_bib0020
10.1016/j.proeng.2016.04.045_bib0185
10.1016/j.proeng.2016.04.045_bib0085
10.1016/j.proeng.2016.04.045_bib0160
10.1016/j.proeng.2016.04.045_bib0060
Svensson (10.1016/j.proeng.2016.04.045_bib0135) 2015
Deb (10.1016/j.proeng.2016.04.045_bib0175) 2002; 6
10.1016/j.proeng.2016.04.045_bib0180
Reyes-Sierra (10.1016/j.proeng.2016.04.045_bib0150) 2006
Chantrelle (10.1016/j.proeng.2016.04.045_bib0050) 2011; 88
Chambari (10.1016/j.proeng.2016.04.045_bib0200) 2012; 63
10.1016/j.proeng.2016.04.045_bib0115
Jones (10.1016/j.proeng.2016.04.045_bib0140) 2002; 137
10.1016/j.proeng.2016.04.045_bib0015
Kaklauskas (10.1016/j.proeng.2016.04.045_bib0035) 2005; 37
Deb (10.1016/j.proeng.2016.04.045_bib0120) 2014; 18
10.1016/j.proeng.2016.04.045_bib0155
Ascione (10.1016/j.proeng.2016.04.045_bib0110) 2015; 88
10.1016/j.proeng.2016.04.045_bib0010
Branke (10.1016/j.proeng.2016.04.045_bib0080) 2001; 32
Tavana (10.1016/j.proeng.2016.04.045_bib0125) 2016; 50
Penna (10.1016/j.proeng.2016.04.045_bib0040) 2015; 95
Behnamian (10.1016/j.proeng.2016.04.045_bib0190) 2009; 36
10.1016/j.proeng.2016.04.045_bib0195
10.1016/j.proeng.2016.04.045_bib0095
10.1016/j.proeng.2016.04.045_bib0170
10.1016/j.proeng.2016.04.045_bib0070
Konak (10.1016/j.proeng.2016.04.045_bib0145) 2006; 91
10.1016/j.proeng.2016.04.045_bib0090
Ma (10.1016/j.proeng.2016.04.045_bib0025) 2011; 36
Bojić (10.1016/j.proeng.2016.04.045_bib0045) 2012; 54
Saravanan (10.1016/j.proeng.2016.04.045_bib0100) 2009; 22
Asadi (10.1016/j.proeng.2016.04.045_bib0105) 2014; 81
References_xml – reference: H. Jain, K. Deb, An improved adaptive approach for elitist nondominated sorting genetic algorithm for many-objective optimization, Evolutionary Multi-Criterion Optimization 7811 of the series Lecture Notes in Computer Science (2013) 307-321.
– reference: H.A. Abbass, R. Sarker, C. Newton, PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems, Proc. 2001 Congress on Evolutionary Computation, IEEE, San Francisco, CA, 2001, pp. 971-978.
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: bib0120
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approaches, Part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 50
  start-page: 17
  year: 2016
  end-page: 39
  ident: bib0125
  article-title: Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS
  publication-title: Expert Systems with Applications
– volume: 88
  start-page: 1386
  year: 2011
  end-page: 1394
  ident: bib0050
  article-title: Development of a multicriteria tool for optimizing the renovation of buildings
  publication-title: Applied Energy
– reference: G. Hammond, C. Jones, Inventory of carbon & energy (ICE), version 1.5 beta, Bath, UK, 2006.
