Runoff Forecast Model Based on an EEMD-ANN and Meteorological Factors Using a Multicore Parallel Algorithm

Accurate long-term runoff forecasting is crucial for managing and allocating water resources. Due to the complexity and variability of natural runoff, the most difficult problems currently faced by long-term runoff forecasting are the difficulty of model construction, poor prediction accuracy, and t...

Full description

Saved in:
Bibliographic Details
Published inWater resources management Vol. 37; no. 4; pp. 1539 - 1555
Main Authors Liao, Shengli, Wang, Huan, Liu, Benxi, Ma, Xiangyu, Zhou, Binbin, Su, Huaying
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.03.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0920-4741
1573-1650
DOI10.1007/s11269-023-03442-y

Cover

Abstract Accurate long-term runoff forecasting is crucial for managing and allocating water resources. Due to the complexity and variability of natural runoff, the most difficult problems currently faced by long-term runoff forecasting are the difficulty of model construction, poor prediction accuracy, and time intensive forecasting processes. Therefore, this study proposes a hybrid long-term runoff forecasting framework that uses the antecedent inflow and specific meteorological factors as the inputs, is modeled by ensemble empirical mode decomposition (EEMD) coupled with an artificial neural network (ANN), and computed by a parallel algorithm. First, the framework can transform monthly inflow and meteorological series into stationary signals via EEMD to more comprehensively explore the relationships of the input factors through the ANN. Second, the selected meteorological factors that are closely related to inflow formation can be filtered out by the single correlation coefficient method, which contributes to reducing coupling between input factors, and increases the accuracy of the prediction models. Finally, a multicore parallel algorithm that is easily accessed everywhere and that fully utilizes multiple calculation resources while flexibly contending with various optimization requirements will improve forecasting efficiency. The Xiaowan Hydropower Station (XW) is selected as the study area, and the final results of the study show that (1) the addition of targeted meteorological factors does indeed greatly enhance the performance of the prediction models; (2) the five criteria for evaluating the prediction accuracy show that the EEMD-ANN model is far superior to the prediction performance from the ordinary ANN model when run under the same input conditions; and (3) the optimization time of the 32-core model can be reduced by as much as 25 times, which significantly saves time during the forecast process.
AbstractList Accurate long-term runoff forecasting is crucial for managing and allocating water resources. Due to the complexity and variability of natural runoff, the most difficult problems currently faced by long-term runoff forecasting are the difficulty of model construction, poor prediction accuracy, and time intensive forecasting processes. Therefore, this study proposes a hybrid long-term runoff forecasting framework that uses the antecedent inflow and specific meteorological factors as the inputs, is modeled by ensemble empirical mode decomposition (EEMD) coupled with an artificial neural network (ANN), and computed by a parallel algorithm. First, the framework can transform monthly inflow and meteorological series into stationary signals via EEMD to more comprehensively explore the relationships of the input factors through the ANN. Second, the selected meteorological factors that are closely related to inflow formation can be filtered out by the single correlation coefficient method, which contributes to reducing coupling between input factors, and increases the accuracy of the prediction models. Finally, a multicore parallel algorithm that is easily accessed everywhere and that fully utilizes multiple calculation resources while flexibly contending with various optimization requirements will improve forecasting efficiency. The Xiaowan Hydropower Station (XW) is selected as the study area, and the final results of the study show that (1) the addition of targeted meteorological factors does indeed greatly enhance the performance of the prediction models; (2) the five criteria for evaluating the prediction accuracy show that the EEMD-ANN model is far superior to the prediction performance from the ordinary ANN model when run under the same input conditions; and (3) the optimization time of the 32-core model can be reduced by as much as 25 times, which significantly saves time during the forecast process.
