Evolutionary Multi-objective Optimization in Building Retrofit Planning Problem
Energy efficiency has been a primary subject of concern in the building sector, which consumes the largest portion of the world's total energy. Especially for existing buildings, retrofitting has been regarded as the most feasible and cost-effective method to improve energy efficiency. When pla...
        Saved in:
      
    
          | Published in | Procedia engineering Vol. 145; pp. 565 - 570 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1877-7058 1877-7058  | 
| DOI | 10.1016/j.proeng.2016.04.045 | 
Cover
| Abstract | Energy efficiency has been a primary subject of concern in the building sector, which consumes the largest portion of the world's total energy. Especially for existing buildings, retrofitting has been regarded as the most feasible and cost-effective method to improve energy efficiency. When planning retrofit in public buildings, the most obvious objectives are to: (1) minimize energy consumption; (2) minimize CO2 emissions; (3) minimize retrofit costs; and (4) maximize thermal comfort; and one must consider these concerns together. The aim of this study is to apply evolutionary multi-objective optimization algorithm (NSGA-III) that can handle four objectives at a time to the application of building retrofit planning. A brief description of the algorithm is given, and the algorithm is examined using a building retrofit project, as a case study. The performance of the algorithm is evaluated using three measures: average distance to true Pareto-optimal front, hypervolume, and spacing. The results show that this study could be used to find a comprehensive set of trade-off scenarios for all possible retrofits, thereby providing references for building retrofit planners. These decision makers can then select the optimal retrofit strategy to satisfy stakeholders’ preferences. | 
    
|---|---|
| AbstractList | Energy efficiency has been a primary subject of concern in the building sector, which consumes the largest portion of the world's total energy. Especially for existing buildings, retrofitting has been regarded as the most feasible and cost-effective method to improve energy efficiency. When planning retrofit in public buildings, the most obvious objectives are to: (1) minimize energy consumption; (2) minimize CO2 emissions; (3) minimize retrofit costs; and (4) maximize thermal comfort; and one must consider these concerns together. The aim of this study is to apply evolutionary multi-objective optimization algorithm (NSGA-III) that can handle four objectives at a time to the application of building retrofit planning. A brief description of the algorithm is given, and the algorithm is examined using a building retrofit project, as a case study. The performance of the algorithm is evaluated using three measures: average distance to true Pareto-optimal front, hypervolume, and spacing. The results show that this study could be used to find a comprehensive set of trade-off scenarios for all possible retrofits, thereby providing references for building retrofit planners. These decision makers can then select the optimal retrofit strategy to satisfy stakeholders’ preferences. | 
    
| Author | Son, Hyojoo Kim, Changwan  | 
    
| Author_xml | – sequence: 1 givenname: Hyojoo surname: Son fullname: Son, Hyojoo – sequence: 2 givenname: Changwan surname: Kim fullname: Kim, Changwan email: changwan@cau.ac.kr  | 
    
| BookMark | eNqNkF9LwzAQwINMcM59Ax_6BVqTNm06HwQd8w8oG6LPIW3TcSVLSppO5qc3tT6ID-pxcJeE33H5naKJNloidE5wRDDJLpqotUbqbRT7U4Spz_QITUnOWMhwmk--9Sdo3nUNHoLhOCVTtF7tjeodGC3sIXjqlYPQFI0sHexlsG4d7OBdDO8B6OCmB1WB3gbP0llTgws2Smg93GysKZTcnaHjWqhOzr_qDL3erl6W9-Hj-u5hef0Ylkkau7DOclywJKsFTZNCEEwZzeOK1gXN5SLzy5FMkErESVzhJM0qmmAsWYaFWLC8jpMZSse5vW7F4U0oxVsLO_8JTjAfxPCGj2L4IIZj6jP1HB250pqus7L-L3b5AyvBfWpxVoD6C74aYemF7EFa3pUgdSkrsF40rwz8PuADDGWVWw | 
    
| CitedBy_id | crossref_primary_10_1007_s42107_024_01143_4 crossref_primary_10_1016_j_jobe_2024_110422 crossref_primary_10_1007_s42107_024_01138_1 crossref_primary_10_1007_s42107_024_01203_9 crossref_primary_10_1016_j_energy_2019_01_164 crossref_primary_10_1007_s42107_024_01102_z crossref_primary_10_1016_j_enbuild_2024_114624 crossref_primary_10_1007_s42107_024_01157_y crossref_primary_10_1007_s42107_025_01305_y crossref_primary_10_1080_10286608_2019_1576646 crossref_primary_10_1007_s42107_025_01309_8 crossref_primary_10_1016_j_enbuild_2024_115216 crossref_primary_10_1016_j_heliyon_2025_e42480 crossref_primary_10_3390_su11051495 crossref_primary_10_1016_j_enbuild_2019_109690 crossref_primary_10_1016_j_jclepro_2022_133131 crossref_primary_10_1007_s42107_024_01014_y crossref_primary_10_1007_s42107_024_01170_1  | 
    