– volume: 137
  start-page: 1
  year: 2002
  end-page: 9
  ident: bib0140
  article-title: Multiobjective meta-heuristics:An overview of the current state-of-the-art
  publication-title: European Journal of Operationsl Research
– year: 2015
  ident: bib0135
  article-title: Using evolutionary multiobjective optimization algorithms to evolve lacing patterns for bicycle wheels
  publication-title: Master's Thesis, Norwegian University of Science and Technology, Trondheim, Norway
– start-page: 89
  year: 2006
  end-page: 90
  ident: bib0150
  article-title: Dynamic fitness inheritance proportion for multi-objective particle swarm optimization
  publication-title: Proc. 8th Annual Conf. on Genetic and Evolutionary Computation, Seattle, Washington
– volume: 36
  start-page: 11057
  year: 2009
  end-page: 11069
  ident: bib0190
  article-title: A multi-phase covering Pareto-optimal front method to multi-objective scheduling in a realistic hybrid flowshop using a hybrid metaheuristic
  publication-title: Expert Systems with Applications
– volume: 5
  start-page: 273
  year: 2010
  end-page: 288
  ident: bib0030
  article-title: The involvement of the key participants in the production of project plans and the planning performance of refurbishment projects
  publication-title: Journal of Building Appraisal
– volume: 37
  start-page: 361
  year: 2005
  end-page: 372
  ident: bib0035
  article-title: Multivariant design and multiplecriteria analysis of building refurbishment
  publication-title: Energy and Buildings
– reference: Z. Michalewicz, Genetic algorithms + Data structures = Evolution programs, Springer Science & Business Media, 1996.
– volume: 22
  start-page: 329
  year: 2009
  end-page: 342
  ident: bib0100
  article-title: Evolutionary multi-criteria trajectory modeling of industrial robots in the presence of obstacles
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 54
  start-page: 503
  year: 2012
  end-page: 510
  ident: bib0045
  article-title: Decreasing energy consumption in thermally non-insulated old house via refurbishment
  publication-title: Energy and Buildings
– reference: J. Krettek, J. Braun, F. Hoffmann, T. Bertram, Preference modeling and model management for interactive multi-objective evolutionary optimization, Computational Intelligence for Knowledge-Based Systems Design 6178 of the series Lecture Notes in Computer Science (2010) 574-583.
– reference: Buildings Performance Institute Europe (BPIE), Europe's buildings under the microscope – A country-by-country review of the energy performance of buildings, BPIE, Brussels, Belgium, 2011.
– reference: Public Procurement Service (2014), http://www.pps.go.kr/mobile/item/domesticView.dom?boardSeqNo=1091&pageIndex=1&boardId=PPS 056&type=2 (last accessed on January 2016).
– reference: U.S. Energy Information Administration (EIA), Energy efficiency, https://www.iea.org/aboutus/faqs/energyefficiency/(last accessed on January 2016).
– volume: 32
  start-page: 499
  year: 2001
  end-page: 507
  ident: bib0080
  article-title: Guidance in evolutionary multi-objective optimization
  publication-title: Advances in Engineering Software
– reference: T. Goel, K. Deb, Hybrid methods for multi-objective evolutionary algorithms, Proc. 4th Asia-Pacific Conf. on Simulated Evolution and Learning (SEAL’02), Orchid Country Club, Singapore, 2002, pp. 188-192.
– reference: K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable test problems for evolutionary multi-objective optimization. Technical report, Computer Engineering and Networks Lab (TIK), Zurich, Switzerland, 2001.
– reference: International Energy Agency (IEA), Worldwide trends in energy use and efficiency – Key insights from IEA indicator analysis, IEA, Paris, France, 2008.
– volume: 55
  start-page: 889
  year: 2012
  end-page: 902
  ident: bib0065
  article-title: Existing building retrofits: Methodology and state-of-the-art
  publication-title: Energy and Buildings
– reference: K. Deb, H. Jain, An improved NSGA-II procedure for many-objective optimization, Part I: Problems with box constraints. Technical Report KanGAL Report Number 2012009, Indian Institute of Technology Kanpur, Uttar Pradesh, India, 2012.
– volume: 63
  start-page: 109
  year: 2012
  end-page: 119
  ident: bib0200
  article-title: A bi-objective model to optimize reliability and cost of system with a choice of redundancy strategies
  publication-title: Computers & Industrial Engineering
– reference: E. Asadi, M. Gameiro da Silva, C.H. Antunes, L. Dias, A multi-objective optimization model for building retrofit strategies using TRNSYS simulations, GenOpt and MATLAB, Building and Environment 56 (2012a) 370-378.
– reference: A. L. Jaimes, C.A.C. Coello, Interactive approaches applied to multiobjective evolutionary algorithms, Multicriteria Decision Aid and Artificial Intelligence: Links, Theory and Applications, John Wiley & Sons, Ltd. New York, 2012.
