A comparison of statistical and machine learning methods for debris flow susceptibility mapping

Debris flows destroys the facilities and seriously threatens human lives, especially in mountainous area. Susceptibility mapping is the key for hazard prevention. The aim of the present study is to compare the performance of three methods including Bayes discriminant analysis (BDA), logistic regress...

Full description

Saved in:
Bibliographic Details
Published inStochastic environmental research and risk assessment Vol. 34; no. 11; pp. 1887 - 1907
Main Authors Liang, Zhu, Wang, Chang-Ming, Zhang, Zhi-Min, Khan, Kaleem-Ullah-Jan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.11.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1436-3240
1436-3259
DOI10.1007/s00477-020-01851-8

Cover

Abstract Debris flows destroys the facilities and seriously threatens human lives, especially in mountainous area. Susceptibility mapping is the key for hazard prevention. The aim of the present study is to compare the performance of three methods including Bayes discriminant analysis (BDA), logistic regression (LR) and random forest (RF) for debris flow susceptibility mapping from three aspects: applicability, analyticity and accuracy. Nyalam county, a debris flow-prone area, located in Southern Tibet, was selected as the study area. Firstly, the dataset containing 49 debris flow inventories and 16 conditioning factors was prepared. Subsequently, divided the dataset into two groups with a ratio of 70/30 for training and validation purposes, and repeated 5 times to obtain 5 different groups. Then, 16 factors were involved in the modeling of RF, of which 11 factors with low linear correlation were for BDA and LR. Finally, receiver operating characteristic curves, the area under curve (AUC) and contingency tables were applied to evaluated the accuracy performance of the 3 models. The prediction rates were 74.6–81.8%, 74.6–83.6% and 80–92.7%, for the BDA, LR and FR, while the AUC values of three models were 0.72–0.78, 0.82–0.92 and 0.90–0.99, respectively. Compare to LR an BDA, RF not only effectively process and preserved dataset without priori assumption and the obtained susceptibility zoning map and major factors were reasonable. The conclusion of the current study is useful for risk mitigation and land use planning in the study area and provide related references to other researches.
AbstractList Debris flows destroys the facilities and seriously threatens human lives, especially in mountainous area. Susceptibility mapping is the key for hazard prevention. The aim of the present study is to compare the performance of three methods including Bayes discriminant analysis (BDA), logistic regression (LR) and random forest (RF) for debris flow susceptibility mapping from three aspects: applicability, analyticity and accuracy. Nyalam county, a debris flow-prone area, located in Southern Tibet, was selected as the study area. Firstly, the dataset containing 49 debris flow inventories and 16 conditioning factors was prepared. Subsequently, divided the dataset into two groups with a ratio of 70/30 for training and validation purposes, and repeated 5 times to obtain 5 different groups. Then, 16 factors were involved in the modeling of RF, of which 11 factors with low linear correlation were for BDA and LR. Finally, receiver operating characteristic curves, the area under curve (AUC) and contingency tables were applied to evaluated the accuracy performance of the 3 models. The prediction rates were 74.6–81.8%, 74.6–83.6% and 80–92.7%, for the BDA, LR and FR, while the AUC values of three models were 0.72–0.78, 0.82–0.92 and 0.90–0.99, respectively. Compare to LR an BDA, RF not only effectively process and preserved dataset without priori assumption and the obtained susceptibility zoning map and major factors were reasonable. The conclusion of the current study is useful for risk mitigation and land use planning in the study area and provide related references to other researches.
Author Khan, Kaleem-Ullah-Jan
Zhang, Zhi-Min
Liang, Zhu
Wang, Chang-Ming
Author_xml – sequence: 1
  givenname: Zhu
  surname: Liang
  fullname: Liang, Zhu
  organization: College of Construction Engineering, Jilin University
– sequence: 2
  givenname: Chang-Ming
  surname: Wang
  fullname: Wang, Chang-Ming
  email: wangcm@jlu.edu.cn
  organization: College of Construction Engineering, Jilin University
– sequence: 3
  givenname: Zhi-Min
  surname: Zhang
  fullname: Zhang, Zhi-Min
  organization: College of Construction Engineering, Jilin University
– sequence: 4
  givenname: Kaleem-Ullah-Jan
  surname: Khan
  fullname: Khan, Kaleem-Ullah-Jan
  organization: College of Construction Engineering, Jilin University