| Cites_doi | 10.1016/j.enbuild.2012.08.018 10.1109/TCYB.2014.2363878 10.1109/TEVC.2013.2281535 10.1016/j.enbuild.2014.11.003 10.1016/j.ress.2005.11.018 10.1016/S0965-9978(00)00110-1 10.1016/j.apenergy.2010.10.002 10.1057/jba.2009.34 10.1016/j.buildenv.2012.04.005 10.1007/978-3-642-37140-0_25 10.1007/s00158-003-0368-6 10.1016/j.eswa.2015.11.007 10.1016/j.engappai.2008.06.002 10.1007/978-3-642-14049-5_59 10.1016/j.enbuild.2014.06.009 10.1016/j.energy.2010.11.035 10.1016/j.enbuild.2004.07.005 10.1016/j.enbuild.2014.07.030 10.1016/S0377-2217(01)00123-0 10.1016/j.eswa.2009.02.080 10.1109/CEC.2001.934295 10.1109/4235.996017 10.1007/978-3-662-03315-9 10.1016/j.cie.2012.02.004 10.1002/9781118522516.ch8 10.1016/j.enbuild.2012.03.045 10.1016/j.enbuild.2014.11.058  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2016 | 
    
| Copyright_xml | – notice: 2016 | 
    
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY  | 
    
| DOI | 10.1016/j.proeng.2016.04.045 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1877-7058 | 
    
| EndPage | 570 | 
    
| ExternalDocumentID | 10.1016/j.proeng.2016.04.045 10_1016_j_proeng_2016_04_045 S1877705816300509  | 
    
| GroupedDBID | --K 0R~ 0SF 1B1 4.4 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAFWJ AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE ADMUD AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FEDTE FNPLU HVGLF HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 OZT P2P RIG ROL SES SSZ XH2 AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION ~HD ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c352t-f680b736fa453ba1047482d4fb48e9670216a1da232d0356d4300e760aa978f23 | 
    
| IEDL.DBID | IXB | 
    
| ISSN | 1877-7058 | 
    
| IngestDate | Tue Aug 19 19:07:54 EDT 2025 Wed Oct 01 01:43:53 EDT 2025 Thu Apr 24 23:05:50 EDT 2025 Fri Feb 23 02:33:52 EST 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Building retrofit Energy consumption Thermal comfort CO2 emissions Retrofit costs Evolutionary multi-objective optimization  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c352t-f680b736fa453ba1047482d4fb48e9670216a1da232d0356d4300e760aa978f23 | 
    
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877705816300509 | 
    
| PageCount | 6 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_proeng_2016_04_045 crossref_primary_10_1016_j_proeng_2016_04_045 crossref_citationtrail_10_1016_j_proeng_2016_04_045 elsevier_sciencedirect_doi_10_1016_j_proeng_2016_04_045  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016 2016-00-00  | 
    
| PublicationDateYYYYMMDD | 2016-01-01 | 
    
| PublicationDate_xml | – year: 2016 text: 2016  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Procedia engineering | 
    