– volume: 82
  start-page: 356
  year: 2014
  end-page: 368
  ident: bib0055
  article-title: Integrating requirement analysis and multi-objective optimization for office building energy retrofit strategies
  publication-title: Energy and Buildings
– volume: 95
  start-page: 57
  year: 2015
  end-page: 69
  ident: bib0040
  article-title: Multi-objectives optimization of Energy Efficiency Measures in existing buildings
  publication-title: Energy and Buildings
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib0175
  article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
– volume: 81
  start-page: 444
  year: 2014
  end-page: 456
  ident: bib0105
  article-title: Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application
  publication-title: Energy and Buildings
– volume: 45
  start-page: 2051
  year: 2014
  end-page: 2064
  ident: bib0130
  article-title: An efficient chemical reaction optimization algorithm for multiobjective optimization
  publication-title: IEEE Transactions on Cybernetics
– volume: 91
  start-page: 992
  year: 2006
  end-page: 1007
  ident: bib0145
  article-title: Multi-objective optimization using genetic algorithms: A tutorial
  publication-title: Reliability Engineering & System Safety
– volume: 26
  start-page: 369
  year: 2004
  end-page: 395
  ident: bib0075
  article-title: Survey of multi-objective optimization methods for engineering
  publication-title: Structural and Multidisciplinary Optimization
– volume: 36
  start-page: 1143
  year: 2011
  end-page: 1154
  ident: bib0025
  article-title: Integrated energy strategy for the sustainable development of China
  publication-title: Energy
– reference: United Nations Environment Programme (UNEP), Buildings and climate change – Summary for decision-makers, UNEP, Paris, France, 2009.
– volume: 88
  start-page: 78
  year: 2015
  end-page: 90
  ident: bib0110
  article-title: A new methodology for cost-optimal analysis by means of the multi-objective optimization of building energy performance
  publication-title: Energy and Buildings
– reference: Construction Association of Korea (2014), http://cmpi.or.kr/main_new/sub.asp?part=price&page=sub_main (last accessed on January 2016).
– reference: 1.J.R. Schott, Fault tolerant design using single and multicriteria genetic algorithm optimization, Master's Thesis, Department of Massachusetts Institute of Technology, Cambridge, MA, 1995.
– volume: 55
  start-page: 889
  year: 2012
  ident: 10.1016/j.proeng.2016.04.045_bib0065
  article-title: Existing building retrofits: Methodology and state-of-the-art
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2012.08.018
– ident: 10.1016/j.proeng.2016.04.045_bib0015
– volume: 45
  start-page: 2051
  year: 2014
  ident: 10.1016/j.proeng.2016.04.045_bib0130
  article-title: An efficient chemical reaction optimization algorithm for multiobjective optimization
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2014.2363878
– ident: 10.1016/j.proeng.2016.04.045_bib0170
– volume: 18
  start-page: 577
  year: 2014
  ident: 10.1016/j.proeng.2016.04.045_bib0120
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approaches, Part I: Solving problems with box constraints
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/TEVC.2013.2281535
– volume: 95
  start-page: 57
  year: 2015
  ident: 10.1016/j.proeng.2016.04.045_bib0040
  article-title: Multi-objectives optimization of Energy Efficiency Measures in existing buildings
