A comparison of statistical and machine learning methods for debris flow susceptibility mapping
Debris flows destroys the facilities and seriously threatens human lives, especially in mountainous area. Susceptibility mapping is the key for hazard prevention. The aim of the present study is to compare the performance of three methods including Bayes discriminant analysis (BDA), logistic regress...
Saved in:
| Published in | Stochastic environmental research and risk assessment Vol. 34; no. 11; pp. 1887 - 1907 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.11.2020
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1436-3240 1436-3259 |
| DOI | 10.1007/s00477-020-01851-8 |
Cover
| Abstract | Debris flows destroys the facilities and seriously threatens human lives, especially in mountainous area. Susceptibility mapping is the key for hazard prevention. The aim of the present study is to compare the performance of three methods including Bayes discriminant analysis (BDA), logistic regression (LR) and random forest (RF) for debris flow susceptibility mapping from three aspects: applicability, analyticity and accuracy. Nyalam county, a debris flow-prone area, located in Southern Tibet, was selected as the study area. Firstly, the dataset containing 49 debris flow inventories and 16 conditioning factors was prepared. Subsequently, divided the dataset into two groups with a ratio of 70/30 for training and validation purposes, and repeated 5 times to obtain 5 different groups. Then, 16 factors were involved in the modeling of RF, of which 11 factors with low linear correlation were for BDA and LR. Finally, receiver operating characteristic curves, the area under curve (AUC) and contingency tables were applied to evaluated the accuracy performance of the 3 models. The prediction rates were 74.6–81.8%, 74.6–83.6% and 80–92.7%, for the BDA, LR and FR, while the AUC values of three models were 0.72–0.78, 0.82–0.92 and 0.90–0.99, respectively. Compare to LR an BDA, RF not only effectively process and preserved dataset without priori assumption and the obtained susceptibility zoning map and major factors were reasonable. The conclusion of the current study is useful for risk mitigation and land use planning in the study area and provide related references to other researches. |
|---|---|
| AbstractList | Debris flows destroys the facilities and seriously threatens human lives, especially in mountainous area. Susceptibility mapping is the key for hazard prevention. The aim of the present study is to compare the performance of three methods including Bayes discriminant analysis (BDA), logistic regression (LR) and random forest (RF) for debris flow susceptibility mapping from three aspects: applicability, analyticity and accuracy. Nyalam county, a debris flow-prone area, located in Southern Tibet, was selected as the study area. Firstly, the dataset containing 49 debris flow inventories and 16 conditioning factors was prepared. Subsequently, divided the dataset into two groups with a ratio of 70/30 for training and validation purposes, and repeated 5 times to obtain 5 different groups. Then, 16 factors were involved in the modeling of RF, of which 11 factors with low linear correlation were for BDA and LR. Finally, receiver operating characteristic curves, the area under curve (AUC) and contingency tables were applied to evaluated the accuracy performance of the 3 models. The prediction rates were 74.6–81.8%, 74.6–83.6% and 80–92.7%, for the BDA, LR and FR, while the AUC values of three models were 0.72–0.78, 0.82–0.92 and 0.90–0.99, respectively. Compare to LR an BDA, RF not only effectively process and preserved dataset without priori assumption and the obtained susceptibility zoning map and major factors were reasonable. The conclusion of the current study is useful for risk mitigation and land use planning in the study area and provide related references to other researches. |
| Author | Khan, Kaleem-Ullah-Jan Zhang, Zhi-Min Liang, Zhu Wang, Chang-Ming |
| Author_xml | – sequence: 1 givenname: Zhu surname: Liang fullname: Liang, Zhu organization: College of Construction Engineering, Jilin University – sequence: 2 givenname: Chang-Ming surname: Wang fullname: Wang, Chang-Ming email: wangcm@jlu.edu.cn organization: College of Construction Engineering, Jilin University – sequence: 3 givenname: Zhi-Min surname: Zhang fullname: Zhang, Zhi-Min organization: College of Construction Engineering, Jilin University – sequence: 4 givenname: Kaleem-Ullah-Jan surname: Khan fullname: Khan, Kaleem-Ullah-Jan organization: College of Construction Engineering, Jilin University |
| BookMark | eNp9kMtKAzEUhoNUsFZfwFXA9WjumVmW4g0KbnQdMplMmzJNxiRF-vamVhRcdJVD-L9z-S7BxAdvAbjB6A4jJO8TQkzKChFUIVxzXNVnYIoZFRUlvJn81gxdgMuUNghhKTmbAjWHJmxHHV0KHoYepqyzS9kZPUDtO7jVZu28hYPV0Tu_glub16FLsA8RdrYtIOyH8AnTLhk7Zte6weV94caxxK_Aea-HZK9_3hl4f3x4WzxXy9enl8V8WRnKSa560jUdI4aLnjfUtsIIaZlsKMWs_FPaUNTRWgvBa05kK4SgQmNhuOxwLTGdgdtj3zGGj51NWW3CLvoyUhEmsSCseCqp-pgyMaQUba-MO9wbfI7aDQojddCpjjpV0am-daq6oOQfOka31XF_GqJHKJWwX9n4t9UJ6gumZolM |