BookMark eNp9kMtKAzEUhoNUsFZfwFXA9WjumVmW4g0KbnQdMplMmzJNxiRF-vamVhRcdJVD-L9z-S7BxAdvAbjB6A4jJO8TQkzKChFUIVxzXNVnYIoZFRUlvJn81gxdgMuUNghhKTmbAjWHJmxHHV0KHoYepqyzS9kZPUDtO7jVZu28hYPV0Tu_glub16FLsA8RdrYtIOyH8AnTLhk7Zte6weV94caxxK_Aea-HZK9_3hl4f3x4WzxXy9enl8V8WRnKSa560jUdI4aLnjfUtsIIaZlsKMWs_FPaUNTRWgvBa05kK4SgQmNhuOxwLTGdgdtj3zGGj51NWW3CLvoyUhEmsSCseCqp-pgyMaQUba-MO9wbfI7aDQojddCpjjpV0am-daq6oOQfOka31XF_GqJHKJWwX9n4t9UJ6gumZolM
CitedBy_id crossref_primary_10_3389_feart_2023_1118160
crossref_primary_10_1016_j_scitotenv_2021_151752
crossref_primary_10_1016_j_envsoft_2024_106130
crossref_primary_10_1007_s40996_022_01000_x
crossref_primary_10_1155_2021_9098250
crossref_primary_10_7717_peerj_17352
crossref_primary_10_1007_s11069_021_05128_3
crossref_primary_10_1007_s11629_020_6471_y
crossref_primary_10_1007_s11629_020_6497_1
crossref_primary_10_1007_s10668_024_05398_4
crossref_primary_10_1080_19475705_2021_1960433
crossref_primary_10_1007_s00477_020_01893_y
crossref_primary_10_1109_ACCESS_2024_3471795
crossref_primary_10_1007_s11356_022_22649_x
crossref_primary_10_1007_s11069_023_06099_3
crossref_primary_10_1007_s11069_024_06609_x
crossref_primary_10_3389_feart_2023_1291454
crossref_primary_10_1155_2022_9751504
crossref_primary_10_1080_19475705_2024_2341176
crossref_primary_10_1007_s10064_022_02806_9
crossref_primary_10_1007_s11069_020_04498_4
crossref_primary_10_1007_s10064_024_03649_2
crossref_primary_10_3390_su142416692
crossref_primary_10_3390_su14106110
crossref_primary_10_1007_s11069_021_05194_7
crossref_primary_10_3390_s22103924
crossref_primary_10_3390_ijgi10100639
crossref_primary_10_1007_s42452_024_05646_2
crossref_primary_10_3390_app13127276
crossref_primary_10_3390_land12030571
crossref_primary_10_3390_rs14184475
crossref_primary_10_5194_nhess_21_1247_2021
crossref_primary_10_3390_rs13081464
crossref_primary_10_1007_s11629_023_8500_0
crossref_primary_10_3390_rs17030524
crossref_primary_10_1007_s12583_022_1803_1
crossref_primary_10_3390_w15040705
crossref_primary_10_1007_s11069_023_05853_x
crossref_primary_10_1016_j_catena_2024_108576
crossref_primary_10_1016_j_catena_2025_108753
Cites_doi 10.1037/14160-000
10.1111/j.2517-6161.1968.tb00724.x
10.1016/s1001-6279(08)60013-X
10.1016/j.geomorph.2006.10.033
10.1117/1.JRS.11.015020
10.1007/s10346-015-0667-1
10.1016/j.scitotenv.2017.02.188
10.5194/nhess-6-115-2006
10.1007/s12665-011-0990-3
10.1016/j.scitotenv.2018
10.5194/nhess-16-449-2016
10.1016/j.geomorph.04.023
10.1016/j.earscirev.2018.03.001
10.13961/j.cnki.stbctb.2009.01.011
10.28991/cej-2016-00000066
10.1109/TSMCB.2008.2007853
10.1016/j.geomorph.2004.06.010
10.1016/j.geomorph.2009.09.023
10.1007/s00477-014-0848-9
10.1016/j.enggeo.2009.12.004
10.1016/j.geomorph.2015.06.001
10.1007/s002679910020
10.1007/s00477-019-01696-w
10.1007/s00477-014-0932-1
10.1007/s00254-005-1228-z
10.1016/j.enggeo.2008.03.010
10.1613/jair.1199
10.14814/phy2.13928
10.1126/science.3287615
10.1016/j.jafrearsci.02.019
10.1007/s11069-012-0414-z
10.1007/s002540100310
10.1016/j.geoderma.2011.10.010
10.1007/s12524-010-0020-z
10.1093/bib/bbq011
10.1016/j.geomorph.206.04.007
10.1007/s10064-015-0784-z
10.1016/j.geomorph.2013.06.003
10.1111/j.1467-9671.2006.01004.x
10.1086/627147
10.1016/j.tra.2018.08.030
10.1023/B:NHAZ.0000007172.62651.2b
10.28991/cej-2017-00000084
10.1093/biomet/78.3.691
10.1016/s0169-555x(99)00078-1
10.1016/j.geomorph.09.025
10.1023/A:1010933404324
10.1504/IJKESDP.2011.039875
10.16285/j.rsm.2011.03.019
10.1016/j.scitotenv.2018.12.248
10.1007/s11069-013-0932-3
10.1109/iadcc.2015.7154739
10.3133/ofr03500
10.1007/978-3-319-55342-9_8
10.1109/icdse.2012.6282321
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2020
Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7ST
7XB
88I
8AO
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
KR7
L6V
M2P
M7S
PATMY
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
Q9U
S0W
SOI
DOI 10.1007/s00477-020-01851-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Environment Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Science Database
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
Environment Abstracts
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
Environment Abstracts
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Physics
Computer Science
Environmental Sciences
EISSN 1436-3259
EndPage 1907
ExternalDocumentID 10_1007_s00477_020_01851_8
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: Grant No. 41572257; 41972267
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
2.D
203
29Q
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5VS
67M
67Z
6NX
7XC
88I
8AO
8FE
8FG
8FH
8FW
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FIL
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
L6V
L8X
LAS
LLZTM
M2P
M4Y
M7S
MA-
ML.