Abstract Accurate long-term runoff forecasting is crucial for managing and allocating water resources. Due to the complexity and variability of natural runoff, the most difficult problems currently faced by long-term runoff forecasting are the difficulty of model construction, poor prediction accuracy, and time intensive forecasting processes. Therefore, this study proposes a hybrid long-term runoff forecasting framework that uses the antecedent inflow and specific meteorological factors as the inputs, is modeled by ensemble empirical mode decomposition (EEMD) coupled with an artificial neural network (ANN), and computed by a parallel algorithm. First, the framework can transform monthly inflow and meteorological series into stationary signals via EEMD to more comprehensively explore the relationships of the input factors through the ANN. Second, the selected meteorological factors that are closely related to inflow formation can be filtered out by the single correlation coefficient method, which contributes to reducing coupling between input factors, and increases the accuracy of the prediction models. Finally, a multicore parallel algorithm that is easily accessed everywhere and that fully utilizes multiple calculation resources while flexibly contending with various optimization requirements will improve forecasting efficiency. The Xiaowan Hydropower Station (XW) is selected as the study area, and the final results of the study show that (1) the addition of targeted meteorological factors does indeed greatly enhance the performance of the prediction models; (2) the five criteria for evaluating the prediction accuracy show that the EEMD-ANN model is far superior to the prediction performance from the ordinary ANN model when run under the same input conditions; and (3) the optimization time of the 32-core model can be reduced by as much as 25 times, which significantly saves time during the forecast process.
Author Wang, Huan
Su, Huaying
Zhou, Binbin
Liao, Shengli
Liu, Benxi
Ma, Xiangyu
Author_xml – sequence: 1
  givenname: Shengli
  surname: Liao
  fullname: Liao, Shengli
  organization: Institute of Hydropower and Hydroinformatics, Dalian University of Technology
– sequence: 2
  givenname: Huan
  surname: Wang
  fullname: Wang, Huan
  email: whkkll@163.com
  organization: Institute of Hydropower and Hydroinformatics, Dalian University of Technology
– sequence: 3
  givenname: Benxi
  surname: Liu
  fullname: Liu, Benxi
  organization: Institute of Hydropower and Hydroinformatics, Dalian University of Technology
– sequence: 4
  givenname: Xiangyu
  surname: Ma
  fullname: Ma, Xiangyu
  organization: Institute of Hydropower and Hydroinformatics, Dalian University of Technology
– sequence: 5
  givenname: Binbin
  surname: Zhou
  fullname: Zhou, Binbin
  organization: Yunnan Electric Power Dispatch Control Center of Yunnan Power Grid
– sequence: 6
  givenname: Huaying
  surname: Su
  fullname: Su, Huaying
  organization: Power Dispatching Control Center of Guizhou Power Grid
BookMark eNp9kT1PIzEURS3EShvY_QNbWaKhMfhzPFMGSGAlAggtteXxeIIjxwbbU-TfYwjSShRU7xXnXF3pHoHDEIMF4A_BZwRjeZ4JoU2HMGUIM84p2h2AGRGSIdIIfAhmuKMYccnJT3CU8wbjqnV4BjaPU4jjCJcxWaNzgas4WA8vdLYDjAHqABeL1RWa393Vf4ArW2xM0ce1M9rDpTYlpgyfsgtrqOFq8sWZmgUfdNLe16i5X8fkyvP2F_gxap_t7897DJ6Wi3-XN-j2_vrv5fwWGSZoQXYQnSYGt5KZ3hrbtaTtzMgYNxgLyoTgtG-IbEbd8IYZ3g9tL6QUvRVS9wM7Bqf73JcUXyebi9q6bKz3Otg4ZUXbVnatFERW9OQLuolTCrWdorKjRErGcaXaPWVSzDnZURlXdHExlKSdVwSr9xHUfgRVR1AfI6hdVekX9SW5rU677yW2l3KFw9qm_62-sd4Ap06bLQ
CitedBy_id crossref_primary_10_3390_w16030472
crossref_primary_10_1016_j_energy_2024_132285
crossref_primary_10_1007_s11269_024_03930_9
crossref_primary_10_1038_s41598_024_74503_4
crossref_primary_10_3390_electronics13122339
crossref_primary_10_1007_s11269_023_03562_5
crossref_primary_10_1016_j_egyr_2023_09_071
Cites_doi 10.5194/hess-17-1797-2013
10.1007/s11269-022-03063-x
10.2166/hydro.2016.168
10.1007/s11269-017-1796-1
10.5194/hess-18-2711-2014
10.2166/hydro.2013.134
10.1061/(ASCE)1084-0699(2005)10:6(485)
10.1623/hysj.51.4.599
10.3390/w7052494
10.1002/2017RG000574
10.1016/j.jhydrol.2018.01.015
10.1007/s40710-021-00543-x
10.1007/s11269-019-02295-8
10.1007/s11269-021-02859-7
10.5194/hess-24-2343-2020
10.1002/2015JD023185
10.1016/j.jhydrol.2006.02.025
10.1007/s11269-022-03401-z
10.1007/s12652-020-02345-9
10.5194/hess-25-2045-2021
10.1016/j.envres.2015.02.002
10.1109/AICI.2010.45
10.1109/ICICEE.2012.57
10.1002/wat2.1246
10.1016/j.scs.2020.102686
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
3V.