| PublicationYear | 2016 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | International Energy Agency (IEA), Worldwide trends in energy use and efficiency – Key insights from IEA indicator analysis, IEA, Paris, France, 2008. Asadi, da Silva, Antunes, Dias, Glicksman (bib0105) 2014; 81 J. Krettek, J. Braun, F. Hoffmann, T. Bertram, Preference modeling and model management for interactive multi-objective evolutionary optimization, Computational Intelligence for Knowledge-Based Systems Design 6178 of the series Lecture Notes in Computer Science (2010) 574-583. Jones, Mirrazavi, Tamiz (bib0140) 2002; 137 Bechikh, Chaabani, Said (bib0130) 2014; 45 Buildings Performance Institute Europe (BPIE), Europe's buildings under the microscope – A country-by-country review of the energy performance of buildings, BPIE, Brussels, Belgium, 2011. A. L. Jaimes, C.A.C. Coello, Interactive approaches applied to multiobjective evolutionary algorithms, Multicriteria Decision Aid and Artificial Intelligence: Links, Theory and Applications, John Wiley & Sons, Ltd. New York, 2012. Ma, Liu, Fu, Li, Ni (bib0025) 2011; 36 Behnamian, Ghomi, Zandieh (bib0190) 2009; 36 Tavana, Li, Mobin, Komaki, Teymourian (bib0125) 2016; 50 Public Procurement Service (2014), http://www.pps.go.kr/mobile/item/domesticView.dom?boardSeqNo=1091&pageIndex=1&boardId=PPS 056&type=2 (last accessed on January 2016). Shao, Geyer, Lang (bib0055) 2014; 82 Ma, Copper, Daly, Ledo (bib0065) 2012; 55 K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable test problems for evolutionary multi-objective optimization. Technical report, Computer Engineering and Networks Lab (TIK), Zurich, Switzerland, 2001. Penna, Parada, Cappelletti, Gasparella (bib0040) 2015; 95 Kaklauskas, Zavadskas, Raslanas (bib0035) 2005; 37 E. Asadi, M. Gameiro da Silva, C.H. Antunes, L. Dias, A multi-objective optimization model for building retrofit strategies using TRNSYS simulations, GenOpt and MATLAB, Building and Environment 56 (2012a) 370-378. Chambari, Rahmati, Najafi, Karimi (bib0200) 2012; 63 1.J.R. Schott, Fault tolerant design using single and multicriteria genetic algorithm optimization, Master's Thesis, Department of Massachusetts Institute of Technology, Cambridge, MA, 1995. Rahmat, Ali (bib0030) 2010; 5 Ascione, Bianco, de Stasio, Mauro, Vanoli (bib0110) 2015; 88 G. Hammond, C. Jones, Inventory of carbon & energy (ICE), version 1.5 beta, Bath, UK, 2006. Chantrelle, Lahmidi, Keilholz, Mankibi, Michel (bib0050) 2011; 88 Deb, Jain (bib0120) 2014; 18 Saravanan, Ramabalan, Balamurugan (bib0100) 2009; 22 Konak, Coit, Smith (bib0145) 2006; 91 Svensson (bib0135) 2015 H.A. Abbass, R. Sarker, C. Newton, PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems, Proc. 2001 Congress on Evolutionary Computation, IEEE, San Francisco, CA, 2001, pp. 971-978. Z. Michalewicz, Genetic algorithms + Data structures = Evolution programs, Springer Science & Business Media, 1996. T. Goel, K. Deb, Hybrid methods for multi-objective evolutionary algorithms, Proc. 4th Asia-Pacific Conf. on Simulated Evolution and Learning (SEAL’02), Orchid Country Club, Singapore, 2002, pp. 188-192. Marler, Arora (bib0075) 2004; 26 Construction Association of Korea (2014), http://cmpi.or.kr/main_new/sub.asp?part=price&page=sub_main (last accessed on January 2016). H. Jain, K. Deb, An improved adaptive approach for elitist nondominated sorting genetic algorithm for many-objective optimization, Evolutionary Multi-Criterion Optimization 7811 of the series Lecture Notes in Computer Science (2013) 307-321. United Nations Environment Programme (UNEP), Buildings and climate change – Summary for decision-makers, UNEP, Paris, France, 2009. Deb (bib0175) 2002; 6 U.S. Energy Information Administration (EIA), Energy efficiency, https://www.iea.org/aboutus/faqs/energyefficiency/(last accessed on January 2016). Bojić, Djordjević, Stefanović, Miletić, Cvetković (bib0045) 2012; 54 K. Deb, H. Jain, An improved NSGA-II procedure for many-objective optimization, Part I: Problems with box constraints. Technical Report KanGAL Report Number 2012009, Indian Institute of Technology Kanpur, Uttar Pradesh, India, 2012. Branke, Kaußler, Schmeck (bib0080) 2001; 32 Reyes-Sierra, Coello Coello (bib0150) 2006 Marler (10.1016/j.proeng.2016.04.045_bib0075) 2004; 26 10.1016/j.proeng.2016.04.045_bib0005 Shao (10.1016/j.proeng.2016.04.045_bib0055) 2014; 82 Rahmat (10.1016/j.proeng.2016.04.045_bib0030) 2010; 5 Bechikh (10.1016/j.proeng.2016.04.045_bib0130) 2014; 45 Ma (10.1016/j.proeng.2016.04.045_bib0065) 2012; 55 10.1016/j.proeng.2016.04.045_bib0165 10.1016/j.proeng.2016.04.045_bib0020 10.1016/j.proeng.2016.04.045_bib0185 10.1016/j.proeng.2016.04.045_bib0085 10.1016/j.proeng.2016.04.045_bib0160 10.1016/j.proeng.2016.04.045_bib0060 Svensson (10.1016/j.proeng.2016.04.045_bib0135) 2015 Deb (10.1016/j.proeng.2016.04.045_bib0175) 2002; 6 10.1016/j.proeng.2016.04.045_bib0180 Reyes-Sierra (10.1016/j.proeng.2016.04.045_bib0150) 2006 Chantrelle (10.1016/j.proeng.2016.04.045_bib0050) 2011; 88 Chambari (10.1016/j.proeng.2016.04.045_bib0200) 2012; 63 10.1016/j.proeng.2016.04.045_bib0115 Jones (10.1016/j.proeng.2016.04.045_bib0140) 2002; 137 10.1016/j.proeng.2016.04.045_bib0015 Kaklauskas (10.1016/j.proeng.2016.04.045_bib0035) 2005; 37 Deb (10.1016/j.proeng.2016.04.045_bib0120) 2014; 18 10.1016/j.proeng.2016.04.045_bib0155 Ascione (10.1016/j.proeng.2016.04.045_bib0110) 2015; 88 10.1016/j.proeng.2016.04.045_bib0010 Branke (10.1016/j.proeng.2016.04.045_bib0080) 2001; 32 Tavana (10.1016/j.proeng.2016.04.045_bib0125) 2016; 50 Penna (10.1016/j.proeng.2016.04.045_bib0040) 2015; 95 Behnamian (10.1016/j.proeng.2016.04.045_bib0190) 2009; 36 10.1016/j.proeng.2016.04.045_bib0195 10.1016/j.proeng.2016.04.045_bib0095 10.1016/j.proeng.2016.04.045_bib0170 10.1016/j.proeng.2016.04.045_bib0070 Konak (10.1016/j.proeng.2016.04.045_bib0145) 2006; 91 10.1016/j.proeng.2016.04.045_bib0090 Ma (10.1016/j.proeng.2016.04.045_bib0025) 2011; 36 Bojić (10.1016/j.proeng.2016.04.045_bib0045) 2012; 54 Saravanan (10.1016/j.proeng.2016.04.045_bib0100) 2009; 22 Asadi (10.1016/j.proeng.2016.04.045_bib0105) 2014; 81  | 
    