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O93
O9G
O9J
OAM
P19
P2P
PATMY
PF0
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOS
R89
R9I
RIG
RNS
ROL
RPX
RSV
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7Y
Z7Z
Z81
Z83
Z86
Z8M
Z8S
Z8T
Z8U
Z8W
ZMTXR
~02
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7ST
7XB
8FD
8FK
C1K
FR3
KR7
PKEHL
PQEST
PQUKI
PRINS
Q9U
SOI
ID FETCH-LOGICAL-c352t-f2d9d42c56f593eb6c67e4793314d4233930d38a6658527b66636a16c57d18713
IEDL.DBID U2A
ISSN 1436-3240
IngestDate Sat Aug 23 14:04:39 EDT 2025
Wed Oct 01 02:17:59 EDT 2025
Thu Apr 24 22:51:44 EDT 2025
Fri Feb 21 02:25:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Himalayas area
Logistic regression
Random forest
Debris flow
Bayes discriminant analysis
Susceptibility
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-f2d9d42c56f593eb6c67e4793314d4233930d38a6658527b66636a16c57d18713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2471624100
PQPubID 31669
PageCount 21
ParticipantIDs proquest_journals_2471624100
crossref_citationtrail_10_1007_s00477_020_01851_8
crossref_primary_10_1007_s00477_020_01851_8
springer_journals_10_1007_s00477_020_01851_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201100
2020-11-00
20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Stochastic environmental research and risk assessment
PublicationTitleAbbrev Stoch Environ Res Risk Assess
PublicationYear 2020
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Di, Chen, Cui, Li, He, Gao (CR18) 2008
Gorsevski, Gessler, Foltz (CR21) 2006; 10
Chung, Fabbri (CR13) 2003; 30
Ließ, Glaser, Huwe (CR35) 2012; 170
Trigila, Iadanza, Esposito, Scarascia-Mugnozza (CR53) 2015
CR38
Guzzetti, Galli, Reichenbach, Ardizzone, Cardinali (CR25) 2006; 6
Liu, Wu, Zhou (CR36) 2009; 39
Reichenbach, Rossi, Malamud, Mihir, Guzzetti (CR48) 2018
Pedregosa, Varoquaux, Gramfort (CR45) 2011; 12
Weiss, Provost (CR57) 2003; 19
Breiman (CR6) 2001; 45
Lee, Min (CR32) 2001; 40
Kazmi, Sadaf Qasim, Harahap, Imran, Moin (CR29) 2016
Lee, Talib (CR33) 2005; 47
CR3
Guzzetti, Reichenbach, Ardizzone, Cardinali, Galli (CR24) 2006; 81
Melton (CR39) 1965; 73
Zhang, Chen, Qin, Zhang, Li, Ma (CR62) 2010; 40
CR7
Guzzetti, Cardinali, Reichenbach, Carrara (CR23) 2000; 25
CR49
Liu, Wang, CaoY, Yang (CR37) 2018; 117
Reichenbach, Rossi, Malamud, Mihir, Guzzetti (CR47) 2018; 180
Shi, Chen, Song, Zhang, Song, Zhang (CR50) 2016
Blais-Stevens, Behnia (CR4) 2016; 16
Zheng, Zhang, Liu, Wu, Hou, Ye (CR64) 2009; 29
Ayalew, Yamagishi (CR1) 2005; 65
Graf, Stoffel, Grêt-Regamey (CR22) 2009; 11
Cooper, Kamei (CR15) 2009; 3
Xu, Yu, Jing, Zhang, Huang (CR59) 2013; 65
Colkesen, Sahin, Kavzoglu (CR14) 2016; 118
Li, Tang, Ge, Hu, Wang (CR34) 2014; 28
Das, Sahoo, Van Westen, Stein, Hack (CR17) 2010; 114
Mokhtari, Abedian (CR40) 2019; 33
Hosmer, Lemeshow (CR28) 1989
Carrara, Crosta, Frattini (CR10) 2008; 94
Bai, Wang, Guo, Zhou, Hou, Xu (CR2) 2010; 115
Nourani, Pradhan, Ghaffari, Sharifi (CR43) 2014; 71
CR56
CR55
Youssef, Pourghasemi, Pourtaghi, Al-Katheeri (CR60) 2016
Hanushek, Jackson (CR26) 1977
Nsengiyumva, Luo, Amanambu, Mind’je, Habiyaremye, Karamage, Ochege, Mupenzi (CR44) 2019
Mukhiddin, Martin, Ismail, Bakhtiar, Alim, Johannes (CR41) 2019
Calle, Urrea (CR9) 2010; 12
Zezere, Pereira, Melo, Oliveira, Garcia (CR61) 2017; 2017
Kirschbaum, Adler, Hong, Kumar, Peters-Lidard, Lerner-Lam (CR31) 2010; 1
Pradhan (CR46) 2010; 38
Xu, Jing, Yu, Wang, Zhang, Huang (CR58) 2013
Chatterjee, Hadi (CR11) 2012
Chiou, Chen, Liu, Huang, Chang (CR12) 2015; 29
Fernández-Delgado, Cernadas, Barro, Amorim (CR19) 2014; 15
Nagelkerke (CR42) 1991; 78
van Westen, Castellanos, Kuriakose (CR54) 2008; 102
Bonafiglia, Nelms, Preobrazenski, Blanc, Robins, Lu, Lithopoulos, Walsh, Gurd (CR5) 2018
Swets (CR51) 1988; 240
Zhang, Wang, Chen, Gu, Zhang (CR63) 2011; 32
Cox, Snell (CR16) 1968; 40
CR102
Bui, Pradhan, Lofman, Revhaug, Dick (CR8) 2012
Kazmi, Qasim, Harahap, Baharom, Mehmood, Siddiqui, Imran (CR30) 2017
Tong, Qi, An, Liu (CR52) 2019; 27
Frattini, Crosta, Carrara (CR20) 2010; 111
Guzzetti, Carrara, Cardinali, Reichenbach (CR101) 1999; 31
JA Swets (1851_CR51) 1988; 240
L Ayalew (1851_CR1) 2005; 65
1851_CR49
MY Shi (1851_CR50) 2016
JT Bonafiglia (1851_CR5) 2018
DR Cox (1851_CR16) 1968; 40
ML Calle (1851_CR9) 2010; 12
M Fernández-Delgado (1851_CR19) 2014; 15
BF Di (1851_CR18) 2008
F Guzzetti (1851_CR101) 1999; 31
F Pedregosa (1851_CR45) 2011; 12
S Chatterjee (1851_CR11) 2012
GQ Zheng (1851_CR64) 2009; 29
S Lee (1851_CR32) 2001; 40
K Liu (1851_CR37) 2018; 117
A Carrara (1851_CR10) 2008; 94
C Graf (1851_CR22) 2009; 11
W Zhang (1851_CR62) 2010; 40
1851_CR7
DT Bui (1851_CR8) 2012
I Colkesen (1851_CR14) 2016; 118
1851_CR38
1851_CR3
PV Gorsevski (1851_CR21) 2006; 10
A Trigila (1851_CR53) 2015
F Guzzetti (1851_CR24) 2006; 81
V Nourani (1851_CR43) 2014; 71
P Reichenbach (1851_CR48) 2018
MA Melton (1851_CR39) 1965; 73
S Lee (1851_CR33) 2005; 47
E Hanushek (1851_CR26) 1977
XY Liu (1851_CR36) 2009; 39
1851_CR102
L Breiman (1851_CR6) 2001; 45
DW Hosmer (1851_CR28) 1989
F Guzzetti (1851_CR25) 2006; 6
SB Bai (1851_CR2) 2010; 115
EW Cooper (1851_CR15) 2009; 3
JB Nsengiyumva (1851_CR44) 2019
JL Zezere (1851_CR61) 2017; 2017
M Mokhtari (1851_CR40) 2019; 33
B Pradhan (1851_CR46) 2010; 38