7QH
7ST
7UA
7WY
7WZ
7XB
87Z
88I
8FD
8FE
8FG
8FH
8FK
8FL
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BBNVY
BENPR
BEZIV
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
FRNLG
F~G
GNUQQ
H97
HCIFZ
K60
K6~
KR7
L.-
L.G
L6V
LK8
M0C
M2P
M7P
M7S
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
Q9U
SOI
7S9
L.6
DOI 10.1007/s11269-023-03442-y
DatabaseName CrossRef
ProQuest Central (Corporate)
Aqualine
Environment Abstracts
Water Resources Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Business Premium Collection
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Biological Sciences
ABI Inform
Science Database
Biological Science Database
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
ProQuest Central Basic
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ABI/INFORM Complete
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Biological Science Database
ProQuest Business Collection
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ABI/INFORM Complete (Alumni Edition)
Civil Engineering Abstracts
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
Environment Abstracts
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 1555
ExternalDocumentID 10_1007_s11269_023_03442_y
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51979023
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8S
Z8T
Z8U
Z8W
Z8Z
Z92
ZMTXR
~02
~A9
~EX
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7QH
7ST
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H97
KR7
L.-
L.G
PKEHL
PQEST
PQUKI
Q9U
SOI
7S9
L.6
ID FETCH-LOGICAL-c352t-ed59a1c0873cbece98189cf334c005235542b6176fa6463c4bd8b5775be57abd3
IEDL.DBID BENPR
ISSN 0920-4741
IngestDate Thu Oct 02 12:14:44 EDT 2025
Sat Aug 23 13:25:14 EDT 2025
Wed Oct 01 01:10:53 EDT 2025
Thu Apr 24 22:51:48 EDT 2025
Fri Feb 21 02:43:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords ANN
Parallel algorithm
Ensemble empirical mode decomposition
Long-term runoff forecast
Filtered meteorological factors
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-ed59a1c0873cbece98189cf334c005235542b6176fa6463c4bd8b5775be57abd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2792177340
PQPubID 54174
PageCount 17
ParticipantIDs proquest_miscellaneous_2887987517
proquest_journals_2792177340
crossref_citationtrail_10_1007_s11269_023_03442_y
crossref_primary_10_1007_s11269_023_03442_y
springer_journals_10_1007_s11269_023_03442_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230300
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 3
  year: 2023
  text: 20230300
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2023
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References Ma, Zhong, Xu, Zhu, Li, Wang, Lu (CR15) 2021; 35
Shoaib, Shamseldin, Khan, Khan, Khan, Sultan, Melville (CR19) 2018; 32
Ma, Yuan, Ye (CR14) 2015; 120
CR17
Zhang, Zhang, Wang, Wu, Xu (CR28) 2021; 38
Xie, Tang, Wang, Li, Chen, An, Hu (CR26) 2016; 33
Wang, Xu, Chau, Chen (CR22) 2013; 15
Sun, Miao, Duan, Ashouri, Sorooshian, Hsu (CR20) 2018; 56
Wang, Liu, Li, Suo, Lu (CR24) 2022; 36
Chau (CR2) 2006; 329
Fahimi, El-Shafie (CR4) 2014; 18
Callegari, Mazzoli, Pistocchi (CR1) 2015; 7
Liao, Li, Sun, Li (CR10) 2016; 18
CR8
Chau, Wu, Li (CR3) 2005; 10
Lu, Zhou (CR13) 2014; 34
Zhao, Ping, Ding, Chuan (CR29) 2020
CR9
Wang, Chau, Qiu, Chen (CR23) 2015; 139
CR25
Li, Wang, Zhao, Xie, Qiu (CR7) 2019; 33
Tan, Lie, Wang, Wang, Wen, Ji, Kang (CR21) 2018; 576
He, Sang, Yin, Zheng, Chen (CR5) 2022
Martin, Frederik, Daniel, Grey, Jimmy, Sepp (CR16) 2020; 25
Liao, Liu, Liu, Cheng, Jin, Zhao (CR11) 2020; 24