| References_xml | – reference: H. Jain, K. Deb, An improved adaptive approach for elitist nondominated sorting genetic algorithm for many-objective optimization, Evolutionary Multi-Criterion Optimization 7811 of the series Lecture Notes in Computer Science (2013) 307-321. – reference: H.A. Abbass, R. Sarker, C. Newton, PDE: a Pareto-frontier differential evolution approach for multi-objective optimization problems, Proc. 2001 Congress on Evolutionary Computation, IEEE, San Francisco, CA, 2001, pp. 971-978. – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: bib0120 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approaches, Part I: Solving problems with box constraints publication-title: IEEE Transactions on Evolutionary Computation – volume: 50 start-page: 17 year: 2016 end-page: 39 ident: bib0125 article-title: Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS publication-title: Expert Systems with Applications – volume: 88 start-page: 1386 year: 2011 end-page: 1394 ident: bib0050 article-title: Development of a multicriteria tool for optimizing the renovation of buildings publication-title: Applied Energy – reference: G. Hammond, C. Jones, Inventory of carbon & energy (ICE), version 1.5 beta, Bath, UK, 2006. – volume: 137 start-page: 1 year: 2002 end-page: 9 ident: bib0140 article-title: Multiobjective meta-heuristics:An overview of the current state-of-the-art publication-title: European Journal of Operationsl Research – year: 2015 ident: bib0135 article-title: Using evolutionary multiobjective optimization algorithms to evolve lacing patterns for bicycle wheels publication-title: Master's Thesis, Norwegian University of Science and Technology, Trondheim, Norway – start-page: 89 year: 2006 end-page: 90 ident: bib0150 article-title: Dynamic fitness inheritance proportion for multi-objective particle swarm optimization publication-title: Proc. 8th Annual Conf. on Genetic and Evolutionary Computation, Seattle, Washington – volume: 36 start-page: 11057 year: 2009 end-page: 11069 ident: bib0190 article-title: A multi-phase covering Pareto-optimal front method to multi-objective scheduling in a realistic hybrid flowshop using a hybrid metaheuristic publication-title: Expert Systems with Applications – volume: 5 start-page: 273 year: 2010 end-page: 288 ident: bib0030 article-title: The involvement of the key participants in the production of project plans and the planning performance of refurbishment projects publication-title: Journal of Building Appraisal – volume: 37 start-page: 361 year: 2005 end-page: 372 ident: bib0035 article-title: Multivariant design and multiplecriteria analysis of building refurbishment publication-title: Energy and Buildings – reference: Z. Michalewicz, Genetic algorithms + Data structures = Evolution programs, Springer Science & Business Media, 1996. – volume: 22 start-page: 329 year: 2009 end-page: 342 ident: bib0100 article-title: Evolutionary multi-criteria trajectory modeling of industrial robots in the presence of obstacles publication-title: Engineering Applications of Artificial Intelligence – volume: 54 start-page: 503 year: 2012 end-page: 510 ident: bib0045 article-title: Decreasing energy consumption in thermally non-insulated old house via refurbishment publication-title: Energy and Buildings – reference: J. Krettek, J. Braun, F. Hoffmann, T. Bertram, Preference modeling and model management for interactive multi-objective evolutionary optimization, Computational Intelligence for Knowledge-Based Systems Design 6178 of the series Lecture Notes in Computer Science (2010) 574-583. – reference: Buildings Performance Institute Europe (BPIE), Europe's buildings under the microscope – A country-by-country review of the energy performance of buildings, BPIE, Brussels, Belgium, 2011. – reference: Public Procurement Service (2014), http://www.pps.go.kr/mobile/item/domesticView.dom?boardSeqNo=1091&pageIndex=1&boardId=PPS 056&type=2 (last accessed on January 2016). – reference: U.S. Energy Information Administration (EIA), Energy efficiency, https://www.iea.org/aboutus/faqs/energyefficiency/(last accessed on January 2016). – volume: 32 start-page: 499 year: 2001 end-page: 507 ident: bib0080 article-title: Guidance in evolutionary multi-objective optimization publication-title: Advances in Engineering Software – reference: T. Goel, K. Deb, Hybrid methods for multi-objective evolutionary algorithms, Proc. 4th Asia-Pacific Conf. on Simulated Evolution and Learning (SEAL’02), Orchid Country Club, Singapore, 2002, pp. 188-192. – reference: K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable test problems for evolutionary multi-objective optimization. Technical report, Computer Engineering and Networks Lab (TIK), Zurich, Switzerland, 2001. – reference: International Energy Agency (IEA), Worldwide trends in energy use and efficiency – Key insights from IEA indicator analysis, IEA, Paris, France, 2008. – volume: 55 start-page: 889 year: 2012 end-page: 902 ident: bib0065 article-title: Existing building retrofits: Methodology and state-of-the-art publication-title: Energy and Buildings – reference: K. Deb, H. Jain, An