DB Kirschbaum (1851_CR31) 2010; 1
C Zhang (1851_CR63) 2011; 32
P Reichenbach (1851_CR47) 2018; 180
AM Youssef (1851_CR60) 2016
D Kazmi (1851_CR29) 2016
P Frattini (1851_CR20) 2010; 111
WB Xu (1851_CR59) 2013; 65
A Blais-Stevens (1851_CR4) 2016; 16
I Das (1851_CR17) 2010; 114
LQ Tong (1851_CR52) 2019; 27
CF Chung (1851_CR13) 2003; 30
I-J Chiou (1851_CR12) 2015; 29
NJD Nagelkerke (1851_CR42) 1991; 78
C Li (1851_CR34) 2014; 28
GM Weiss (1851_CR57) 2003; 19
D Kazmi (1851_CR30) 2017
J Mukhiddin (1851_CR41) 2019
1851_CR56
1851_CR55
F Guzzetti (1851_CR23) 2000; 25
M Ließ (1851_CR35) 2012; 170
CJ van Westen (1851_CR54) 2008; 102
WB Xu (1851_CR58) 2013
References_xml – year: 1977
  ident: CR26
  publication-title: Statistical methods for social scientists
  doi: 10.1037/14160-000
– ident: CR102
– volume: 40
  start-page: 248
  issue: 2
  year: 1968
  end-page: 275
  ident: CR16
  article-title: A general definition of residuals
  publication-title: J R Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1968.tb00724.x
– year: 1989
  ident: CR28
  publication-title: Applied logistic regression
– year: 2008
  ident: CR18
  article-title: GIS-based risk analysis of debris flow: an application in Sichuan, southwest China
  publication-title: Int J Sedim Res
  doi: 10.1016/s1001-6279(08)60013-X
– volume: 94
  start-page: 353
  year: 2008
  end-page: 378
  ident: CR10
  article-title: Comparing models of debris-flow susceptibility in the alpine environment
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.10.033
– volume: 15
  start-page: 3133
  issue: 1
  year: 2014
  end-page: 3181
  ident: CR19
  article-title: Do we need hundreds of classifiers to solve real world classification problems?
  publication-title: J Mach Learn Res
  doi: 10.1117/1.JRS.11.015020
– ident: CR49
– year: 2016
  ident: CR60
  article-title: Erratum to: landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia
  publication-title: Landslides
  doi: 10.1007/s10346-015-0667-1
– volume: 2017
  start-page: 589
  year: 2017
  ident: CR61
  article-title: Mapping landslide susceptibility using data-driven methods
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.02.188
– volume: 6
  start-page: 115
  year: 2006
  end-page: 131
  ident: CR25
  article-title: Landslide hazard assessment in the Collazzone area, Umbria, central Italy
  publication-title: Nat Hazard Earth Syst Sci
  doi: 10.5194/nhess-6-115-2006
– volume: 1
  start-page: 118
  issue: 4
  year: 2010
  end-page: 134
  ident: CR31
  article-title: Advances in landslide nowcasting: evaluation of a global and regional modeling approach
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-011-0990-3
– year: 2019
  ident: CR41
  article-title: Comparative analysis of statistical methods for landslide susceptibility mapping in the Bostanlik District, Uzbekistan
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018
– volume: 16
  start-page: 449
  issue: 2
  year: 2016
  end-page: 462
  ident: CR4
  article-title: Debris flow susceptibility mapping using a qualitative heuristic method and flow-R along the Yukon Alaska Highway Corridor, Canada
  publication-title: Nat Hazard Earth Syst Sci
  doi: 10.5194/nhess-16-449-2016
– year: 2012
  ident: CR8
  article-title: Landslide susceptibility assessment in the Hoa Binh Province of Vietnam: a comparison of the Levenberg-Marquardt and Bayesian regularized neural networks
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.04.023
– year: 2018
  ident: CR48
  article-title: A review of statistically-based landslide susceptibility models
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2018.03.001
– volume: 29
  start-page: 83
  issue: 1
  year: 2009
  end-page: 87
  ident: CR64
  article-title: Prediction model of flush flood and debris flow in Miyun County based on Bayes discriminatory analysis
  publication-title: Bull Soil Water Conserv
  doi: 10.13961/j.cnki.stbctb.2009.01.011
– year: 2016
  ident: CR29
  article-title: A study on the contributing factors of major landslides in Malaysia
  publication-title: Civ Eng J
  doi: 10.28991/cej-2016-00000066
– volume: 39
  start-page: 539
  issue: 2
  year: 2009
  end-page: 550
  ident: CR36
  article-title: Exploratory Under-Sampling for Class-Imbalance Learning
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern A Publ IEEE Syst Man Cybern Soc
  doi: 10.1109/TSMCB.2008.2007853
– volume: 65
  start-page: 15
  issue: 1
  year: 2005
  end-page: 31
  ident: CR1
  article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2004.06.010
– volume: 114
  start-page: 627
  year: 2010
  end-page: 637
  ident: CR17
  article-title: Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.09.023
– volume: 28
  start-page: 1465
  issue: 6
  year: 2014
  end-page: 1477
  ident: CR34
  article-title: Application of back-propagation neural network on bank destruction forecasting for accumulative landslides in the three Gorges Reservoir Region, China
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-014-0848-9
– volume: 27
  start-page: 496
  issue: 03
  year: 2019
  ident: CR52
  article-title: Remote sensing survey of major geological disasters in the Himalayas
  publication-title: J Eng Geol
– volume: 111
  start-page: 62
  year: 2010
  end-page: 72
  ident: CR20