Ravindran, Bhaskaran, Ambat (CR18) 2021; 8
Lin, Cheng, Chau (CR12) 2006; 51
Yue, Ai, Xiong, Song, Hong, Yu (CR27) 2020; 39
Khader, Rosenberg, McKee (CR6) 2013; 17
WC Wang (3442_CR22) 2013; 15
3442_CR8
SM Ravindran (3442_CR18) 2021; 8
3442_CR9
D Lu (3442_CR13) 2014; 34
G Martin (3442_CR16) 2020; 25
S He (3442_CR5) 2022
FF Li (3442_CR7) 2019; 33
JY Lin (3442_CR12) 2006; 51
QH Sun (3442_CR20) 2018; 56
F Fahimi (3442_CR4) 2014; 18
KW Chau (3442_CR3) 2005; 10
3442_CR25
ZX Yue (3442_CR27) 2020; 39
WC Wang (3442_CR23) 2015; 139
M Callegari (3442_CR1) 2015; 7
KW Chau (3442_CR2) 2006; 329
QF Tan (3442_CR21) 2018; 576
SL Liao (3442_CR10) 2016; 18
F Ma (3442_CR14) 2015; 120
XY Xie (3442_CR26) 2016; 33
SL Liao (3442_CR11) 2020; 24
M Shoaib (3442_CR19) 2018; 32
X Zhang (3442_CR28) 2021; 38
XY Zhao (3442_CR29) 2020
YF Ma (3442_CR15) 2021; 35
3442_CR17
YT Wang (3442_CR24) 2022; 36
AI Khader (3442_CR6) 2013; 17
References_xml – volume: 17
  start-page: 1797
  issue: 5
  year: 2013
  end-page: 1807
  ident: CR6
  article-title: A decision tree model to estimate the value of information provided by a groundwater quality monitoring network
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-17-1797-2013
– volume: 36
  start-page: 971
  issue: 3
  year: 2022
  end-page: 987
  ident: CR24
  article-title: Medium and long-term precipitation prediction using wavelet decomposition-prediction-reconstruction model
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-022-03063-x
– volume: 33
  start-page: 12
  issue: 10
  year: 2016
  end-page: 14
  ident: CR26
  article-title: Runoff forecasting model in flood season based on weather factors
  publication-title: J Paper
– volume: 18
  start-page: 803
  issue: 5
  year: 2016
  end-page: 815
  ident: CR10
  article-title: Real-time correction of antecedent precipitation for the Xinanjiang model using the genetic algorithm
  publication-title: J Hydroinform
  doi: 10.2166/hydro.2016.168
– volume: 32
  start-page: 83
  issue: 1
  year: 2018
  end-page: 103
  ident: CR19
  article-title: A comparative study of various hybrid wavelet feedforward neural network models for runoff forecasting
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-017-1796-1
– volume: 18
  start-page: 2711
  issue: 7
  year: 2014
  end-page: 2714
  ident: CR4
  article-title: Comment on "a hybrid model of self organizing maps and least square support vector machine for river flow forecasting" by Ismail et al
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-18-2711-2014
– volume: 15
  start-page: 1377
  issue: 4
  year: 2013
  end-page: 1390
  ident: CR22
  article-title: Improved annual rainfall-runoff forecasting using PSO–SVM model based on EEMD
  publication-title: J Hydroinf
  doi: 10.2166/hydro.2013.134
– volume: 10
  start-page: 485
  issue: 6
  year: 2005
  end-page: 491
  ident: CR3
  article-title: Comparison of several flood forecasting models in yangtze river
  publication-title: J Hydroelectr Eng
  doi: 10.1061/(ASCE)1084-0699(2005)10:6(485)
– volume: 51
  start-page: 599
  issue: 4
  year: 2006
  end-page: 612
  ident: CR12
  article-title: Using support vector machines for long-term discharge prediction
  publication-title: Hydrology Sci J
  doi: 10.1623/hysj.51.4.599
– volume: 7
  start-page: 2494
  issue: 5
  year: 2015
  end-page: 2515
  ident: CR1
  article-title: Seasonal river discharge forecasting using support vector regression: a case study in the italian alps
  publication-title: Water
  doi: 10.3390/w7052494
– volume: 56
  start-page: 79
  issue: 1
  year: 2018
  end-page: 107