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2014.11.003
– volume: 91
  start-page: 992
  year: 2006
  ident: 10.1016/j.proeng.2016.04.045_bib0145
  article-title: Multi-objective optimization using genetic algorithms: A tutorial
  publication-title: Reliability Engineering & System Safety
  doi: 10.1016/j.ress.2005.11.018
– volume: 32
  start-page: 499
  year: 2001
  ident: 10.1016/j.proeng.2016.04.045_bib0080
  article-title: Guidance in evolutionary multi-objective optimization
  publication-title: Advances in Engineering Software
  doi: 10.1016/S0965-9978(00)00110-1
– volume: 88
  start-page: 1386
  year: 2011
  ident: 10.1016/j.proeng.2016.04.045_bib0050
  article-title: Development of a multicriteria tool for optimizing the renovation of buildings
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2010.10.002
– ident: 10.1016/j.proeng.2016.04.045_bib0020
– volume: 5
  start-page: 273
  year: 2010
  ident: 10.1016/j.proeng.2016.04.045_bib0030
  article-title: The involvement of the key participants in the production of project plans and the planning performance of refurbishment projects
  publication-title: Journal of Building Appraisal
  doi: 10.1057/jba.2009.34
– ident: 10.1016/j.proeng.2016.04.045_bib0005
– ident: 10.1016/j.proeng.2016.04.045_bib0060
  doi: 10.1016/j.buildenv.2012.04.005
– ident: 10.1016/j.proeng.2016.04.045_bib0180
  doi: 10.1007/978-3-642-37140-0_25
– volume: 26
  start-page: 369
  year: 2004
  ident: 10.1016/j.proeng.2016.04.045_bib0075
  article-title: Survey of multi-objective optimization methods for engineering
  publication-title: Structural and Multidisciplinary Optimization
  doi: 10.1007/s00158-003-0368-6
– volume: 50
  start-page: 17
  year: 2016
  ident: 10.1016/j.proeng.2016.04.045_bib0125
  article-title: Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2015.11.007
– start-page: 89
  year: 2006
  ident: 10.1016/j.proeng.2016.04.045_bib0150
  article-title: Dynamic fitness inheritance proportion for multi-objective particle swarm optimization
  publication-title: Proc. 8th Annual Conf. on Genetic and Evolutionary Computation, Seattle, Washington
– volume: 22
  start-page: 329
  year: 2009
  ident: 10.1016/j.proeng.2016.04.045_bib0100
  article-title: Evolutionary multi-criteria trajectory modeling of industrial robots in the presence of obstacles
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2008.06.002
– ident: 10.1016/j.proeng.2016.04.045_bib0085
  doi: 10.1007/978-3-642-14049-5_59
– volume: 81
  start-page: 444
  year: 2014
  ident: 10.1016/j.proeng.2016.04.045_bib0105
  article-title: Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2014.06.009
– ident: 10.1016/j.proeng.2016.04.045_bib0165
– ident: 10.1016/j.proeng.2016.04.045_bib0115
– ident: 10.1016/j.proeng.2016.04.045_bib0010
– volume: 36
  start-page: 1143
  year: 2011
  ident: 10.1016/j.proeng.2016.04.045_bib0025
  article-title: Integrated energy strategy for the sustainable development of China
  publication-title: Energy
  doi: 10.1016/j.energy.2010.11.035
– volume: 37
  start-page: 361
  year: 2005
  ident: 10.1016/j.proeng.2016.04.045_bib0035
  article-title: Multivariant design and multiplecriteria analysis of building refurbishment
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2004.07.005
– volume: 82
  start-page: 356
  year: 2014
  ident: 10.1016/j.proeng.2016.04.045_bib0055