| CitedBy_id | crossref_primary_10_3389_feart_2023_1118160 crossref_primary_10_1016_j_scitotenv_2021_151752 crossref_primary_10_1016_j_envsoft_2024_106130 crossref_primary_10_1007_s40996_022_01000_x crossref_primary_10_1155_2021_9098250 crossref_primary_10_7717_peerj_17352 crossref_primary_10_1007_s11069_021_05128_3 crossref_primary_10_1007_s11629_020_6471_y crossref_primary_10_1007_s11629_020_6497_1 crossref_primary_10_1007_s10668_024_05398_4 crossref_primary_10_1080_19475705_2021_1960433 crossref_primary_10_1007_s00477_020_01893_y crossref_primary_10_1109_ACCESS_2024_3471795 crossref_primary_10_1007_s11356_022_22649_x crossref_primary_10_1007_s11069_023_06099_3 crossref_primary_10_1007_s11069_024_06609_x crossref_primary_10_3389_feart_2023_1291454 crossref_primary_10_1155_2022_9751504 crossref_primary_10_1080_19475705_2024_2341176 crossref_primary_10_1007_s10064_022_02806_9 crossref_primary_10_1007_s11069_020_04498_4 crossref_primary_10_1007_s10064_024_03649_2 crossref_primary_10_3390_su142416692 crossref_primary_10_3390_su14106110 crossref_primary_10_1007_s11069_021_05194_7 crossref_primary_10_3390_s22103924 crossref_primary_10_3390_ijgi10100639 crossref_primary_10_1007_s42452_024_05646_2 crossref_primary_10_3390_app13127276 crossref_primary_10_3390_land12030571 crossref_primary_10_3390_rs14184475 crossref_primary_10_5194_nhess_21_1247_2021 crossref_primary_10_3390_rs13081464 crossref_primary_10_1007_s11629_023_8500_0 crossref_primary_10_3390_rs17030524 crossref_primary_10_1007_s12583_022_1803_1 crossref_primary_10_3390_w15040705 crossref_primary_10_1007_s11069_023_05853_x crossref_primary_10_1016_j_catena_2024_108576 crossref_primary_10_1016_j_catena_2025_108753 |
| Cites_doi | 10.1037/14160-000 10.1111/j.2517-6161.1968.tb00724.x 10.1016/s1001-6279(08)60013-X 10.1016/j.geomorph.2006.10.033 10.1117/1.JRS.11.015020 10.1007/s10346-015-0667-1 10.1016/j.scitotenv.2017.02.188 10.5194/nhess-6-115-2006 10.1007/s12665-011-0990-3 10.1016/j.scitotenv.2018 10.5194/nhess-16-449-2016 10.1016/j.geomorph.04.023 10.1016/j.earscirev.2018.03.001 10.13961/j.cnki.stbctb.2009.01.011 10.28991/cej-2016-00000066 10.1109/TSMCB.2008.2007853 10.1016/j.geomorph.2004.06.010 10.1016/j.geomorph.2009.09.023 10.1007/s00477-014-0848-9 10.1016/j.enggeo.2009.12.004 10.1016/j.geomorph.2015.06.001 10.1007/s002679910020 10.1007/s00477-019-01696-w 10.1007/s00477-014-0932-1 10.1007/s00254-005-1228-z 10.1016/j.enggeo.2008.03.010 10.1613/jair.1199 10.14814/phy2.13928 10.1126/science.3287615 10.1016/j.jafrearsci.02.019 10.1007/s11069-012-0414-z 10.1007/s002540100310 10.1016/j.geoderma.2011.10.010 10.1007/s12524-010-0020-z 10.1093/bib/bbq011 10.1016/j.geomorph.206.04.007 10.1007/s10064-015-0784-z 10.1016/j.geomorph.2013.06.003 10.1111/j.1467-9671.2006.01004.x 10.1086/627147 10.1016/j.tra.2018.08.030 10.1023/B:NHAZ.0000007172.62651.2b 10.28991/cej-2017-00000084 10.1093/biomet/78.3.691 10.1016/s0169-555x(99)00078-1 10.1016/j.geomorph.09.025 10.1023/A:1010933404324 10.1504/IJKESDP.2011.039875 10.16285/j.rsm.2011.03.019 10.1016/j.scitotenv.2018.12.248 10.1007/s11069-013-0932-3 10.1109/iadcc.2015.7154739 10.3133/ofr03500 10.1007/978-3-319-55342-9_8 10.1109/icdse.2012.6282321 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2020 Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
| DBID | AAYXX CITATION 3V. 7ST 7XB 88I 8AO 8FD 8FE 8FG 8FK ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 GNUQQ HCIFZ KR7 L6V M2P M7S PATMY PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U S0W SOI |
| DOI | 10.1007/s00477-020-01851-8 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Environment Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection Civil Engineering Abstracts ProQuest Engineering Collection Science Database Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection ProQuest Central Basic DELNET Engineering & Technology Collection Environment Abstracts |
| DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest Central (Alumni) ProQuest One Academic (New) |
| DatabaseTitleList | ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Physics Computer Science Environmental Sciences |
| EISSN | 1436-3259 |
| EndPage | 1907 |
| ExternalDocumentID | 10_1007_s00477_020_01851_8 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: Grant No. 41572257; 41972267 |
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 2.D 203 29Q 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5VS 67M 67Z 6NX 7XC 88I 8AO 8FE 8FG 8FH 8FW 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FIL FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV L6V L8X LAS LLZTM M2P M4Y M7S MA- ML. N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O93 O9G O9J OAM P19 P2P PATMY PF0 PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOS R89 R9I RIG RNS ROL RPX RSV S0W S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR Z45 Z5O Z7R Z7Y Z7Z Z81 Z83 Z86 Z8M Z8S Z8T Z8U Z8W ZMTXR ~02 ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7ST 7XB 8FD 8FK C1K FR3 KR7 PKEHL PQEST PQUKI PRINS Q9U SOI |
| ID | FETCH-LOGICAL-c352t-f2d9d42c56f593eb6c67e4793314d4233930d38a6658527b66636a16c57d18713 |
| IEDL.DBID | U2A |
| ISSN | 1436-3240 |