  ident: CR20
  article-title: A review of global precipitation data sets: Data sources, estimation, and intercomparisons
  publication-title: Rev Geophys
  doi: 10.1002/2017RG000574
– volume: 576
  start-page: 767
  year: 2018
  end-page: 780
  ident: CR21
  article-title: An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.01.015
– volume: 8
  start-page: 1567
  year: 2021
  end-page: 1599
  ident: CR18
  article-title: A deep neural network architecture to model reference evapotranspiration using a single input meteorological parameter
  publication-title: Environ Process
  doi: 10.1007/s40710-021-00543-x
– ident: CR8
– ident: CR25
– volume: 33
  start-page: 3095
  issue: 9
  year: 2019
  end-page: 3110
  ident: CR7
  article-title: Decomposition-ANN methods for long-term discharge prediction based on fisher's ordered clustering with MESA
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02295-8
– volume: 34
  start-page: 8
  issue: 4
  year: 2014
  end-page: 14
  ident: CR13
  article-title: Medium and long-term runoff forecasting based on mutual information and bp neural network
  publication-title: J China Hydrol
– volume: 35
  start-page: 2705
  issue: 9
  year: 2021
  end-page: 2721
  ident: CR15
  article-title: Cloud-based multidimensional parallel dynamic programming algorithm for a cascade hydropower system
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-021-02859-7
– ident: CR17
– volume: 24
  start-page: 2343
  issue: 5
  year: 2020
  end-page: 2363
  ident: CR11
  article-title: Multistep-ahead daily inflow forecasting using the ERA-Interim reanalysis data set based on gradient-boosting regression trees
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-24-2343-2020
– volume: 120
  start-page: 8264
  issue: 16
  year: 2015
  end-page: 8275
  ident: CR14
  article-title: Seasonal drought predictability and forecast skill over China
  publication-title: J Geophys Res Atmos
  doi: 10.1002/2015JD023185
– volume: 329
  start-page: 363
  issue: 3–4
  year: 2006
  end-page: 367
  ident: CR2
  article-title: Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2006.02.025
– ident: CR9
– year: 2022
  ident: CR5
  article-title: Short-term runoff prediction optimization method based on bgru-bp and blstm-bp neural networks
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-022-03401-z
– volume: 39
  start-page: 33
  issue: 10
  year: 2020
  end-page: 46
  ident: CR27
  article-title: Mid and long-term runoff forecasting based on improved deep belief networks model
  publication-title: J Hydroelectr Eng
– year: 2020
  ident: CR29
  article-title: Ensemble approach for mid-long term runof forecasting using hybrid algorithms
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-020-02345-9
– volume: 38
  start-page: 131
  issue: 4
  year: 2021
  end-page: 136
  ident: CR28
  article-title: Medium and long-term forecast of the reservoir inflow in the upper yangtze river
  publication-title: Water Resour Protect
– volume: 25
  start-page: 2045
  year: 2020
  end-page: 2062
  ident: CR16
  article-title: Rainfall–runoff prediction at multiple timescales with a single Long Short-Term Memory network
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-25-2045-2021
– volume: 139
  start-page: 46
  year: 2015
  end-page: 54
  ident: CR23
  article-title: Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition
  publication-title: Environ Res
  doi: 10.1016/j.envres.2015.02.002
– volume: 33
  start-page: 3095
  issue: 9
  year: 2019
  ident: 3442_CR7
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-019-02295-8