improved NSGA-II procedure for many-objective optimization, Part I: Problems with box constraints. Technical Report KanGAL Report Number 2012009, Indian Institute of Technology Kanpur, Uttar Pradesh, India, 2012. – volume: 63 start-page: 109 year: 2012 end-page: 119 ident: bib0200 article-title: A bi-objective model to optimize reliability and cost of system with a choice of redundancy strategies publication-title: Computers & Industrial Engineering – reference: E. Asadi, M. Gameiro da Silva, C.H. Antunes, L. Dias, A multi-objective optimization model for building retrofit strategies using TRNSYS simulations, GenOpt and MATLAB, Building and Environment 56 (2012a) 370-378. – reference: A. L. Jaimes, C.A.C. Coello, Interactive approaches applied to multiobjective evolutionary algorithms, Multicriteria Decision Aid and Artificial Intelligence: Links, Theory and Applications, John Wiley & Sons, Ltd. New York, 2012. – volume: 82 start-page: 356 year: 2014 end-page: 368 ident: bib0055 article-title: Integrating requirement analysis and multi-objective optimization for office building energy retrofit strategies publication-title: Energy and Buildings – volume: 95 start-page: 57 year: 2015 end-page: 69 ident: bib0040 article-title: Multi-objectives optimization of Energy Efficiency Measures in existing buildings publication-title: Energy and Buildings – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib0175 article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation – volume: 81 start-page: 444 year: 2014 end-page: 456 ident: bib0105 article-title: Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application publication-title: Energy and Buildings – volume: 45 start-page: 2051 year: 2014 end-page: 2064 ident: bib0130 article-title: An efficient chemical reaction optimization algorithm for multiobjective optimization publication-title: IEEE Transactions on Cybernetics – volume: 91 start-page: 992 year: 2006 end-page: 1007 ident: bib0145 article-title: Multi-objective optimization using genetic algorithms: A tutorial publication-title: Reliability Engineering & System Safety – volume: 26 start-page: 369 year: 2004 end-page: 395 ident: bib0075 article-title: Survey of multi-objective optimization methods for engineering publication-title: Structural and Multidisciplinary Optimization – volume: 36 start-page: 1143 year: 2011 end-page: 1154 ident: bib0025 article-title: Integrated energy strategy for the sustainable development of China publication-title: Energy – reference: United Nations Environment Programme (UNEP), Buildings and climate change – Summary for decision-makers, UNEP, Paris, France, 2009. – volume: 88 start-page: 78 year: 2015 end-page: 90 ident: bib0110 article-title: A new methodology for cost-optimal analysis by means of the multi-objective optimization of building energy performance publication-title: Energy and Buildings – reference: Construction Association of Korea (2014), http://cmpi.or.kr/main_new/sub.asp?part=price&page=sub_main (last accessed on January 2016). – reference: 1.J.R. Schott, Fault tolerant design using single and multicriteria genetic algorithm optimization, Master's Thesis, Department of Massachusetts Institute of Technology, Cambridge, MA, 1995. – volume: 55 start-page: 889 year: 2012 ident: 10.1016/j.proeng.2016.04.045_bib0065 article-title: Existing building retrofits: Methodology and state-of-the-art publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2012.08.018 – ident: 10.1016/j.proeng.2016.04.045_bib0015 – volume: 45 start-page: 2051 year: 2014 ident: 10.1016/j.proeng.2016.04.045_bib0130 article-title: An efficient chemical reaction optimization algorithm for multiobjective optimization publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2014.2363878 – ident: 10.1016/j.proeng.2016.04.045_bib0170 – volume: 18 start-page: 577 year: 2014 ident: 10.1016/j.proeng.2016.04.045_bib0120 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approaches, Part I: Solving problems with box constraints publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/TEVC.2013.2281535 – volume: 95 start-page: 57 year: 2015 ident: 10.1016/j.proeng.2016.04.045_bib0040 article-title: Multi-objectives optimization of Energy Efficiency Measures in existing buildings publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2014.11.003 – volume: 91 start-page: 992 year: 2006 ident: 10.1016/j.proeng.2016.04.045_bib0145 article-title: Multi-objective optimization using genetic algorithms: A tutorial publication-title: Reliability Engineering & System Safety doi: 10.1016/j.ress.2005.11.018 – volume: 32 start-page: 499 year: 2001 ident: 10.1016/j.proeng.2016.04.045_bib0080 article-title: Guidance in evolutionary multi-objective optimization publication-title: Advances in Engineering Software doi: 10.1016/S0965-9978(00)00110-1 – volume: 88 start-page: 1386 year: 2011 ident: 10.1016/j.proeng.2016.04.045_bib0050 article-title: Development of a multicriteria tool for optimizing the renovation of buildings publication-title: Applied Energy doi: 10.1016/j.apenergy.2010.10.002 – ident: 10.1016/j.proeng.2016.04.045_bib0020 – volume: 