| IngestDate | Sat Aug 23 14:04:39 EDT 2025 Wed Oct 01 02:17:59 EDT 2025 Thu Apr 24 22:51:44 EDT 2025 Fri Feb 21 02:25:41 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Himalayas area Logistic regression Random forest Debris flow Bayes discriminant analysis Susceptibility |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-f2d9d42c56f593eb6c67e4793314d4233930d38a6658527b66636a16c57d18713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2471624100 |
| PQPubID | 31669 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2471624100 crossref_citationtrail_10_1007_s00477_020_01851_8 crossref_primary_10_1007_s00477_020_01851_8 springer_journals_10_1007_s00477_020_01851_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20201100 2020-11-00 20201101 |
| PublicationDateYYYYMMDD | 2020-11-01 |
| PublicationDate_xml | – month: 11 year: 2020 text: 20201100 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Stochastic environmental research and risk assessment |
| PublicationTitleAbbrev | Stoch Environ Res Risk Assess |
| PublicationYear | 2020 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Di, Chen, Cui, Li, He, Gao (CR18) 2008 Gorsevski, Gessler, Foltz (CR21) 2006; 10 Chung, Fabbri (CR13) 2003; 30 Ließ, Glaser, Huwe (CR35) 2012; 170 Trigila, Iadanza, Esposito, Scarascia-Mugnozza (CR53) 2015 CR38 Guzzetti, Galli, Reichenbach, Ardizzone, Cardinali (CR25) 2006; 6 Liu, Wu, Zhou (CR36) 2009; 39 Reichenbach, Rossi, Malamud, Mihir, Guzzetti (CR48) 2018 Pedregosa, Varoquaux, Gramfort (CR45) 2011; 12 Weiss, Provost (CR57) 2003; 19 Breiman (CR6) 2001; 45 Lee, Min (CR32) 2001; 40 Kazmi, Sadaf Qasim, Harahap, Imran, Moin (CR29) 2016 Lee, Talib (CR33) 2005; 47 CR3 Guzzetti, Reichenbach, Ardizzone, Cardinali, Galli (CR24) 2006; 81 Melton (CR39) 1965; 73 Zhang, Chen, Qin, Zhang, Li, Ma (CR62) 2010; 40 CR7 Guzzetti, Cardinali, Reichenbach, Carrara (CR23) 2000; 25 CR49 Liu, Wang, CaoY, Yang (CR37) 2018; 117 Reichenbach, Rossi, Malamud, Mihir, Guzzetti (CR47) 2018; 180 Shi, Chen, Song, Zhang, Song, Zhang (CR50) 2016 Blais-Stevens, Behnia (CR4) 2016; 16 Zheng, Zhang, Liu, Wu, Hou, Ye (CR64) 2009; 29 Ayalew, Yamagishi (CR1) 2005; 65 Graf, Stoffel, Grêt-Regamey (CR22) 2009; 11 Cooper, Kamei (CR15) 2009; 3 Xu, Yu, Jing, Zhang, Huang (CR59) 2013; 65 Colkesen, Sahin, Kavzoglu (CR14) 2016; 118 Li, Tang, Ge, Hu, Wang (CR34) 2014; 28 Das, Sahoo, Van Westen, Stein, Hack (CR17) 2010; 114 Mokhtari, Abedian (CR40) 2019; 33 Hosmer, Lemeshow (CR28) 1989 Carrara, Crosta, Frattini (CR10) 2008; 94 Bai, Wang, Guo, Zhou, Hou, Xu (CR2) 2010; 115 Nourani, Pradhan, Ghaffari, Sharifi (CR43) 2014; 71 CR56 CR55 Youssef, Pourghasemi, Pourtaghi, Al-Katheeri (CR60) 2016 Hanushek, Jackson (CR26) 1977 Nsengiyumva, Luo, Amanambu, Mind’je, Habiyaremye, Karamage, Ochege, Mupenzi (CR44) 2019 Mukhiddin, Martin, Ismail, Bakhtiar, Alim, Johannes (CR41) 2019 Calle, Urrea (CR9) 2010; 12 Zezere, Pereira, Melo, Oliveira, Garcia (CR61) 2017; 2017 Kirschbaum, Adler, Hong, Kumar, Peters-Lidard, Lerner-Lam (CR31) 2010; 1 Pradhan (CR46) 2010; 38 Xu, Jing, Yu, Wang, Zhang, Huang (CR58) 2013 Chatterjee, Hadi (CR11) 2012 Chiou, Chen, Liu, Huang, Chang (CR12) 2015; 29 Fernández-Delgado, Cernadas, Barro, Amorim (CR19) 2014; 15 Nagelkerke (CR42) 1991; 78 van Westen, Castellanos, Kuriakose (CR54) 2008; 102 Bonafiglia, Nelms, Preobrazenski, Blanc, Robins, Lu, Lithopoulos, Walsh, Gurd (CR5) 2018 Swets (CR51) 1988; 240 Zhang, Wang, Chen, Gu, Zhang (CR63) 2011; 32 Cox, Snell (CR16) 1968; 40 CR102 Bui, Pradhan, Lofman, Revhaug, Dick (CR8) 2012 Kazmi, Qasim, Harahap, Baharom, Mehmood, Siddiqui, Imran (CR30) 2017 Tong, Qi, An, Liu (CR52) 2019; 27 Frattini, Crosta, Carrara (CR20) 2010; 111 Guzzetti, Carrara, Cardinali, Reichenbach (CR101) 1999; 31 JA Swets (1851_CR51) 1988; 240 L Ayalew (1851_CR1) 2005; 65 1851_CR49 MY Shi (1851_CR50) 2016 JT Bonafiglia (1851_CR5) 2018 DR Cox (1851_CR16) 1968; 40 ML Calle (1851_CR9) 2010; 12 M Fernández-Delgado (1851_CR19) 2014; 15 BF Di (1851_CR18) 2008 F Guzzetti (1851_CR101) 1999; 31 F Pedregosa (1851_CR45) 2011; 12 S Chatterjee (1851_CR11) 2012 GQ Zheng (1851_CR64) 2009; 29 S Lee (1851_CR32) 2001; 40 K Liu (1851_CR37) 2018; 117 A Carrara (1851_CR10) 2008; 94 C Graf (1851_CR22) 2009; 11 W Zhang (1851_CR62) 2010; 40 1851_CR7 DT Bui (1851_CR8) 2012 I Colkesen (1851_CR14) 2016; 118 1851_CR38 1851_CR3 PV Gorsevski (1851_CR21) 2006; 10 A Trigila (1851_CR53) 2015 F Guzzetti (1851_CR24) 2006; 81 V Nourani (1851_CR43) 2014; 71 P Reichenbach (1851_CR48) 2018 MA Melton (1851_CR39) 1965; 73 S Lee (1851_CR33) 2005; 47 E Hanushek (1851_CR26) 1977 XY Liu (1851_CR36) 2009; 39 1851_CR102 L Breiman (1851_CR6) 2001; 45 DW Hosmer (1851_CR28) 1989 F Guzzetti (1851_CR25) 2006; 6 SB Bai (1851_CR2) 2010; 115 EW Cooper (1851_CR15) 2009; 3 JB Nsengiyumva (1851_CR44) 2019 JL Zezere (1851_CR61) 2017; 2017 M Mokhtari (1851_CR40) 2019; 33 B Pradhan (1851_CR46) 2010; 38 DB Kirschbaum (1851_CR31) 2010; 1 C Zhang (1851_CR63) 2011; 32 P Reichenbach (1851_CR47) 2018; 180 AM Youssef (1851_CR60) 2016 D Kazmi (1851_CR29) 2016 P Frattini (1851_CR20) 2010; 111 WB Xu (1851_CR59) 2013; 65 A Blais-Stevens (1851_CR4) 2016; 16 I Das (1851_CR17) 2010; 114 LQ Tong (1851_CR52) 2019; 27 CF Chung (1851_CR13) 2003; 30 I-J Chiou (1851_CR12) 2015; 29 NJD Nagelkerke (1851_CR42) 1991; 78 C Li (1851_CR34) 2014; 28 GM Weiss (1851_CR57) 2003; 19 D Kazmi (1851_CR30) 2017 J Mukhiddin (1851_CR41) 2019 1851_CR56 1851_CR55 F Guzzetti (1851_CR23) 2000; 25 M Ließ (1851_CR35) 2012; 170 CJ van Westen (1851_CR54) 2008; 102 WB Xu (1851_CR58) 2013 |