– volume: 32
  start-page: 83
  issue: 1
  year: 2018
  ident: 3442_CR19
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-017-1796-1
– ident: 3442_CR25
  doi: 10.1109/AICI.2010.45
– ident: 3442_CR8
  doi: 10.1109/ICICEE.2012.57
– year: 2020
  ident: 3442_CR29
  publication-title: J Ambient Intell Humaniz Comput
  doi: 10.1007/s12652-020-02345-9
– volume: 18
  start-page: 2711
  issue: 7
  year: 2014
  ident: 3442_CR4
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-18-2711-2014
– ident: 3442_CR9
  doi: 10.1002/wat2.1246
– volume: 576
  start-page: 767
  year: 2018
  ident: 3442_CR21
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2018.01.015
– ident: 3442_CR17
  doi: 10.1016/j.scs.2020.102686
– year: 2022
  ident: 3442_CR5
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-022-03401-z
– volume: 139
  start-page: 46
  year: 2015
  ident: 3442_CR23
  publication-title: Environ Res
  doi: 10.1016/j.envres.2015.02.002
– volume: 18
  start-page: 803
  issue: 5
  year: 2016
  ident: 3442_CR10
  publication-title: J Hydroinform
  doi: 10.2166/hydro.2016.168
– volume: 25
  start-page: 2045
  year: 2020
  ident: 3442_CR16
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-25-2045-2021
– volume: 15
  start-page: 1377
  issue: 4
  year: 2013
  ident: 3442_CR22
  publication-title: J Hydroinf
  doi: 10.2166/hydro.2013.134
– volume: 7
  start-page: 2494
  issue: 5
  year: 2015
  ident: 3442_CR1
  publication-title: Water
  doi: 10.3390/w7052494
– volume: 8
  start-page: 1567
  year: 2021
  ident: 3442_CR18
  publication-title: Environ Process
  doi: 10.1007/s40710-021-00543-x
– volume: 56
  start-page: 79
  issue: 1
  year: 2018
  ident: 3442_CR20
  publication-title: Rev Geophys
  doi: 10.1002/2017RG000574
– volume: 35
  start-page: 2705
  issue: 9
  year: 2021
  ident: 3442_CR15
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-021-02859-7
– volume: 24
  start-page: 2343
  issue: 5
  year: 2020
  ident: 3442_CR11
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-24-2343-2020
– volume: 39
  start-page: 33
  issue: 10
  year: 2020
  ident: 3442_CR27
  publication-title: J Hydroelectr Eng
– volume: 329
  start-page: 363
  issue: 3–4
  year: 2006
  ident: 3442_CR2
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2006.02.025
– volume: 36
  start-page: 971
  issue: 3
  year: 2022
  ident: 3442_CR24
  publication-title: Water Resour Manag
  doi: 10.1007/s11269-022-03063-x
– volume: 51
  start-page: 599
  issue: 4
  year: 2006
  ident: 3442_CR12
  publication-title: Hydrology Sci J
  doi: 10.1623/hysj.51.4.599
– volume: 33
  start-page: 12
  issue: 10
  year: 2016
  ident: 3442_CR26
  publication-title: J Paper
– volume: 10
  start-page: 485
  issue: 6
  year: 2005
  ident: 3442_CR3
  publication-title: J Hydroelectr Eng
  doi: 10.1061/(ASCE)1084-0699(2005)10:6(485)
– volume: 38
  start-page: 131
  issue: 4
  year: 2021
  ident: 3442_CR28
  publication-title: Water Resour Protect
– volume: 17
  start-page: 1797
  issue: 5
  year: 2013
  ident: 3442_CR6
  publication-title: Hydrol Earth Syst Sci
  doi: 10.5194/hess-17-1797-2013
– volume: 120
  start-page: 8264
  issue: 16
  year: 2015
  ident: 3442_CR14
  publication-title: J Geophys Res Atmos
  doi: 10.1002/2015JD023185
– volume: 34
  start-page: 8
  issue: 4
  year: 2014
  ident: 3442_CR13
  publication-title: J China Hydrol
SSID ssj0010090
Score 2.4261644
Snippet Accurate long-term runoff forecasting is crucial for managing and allocating water resources. Due to the complexity and variability of natural runoff, the most...