  article-title: Integrating requirement analysis and multi-objective optimization for office building energy retrofit strategies
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2014.07.030
– volume: 137
  start-page: 1
  year: 2002
  ident: 10.1016/j.proeng.2016.04.045_bib0140
  article-title: Multiobjective meta-heuristics:An overview of the current state-of-the-art
  publication-title: European Journal of Operationsl Research
  doi: 10.1016/S0377-2217(01)00123-0
– ident: 10.1016/j.proeng.2016.04.045_bib0095
– volume: 36
  start-page: 11057
  year: 2009
  ident: 10.1016/j.proeng.2016.04.045_bib0190
  article-title: A multi-phase covering Pareto-optimal front method to multi-objective scheduling in a realistic hybrid flowshop using a hybrid metaheuristic
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.02.080
– ident: 10.1016/j.proeng.2016.04.045_bib0070
  doi: 10.1109/CEC.2001.934295
– ident: 10.1016/j.proeng.2016.04.045_bib0155
– year: 2015
  ident: 10.1016/j.proeng.2016.04.045_bib0135
  article-title: Using evolutionary multiobjective optimization algorithms to evolve lacing patterns for bicycle wheels
  publication-title: Master's Thesis, Norwegian University of Science and Technology, Trondheim, Norway
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.proeng.2016.04.045_bib0175
  article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II
  publication-title: IEEE Transactions on Evolutionary Computation
  doi: 10.1109/4235.996017
– ident: 10.1016/j.proeng.2016.04.045_bib0185
  doi: 10.1007/978-3-662-03315-9
– ident: 10.1016/j.proeng.2016.04.045_bib0160
– volume: 63
  start-page: 109
  year: 2012
  ident: 10.1016/j.proeng.2016.04.045_bib0200
  article-title: A bi-objective model to optimize reliability and cost of system with a choice of redundancy strategies
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2012.02.004
– ident: 10.1016/j.proeng.2016.04.045_bib0090
  doi: 10.1002/9781118522516.ch8
– volume: 54
  start-page: 503
  year: 2012
  ident: 10.1016/j.proeng.2016.04.045_bib0045
  article-title: Decreasing energy consumption in thermally non-insulated old house via refurbishment
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2012.03.045
– volume: 88
  start-page: 78
  year: 2015
  ident: 10.1016/j.proeng.2016.04.045_bib0110
  article-title: A new methodology for cost-optimal analysis by means of the multi-objective optimization of building energy performance
  publication-title: Energy and Buildings
  doi: 10.1016/j.enbuild.2014.11.058
– ident: 10.1016/j.proeng.2016.04.045_bib0195
SSID ssj0000070251
Score 2.0923567
Snippet Energy efficiency has been a primary subject of concern in the building sector, which consumes the largest portion of the world's total energy. Especially for...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 565
SubjectTerms Building retrofit
CO2 emissions
Energy consumption
Evolutionary multi-objective optimization
Retrofit costs
Thermal comfort
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21PYgHv8WKSg4eTUk3X-uxSksRbItYqKcl2SRirdtStkr99Wa72VKFYoWFveyQMBlmXtiZ9wC4wjQOjCvDCNuAI2qIQZLjEFkhXcUxNoz1osu3w9t9ej9ggxK4LmZhfvy_X_RhuURikpesCYsvSEkp2wIVzhzyLoNKv9NrPGd3qlAIJDALi-m4Nabrqs_2LJnI-accjVaqS2sPPBT7yptK3mqzVNXir1-UjZtufB_sepgJG3lcHICSSQ7Bzgr54BHoNj982MnpHC4GcdFYDfMECLsulbz7GU34msBbL58NH02ayXynsJA7gr1ck-YY9FvNp7s28vIKKHaoK0WWh1gJwq2kjCiZcTbQMNDUKhqaGy5c9eeyrqXDXBoTxjUlGBvBsZTu6mkDcgLKyTgxpwA6TKNiHRDh8BoNpHuxuhaxZZoryaWqAlK4PYo993gmgTGKiiazYZS7K8rcFWHqHlYFaGk1ybk3_vheFCcaefyQ44LIHc4flrVlAGy01Nl_Dc5BOZ3OzIVDMKm69IH7DWlh7zs
  priority: 102
  providerName: Unpaywall
Title Evolutionary Multi-objective Optimization in Building Retrofit Planning Problem
URI https://dx.doi.org/10.1016/j.proeng.2016.04.045
https://doi.org/10.1016/j.proeng.2016.04.045
UnpaywallVersion publishedVersion
Volume 145
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1877-7058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070251
  issn: 1877-7058
  databaseCode: KQ8
  dateStart: 20090701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1877-7058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070251
  issn: 1877-7058
  databaseCode: IXB
  dateStart: 20090701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-7058
  dateEnd: 20181231
  omitProxy: true
  ssIdentifier: ssj0000070251
  issn: 1877-7058
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1877-7058
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000070251
  issn: 1877-7058
  databaseCode: AKRWK
  dateStart: 20090701
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jPqgP4hXnjTz4Gpc2l9bHbWxMwW2og_lU0jaVjdmN0Sl78bd70qZDQZgIpaUlIeUkfOcknPN9CF1THrka3DChiSsJ10wTJalPEk-Bx9GJH8V5lm9Pdof8fiRGFdQqa2FMWqXF_gLTc7S2X-rWmvX5eFx_cgyVHRW-Y1ijRF7Ex7hv5BvuRs31OYvhs3FzFUbTnpgOZQVdnuYFOKXTV5PjJXPOU1PX9LuH2l6mc7X6UNPpNw_U2Ud7NnTEjeLvDlBFp4do9xuh4BHqt9_tUlKLFc6La8ksnBSghvsAD2-27hKPU9y0ktj4UWdGujvDpYQRHhQ6M8do2Gk_t7rESiaQCCKpjCTSp6HHZKK4YKEyPAzcd2OehNzXtxJM4UjlxAriqJgyIWMOttOepErBdjJx2QmqprNUnyIMcUoYxS7zIAbjroKHcGIvSkQsQyVVWEOsNFMQWT5xI2sxDcrEsUlQGDcwxg0oh0vUEFn3mhd8Ghvae-UMBD_WRQCQv6HnzXrC_jTU2b-HOkc75q04mblA1Wyx1JcQq2ThVb4Y4f7w2b5CW8PeoPHyBQ4x6fs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA0yH6YP4ifOzzz4Gpe2SVof3diYOqfoBnsrSZPIxuzG6JT9e5M2HQrCRCgU2l4SbsK5t-GecwG4wiTxlQnDCGufIaIChTjDEdIhNxFH6SiReZVvj3UG5H5IhxugWXJhbFmlw_4C03O0dk_qzpv12WhUf_WslB2mkWdVo6gl8W0SarITy-IbNlYHLVbQxs_bMFoDZC1KCl1e52WASqVvtsiL5aKnltj0e4iqLtIZX37yyeRbCGrvgh2XO8LbYnp7YEOl-2D7m6LgAXhqfbi9xOdLmLNr0VSMC1SDTwYf3h3xEo5S2HA9seGLymzv7gyWPYzgc9Fo5hAM2q1-s4NczwSUmFQqQ5pFWIQB05zQQHArxEAiXxItSKRumHGFx7gnuUmkJA4ok8Q4T4UMc27-J7UfHIFKOk3VMYAmURGJ9IPQJGHE5-ZGPRkmmkomOOOiBoLSTXHiBMVtX4tJXFaOjePCubF1boyJuWgNoJXVrBDUWPN9WK5A_GNjxAbz11herxbsT0Od_HuoS1Dt9B-7cfeu93AKtuyb4pjmDFSy-UKdm8QlExf5xvwCEAnqQA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21PYgHv8WKSg4eTUk3X-uxSksRbItYqKcl2SRirdtStkr99Wa72VKFYoWFveyQMBlmXtiZ9wC4wjQOjCvDCNuAI2qIQZLjEFkhXcUxNoz1osu3w9t9ej9ggxK4LmZhfvy_X_RhuURikpesCYsvSEkp2wIVzhzyLoNKv9NrPGd3qlAIJDALi-m4Nabrqs_2LJnI-accjVaqS2sPPBT7yptK3mqzVNXir1-UjZtufB_sepgJG3lcHICSSQ7Bzgr54BHoNj982MnpHC4GcdFYDfMECLsulbz7GU34msBbL58NH02ayXynsJA7gr1ck-YY9FvNp7s28vIKKHaoK0WWh1gJwq2kjCiZcTbQMNDUKhqaGy5c9eeyrqXDXBoTxjUlGBvBsZTu6mkDcgLKyTgxpwA6TKNiHRDh8BoNpHuxuhaxZZoryaWqAlK4PYo993gmgTGKiiazYZS7K8rcFWHqHlYFaGk1ybk3_vheFCcaefyQ44LIHc4flrVlAGy01Nl_Dc5BOZ3OzIVDMKm69IH7DWlh7zs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+Multi-objective+Optimization+in+Building+Retrofit+Planning+Problem&rft.jtitle=Procedia+engineering&rft.au=Son%2C+Hyojoo&rft.au=Kim%2C+Changwan&rft.date=2016&rft.pub=Elsevier+Ltd&rft.issn=1877-7058&rft.eissn=1877-7058&rft.volume=145&rft.spage=565&rft.epage=570&rft_id=info:doi/10.1016%2Fj.proeng.2016.04.045&rft.externalDocID=S1877705816300509
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7058&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7058&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7058&client=summon