  article-title: Techniques for evaluating the performance of landslide susceptibility models
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2009.12.004
– year: 2015
  ident: CR53
  article-title: Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy)
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.06.001
– volume: 25
  start-page: 247
  issue: 3
  year: 2000
  end-page: 363
  ident: CR23
  article-title: Comparing landslide maps: a case study in the upper Tiber River Basin, Central Italy
  publication-title: Environ. Manag
  doi: 10.1007/s002679910020
– volume: 40
  start-page: 368
  issue: 02
  year: 2010
  end-page: 372
  ident: CR62
  article-title: Application of FCM based on principal components analysis in Debris flow classification
  publication-title: J Jilin Unv Earth Sci Ed
– volume: 33
  start-page: 1297
  issue: 7
  year: 2019
  end-page: 1325
  ident: CR40
  article-title: Spatial prediction of landslide susceptibility in Taleghan basin, Iran
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-019-01696-w
– volume: 29
  start-page: 775
  year: 2015
  end-page: 792
  ident: CR12
  article-title: Methodology of disaster risk assessment for debris flows in a river basin
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-014-0932-1
– volume: 47
  start-page: 982
  issue: 7
  year: 2005
  end-page: 990
  ident: CR33
  article-title: Probabilistic landslide susceptibility and factor effect analysis
  publication-title: Environ Geol
  doi: 10.1007/s00254-005-1228-z
– volume: 102
  start-page: 112
  issue: 3–4
  year: 2008
  end-page: 131
  ident: CR54
  article-title: Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2008.03.010
– volume: 19
  start-page: 315
  year: 2003
  end-page: 354
  ident: CR57
  article-title: Learning when training data are costly: the effect of class distribution on tree induction
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.1199
– year: 2018
  ident: CR5
  article-title: Moving beyond threshold-based dichotomous classification to improve the accu accuracy in classifying non-responders
  publication-title: Physiol Rep
  doi: 10.14814/phy2.13928
– volume: 240
  start-page: 1285
  year: 1988
  end-page: 1293
  ident: CR51
  article-title: Measuring the accuracy of diagnostic systems
  publication-title: Science
  doi: 10.1126/science.3287615
– volume: 118
  start-page: 53
  year: 2016
  end-page: 64
  ident: CR14
  article-title: Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression
  publication-title: Afr Earth Sci
  doi: 10.1016/j.jafrearsci.02.019
– volume: 65
  start-page: 1379
  issue: 3
  year: 2013
  end-page: 1392
  ident: CR59
  article-title: Debris flow susceptibility assessment by GIS and information value model in a large-scale region, Sichuan Province (China)
  publication-title: Nat Hazards
  doi: 10.1007/s11069-012-0414-z
– volume: 40
  start-page: 1095
  year: 2001
  end-page: 1113
  ident: CR32
  article-title: Statistical analysis of landslide susceptibility at Yongin, Korea
  publication-title: Environ Geol
  doi: 10.1007/s002540100310
– year: 2012
  ident: CR11
  publication-title: Regression analysis by example
– volume: 170
  start-page: 70
  year: 2012
  end-page: 79
  ident: CR35
  article-title: Uncertainty in the spatial prediction of soil texture: comparison of regression tree and random Forest models
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.10.010
– volume: 38
  start-page: 301
  issue: 2
  year: 2010
  end-page: 320
  ident: CR46
  article-title: Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches
  publication-title: J Indian Soc Remote Sens
  doi: 10.1007/s12524-010-0020-z
– volume: 12
  start-page: 86
  issue: 1
  year: 2010
  end-page: 89
  ident: CR9
  article-title: Letter to the Editor: stability of random forest importance measures
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbq011
– volume: 81
  start-page: 166
  year: 2006
  end-page: 184
  ident: CR24
  article-title: Estimating the quality of landslide susceptibility models
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.206.04.007
– ident: CR56
– year: 2016
  ident: CR50
  article-title: Assessing debris flow susceptibility in Heshigten Banner, Inner Mongolia, China, using principal component analysis and an improved fuzzy C -means algorithm
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-015-0784-z
– volume: 11
  start-page: 10725
  year: 2009
  ident: CR22
  article-title: Enhancing debris flow modeling parameters integrating Bayesian networks
  publication-title: Geophys Res Abstr
– year: 2013
  ident: CR58
  article-title: A comparison between Bayes discriminant analysis and logistic regression for prediction of debris flow in southwest Sichuan, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2013.06.003
– volume: 10
  start-page: 395
  issue: 3
  year: 2006
  end-page: 415
  ident: CR21
  article-title: Research article: spatial prediction of landslide hazard using logistic regression and ROC analysis
  publication-title: Trans GIS
  doi: 10.1111/j.1467-9671.2006.01004.x
– volume: 73
  start-page: 102
  issue: 1
  year: 1965
  end-page: 106
  ident: CR39
  article-title: The geomorphic and paleoclimatic significance of alluvial deposits in Southern Arizona: a reply
  publication-title: J Geol
  doi: 10.1086/627147
– ident: CR3
– ident: CR38
– volume: 117
  start-page: 214
  year: 2018
  end-page: 226
  ident: CR37
  article-title: Susceptibility of existing and planned Chinese railway system subjected to rainfall-induced multi-hazards
  publication-title: Transp Res Part A Policy Pract
  doi: 10.1016/j.tra.2018.08.030
– volume: 30
  start-page: 451
  year: 2003
  end-page: 472
  ident: CR13
  article-title: Validation of spatial prediction models for landslide hazard mapping
  publication-title: Nat Hazards
  doi: 10.1023/B:NHAZ.0000007172.62651.2b
– volume: 12
  start-page: 2825
  issue: 10
  year: 2011
  end-page: 2830
  ident: CR45
  article-title: Scikit-learn: machine learning in python
  publication-title: J Mach Learn Res
– year: 2017
  ident: CR30
  article-title: Slope remediation techniques and overview of landslide risk management
  publication-title: Civ Eng J
  doi: 10.28991/cej-2017-00000084
– volume: 78
  start-page: 691
  issue: 3
  year: 1991
  end-page: 692
  ident: CR42
  article-title: A note on a general definition of the coefficient of determination
  publication-title: Biometrika
  doi: 10.1093/biomet/78.3.691
– volume: 31
  start-page: 181
  year: 1999
  end-page: 216
  ident: CR101
  article-title: Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy
  publication-title: Geomorphology
  doi: 10.1016/s0169-555x(99)00078-1
– ident: CR55
– ident: CR7
– volume: 180
  start-page: 60
  issue: 5
  year: 2018
  end-page: 91
  ident: CR47
  article-title: A review of statistically-based landslide susceptibility models
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2018.03.001
– volume: 115
  start-page: 23
  year: 2010
  end-page: 31
  ident: CR2
  article-title: GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorgesarea, China
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.09.025
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  end-page: 32
  ident: CR6
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– volume: 3
  start-page: 4
  issue: 1
  year: 2009
  end-page: 21
  ident: CR15
  article-title: Borderline over-sampling for imbalanced data classification
  publication-title: Int J Knowl Eng Soft Data Paradig
  doi: 10.1504/IJKESDP.2011.039875
– volume: 32
  start-page: 831
  issue: 03
  year: 2011
  end-page: 836
  ident: CR63
  article-title: Evaluation of debris flow risk in Jinsha River based on combined weight process
  publication-title: Rock Soil Mech
  doi: 10.16285/j.rsm.2011.03.019
– year: 2019
  ident: CR44
  article-title: Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.12.248
– volume: 71
  start-page: 523
  issue: 1
  year: 2014
  end-page: 547
  ident: CR43
  article-title: Landslide susceptibility mapping at Zonouz plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models
  publication-title: Nat Hazards
  doi: 10.1007/s11069-013-0932-3
– volume: 47
  start-page: 982
  issue: 7
  year: 2005
  ident: 1851_CR33
  publication-title: Environ Geol
  doi: 10.1007/s00254-005-1228-z
– ident: 1851_CR3
  doi: 10.1109/iadcc.2015.7154739
– ident: 1851_CR7
– volume: 32
  start-page: 831
  issue: 03
  year: 2011
  ident: 1851_CR63
  publication-title: Rock Soil Mech
  doi: 10.16285/j.rsm.2011.03.019
– volume: 111
  start-page: 62
  year: 2010
  ident: 1851_CR20
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2009.12.004
– volume-title: Applied logistic regression
  year: 1989
  ident: 1851_CR28
– volume: 180
  start-page: 60
  issue: 5
  year: 2018
  ident: 1851_CR47
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2018.03.001
– volume: 38
  start-page: 301
  issue: 2
  year: 2010
  ident: 1851_CR46
  publication-title: J Indian Soc Remote Sens
  doi: 10.1007/s12524-010-0020-z
– volume: 12
  start-page: 2825
  issue: 10
  year: 2011
  ident: 1851_CR45
  publication-title: J Mach Learn Res
– ident: 1851_CR49
  doi: 10.3133/ofr03500
– volume: 65
  start-page: 1379
  issue: 3
  year: 2013
  ident: 1851_CR59
  publication-title: Nat Hazards
  doi: 10.1007/s11069-012-0414-z
– year: 2016
  ident: 1851_CR60
  publication-title: Landslides
  doi: 10.1007/s10346-015-0667-1
– volume: 240
  start-page: 1285
  year: 1988
  ident: 1851_CR51
  publication-title: Science
  doi: 10.1126/science.3287615
– volume: 81
  start-page: 166
  year: 2006
  ident: 1851_CR24
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.206.04.007
– volume: 40
  start-page: 1095
  year: 2001
  ident: 1851_CR32
  publication-title: Environ Geol
  doi: 10.1007/s002540100310
– ident: 1851_CR55
– volume: 115
  start-page: 23
  year: 2010
  ident: 1851_CR2
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.09.025
– volume: 102
  start-page: 112
  issue: 3–4
  year: 2008
  ident: 1851_CR54
  publication-title: Eng Geol
  doi: 10.1016/j.enggeo.2008.03.010
– volume: 2017
  start-page: 589
  year: 2017
  ident: 1851_CR61
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2017.02.188
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 1851_CR6
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– year: 2008
  ident: 1851_CR18
  publication-title: Int J Sedim Res
  doi: 10.1016/s1001-6279(08)60013-X
– volume: 33
  start-page: 1297
  issue: 7
  year: 2019
  ident: 1851_CR40
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-019-01696-w
– ident: 1851_CR38
– volume: 73
  start-page: 102
  issue: 1
  year: 1965
  ident: 1851_CR39
  publication-title: J Geol
  doi: 10.1086/627147
– volume: 71
  start-page: 523
  issue: 1
  year: 2014
  ident: 1851_CR43
  publication-title: Nat Hazards
  doi: 10.1007/s11069-013-0932-3
– volume: 118
  start-page: 53
  year: 2016
  ident: 1851_CR14
  publication-title: Afr Earth Sci
  doi: 10.1016/j.jafrearsci.02.019
– volume: 10
  start-page: 395
  issue: 3
  year: 2006
  ident: 1851_CR21
  publication-title: Trans GIS
  doi: 10.1111/j.1467-9671.2006.01004.x
– year: 2019
  ident: 1851_CR44
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018.12.248
– year: 2018
  ident: 1851_CR48
  publication-title: Earth Sci Rev
  doi: 10.1016/j.earscirev.2018.03.001
– volume: 25
  start-page: 247
  issue: 3
  year: 2000
  ident: 1851_CR23
  publication-title: Environ. Manag
  doi: 10.1007/s002679910020
– volume: 6
  start-page: 115
  year: 2006
  ident: 1851_CR25
  publication-title: Nat Hazard Earth Syst Sci
  doi: 10.5194/nhess-6-115-2006
– year: 2016
  ident: 1851_CR29
  publication-title: Civ Eng J
  doi: 10.28991/cej-2016-00000066
– volume: 114
  start-page: 627
  year: 2010
  ident: 1851_CR17
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2009.09.023
– volume: 29
  start-page: 775
  year: 2015
  ident: 1851_CR12
  publication-title: Stoch Environ Res Risk Assess
  doi: 10.1007/s00477-014-0932-1
– volume: 3
  start-page: 4
  issue: 1
  year: 2009
  ident: 1851_CR15
  publication-title: Int J Knowl Eng Soft Data Paradig
  doi: 10.1504/IJKESDP.2011.039875
– volume: 29
  start-page: 83
  issue: 1
  year: 2009
  ident: 1851_CR64
  publication-title: Bull Soil Water Conserv
  doi: 10.13961/j.cnki.stbctb.2009.01.011
– year: 2017
  ident: 1851_CR30
  publication-title: Civ Eng J
  doi: 10.28991/cej-2017-00000084
– volume: 40
  start-page: 368
  issue: 02
  year: 2010
  ident: 1851_CR62
  publication-title: J Jilin Unv Earth Sci Ed
– volume: 1
  start-page: 118
  issue: 4
  year: 2010
  ident: 1851_CR31
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-011-0990-3
– volume: 19
  start-page: 315
  year: 2003
  ident: 1851_CR57
  publication-title: J Artif Intell Res
  doi: 10.1613/jair.1199
– volume: 27
  start-page: 496
  issue: 03
  year: 2019
  ident: 1851_CR52
  publication-title: J Eng Geol
– ident: 1851_CR102
  doi: 10.1007/978-3-319-55342-9_8
– volume: 31
  start-page: 181
  year: 1999
  ident: 1851_CR101
  publication-title: Geomorphology
  doi: 10.1016/s0169-555x(99)00078-1
– volume: 65
  start-page: 15
  issue: 1
  year: 2005
  ident: 1851_CR1
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2004.06.010
– volume: 30
  start-page: 451
  year: 2003
  ident: 1851_CR13
  publication-title: Nat Hazards
  doi: 10.1023/B:NHAZ.0000007172.62651.2b
– volume: 11
  start-page: 10725
  year: 2009
  ident: 1851_CR22
  publication-title: Geophys Res Abstr
– volume: 12
  start-page: 86
  issue: 1
  year: 2010
  ident: 1851_CR9
  publication-title: Brief Bioinform
  doi: 10.1093/bib/bbq011
– year: 2019
  ident: 1851_CR41
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2018
– volume: 117
  start-page: 214
  year: 2018
  ident: 1851_CR37
  publication-title: Transp Res Part A Policy Pract
  doi: 10.1016/j.tra.2018.08.030
– year: 2012
  ident: 1851_CR8
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.04.023
– volume-title: Statistical methods for social scientists
  year: 1977
  ident: 1851_CR26
  doi: 10.1037/14160-000
– volume: 78
  start-page: 691
  issue: 3
  year: 1991
  ident: 1851_CR42
  publication-title: Biometrika
  doi: 10.1093/biomet/78.3.691
– volume: 40
  start-page: 248
  issue: 2
  year: 1968
  ident: 1851_CR16
  publication-title: J R Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1968.tb00724.x
– volume: 94
  start-page: 353
  year: 2008
  ident: 1851_CR10
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2006.10.033
– volume: 39
  start-page: 539
  issue: 2
  year: 2009
  ident: 1851_CR36
  publication-title: IEEE Trans Syst Man Cybern Part B Cybern A Publ IEEE Syst Man Cybern Soc
  doi: 10.1109/TSMCB.2008.2007853
– volume: 15
  start-page: 3133
  issue: 1
  year: 2014
  ident: 1851_CR19
  publication-title: J Mach Learn Res
  doi: 10.1117/1.JRS.11.015020
– year: 2016
  ident: 1851_CR50
  publication-title: Bull Eng Geol Environ
  doi: 10.1007/s10064-015-0784-z
– year: 2018
  ident: 1851_CR5
  publication-title: Physiol Rep
  doi: 10.14814/phy2.13928
– volume-title: Regression analysis by example
  year: 2012
  ident: 1851_CR11
– ident: 1851_CR56
  doi: 10.1109/icdse.2012.6282321
– volume: 170
  start-page: 70
  year: 2012
  ident: 1851_CR35
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2011.10.010
– volume: 16
  start-page: 449
  issue: 2
  year: 2016
  ident: 1851_CR4
  publication-title: Nat Hazard Earth Syst Sci
  doi: 10.5194/nhess-16-449-2016
– year: 2013
  ident: 1851_CR58
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2013.06.003
– year: 2015
  ident: 1851_CR53
  publication-title: Geomorphology
  doi: 10.1016/j.geomorph.2015.06.001
– volume: 28
  start-page: 1465
  issue: 6
  year: 2014
  ident: 1851_CR34
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-014-0848-9
SSID ssj0017754
ssib007539910
ssib057179955
ssib001127189
Score 2.4433675
Snippet Debris flows destroys the facilities and seriously threatens human lives, especially in mountainous area. Susceptibility mapping is the key for hazard...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1887
SubjectTerms Aquatic Pollution
Bayesian analysis
Chemistry and Earth Sciences
Computational Intelligence
Computer Science
Contingency
Datasets
Debris flow
Detritus
Discriminant analysis
Earth and Environmental Science
Earth Sciences
Environment
Flow mapping
Land use
Land use management
Land use planning
Learning algorithms
Machine learning
Mapping
Math. Appl. in Environmental Science
Model accuracy
Mountain regions
Mountainous areas
Original Paper
Performance evaluation
Physics
Probability Theory and Stochastic Processes
Regression analysis
Risk reduction
Statistical analysis
Statistics for Engineering
Susceptibility
Waste Water Technology
Water Management
Water Pollution Control
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7M7aAX0ak4f5GDNw2mTdq0BxGViQgOEQfeSpqketBt2on43_uSpRsKem2aHPrlx3vN-74P4FCnUrBSaiqSqqSiQiyyWFYUcwkrEytz5i_abwfp9VDcPCaPLRg0XBhXVtnsiX6jNmPt_pGfxMJpHYmIsbPJG3WuUe52tbHQUMFawZx6ibEl6MROGasNnYv-4O5-fq_g9N4834in1EnRBRqNJ9M54URJXTrF8BCLaPbzqFrEn7-uTP1JdLUGqyGEJOczzNehZUdd2OovGGvYGJZs3YXlYHP-_LUBxTnRc99BMq6IoxN5pWbsokaGvPrSSkuCl8QTmRlM1wRDW2KsYweQ6mX8SeqP2tfD-NLaL-znZB6eNmF41X-4vKbBYYFqDLymtIpNbkSsk7RKcm7LFKGz7l8bjwQ-5zznzPBMpRinJLEsMdfhqYpSnUgTYarFt6A9Go_sNpDMGFNm1sZKYoaldM5UhuGMEiqpWJmzHkTNxyx0kB93LhgvxVw42QNQIACFB6DIenA07zOZiW_8-_Zeg1ERFmJdLKZND44b3BbNf4-28_9ou7ASu6niWYl70J6-f9h9DE-m5UGYc9_tIN9R
  priority: 102
  providerName: ProQuest
Title A comparison of statistical and machine learning methods for debris flow susceptibility mapping
URI https://link.springer.com/article/10.1007/s00477-020-01851-8
https://www.proquest.com/docview/2471624100
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1436-3259
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017754
  issn: 1436-3240
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1436-3259
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0017754
  issn: 1436-3240
  databaseCode: 8FG
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1436-3259
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017754
  issn: 1436-3240
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1436-3259
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017754
  issn: 1436-3240
  databaseCode: U2A
  dateStart: 19990404
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58IHrxsSqujyUHbxpom6Rpj6vsKooi4oKeSpukelh3xa6I_95JNu2iqOCpkGZ66Jc0M535vgE4VLHkQSEV5aIsKC8RiySSJcVYwkhhZBq4RPvVdXw-4Bf34t6Twqq62r1OSbovdUN2s8KGktpwJ8BDJqTJPCwKK-eFq3gQdZvcgdV0c5wiFlMrN-epMj8_4-txNPMxv6VF3WnTX4dV7yaS7hTXDZgzoxas1S0YiN-RLdjuzYhqON-PVy1Y9t3Nnz5asOTKPFW1CVmXqKbxIBmXxPKJnFQzGucjTZ5dbaUhvpnEI5l2mK4I-rZEG0sPIOVw_E6qt8oVxLja2g-0szoPj1sw6PfuTs-pb7FAFXpeE1pGOtU8UiIuRcpMESN2xv5sYyHHccZSFmiW5DE6KiKSBQY7LM7DWAmpQ4y12DYsjMYjswMk0VoXiTFRLjHEylUa5An6MznPRRkUadCGsH7TmfL647YNxjBrlJMdOhmikzl0sqQNR43Ny1R948_Z-zWAmd-JVRZxq5HF0aQNxzWos9u_P233f9P3YCWy68rRFPdhYfL6Zg7QX5kUHZhP-mcdWOyePVz28HrSu7657bhF-wkY1-Ms
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3xcYBL1VJQt6WtD-0JrDq2EycHhGi7aCmwQhVI3FzHduBAd2mzCO2f629j7HV21UrlxjWOrcgzsWfsee8BfLCFkqxWlsq8qals0BYlVw3FXMKr3KuKxYv202ExuJDfLvPLJfjTYWFCWWW3JsaF2o1tOCP_xGXgOpIZY_u3v2hQjQq3q52EhknSCm4vUowlYMexn95jCtfuHX1Fe3_k_LB__mVAk8oAtRh8TGjDXeUkt3nR5JXwdYGf78N5k8gkPheiEsyJ0hS4V-dc1Rjvi8Jkhc2VyzDdEDjuMqxKIStM_lY_94dn3-f3GIFfLuKbREED9V2C7UTwXiBqVDSkbww3zYyWf2-Ni3j3nyvauPMdPodnKWQlBzMfewFLfrQBW_0FQg4b0xLRbsBaklW_nr4EfUDsXOeQjBsS4EuRGRq7mJEjP2MppydJu-KKzAStW4KhNHE-oBFIczO-J-1dG-tvYinvFPsFWomrTbh4krnegpXReORfASmdc3XpPTcKMzpjK2ZKDJ-MNHnD6or1IOsmU9tEdx5UN270nKg5GkCjAXQ0gC57sDPvczsj-3j07e3ORjr9-K1euGkPdju7LZr_P9rrx0d7D2uD89MTfXI0PH4D6zy4TUREbsPK5Pedf4uh0aR-l_yPwI-ndvkHAnsZUg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgEXBIWqCwV8gBNYdWwnTg4IVbRLS6HiQKXeTOKPcii7hWxV7V_j1zHjdXYFEr31GsdW5Jl4Zjzz3gC8dJXRojOO6zJ2XEeURS1N5BhLBFMG04iUaP98XB2c6I-n5eka_B6wMFRWOZyJ6aD2U0d35DtSE9eRLoTYibks4sve-N3FT04dpCjTOrTTWKjIUZhfYfjWvz3cQ1m_knK8__X9Ac8dBrhDx2PGo_SN19KVVSwbFboKPz3QXZMqND5XqlHCq7qt0E6X0nTo66uqLSpXGl9gqKFw3Vtw2xCLO6HUxx-WGQxilkvIJlVxIr3LgJ0E2yOKRsMpcBNoLgte_20UV57uP8nZZPPGD-B-dlbZ7kK7HsJamGzA5v4KG4eD-XDoN-Bubqj-ff4I7C5zyw6HbBoZAZcSJzROaSee_UhFnIHlrhVnbNHKumfoRDMfCIfA4vn0ivWXfaq8SUW8c5xHhBJnj-HkRnZ6E9Yn00nYAlZ777s6BNkajOVa14i2Rsep1W0ZRdeIERTDZlqXic6p38a5XVI0JwFYFIBNArD1CF4v51wsaD6ufXt7kJHNv3xvVwo6gjeD3FbD_1_tyfWrvYA7qOj20-Hx0VO4J0lrEhRyG9Znvy7DM_SJZt3zpHwMvt20tv8BNIAW7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+statistical+and+machine+learning+methods+for+debris+flow+susceptibility+mapping&rft.jtitle=Stochastic+environmental+research+and+risk+assessment&rft.au=Liang%2C+Zhu&rft.au=Wang%2C+Chang-Ming&rft.au=Zhang%2C+Zhi-Min&rft.au=Khan%2C+Kaleem-Ullah-Jan&rft.date=2020-11-01&rft.issn=1436-3240&rft.eissn=1436-3259&rft.volume=34&rft.issue=11&rft.spage=1887&rft.epage=1907&rft_id=info:doi/10.1007%2Fs00477-020-01851-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00477_020_01851_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-3240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-3240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-3240&client=summon