Abstract Accurate long-term runoff forecasting is crucial for managing and allocating water resources. Due to the complexity and variability of natural runoff,...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1539
SubjectTerms Accuracy
Algorithms
Artificial neural networks
Atmospheric Sciences
Civil Engineering
Correlation coefficient
Correlation coefficients
Coupled modes
Earth and Environmental Science
Earth Sciences
Environment
Forecasting
Geotechnical Engineering & Applied Earth Sciences
Hydroelectric power
Hydroelectric power stations
Hydrogeology
Hydrology/Water Resources
Inflow
Mathematical analysis
Mathematical models
Neural networks
Optimization
Performance prediction
prediction
Prediction models
Runoff
Runoff forecasting
water power
Water resources
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5eXvRBvOK8EcE3DSRN2qyPUzeGsCHiYG8lt3phtrJ1D_v3nnTtpqKCb4WmCZyT5PvSk_MdhC6amnLpWES0ih0RnFKiQ-oI48wqbdOQKR_R7fWj7kDcDcNhlRQ2qW-71yHJcqdeJruxIIoJYAzxMnUBma2i9dDLecEsHgStRewAWEP5ZyWGg5EAwKxSZX7u4yscLTnmt7BoiTadbbRV0UTcmvt1B624bBdtfhIP3EOvD9MsT1Psi2saNSmwL2s2wtcASxbnGVYZbrd7t6TV78OzxT2gx_m43utwZ15oB5d3BrDCZSau17TE92rsC6zA6KOnfPxSPL_to0Gn_XjTJVXlBGKAUBXE2TBWzNCm5Aac5GKA5diknAtT_gcGDhFo4C5RqiIRcSO0bepQylC7UIKL-AFay_LMHSKsLRMmltTjuLBefApIBku5tJbSNLANxGoDJqaSFffVLUbJUhDZGz0Boyel0ZNZA10uvnmfi2r82fqk9ktSLbBJ4nUPmZRc0AY6X7yGpeHjHSpz-RTawAYaw3mMyQa6qv257OL3EY_-1_wYbQTzKUUoO0FrxXjqToGqFPqsnJkfH4jd-w
  priority: 102
  providerName: Springer Nature
Title Runoff Forecast Model Based on an EEMD-ANN and Meteorological Factors Using a Multicore Parallel Algorithm
URI https://link.springer.com/article/10.1007/s11269-023-03442-y
https://www.proquest.com/docview/2792177340
https://www.proquest.com/docview/2887987517
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-1650
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: 8FG
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB61uxc4VDzFlrIyEjewsGMn3hwQ2kK2FWijqmKlcor8CggtSdlmD_33jPPYBSR6ixInlmbsmS8e-_sAXs0ME8rzhBqdeioFY9TEzFMuuNPGlTHXoaK7zJPzlfx0FV8dQD6chQnbKoeY2AZqV9uwRv42EN1xpYRk769_0aAaFaqrg4SG7qUV3LuWYuwQxlFgxhrB-DTLLy53dQVEFO2qS4o_TRKTaX-MpjtMx6MkpZjDaKDBi-jt36lqjz__KZm2mWjxAI56CEnmnc8fwoGvHsH9P4gFH8OPy21VlyUJwptW3zQkSJ6tySmmLEfqiuiKZNnyI53nOV47skToXG-GOEgWnQgPafcTEE3aU