| References_xml | – year: 1977 ident: CR26 publication-title: Statistical methods for social scientists doi: 10.1037/14160-000 – ident: CR102 – volume: 40 start-page: 248 issue: 2 year: 1968 end-page: 275 ident: CR16 article-title: A general definition of residuals publication-title: J R Stat Soc Ser B (Methodol) doi: 10.1111/j.2517-6161.1968.tb00724.x – year: 1989 ident: CR28 publication-title: Applied logistic regression – year: 2008 ident: CR18 article-title: GIS-based risk analysis of debris flow: an application in Sichuan, southwest China publication-title: Int J Sedim Res doi: 10.1016/s1001-6279(08)60013-X – volume: 94 start-page: 353 year: 2008 end-page: 378 ident: CR10 article-title: Comparing models of debris-flow susceptibility in the alpine environment publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.10.033 – volume: 15 start-page: 3133 issue: 1 year: 2014 end-page: 3181 ident: CR19 article-title: Do we need hundreds of classifiers to solve real world classification problems? publication-title: J Mach Learn Res doi: 10.1117/1.JRS.11.015020 – ident: CR49 – year: 2016 ident: CR60 article-title: Erratum to: landslide susceptibility mapping using random forest, boosted regression tree, classification and regression tree, and general linear models and comparison of their performance at Wadi Tayyah Basin, Asir Region, Saudi Arabia publication-title: Landslides doi: 10.1007/s10346-015-0667-1 – volume: 2017 start-page: 589 year: 2017 ident: CR61 article-title: Mapping landslide susceptibility using data-driven methods publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.02.188 – volume: 6 start-page: 115 year: 2006 end-page: 131 ident: CR25 article-title: Landslide hazard assessment in the Collazzone area, Umbria, central Italy publication-title: Nat Hazard Earth Syst Sci doi: 10.5194/nhess-6-115-2006 – volume: 1 start-page: 118 issue: 4 year: 2010 end-page: 134 ident: CR31 article-title: Advances in landslide nowcasting: evaluation of a global and regional modeling approach publication-title: Environ Earth Sci doi: 10.1007/s12665-011-0990-3 – year: 2019 ident: CR41 article-title: Comparative analysis of statistical methods for landslide susceptibility mapping in the Bostanlik District, Uzbekistan publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018 – volume: 16 start-page: 449 issue: 2 year: 2016 end-page: 462 ident: CR4 article-title: Debris flow susceptibility mapping using a qualitative heuristic method and flow-R along the Yukon Alaska Highway Corridor, Canada publication-title: Nat Hazard Earth Syst Sci doi: 10.5194/nhess-16-449-2016 – year: 2012 ident: CR8 article-title: Landslide susceptibility assessment in the Hoa Binh Province of Vietnam: a comparison of the Levenberg-Marquardt and Bayesian regularized neural networks publication-title: Geomorphology doi: 10.1016/j.geomorph.04.023 – year: 2018 ident: CR48 article-title: A review of statistically-based landslide susceptibility models publication-title: Earth Sci Rev doi: 10.1016/j.earscirev.2018.03.001 – volume: 29 start-page: 83 issue: 1 year: 2009 end-page: 87 ident: CR64 article-title: Prediction model of flush flood and debris flow in Miyun County based on Bayes discriminatory analysis publication-title: Bull Soil Water Conserv doi: 10.13961/j.cnki.stbctb.2009.01.011 – year: 2016 ident: CR29 article-title: A study on the contributing factors of major landslides in Malaysia publication-title: Civ Eng J doi: 10.28991/cej-2016-00000066 – volume: 39 start-page: 539 issue: 2 year: 2009 end-page: 550 ident: CR36 article-title: Exploratory Under-Sampling for Class-Imbalance Learning publication-title: IEEE Trans Syst Man Cybern Part B Cybern A Publ IEEE Syst Man Cybern Soc doi: 10.1109/TSMCB.2008.2007853 – volume: 65 start-page: 15 issue: 1 year: 2005 end-page: 31 ident: CR1 article-title: The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan publication-title: Geomorphology doi: 10.1016/j.geomorph.2004.06.010 – volume: 114 start-page: 627 year: 2010 end-page: 637 ident: CR17 article-title: Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India) publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.09.023 – volume: 28 start-page: 1465 issue: 6 year: 2014 end-page: 1477 ident: CR34 article-title: Application of back-propagation neural network on bank destruction forecasting for accumulative landslides in the three Gorges Reservoir Region, China publication-title: Stoch Env Res Risk Assess doi: 10.1007/s00477-014-0848-9 – volume: 27 start-page: 496 issue: 03 year: 2019 ident: CR52 article-title: Remote sensing survey of major geological disasters in the Himalayas publication-title: J Eng Geol – volume: 111 start-page: 62 year: 2010 end-page: 72 ident: CR20 article-title: Techniques for evaluating the performance of landslide susceptibility models publication-title: Eng Geol doi: 10.1016/j.enggeo.2009.12.004 – year: 2015 ident: CR53 article-title: Comparison of Logistic Regression and Random Forests techniques for shallow landslide susceptibility assessment in Giampilieri (NE Sicily, Italy) publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.06.001 – volume: 25 start-page: 247 issue: 3 year: 2000 end-page: 363 ident: CR23 article-title: Comparing landslide maps: a case study in the upper Tiber River Basin, Central Italy publication-title: Environ. Manag doi: 10.1007/s002679910020 – volume: 40 start-page: 368 issue: 02 year: 2010 end-page: 372 ident: CR62 article-title: Application of FCM based on principal components analysis in Debris flow classification publication-title: J Jilin Unv Earth Sci Ed – volume: 33 start-page: 1297 issue: 7 year: 2019 end-page: 1325 ident: CR40 article-title: Spatial prediction of landslide susceptibility in Taleghan basin, Iran publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-019-01696-w – volume: 29 start-page: 775 year: 2015 end-page: 792 ident: CR12 article-title: Methodology of disaster risk assessment for debris flows in a river basin publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-014-0932-1 – volume: 47 start-page: 982 issue: 7 year: 2005 end-page: 990 ident: CR33 article-title: Probabilistic landslide susceptibility and factor effect analysis publication-title: Environ Geol doi: 10.1007/s00254-005-1228-z – volume: 102 start-page: 112 issue: 3–4 year: 2008 end-page: 131 ident: CR54 article-title: Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview publication-title: Eng Geol doi: 10.1016/j.enggeo.2008.03.010 – volume: 19 start-page: 315 year: 2003 end-page: 354 ident: CR57 article-title: Learning when training data are costly: the effect of class distribution on tree induction publication-title: J Artif Intell Res doi: 10.1613/jair.1199 – year: 2018 ident: CR5 article-title: Moving beyond threshold-based dichotomous classification to improve the accu accuracy in classifying non-responders publication-title: Physiol Rep doi: 10.14814/phy2.13928 – volume: 240 start-page: 1285 year: 1988 end-page: 1293 ident: CR51 article-title: Measuring the accuracy of diagnostic systems publication-title: Science doi: 10.1126/science.3287615 – volume: 118 start-page: 53 year: 2016 end-page: 64 ident: CR14 article-title: Susceptibility mapping of shallow landslides using kernel-based Gaussian process, support vector machines and logistic regression publication-title: Afr Earth Sci doi: 10.1016/j.jafrearsci.02.019 – volume: 65 start-page: 1379 issue: 3 year: 2013 end-page: 1392 ident: CR59 article-title: Debris flow susceptibility assessment by GIS and information value model in a large-scale region, Sichuan Province (China) publication-title: Nat Hazards doi: 10.1007/s11069-012-0414-z – volume: 40 start-page: 1095 year: 2001 end-page: 1113 ident: CR32 article-title: Statistical analysis of landslide susceptibility at Yongin, Korea publication-title: Environ Geol doi: 10.1007/s002540100310 – year: 2012 ident: CR11 publication-title: Regression analysis by example – volume: 170 start-page: 70 year: 2012 end-page: 79 ident: CR35 article-title: Uncertainty in the spatial prediction of soil texture: comparison of regression tree and random Forest models publication-title: Geoderma doi: 10.1016/j.geoderma.2011.10.010 – volume: 38 start-page: 301 issue: 2 year: 2010 end-page: 320 ident: CR46 article-title: Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches publication-title: J Indian Soc Remote Sens doi: 10.1007/s12524-010-0020-z – volume: 12 start-page: 86 issue: 1 year: 2010 end-page: 89 ident: CR9 article-title: Letter to the Editor: stability of random forest importance measures publication-title: Brief Bioinform doi: 10.1093/bib/bbq011 – volume: 81 start-page: 166 year: 2006 end-page: 184 ident: CR24 article-title: Estimating the quality of landslide susceptibility models publication-title: Geomorphology doi: 10.1016/j.geomorph.206.04.007 – ident: CR56 – year: 2016 ident: CR50 article-title: Assessing debris flow susceptibility in Heshigten Banner, Inner Mongolia, China, using principal component analysis and an improved fuzzy C -means algorithm publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-015-0784-z – volume: 11 start-page: 10725 year: 2009 ident: CR22 article-title: Enhancing debris flow modeling parameters integrating Bayesian networks publication-title: Geophys Res Abstr – year: 2013 ident: CR58 article-title: A comparison between Bayes discriminant analysis and logistic regression for prediction of debris flow in southwest Sichuan, China publication-title: Geomorphology doi: 10.1016/j.geomorph.2013.06.003 – volume: 10 start-page: 395 issue: 3 year: 2006 end-page: 415 ident: CR21 article-title: Research article: spatial prediction of landslide hazard using logistic regression and ROC analysis publication-title: Trans GIS doi: 10.1111/j.1467-9671.2006.01004.x – volume: 73 start-page: 102 issue: 1 year: 1965 end-page: 106 ident: CR39 article-title: The geomorphic and paleoclimatic significance of alluvial deposits in Southern Arizona: a reply publication-title: J Geol doi: 10.1086/627147 – ident: CR3 – ident: CR38 – volume: 117 start-page: 214 year: 2018 end-page: 226 ident: CR37 article-title: Susceptibility of existing and planned Chinese railway system subjected to rainfall-induced multi-hazards publication-title: Transp Res Part A Policy Pract doi: 10.1016/j.tra.2018.08.030 – volume: 30 start-page: 451 year: 2003 end-page: 472 ident: CR13 article-title: Validation of spatial prediction models for landslide hazard mapping publication-title: Nat Hazards doi: 10.1023/B:NHAZ.0000007172.62651.2b – volume: 12 start-page: 2825 issue: 10 year: 2011 end-page: 2830 ident: CR45 article-title: Scikit-learn: machine learning in python publication-title: J Mach Learn Res – year: 2017 ident: CR30 article-title: Slope remediation techniques and overview of landslide risk management publication-title: Civ Eng J doi: 10.28991/cej-2017-00000084 – volume: 78 start-page: 691 issue: 3 year: 1991 end-page: 692 ident: CR42 article-title: A note on a general definition of the coefficient of determination publication-title: Biometrika doi: 10.1093/biomet/78.3.691 – volume: 31 start-page: 181 year: 1999 end-page: 216 ident: CR101 article-title: Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy publication-title: Geomorphology doi: 10.1016/s0169-555x(99)00078-1 – ident: CR55 – ident: CR7 – volume: 180 start-page: 60 issue: 5 year: 2018 end-page: 91 ident: CR47 article-title: A review of statistically-based landslide susceptibility models publication-title: Earth Sci Rev doi: 10.1016/j.earscirev.2018.03.001 – volume: 115 start-page: 23 year: 2010 end-page: 31 ident: CR2 article-title: GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorgesarea, China publication-title: Geomorphology doi: 10.1016/j.geomorph.09.025 – volume: 45 start-page: 5 issue: 1 year: 2001 end-page: 32 ident: CR6 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – volume: 3 start-page: 4 issue: 1 year: 2009 end-page: 21 ident: CR15 article-title: Borderline over-sampling for imbalanced data classification publication-title: Int J Knowl Eng Soft Data Paradig doi: 10.1504/IJKESDP.2011.039875 – volume: 32 start-page: 831 issue: 03 year: 2011 end-page: 836 ident: CR63 article-title: Evaluation of debris flow risk in Jinsha River based on combined weight process publication-title: Rock Soil Mech doi: 10.16285/j.rsm.2011.03.019 – year: 2019 ident: CR44 article-title: Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.12.248 – volume: 71 start-page: 523 issue: 1 year: 2014 end-page: 547 ident: CR43 article-title: Landslide susceptibility mapping at Zonouz plain, Iran using genetic programming and comparison with frequency ratio, logistic regression, and artificial neural network models publication-title: Nat Hazards doi: 10.1007/s11069-013-0932-3 – volume: 47 start-page: 982 issue: 7 year: 2005 ident: 1851_CR33 publication-title: Environ Geol doi: 10.1007/s00254-005-1228-z – ident: 1851_CR3 doi: 10.1109/iadcc.2015.7154739 – ident: 1851_CR7 – volume: 32 start-page: 831 issue: 03 year: 2011 ident: 1851_CR63 publication-title: Rock Soil Mech doi: 10.16285/j.rsm.2011.03.019 – volume: 111 start-page: 62 year: 2010 ident: 1851_CR20 publication-title: Eng Geol doi: 10.1016/j.enggeo.2009.12.004 – volume-title: Applied logistic regression year: 1989 ident: 1851_CR28 – volume: 180 start-page: 60 issue: 5 year: 2018 ident: 1851_CR47 publication-title: Earth Sci Rev doi: 10.1016/j.earscirev.2018.03.001 – volume: 38 start-page: 301 issue: 2 year: 2010 ident: 1851_CR46 publication-title: J Indian Soc Remote Sens doi: 10.1007/s12524-010-0020-z – volume: 12 start-page: 2825 issue: 10 year: 2011 ident: 1851_CR45 publication-title: J Mach Learn Res – ident: 1851_CR49 doi: 10.3133/ofr03500 – volume: 65 start-page: 1379 issue: 3 year: 2013 ident: 1851_CR59 publication-title: Nat Hazards doi: 10.1007/s11069-012-0414-z – year: 2016 ident: 1851_CR60 publication-title: Landslides doi: 10.1007/s10346-015-0667-1 – volume: 240 start-page: 1285 year: 1988 ident: 1851_CR51 publication-title: Science doi: 10.1126/science.3287615 – volume: 81 start-page: 166 year: 2006 ident: 1851_CR24 publication-title: Geomorphology doi: 10.1016/j.geomorph.206.04.007 – volume: 40 start-page: 1095 year: 2001 ident: 1851_CR32 publication-title: Environ Geol doi: 10.1007/s002540100310 – ident: 1851_CR55 – volume: 115 start-page: 23 year: 2010 ident: 1851_CR2 publication-title: Geomorphology doi: 10.1016/j.geomorph.09.025 – volume: 102 start-page: 112 issue: 3–4 year: 2008 ident: 1851_CR54 publication-title: Eng Geol doi: 10.1016/j.enggeo.2008.03.010 – volume: 2017 start-page: 589 year: 2017 ident: 1851_CR61 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2017.02.188 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 1851_CR6 publication-title: Mach Learn doi: 10.1023/A:1010933404324 – year: 2008 ident: 1851_CR18 publication-title: Int J Sedim Res doi: 10.1016/s1001-6279(08)60013-X – volume: 33 start-page: 1297 issue: 7 year: 2019 ident: 1851_CR40 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-019-01696-w – ident: 1851_CR38 – volume: 73 start-page: 102 issue: 1 year: 1965 ident: 1851_CR39 publication-title: J Geol doi: 10.1086/627147 – volume: 71 start-page: 523 issue: 1 year: 2014 ident: 1851_CR43 publication-title: Nat Hazards doi: 10.1007/s11069-013-0932-3 – volume: 118 start-page: 53 year: 2016 ident: 1851_CR14 publication-title: Afr Earth Sci doi: 10.1016/j.jafrearsci.02.019 – volume: 10 start-page: 395 issue: 3 year: 2006 ident: 1851_CR21 publication-title: Trans GIS doi: 10.1111/j.1467-9671.2006.01004.x – year: 2019 ident: 1851_CR44 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018.12.248 – year: 2018 ident: 1851_CR48 publication-title: Earth Sci Rev doi: 10.1016/j.earscirev.2018.03.001 – volume: 25 start-page: 247 issue: 3 year: 2000 ident: 1851_CR23 publication-title: Environ. Manag doi: 10.1007/s002679910020 – volume: 6 start-page: 115 year: 2006 ident: 1851_CR25 publication-title: Nat Hazard Earth Syst Sci doi: 10.5194/nhess-6-115-2006 – year: 2016 ident: 1851_CR29 publication-title: Civ Eng J doi: 10.28991/cej-2016-00000066 – volume: 114 start-page: 627 year: 2010 ident: 1851_CR17 publication-title: Geomorphology doi: 10.1016/j.geomorph.2009.09.023 – volume: 29 start-page: 775 year: 2015 ident: 1851_CR12 publication-title: Stoch Environ Res Risk Assess doi: 10.1007/s00477-014-0932-1 – volume: 3 start-page: 4 issue: 1 year: 2009 ident: 1851_CR15 publication-title: Int J Knowl Eng Soft Data Paradig doi: 10.1504/IJKESDP.2011.039875 – volume: 29 start-page: 83 issue: 1 year: 2009 ident: 1851_CR64 publication-title: Bull Soil Water Conserv doi: 10.13961/j.cnki.stbctb.2009.01.011 – year: 2017 ident: 1851_CR30 publication-title: Civ Eng J doi: 10.28991/cej-2017-00000084 – volume: 40 start-page: 368 issue: 02 year: 2010 ident: 1851_CR62 publication-title: J Jilin Unv Earth Sci Ed – volume: 1 start-page: 118 issue: 4 year: 2010 ident: 1851_CR31 publication-title: Environ Earth Sci doi: 10.1007/s12665-011-0990-3 – volume: 19 start-page: 315 year: 2003 ident: 1851_CR57 publication-title: J Artif Intell Res doi: 10.1613/jair.1199 – volume: 27 start-page: 496 issue: 03 year: 2019 ident: 1851_CR52 publication-title: J Eng Geol – ident: 1851_CR102 doi: 10.1007/978-3-319-55342-9_8 – volume: 31 start-page: 181 year: 1999 ident: 1851_CR101 publication-title: Geomorphology doi: 10.1016/s0169-555x(99)00078-1 – volume: 65 start-page: 15 issue: 1 year: 2005 ident: 1851_CR1 publication-title: Geomorphology doi: 10.1016/j.geomorph.2004.06.010 – volume: 30 start-page: 451 year: 2003 ident: 1851_CR13 publication-title: Nat Hazards doi: 10.1023/B:NHAZ.0000007172.62651.2b – volume: 11 start-page: 10725 year: 2009 ident: 1851_CR22 publication-title: Geophys Res Abstr – volume: 12 start-page: 86 issue: 1 year: 2010 ident: 1851_CR9 publication-title: Brief Bioinform doi: 10.1093/bib/bbq011 – year: 2019 ident: 1851_CR41 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2018 – volume: 117 start-page: 214 year: 2018 ident: 1851_CR37 publication-title: Transp Res Part A Policy Pract doi: 10.1016/j.tra.2018.08.030 – year: 2012 ident: 1851_CR8 publication-title: Geomorphology doi: 10.1016/j.geomorph.04.023 – volume-title: Statistical methods for social scientists year: 1977 ident: 1851_CR26 doi: 10.1037/14160-000 – volume: 78 start-page: 691 issue: 3 year: 1991 ident: 1851_CR42 publication-title: Biometrika doi: 10.1093/biomet/78.3.691 – volume: 40 start-page: 248 issue: 2 year: 1968 ident: 1851_CR16 publication-title: J R Stat Soc Ser B (Methodol) doi: 10.1111/j.2517-6161.1968.tb00724.x – volume: 94 start-page: 353 year: 2008 ident: 1851_CR10 publication-title: Geomorphology doi: 10.1016/j.geomorph.2006.10.033 – volume: 39 start-page: 539 issue: 2 year: 2009 ident: 1851_CR36 publication-title: IEEE Trans Syst Man Cybern Part B Cybern A Publ IEEE Syst Man Cybern Soc doi: 10.1109/TSMCB.2008.2007853 – volume: 15 start-page: 3133 issue: 1 year: 2014 ident: 1851_CR19 publication-title: J Mach Learn Res doi: 10.1117/1.JRS.11.015020 – year: 2016 ident: 1851_CR50 publication-title: Bull Eng Geol Environ doi: 10.1007/s10064-015-0784-z – year: 2018 ident: 1851_CR5 publication-title: Physiol Rep doi: 10.14814/phy2.13928 – volume-title: Regression analysis by example year: 2012 ident: 1851_CR11 – ident: 1851_CR56 doi: 10.1109/icdse.2012.6282321 – volume: 170 start-page: 70 year: 2012 ident: 1851_CR35 publication-title: Geoderma doi: 10.1016/j.geoderma.2011.10.010 – volume: 16 start-page: 449 issue: 2 year: 2016 ident: 1851_CR4 publication-title: Nat Hazard Earth Syst Sci doi: 10.5194/nhess-16-449-2016 – year: 2013 ident: 1851_CR58 publication-title: Geomorphology doi: 10.1016/j.geomorph.2013.06.003 – year: 2015 ident: 1851_CR53 publication-title: Geomorphology doi: 10.1016/j.geomorph.2015.06.001 – volume: 28 start-page: 1465 issue: 6 year: 2014 ident: 1851_CR34 publication-title: Stoch Env Res Risk Assess doi: 10.1007/s00477-014-0848-9 |
| SSID | ssj0017754 ssib007539910 ssib057179955 ssib001127189 |
| Score | 2.4433675 |
| Snippet | Debris flows destroys the facilities and seriously threatens human lives, especially in mountainous area. Susceptibility mapping is the key for hazard... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1887 |
| SubjectTerms | Aquatic Pollution Bayesian analysis Chemistry and Earth Sciences Computational Intelligence Computer Science Contingency Datasets Debris flow Detritus Discriminant analysis Earth and Environmental Science Earth Sciences Environment Flow mapping Land use Land use management Land use planning Learning algorithms Machine learning Mapping Math. Appl. in Environmental Science Model accuracy Mountain regions Mountainous areas Original Paper Performance evaluation Physics Probability Theory and Stochastic Processes Regression analysis Risk reduction Statistical analysis Statistics for Engineering Susceptibility Waste Water Technology Water Management Water Pollution Control |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PS8MwFH7M7aAX0ak4f5GDNw2mTdq0BxGViQgOEQfeSpqketBt2on43_uSpRsKem2aHPrlx3vN-74P4FCnUrBSaiqSqqSiQiyyWFYUcwkrEytz5i_abwfp9VDcPCaPLRg0XBhXVtnsiX6jNmPt_pGfxMJpHYmIsbPJG3WuUe52tbHQUMFawZx6ibEl6MROGasNnYv-4O5-fq_g9N4834in1EnRBRqNJ9M54URJXTrF8BCLaPbzqFrEn7-uTP1JdLUGqyGEJOczzNehZUdd2OovGGvYGJZs3YXlYHP-_LUBxTnRc99BMq6IoxN5pWbsokaGvPrSSkuCl8QTmRlM1wRDW2KsYweQ6mX8SeqP2tfD-NLaL-znZB6eNmF41X-4vKbBYYFqDLymtIpNbkSsk7RKcm7LFKGz7l8bjwQ-5zznzPBMpRinJLEsMdfhqYpSnUgTYarFt6A9Go_sNpDMGFNm1sZKYoaldM5UhuGMEiqpWJmzHkTNxyx0kB93LhgvxVw42QNQIACFB6DIenA07zOZiW_8-_Zeg1ERFmJdLKZND44b3BbNf4-28_9ou7ASu6niWYl70J6-f9h9DE-m5UGYc9_tIN9R priority: 102 providerName: ProQuest |
| Title | A comparison of statistical and machine learning methods for debris flow susceptibility mapping |
| URI | https://link.springer.com/article/10.1007/s00477-020-01851-8 https://www.proquest.com/docview/2471624100 |
| Volume | 34 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1436-3259 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017754 issn: 1436-3240 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1436-3259 dateEnd: 20241101 omitProxy: true ssIdentifier: ssj0017754 issn: 1436-3240 databaseCode: 8FG dateStart: 20020201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1436-3259 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017754 issn: 1436-3240 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1436-3259 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017754 issn: 1436-3240 databaseCode: U2A dateStart: 19990404 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58IHrxsSqujyUHbxpom6Rpj6vsKooi4oKeSpukelh3xa6I_95JNu2iqOCpkGZ66Jc0M535vgE4VLHkQSEV5aIsKC8RiySSJcVYwkhhZBq4RPvVdXw-4Bf34t6Twqq62r1OSbovdUN2s8KGktpwJ8BDJqTJPCwKK-eFq3gQdZvcgdV0c5wiFlMrN-epMj8_4-txNPMxv6VF3WnTX4dV7yaS7hTXDZgzoxas1S0YiN-RLdjuzYhqON-PVy1Y9t3Nnz5asOTKPFW1CVmXqKbxIBmXxPKJnFQzGucjTZ5dbaUhvpnEI5l2mK4I-rZEG0sPIOVw_E6qt8oVxLja2g-0szoPj1sw6PfuTs-pb7FAFXpeE1pGOtU8UiIuRcpMESN2xv5sYyHHccZSFmiW5DE6KiKSBQY7LM7DWAmpQ4y12DYsjMYjswMk0VoXiTFRLjHEylUa5An6MznPRRkUadCGsH7TmfL647YNxjBrlJMdOhmikzl0sqQNR43Ny1R948_Z-zWAmd-JVRZxq5HF0aQNxzWos9u_P233f9P3YCWy68rRFPdhYfL6Zg7QX5kUHZhP-mcdWOyePVz28HrSu7657bhF-wkY1-Ms |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3xcYBL1VJQt6WtD-0JrDq2EycHhGi7aCmwQhVI3FzHduBAd2mzCO2f629j7HV21UrlxjWOrcgzsWfsee8BfLCFkqxWlsq8qals0BYlVw3FXMKr3KuKxYv202ExuJDfLvPLJfjTYWFCWWW3JsaF2o1tOCP_xGXgOpIZY_u3v2hQjQq3q52EhknSCm4vUowlYMexn95jCtfuHX1Fe3_k_LB__mVAk8oAtRh8TGjDXeUkt3nR5JXwdYGf78N5k8gkPheiEsyJ0hS4V-dc1Rjvi8Jkhc2VyzDdEDjuMqxKIStM_lY_94dn3-f3GIFfLuKbREED9V2C7UTwXiBqVDSkbww3zYyWf2-Ni3j3nyvauPMdPodnKWQlBzMfewFLfrQBW_0FQg4b0xLRbsBaklW_nr4EfUDsXOeQjBsS4EuRGRq7mJEjP2MppydJu-KKzAStW4KhNHE-oBFIczO-J-1dG-tvYinvFPsFWomrTbh4krnegpXReORfASmdc3XpPTcKMzpjK2ZKDJ-MNHnD6or1IOsmU9tEdx5UN270nKg5GkCjAXQ0gC57sDPvczsj-3j07e3ORjr9-K1euGkPdju7LZr_P9rrx0d7D2uD89MTfXI0PH4D6zy4TUREbsPK5Pedf4uh0aR-l_yPwI-ndvkHAnsZUg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgEXBIWqCwV8gBNYdWwnTg4IVbRLS6HiQKXeTOKPcii7hWxV7V_j1zHjdXYFEr31GsdW5Jl4Zjzz3gC8dJXRojOO6zJ2XEeURS1N5BhLBFMG04iUaP98XB2c6I-n5eka_B6wMFRWOZyJ6aD2U0d35DtSE9eRLoTYibks4sve-N3FT04dpCjTOrTTWKjIUZhfYfjWvz3cQ1m_knK8__X9Ac8dBrhDx2PGo_SN19KVVSwbFboKPz3QXZMqND5XqlHCq7qt0E6X0nTo66uqLSpXGl9gqKFw3Vtw2xCLO6HUxx-WGQxilkvIJlVxIr3LgJ0E2yOKRsMpcBNoLgte_20UV57uP8nZZPPGD-B-dlbZ7kK7HsJamGzA5v4KG4eD-XDoN-Bubqj-ff4I7C5zyw6HbBoZAZcSJzROaSee_UhFnIHlrhVnbNHKumfoRDMfCIfA4vn0ivWXfaq8SUW8c5xHhBJnj-HkRnZ6E9Yn00nYAlZ777s6BNkajOVa14i2Rsep1W0ZRdeIERTDZlqXic6p38a5XVI0JwFYFIBNArD1CF4v51wsaD6ufXt7kJHNv3xvVwo6gjeD3FbD_1_tyfWrvYA7qOj20-Hx0VO4J0lrEhRyG9Znvy7DM_SJZt3zpHwMvt20tv8BNIAW7A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+comparison+of+statistical+and+machine+learning+methods+for+debris+flow+susceptibility+mapping&rft.jtitle=Stochastic+environmental+research+and+risk+assessment&rft.au=Liang%2C+Zhu&rft.au=Wang%2C+Chang-Ming&rft.au=Zhang%2C+Zhi-Min&rft.au=Khan%2C+Kaleem-Ullah-Jan&rft.date=2020-11-01&rft.issn=1436-3240&rft.eissn=1436-3259&rft.volume=34&rft.issue=11&rft.spage=1887&rft.epage=1907&rft_id=info:doi/10.1007%2Fs00477-020-01851-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00477_020_01851_8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1436-3240&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1436-3240&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1436-3240&client=summon |