5 start-page: 273 year: 2010 ident: 10.1016/j.proeng.2016.04.045_bib0030 article-title: The involvement of the key participants in the production of project plans and the planning performance of refurbishment projects publication-title: Journal of Building Appraisal doi: 10.1057/jba.2009.34 – ident: 10.1016/j.proeng.2016.04.045_bib0005 – ident: 10.1016/j.proeng.2016.04.045_bib0060 doi: 10.1016/j.buildenv.2012.04.005 – ident: 10.1016/j.proeng.2016.04.045_bib0180 doi: 10.1007/978-3-642-37140-0_25 – volume: 26 start-page: 369 year: 2004 ident: 10.1016/j.proeng.2016.04.045_bib0075 article-title: Survey of multi-objective optimization methods for engineering publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-003-0368-6 – volume: 50 start-page: 17 year: 2016 ident: 10.1016/j.proeng.2016.04.045_bib0125 article-title: Multi-objective control chart design optimization using NSGA-III and MOPSO enhanced with DEA and TOPSIS publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2015.11.007 – start-page: 89 year: 2006 ident: 10.1016/j.proeng.2016.04.045_bib0150 article-title: Dynamic fitness inheritance proportion for multi-objective particle swarm optimization publication-title: Proc. 8th Annual Conf. on Genetic and Evolutionary Computation, Seattle, Washington – volume: 22 start-page: 329 year: 2009 ident: 10.1016/j.proeng.2016.04.045_bib0100 article-title: Evolutionary multi-criteria trajectory modeling of industrial robots in the presence of obstacles publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2008.06.002 – ident: 10.1016/j.proeng.2016.04.045_bib0085 doi: 10.1007/978-3-642-14049-5_59 – volume: 81 start-page: 444 year: 2014 ident: 10.1016/j.proeng.2016.04.045_bib0105 article-title: Multi-objective optimization for building retrofit: A model using genetic algorithm and artificial neural network and an application publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2014.06.009 – ident: 10.1016/j.proeng.2016.04.045_bib0165 – ident: 10.1016/j.proeng.2016.04.045_bib0115 – ident: 10.1016/j.proeng.2016.04.045_bib0010 – volume: 36 start-page: 1143 year: 2011 ident: 10.1016/j.proeng.2016.04.045_bib0025 article-title: Integrated energy strategy for the sustainable development of China publication-title: Energy doi: 10.1016/j.energy.2010.11.035 – volume: 37 start-page: 361 year: 2005 ident: 10.1016/j.proeng.2016.04.045_bib0035 article-title: Multivariant design and multiplecriteria analysis of building refurbishment publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2004.07.005 – volume: 82 start-page: 356 year: 2014 ident: 10.1016/j.proeng.2016.04.045_bib0055 article-title: Integrating requirement analysis and multi-objective optimization for office building energy retrofit strategies publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2014.07.030 – volume: 137 start-page: 1 year: 2002 ident: 10.1016/j.proeng.2016.04.045_bib0140 article-title: Multiobjective meta-heuristics:An overview of the current state-of-the-art publication-title: European Journal of Operationsl Research doi: 10.1016/S0377-2217(01)00123-0 – ident: 10.1016/j.proeng.2016.04.045_bib0095 – volume: 36 start-page: 11057 year: 2009 ident: 10.1016/j.proeng.2016.04.045_bib0190 article-title: A multi-phase covering Pareto-optimal front method to multi-objective scheduling in a realistic hybrid flowshop using a hybrid metaheuristic publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2009.02.080 – ident: 10.1016/j.proeng.2016.04.045_bib0070 doi: 10.1109/CEC.2001.934295 – ident: 10.1016/j.proeng.2016.04.045_bib0155 – year: 2015 ident: 10.1016/j.proeng.2016.04.045_bib0135 article-title: Using evolutionary multiobjective optimization algorithms to evolve lacing patterns for bicycle wheels publication-title: Master's Thesis, Norwegian University of Science and Technology, Trondheim, Norway – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.proeng.2016.04.045_bib0175 article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II publication-title: IEEE Transactions on Evolutionary Computation doi: 10.1109/4235.996017 – ident: 10.1016/j.proeng.2016.04.045_bib0185 doi: 10.1007/978-3-662-03315-9 – ident: 10.1016/j.proeng.2016.04.045_bib0160 – volume: 63 start-page: 109 year: 2012 ident: 10.1016/j.proeng.2016.04.045_bib0200 article-title: A bi-objective model to optimize reliability and cost of system with a choice of redundancy strategies publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2012.02.004 – ident: 10.1016/j.proeng.2016.04.045_bib0090 doi: 10.1002/9781118522516.ch8 – volume: 54 start-page: 503 year: 2012 ident: 10.1016/j.proeng.2016.04.045_bib0045 article-title: Decreasing energy consumption in thermally non-insulated old house via refurbishment publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2012.03.045 – volume: 88 start-page: 78 year: 2015 ident: 10.1016/j.proeng.2016.04.045_bib0110 article-title: A new methodology for cost-optimal analysis by means of the multi-objective optimization of building energy performance publication-title: Energy and Buildings doi: 10.1016/j.enbuild.2014.11.058 – ident: 10.1016/j.proeng.2016.04.045_bib0195  | 
    
| SSID | ssj0000070251 | 
    
| Score | 2.0923567 | 
    
| Snippet | Energy efficiency has been a primary subject of concern in the building sector, which consumes the largest portion of the world's total energy. Especially for... | 
    
| SourceID | unpaywall crossref elsevier  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 565 | 
    
| SubjectTerms | Building retrofit CO2 emissions Energy consumption Evolutionary multi-objective optimization Retrofit costs Thermal comfort  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21PYgHv8WKSg4eTUk3X-uxSksRbItYqKcl2SRirdtStkr99Wa72VKFYoWFveyQMBlmXtiZ9wC4wjQOjCvDCNuAI2qIQZLjEFkhXcUxNoz1osu3w9t9ej9ggxK4LmZhfvy_X_RhuURikpesCYsvSEkp2wIVzhzyLoNKv9NrPGd3qlAIJDALi-m4Nabrqs_2LJnI-accjVaqS2sPPBT7yptK3mqzVNXir1-UjZtufB_sepgJG3lcHICSSQ7Bzgr54BHoNj982MnpHC4GcdFYDfMECLsulbz7GU34msBbL58NH02ayXynsJA7gr1ck-YY9FvNp7s28vIKKHaoK0WWh1gJwq2kjCiZcTbQMNDUKhqaGy5c9eeyrqXDXBoTxjUlGBvBsZTu6mkDcgLKyTgxpwA6TKNiHRDh8BoNpHuxuhaxZZoryaWqAlK4PYo993gmgTGKiiazYZS7K8rcFWHqHlYFaGk1ybk3_vheFCcaefyQ44LIHc4flrVlAGy01Nl_Dc5BOZ3OzIVDMKm69IH7DWlh7zs priority: 102 providerName: Unpaywall  | 
    
| Title | Evolutionary Multi-objective Optimization in Building Retrofit Planning Problem | 
    
| URI | https://dx.doi.org/10.1016/j.proeng.2016.04.045 https://doi.org/10.1016/j.proeng.2016.04.045  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 145 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1877-7058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070251 issn: 1877-7058 databaseCode: KQ8 dateStart: 20090701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1877-7058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070251 issn: 1877-7058 databaseCode: IXB dateStart: 20090701 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1877-7058 dateEnd: 20181231 omitProxy: true ssIdentifier: ssj0000070251 issn: 1877-7058 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1877-7058 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000070251 issn: 1877-7058 databaseCode: AKRWK dateStart: 20090701 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5jPqgP4hXnjTz4Gpc2l9bHbWxMwW2og_lU0jaVjdmN0Sl78bd70qZDQZgIpaUlIeUkfOcknPN9CF1THrka3DChiSsJ10wTJalPEk-Bx9GJH8V5lm9Pdof8fiRGFdQqa2FMWqXF_gLTc7S2X-rWmvX5eFx_cgyVHRW-Y1ijRF7Ex7hv5BvuRs31OYvhs3FzFUbTnpgOZQVdnuYFOKXTV5PjJXPOU1PX9LuH2l6mc7X6UNPpNw_U2Ud7NnTEjeLvDlBFp4do9xuh4BHqt9_tUlKLFc6La8ksnBSghvsAD2-27hKPU9y0ktj4UWdGujvDpYQRHhQ6M8do2Gk_t7rESiaQCCKpjCTSp6HHZKK4YKEyPAzcd2OehNzXtxJM4UjlxAriqJgyIWMOttOepErBdjJx2QmqprNUnyIMcUoYxS7zIAbjroKHcGIvSkQsQyVVWEOsNFMQWT5xI2sxDcrEsUlQGDcwxg0oh0vUEFn3mhd8Ghvae-UMBD_WRQCQv6HnzXrC_jTU2b-HOkc75q04mblA1Wyx1JcQq2ThVb4Y4f7w2b5CW8PeoPHyBQ4x6fs | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1dS8MwFA0yH6YP4ifOzzz4Gpe2SVof3diYOqfoBnsrSZPIxuzG6JT9e5M2HQrCRCgU2l4SbsK5t-GecwG4wiTxlQnDCGufIaIChTjDEdIhNxFH6SiReZVvj3UG5H5IhxugWXJhbFmlw_4C03O0dk_qzpv12WhUf_WslB2mkWdVo6gl8W0SarITy-IbNlYHLVbQxs_bMFoDZC1KCl1e52WASqVvtsiL5aKnltj0e4iqLtIZX37yyeRbCGrvgh2XO8LbYnp7YEOl-2D7m6LgAXhqfbi9xOdLmLNr0VSMC1SDTwYf3h3xEo5S2HA9seGLymzv7gyWPYzgc9Fo5hAM2q1-s4NczwSUmFQqQ5pFWIQB05zQQHArxEAiXxItSKRumHGFx7gnuUmkJA4ok8Q4T4UMc27-J7UfHIFKOk3VMYAmURGJ9IPQJGHE5-ZGPRkmmkomOOOiBoLSTXHiBMVtX4tJXFaOjePCubF1boyJuWgNoJXVrBDUWPN9WK5A_GNjxAbz11herxbsT0Od_HuoS1Dt9B-7cfeu93AKtuyb4pjmDFSy-UKdm8QlExf5xvwCEAnqQA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA21PYgHv8WKSg4eTUk3X-uxSksRbItYqKcl2SRirdtStkr99Wa72VKFYoWFveyQMBlmXtiZ9wC4wjQOjCvDCNuAI2qIQZLjEFkhXcUxNoz1osu3w9t9ej9ggxK4LmZhfvy_X_RhuURikpesCYsvSEkp2wIVzhzyLoNKv9NrPGd3qlAIJDALi-m4Nabrqs_2LJnI-accjVaqS2sPPBT7yptK3mqzVNXir1-UjZtufB_sepgJG3lcHICSSQ7Bzgr54BHoNj982MnpHC4GcdFYDfMECLsulbz7GU34msBbL58NH02ayXynsJA7gr1ck-YY9FvNp7s28vIKKHaoK0WWh1gJwq2kjCiZcTbQMNDUKhqaGy5c9eeyrqXDXBoTxjUlGBvBsZTu6mkDcgLKyTgxpwA6TKNiHRDh8BoNpHuxuhaxZZoryaWqAlK4PYo993gmgTGKiiazYZS7K8rcFWHqHlYFaGk1ybk3_vheFCcaefyQ44LIHc4flrVlAGy01Nl_Dc5BOZ3OzIVDMKm69IH7DWlh7zs | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evolutionary+Multi-objective+Optimization+in+Building+Retrofit+Planning+Problem&rft.jtitle=Procedia+engineering&rft.au=Son%2C+Hyojoo&rft.au=Kim%2C+Changwan&rft.date=2016&rft.pub=Elsevier+Ltd&rft.issn=1877-7058&rft.eissn=1877-7058&rft.volume=145&rft.spage=565&rft.epage=570&rft_id=info:doi/10.1016%2Fj.proeng.2016.04.045&rft.externalDocID=S1877705816300509 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-7058&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-7058&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-7058&client=summon |