7qB75Jc6E0QX8He19_QOs33n09gtci-fDinvaoCtQi2GupdnGpu2UwJiw70Kabs1JZCSNuuESO-iAzimqTUiUyElcbNTKxUbHys0H3iKYyquvLPgBjHpU0VCzleukBMhQCEl0I5x1gZuQnwwYCF7SnHg_LFutiTJQejF2j0ojV6cTuB17t3rjvCjTtbnwx-KfrJd1Psh8oEXu4e47QJtRBd-XqLbTC4pvivxtUE3gz-3H_i_z0e393jc7gXdUOIMn4Co2az9S8QtjRmCoezxdkUxvOzr5-zaT8y8e4qmv8GsmnqeA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEE91SwEjwQks7NiJN4cKtXRXW9qNqqqVegt-BYS2SdmH0P45fhvjPHYBid56i5TElmfGnrHH830Ab_qGCeV5Qo1OPZWCMWpi5ikX3GnjipjrkNEdZ8noQn6-jC834FdXCxOuVXZrYr1Qu8qGM_IPAeiOKyUk-3j9gwbWqJBd7Sg0dEut4PZqiLG2sOPYL3_iFm62d3SI-n4bRcPB-acRbVkGqMXgY069i1PNLesrYXFAPkUXltpCCGnrM1P0t5FBP58UOpGJsNK4vomVio2PFQ5HYLt3YEsKmeLmb-tgkJ2erfIYGMHUpzwpbtIkOu-2bKcp3uNRklL0mTTA7kV0-bdrXMe7_6Roa883fAgP2pCV7Dc29gg2fPkY7v8BZPgEvp8tyqooSCD6tHo2J4FibUIO0EU6UpVEl2QwGB_S_SzDZ0fGGKpX027dJcOG9IfU9xeIJnVVcMDXJKd6GshesPfJV9TG_NvVU7i4Ffk-g82yKv02EOO4tKliIaaQLgBhYcDDC6GcY6yIXA94J8DcthDngWljkq_BmYPQcxR6Xgs9X_bg3eqf6wbg48avdzu95O1kn-Vr0-zB69VrnKYh96JLXy3wG1zMU9wbctWD950-1038v8edm3t8BXdH5-OT_OQoO34O96LGnCjju7A5ny78CwyZ5uZla5cEvtz2VPgNqwsj7A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ5ioYCR4ARW7diJNweECruhpeyqQlTqLfUroGqblN2s0P41fh3jPHYBid56i5TElscz_sYezzcAL4eGCeV5Qo1OPZWCMWpi5ikX3GnjipjrENGdTJP9Y_npJD7Zgl99Lky4Vtmvic1C7Sobzsh3A9EdV0pItlt01yKORtm7ix80VJAKkda-nEarIod-9RO3b4u3ByOc61dRlI2_ftinXYUBatHxqKl3caq5ZUMlLA7GpwhfqS2EkLY5L0WsjQxifFLoRCbCSuOGJlYqNj5WOBSB7V6D6yqwuIcs9ezjOoKBvktzvpPi9kwibHcJO23aHo-SlCJa0kC4F9HV36C48XT_Cc42mJfdgduds0r2Wu26C1u-vAe3_qAwvA9nX5ZlVRQklPi0elGTUFxtRt4jODpSlUSXZDyejOjedIrPjkzQSa_m_YpLsrbcD2luLhBNmnzgwKxJjvQ8lHnB3mffUPb19_MHcHwl0n0I22VV-kdAjOPSpooFb0K6QIGFrg4vhHKOsSJyA-C9AHPbkZuHGhuzfEPLHISeo9DzRuj5agCv1_9ctNQel369089L3pn5It8o5QBerF-jgYaoiy59tcRvcBlPcVfI1QDe9PO5aeL_PT6-vMfncAMNIP98MD18AjejVpso4zuwXc-X_in6SrV51iglgdOrtoLfmxchhg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Runoff+Forecast+Model+Based+on+an+EEMD-ANN+and+Meteorological+Factors+Using+a+Multicore+Parallel+Algorithm&rft.jtitle=Water+resources+management&rft.au=Liao%2C+Shengli&rft.au=Wang%2C+Huan&rft.au=Liu%2C+Benxi&rft.au=Ma%2C+Xiangyu&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=37&rft.issue=4&rft.spage=1539&rft.epage=1555&rft_id=info:doi/10.1007%2Fs11269-023-03442-y&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon