Runoff Forecast Model Based on an EEMD-ANN and Meteorological Factors Using a Multicore Parallel Algorithm
Accurate long-term runoff forecasting is crucial for managing and allocating water resources. Due to the complexity and variability of natural runoff, the most difficult problems currently faced by long-term runoff forecasting are the difficulty of model construction, poor prediction accuracy, and t...
        Saved in:
      
    
          | Published in | Water resources management Vol. 37; no. 4; pp. 1539 - 1555 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Dordrecht
          Springer Netherlands
    
        01.03.2023
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0920-4741 1573-1650  | 
| DOI | 10.1007/s11269-023-03442-y | 
Cover
| Abstract | Accurate long-term runoff forecasting is crucial for managing and allocating water resources. Due to the complexity and variability of natural runoff, the most difficult problems currently faced by long-term runoff forecasting are the difficulty of model construction, poor prediction accuracy, and time intensive forecasting processes. Therefore, this study proposes a hybrid long-term runoff forecasting framework that uses the antecedent inflow and specific meteorological factors as the inputs, is modeled by ensemble empirical mode decomposition (EEMD) coupled with an artificial neural network (ANN), and computed by a parallel algorithm. First, the framework can transform monthly inflow and meteorological series into stationary signals via EEMD to more comprehensively explore the relationships of the input factors through the ANN. Second, the selected meteorological factors that are closely related to inflow formation can be filtered out by the single correlation coefficient method, which contributes to reducing coupling between input factors, and increases the accuracy of the prediction models. Finally, a multicore parallel algorithm that is easily accessed everywhere and that fully utilizes multiple calculation resources while flexibly contending with various optimization requirements will improve forecasting efficiency. The Xiaowan Hydropower Station (XW) is selected as the study area, and the final results of the study show that (1) the addition of targeted meteorological factors does indeed greatly enhance the performance of the prediction models; (2) the five criteria for evaluating the prediction accuracy show that the EEMD-ANN model is far superior to the prediction performance from the ordinary ANN model when run under the same input conditions; and (3) the optimization time of the 32-core model can be reduced by as much as 25 times, which significantly saves time during the forecast process. | 
    
|---|---|
| AbstractList | Accurate long-term runoff forecasting is crucial for managing and allocating water resources. Due to the complexity and variability of natural runoff, the most difficult problems currently faced by long-term runoff forecasting are the difficulty of model construction, poor prediction accuracy, and time intensive forecasting processes. Therefore, this study proposes a hybrid long-term runoff forecasting framework that uses the antecedent inflow and specific meteorological factors as the inputs, is modeled by ensemble empirical mode decomposition (EEMD) coupled with an artificial neural network (ANN), and computed by a parallel algorithm. First, the framework can transform monthly inflow and meteorological series into stationary signals via EEMD to more comprehensively explore the relationships of the input factors through the ANN. Second, the selected meteorological factors that are closely related to inflow formation can be filtered out by the single correlation coefficient method, which contributes to reducing coupling between input factors, and increases the accuracy of the prediction models. Finally, a multicore parallel algorithm that is easily accessed everywhere and that fully utilizes multiple calculation resources while flexibly contending with various optimization requirements will improve forecasting efficiency. The Xiaowan Hydropower Station (XW) is selected as the study area, and the final results of the study show that (1) the addition of targeted meteorological factors does indeed greatly enhance the performance of the prediction models; (2) the five criteria for evaluating the prediction accuracy show that the EEMD-ANN model is far superior to the prediction performance from the ordinary ANN model when run under the same input conditions; and (3) the optimization time of the 32-core model can be reduced by as much as 25 times, which significantly saves time during the forecast process. Abstract Accurate long-term runoff forecasting is crucial for managing and allocating water resources. Due to the complexity and variability of natural runoff, the most difficult problems currently faced by long-term runoff forecasting are the difficulty of model construction, poor prediction accuracy, and time intensive forecasting processes. Therefore, this study proposes a hybrid long-term runoff forecasting framework that uses the antecedent inflow and specific meteorological factors as the inputs, is modeled by ensemble empirical mode decomposition (EEMD) coupled with an artificial neural network (ANN), and computed by a parallel algorithm. First, the framework can transform monthly inflow and meteorological series into stationary signals via EEMD to more comprehensively explore the relationships of the input factors through the ANN. Second, the selected meteorological factors that are closely related to inflow formation can be filtered out by the single correlation coefficient method, which contributes to reducing coupling between input factors, and increases the accuracy of the prediction models. Finally, a multicore parallel algorithm that is easily accessed everywhere and that fully utilizes multiple calculation resources while flexibly contending with various optimization requirements will improve forecasting efficiency. The Xiaowan Hydropower Station (XW) is selected as the study area, and the final results of the study show that (1) the addition of targeted meteorological factors does indeed greatly enhance the performance of the prediction models; (2) the five criteria for evaluating the prediction accuracy show that the EEMD-ANN model is far superior to the prediction performance from the ordinary ANN model when run under the same input conditions; and (3) the optimization time of the 32-core model can be reduced by as much as 25 times, which significantly saves time during the forecast process.  | 
    
| Author | Wang, Huan Su, Huaying Zhou, Binbin Liao, Shengli Liu, Benxi Ma, Xiangyu  | 
    
| Author_xml | – sequence: 1 givenname: Shengli surname: Liao fullname: Liao, Shengli organization: Institute of Hydropower and Hydroinformatics, Dalian University of Technology – sequence: 2 givenname: Huan surname: Wang fullname: Wang, Huan email: whkkll@163.com organization: Institute of Hydropower and Hydroinformatics, Dalian University of Technology – sequence: 3 givenname: Benxi surname: Liu fullname: Liu, Benxi organization: Institute of Hydropower and Hydroinformatics, Dalian University of Technology – sequence: 4 givenname: Xiangyu surname: Ma fullname: Ma, Xiangyu organization: Institute of Hydropower and Hydroinformatics, Dalian University of Technology – sequence: 5 givenname: Binbin surname: Zhou fullname: Zhou, Binbin organization: Yunnan Electric Power Dispatch Control Center of Yunnan Power Grid – sequence: 6 givenname: Huaying surname: Su fullname: Su, Huaying organization: Power Dispatching Control Center of Guizhou Power Grid  | 
    
| BookMark | eNp9kT1PIzEURS3EShvY_QNbWaKhMfhzPFMGSGAlAggtteXxeIIjxwbbU-TfYwjSShRU7xXnXF3pHoHDEIMF4A_BZwRjeZ4JoU2HMGUIM84p2h2AGRGSIdIIfAhmuKMYccnJT3CU8wbjqnV4BjaPU4jjCJcxWaNzgas4WA8vdLYDjAHqABeL1RWa393Vf4ArW2xM0ce1M9rDpTYlpgyfsgtrqOFq8sWZmgUfdNLe16i5X8fkyvP2F_gxap_t7897DJ6Wi3-XN-j2_vrv5fwWGSZoQXYQnSYGt5KZ3hrbtaTtzMgYNxgLyoTgtG-IbEbd8IYZ3g9tL6QUvRVS9wM7Bqf73JcUXyebi9q6bKz3Otg4ZUXbVnatFERW9OQLuolTCrWdorKjRErGcaXaPWVSzDnZURlXdHExlKSdVwSr9xHUfgRVR1AfI6hdVekX9SW5rU677yW2l3KFw9qm_62-sd4Ap06bLQ | 
    
| CitedBy_id | crossref_primary_10_3390_w16030472 crossref_primary_10_1016_j_energy_2024_132285 crossref_primary_10_1007_s11269_024_03930_9 crossref_primary_10_1038_s41598_024_74503_4 crossref_primary_10_3390_electronics13122339 crossref_primary_10_1007_s11269_023_03562_5 crossref_primary_10_1016_j_egyr_2023_09_071  | 
    
| Cites_doi | 10.5194/hess-17-1797-2013 10.1007/s11269-022-03063-x 10.2166/hydro.2016.168 10.1007/s11269-017-1796-1 10.5194/hess-18-2711-2014 10.2166/hydro.2013.134 10.1061/(ASCE)1084-0699(2005)10:6(485) 10.1623/hysj.51.4.599 10.3390/w7052494 10.1002/2017RG000574 10.1016/j.jhydrol.2018.01.015 10.1007/s40710-021-00543-x 10.1007/s11269-019-02295-8 10.1007/s11269-021-02859-7 10.5194/hess-24-2343-2020 10.1002/2015JD023185 10.1016/j.jhydrol.2006.02.025 10.1007/s11269-022-03401-z 10.1007/s12652-020-02345-9 10.5194/hess-25-2045-2021 10.1016/j.envres.2015.02.002 10.1109/AICI.2010.45 10.1109/ICICEE.2012.57 10.1002/wat2.1246 10.1016/j.scs.2020.102686  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | 
    
| DBID | AAYXX CITATION 3V. 7QH 7ST 7UA 7WY 7WZ 7XB 87Z 88I 8FD 8FE 8FG 8FH 8FK 8FL ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BBNVY BENPR BEZIV BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 FRNLG F~G GNUQQ H97 HCIFZ K60 K6~ KR7 L.- L.G L6V LK8 M0C M2P M7P M7S PATMY PCBAR PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY Q9U SOI 7S9 L.6  | 
    
| DOI | 10.1007/s11269-023-03442-y | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Aqualine Environment Abstracts Water Resources Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Business Premium Collection Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Biological Sciences ABI Inform Science Database Biological Science Database Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection ProQuest Central Basic Environment Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ABI/INFORM Complete Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection Biological Science Collection ProQuest Central (New) Engineering Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Biological Science Database ProQuest Business Collection Aqualine Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Agricultural & Environmental Science Collection ABI/INFORM Complete (Alumni Edition) Civil Engineering Abstracts ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Business (Alumni) Environment Abstracts ProQuest Central (Alumni) Business Premium Collection (Alumni) AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA ProQuest Business Collection (Alumni Edition)  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1573-1650 | 
    
| EndPage | 1555 | 
    
| ExternalDocumentID | 10_1007_s11269_023_03442_y | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51979023 funderid: http://dx.doi.org/10.13039/501100001809  | 
    
| GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 5QI 5VS 67M 67Z 6NX 78A 7WY 7XC 88I 8CJ 8FE 8FG 8FH 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBNVY BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS ECGQY EDH EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV KOW L6V L8X LAK LK5 LK8 LLZTM M0C M2P M4Y M7P M7R M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PATMY PCBAR PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS PYCSY Q2X QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8S Z8T Z8U Z8W Z8Z Z92 ZMTXR ~02 ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7QH 7ST 7UA 7XB 8FD 8FK C1K F1W FR3 H97 KR7 L.- L.G PKEHL PQEST PQUKI Q9U SOI 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c352t-ed59a1c0873cbece98189cf334c005235542b6176fa6463c4bd8b5775be57abd3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 0920-4741 | 
    
| IngestDate | Thu Oct 02 12:14:44 EDT 2025 Sat Aug 23 13:25:14 EDT 2025 Wed Oct 01 01:10:53 EDT 2025 Thu Apr 24 22:51:48 EDT 2025 Fri Feb 21 02:43:37 EST 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | ANN Parallel algorithm Ensemble empirical mode decomposition Long-term runoff forecast Filtered meteorological factors  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c352t-ed59a1c0873cbece98189cf334c005235542b6176fa6463c4bd8b5775be57abd3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PQID | 2792177340 | 
    
| PQPubID | 54174 | 
    
| PageCount | 17 | 
    
| ParticipantIDs | proquest_miscellaneous_2887987517 proquest_journals_2792177340 crossref_citationtrail_10_1007_s11269_023_03442_y crossref_primary_10_1007_s11269_023_03442_y springer_journals_10_1007_s11269_023_03442_y  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20230300 2023-03-00 20230301  | 
    
| PublicationDateYYYYMMDD | 2023-03-01 | 
    
| PublicationDate_xml | – month: 3 year: 2023 text: 20230300  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Dordrecht | 
    
| PublicationPlace_xml | – name: Dordrecht | 
    
| PublicationSubtitle | An International Journal - Published for the European Water Resources Association (EWRA) | 
    
| PublicationTitle | Water resources management | 
    
| PublicationTitleAbbrev | Water Resour Manage | 
    
| PublicationYear | 2023 | 
    
| Publisher | Springer Netherlands Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V  | 
    
| References | Ma, Zhong, Xu, Zhu, Li, Wang, Lu (CR15) 2021; 35 Shoaib, Shamseldin, Khan, Khan, Khan, Sultan, Melville (CR19) 2018; 32 Ma, Yuan, Ye (CR14) 2015; 120 CR17 Zhang, Zhang, Wang, Wu, Xu (CR28) 2021; 38 Xie, Tang, Wang, Li, Chen, An, Hu (CR26) 2016; 33 Wang, Xu, Chau, Chen (CR22) 2013; 15 Sun, Miao, Duan, Ashouri, Sorooshian, Hsu (CR20) 2018; 56 Wang, Liu, Li, Suo, Lu (CR24) 2022; 36 Chau (CR2) 2006; 329 Fahimi, El-Shafie (CR4) 2014; 18 Callegari, Mazzoli, Pistocchi (CR1) 2015; 7 Liao, Li, Sun, Li (CR10) 2016; 18 CR8 Chau, Wu, Li (CR3) 2005; 10 Lu, Zhou (CR13) 2014; 34 Zhao, Ping, Ding, Chuan (CR29) 2020 CR9 Wang, Chau, Qiu, Chen (CR23) 2015; 139 CR25 Li, Wang, Zhao, Xie, Qiu (CR7) 2019; 33 Tan, Lie, Wang, Wang, Wen, Ji, Kang (CR21) 2018; 576 He, Sang, Yin, Zheng, Chen (CR5) 2022 Martin, Frederik, Daniel, Grey, Jimmy, Sepp (CR16) 2020; 25 Liao, Liu, Liu, Cheng, Jin, Zhao (CR11) 2020; 24 Ravindran, Bhaskaran, Ambat (CR18) 2021; 8 Lin, Cheng, Chau (CR12) 2006; 51 Yue, Ai, Xiong, Song, Hong, Yu (CR27) 2020; 39 Khader, Rosenberg, McKee (CR6) 2013; 17 WC Wang (3442_CR22) 2013; 15 3442_CR8 SM Ravindran (3442_CR18) 2021; 8 3442_CR9 D Lu (3442_CR13) 2014; 34 G Martin (3442_CR16) 2020; 25 S He (3442_CR5) 2022 FF Li (3442_CR7) 2019; 33 JY Lin (3442_CR12) 2006; 51 QH Sun (3442_CR20) 2018; 56 F Fahimi (3442_CR4) 2014; 18 KW Chau (3442_CR3) 2005; 10 3442_CR25 ZX Yue (3442_CR27) 2020; 39 WC Wang (3442_CR23) 2015; 139 M Callegari (3442_CR1) 2015; 7 KW Chau (3442_CR2) 2006; 329 QF Tan (3442_CR21) 2018; 576 SL Liao (3442_CR10) 2016; 18 F Ma (3442_CR14) 2015; 120 XY Xie (3442_CR26) 2016; 33 SL Liao (3442_CR11) 2020; 24 M Shoaib (3442_CR19) 2018; 32 X Zhang (3442_CR28) 2021; 38 XY Zhao (3442_CR29) 2020 YF Ma (3442_CR15) 2021; 35 3442_CR17 YT Wang (3442_CR24) 2022; 36 AI Khader (3442_CR6) 2013; 17  | 
    
| References_xml | – volume: 17 start-page: 1797 issue: 5 year: 2013 end-page: 1807 ident: CR6 article-title: A decision tree model to estimate the value of information provided by a groundwater quality monitoring network publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-17-1797-2013 – volume: 36 start-page: 971 issue: 3 year: 2022 end-page: 987 ident: CR24 article-title: Medium and long-term precipitation prediction using wavelet decomposition-prediction-reconstruction model publication-title: Water Resour Manag doi: 10.1007/s11269-022-03063-x – volume: 33 start-page: 12 issue: 10 year: 2016 end-page: 14 ident: CR26 article-title: Runoff forecasting model in flood season based on weather factors publication-title: J Paper – volume: 18 start-page: 803 issue: 5 year: 2016 end-page: 815 ident: CR10 article-title: Real-time correction of antecedent precipitation for the Xinanjiang model using the genetic algorithm publication-title: J Hydroinform doi: 10.2166/hydro.2016.168 – volume: 32 start-page: 83 issue: 1 year: 2018 end-page: 103 ident: CR19 article-title: A comparative study of various hybrid wavelet feedforward neural network models for runoff forecasting publication-title: Water Resour Manag doi: 10.1007/s11269-017-1796-1 – volume: 18 start-page: 2711 issue: 7 year: 2014 end-page: 2714 ident: CR4 article-title: Comment on "a hybrid model of self organizing maps and least square support vector machine for river flow forecasting" by Ismail et al publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-18-2711-2014 – volume: 15 start-page: 1377 issue: 4 year: 2013 end-page: 1390 ident: CR22 article-title: Improved annual rainfall-runoff forecasting using PSO–SVM model based on EEMD publication-title: J Hydroinf doi: 10.2166/hydro.2013.134 – volume: 10 start-page: 485 issue: 6 year: 2005 end-page: 491 ident: CR3 article-title: Comparison of several flood forecasting models in yangtze river publication-title: J Hydroelectr Eng doi: 10.1061/(ASCE)1084-0699(2005)10:6(485) – volume: 51 start-page: 599 issue: 4 year: 2006 end-page: 612 ident: CR12 article-title: Using support vector machines for long-term discharge prediction publication-title: Hydrology Sci J doi: 10.1623/hysj.51.4.599 – volume: 7 start-page: 2494 issue: 5 year: 2015 end-page: 2515 ident: CR1 article-title: Seasonal river discharge forecasting using support vector regression: a case study in the italian alps publication-title: Water doi: 10.3390/w7052494 – volume: 56 start-page: 79 issue: 1 year: 2018 end-page: 107 ident: CR20 article-title: A review of global precipitation data sets: Data sources, estimation, and intercomparisons publication-title: Rev Geophys doi: 10.1002/2017RG000574 – volume: 576 start-page: 767 year: 2018 end-page: 780 ident: CR21 article-title: An adaptive middle and long-term runoff forecast model using EEMD-ANN hybrid approach publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.01.015 – volume: 8 start-page: 1567 year: 2021 end-page: 1599 ident: CR18 article-title: A deep neural network architecture to model reference evapotranspiration using a single input meteorological parameter publication-title: Environ Process doi: 10.1007/s40710-021-00543-x – ident: CR8 – ident: CR25 – volume: 33 start-page: 3095 issue: 9 year: 2019 end-page: 3110 ident: CR7 article-title: Decomposition-ANN methods for long-term discharge prediction based on fisher's ordered clustering with MESA publication-title: Water Resour Manag doi: 10.1007/s11269-019-02295-8 – volume: 34 start-page: 8 issue: 4 year: 2014 end-page: 14 ident: CR13 article-title: Medium and long-term runoff forecasting based on mutual information and bp neural network publication-title: J China Hydrol – volume: 35 start-page: 2705 issue: 9 year: 2021 end-page: 2721 ident: CR15 article-title: Cloud-based multidimensional parallel dynamic programming algorithm for a cascade hydropower system publication-title: Water Resour Manag doi: 10.1007/s11269-021-02859-7 – ident: CR17 – volume: 24 start-page: 2343 issue: 5 year: 2020 end-page: 2363 ident: CR11 article-title: Multistep-ahead daily inflow forecasting using the ERA-Interim reanalysis data set based on gradient-boosting regression trees publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-24-2343-2020 – volume: 120 start-page: 8264 issue: 16 year: 2015 end-page: 8275 ident: CR14 article-title: Seasonal drought predictability and forecast skill over China publication-title: J Geophys Res Atmos doi: 10.1002/2015JD023185 – volume: 329 start-page: 363 issue: 3–4 year: 2006 end-page: 367 ident: CR2 article-title: Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River publication-title: J Hydrol doi: 10.1016/j.jhydrol.2006.02.025 – ident: CR9 – year: 2022 ident: CR5 article-title: Short-term runoff prediction optimization method based on bgru-bp and blstm-bp neural networks publication-title: Water Resour Manag doi: 10.1007/s11269-022-03401-z – volume: 39 start-page: 33 issue: 10 year: 2020 end-page: 46 ident: CR27 article-title: Mid and long-term runoff forecasting based on improved deep belief networks model publication-title: J Hydroelectr Eng – year: 2020 ident: CR29 article-title: Ensemble approach for mid-long term runof forecasting using hybrid algorithms publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-020-02345-9 – volume: 38 start-page: 131 issue: 4 year: 2021 end-page: 136 ident: CR28 article-title: Medium and long-term forecast of the reservoir inflow in the upper yangtze river publication-title: Water Resour Protect – volume: 25 start-page: 2045 year: 2020 end-page: 2062 ident: CR16 article-title: Rainfall–runoff prediction at multiple timescales with a single Long Short-Term Memory network publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-25-2045-2021 – volume: 139 start-page: 46 year: 2015 end-page: 54 ident: CR23 article-title: Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on EEMD decomposition publication-title: Environ Res doi: 10.1016/j.envres.2015.02.002 – volume: 33 start-page: 3095 issue: 9 year: 2019 ident: 3442_CR7 publication-title: Water Resour Manag doi: 10.1007/s11269-019-02295-8 – volume: 32 start-page: 83 issue: 1 year: 2018 ident: 3442_CR19 publication-title: Water Resour Manag doi: 10.1007/s11269-017-1796-1 – ident: 3442_CR25 doi: 10.1109/AICI.2010.45 – ident: 3442_CR8 doi: 10.1109/ICICEE.2012.57 – year: 2020 ident: 3442_CR29 publication-title: J Ambient Intell Humaniz Comput doi: 10.1007/s12652-020-02345-9 – volume: 18 start-page: 2711 issue: 7 year: 2014 ident: 3442_CR4 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-18-2711-2014 – ident: 3442_CR9 doi: 10.1002/wat2.1246 – volume: 576 start-page: 767 year: 2018 ident: 3442_CR21 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2018.01.015 – ident: 3442_CR17 doi: 10.1016/j.scs.2020.102686 – year: 2022 ident: 3442_CR5 publication-title: Water Resour Manag doi: 10.1007/s11269-022-03401-z – volume: 139 start-page: 46 year: 2015 ident: 3442_CR23 publication-title: Environ Res doi: 10.1016/j.envres.2015.02.002 – volume: 18 start-page: 803 issue: 5 year: 2016 ident: 3442_CR10 publication-title: J Hydroinform doi: 10.2166/hydro.2016.168 – volume: 25 start-page: 2045 year: 2020 ident: 3442_CR16 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-25-2045-2021 – volume: 15 start-page: 1377 issue: 4 year: 2013 ident: 3442_CR22 publication-title: J Hydroinf doi: 10.2166/hydro.2013.134 – volume: 7 start-page: 2494 issue: 5 year: 2015 ident: 3442_CR1 publication-title: Water doi: 10.3390/w7052494 – volume: 8 start-page: 1567 year: 2021 ident: 3442_CR18 publication-title: Environ Process doi: 10.1007/s40710-021-00543-x – volume: 56 start-page: 79 issue: 1 year: 2018 ident: 3442_CR20 publication-title: Rev Geophys doi: 10.1002/2017RG000574 – volume: 35 start-page: 2705 issue: 9 year: 2021 ident: 3442_CR15 publication-title: Water Resour Manag doi: 10.1007/s11269-021-02859-7 – volume: 24 start-page: 2343 issue: 5 year: 2020 ident: 3442_CR11 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-24-2343-2020 – volume: 39 start-page: 33 issue: 10 year: 2020 ident: 3442_CR27 publication-title: J Hydroelectr Eng – volume: 329 start-page: 363 issue: 3–4 year: 2006 ident: 3442_CR2 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2006.02.025 – volume: 36 start-page: 971 issue: 3 year: 2022 ident: 3442_CR24 publication-title: Water Resour Manag doi: 10.1007/s11269-022-03063-x – volume: 51 start-page: 599 issue: 4 year: 2006 ident: 3442_CR12 publication-title: Hydrology Sci J doi: 10.1623/hysj.51.4.599 – volume: 33 start-page: 12 issue: 10 year: 2016 ident: 3442_CR26 publication-title: J Paper – volume: 10 start-page: 485 issue: 6 year: 2005 ident: 3442_CR3 publication-title: J Hydroelectr Eng doi: 10.1061/(ASCE)1084-0699(2005)10:6(485) – volume: 38 start-page: 131 issue: 4 year: 2021 ident: 3442_CR28 publication-title: Water Resour Protect – volume: 17 start-page: 1797 issue: 5 year: 2013 ident: 3442_CR6 publication-title: Hydrol Earth Syst Sci doi: 10.5194/hess-17-1797-2013 – volume: 120 start-page: 8264 issue: 16 year: 2015 ident: 3442_CR14 publication-title: J Geophys Res Atmos doi: 10.1002/2015JD023185 – volume: 34 start-page: 8 issue: 4 year: 2014 ident: 3442_CR13 publication-title: J China Hydrol  | 
    
| SSID | ssj0010090 | 
    
| Score | 2.4261644 | 
    
| Snippet | Accurate long-term runoff forecasting is crucial for managing and allocating water resources. Due to the complexity and variability of natural runoff, the most... Abstract Accurate long-term runoff forecasting is crucial for managing and allocating water resources. Due to the complexity and variability of natural runoff,...  | 
    
| SourceID | proquest crossref springer  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1539 | 
    
| SubjectTerms | Accuracy Algorithms Artificial neural networks Atmospheric Sciences Civil Engineering Correlation coefficient Correlation coefficients Coupled modes Earth and Environmental Science Earth Sciences Environment Forecasting Geotechnical Engineering & Applied Earth Sciences Hydroelectric power Hydroelectric power stations Hydrogeology Hydrology/Water Resources Inflow Mathematical analysis Mathematical models Neural networks Optimization Performance prediction prediction Prediction models Runoff Runoff forecasting water power Water resources  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA5eXvRBvOK8EcE3DSRN2qyPUzeGsCHiYG8lt3phtrJ1D_v3nnTtpqKCb4WmCZyT5PvSk_MdhC6amnLpWES0ih0RnFKiQ-oI48wqbdOQKR_R7fWj7kDcDcNhlRQ2qW-71yHJcqdeJruxIIoJYAzxMnUBma2i9dDLecEsHgStRewAWEP5ZyWGg5EAwKxSZX7u4yscLTnmt7BoiTadbbRV0UTcmvt1B624bBdtfhIP3EOvD9MsT1Psi2saNSmwL2s2wtcASxbnGVYZbrd7t6TV78OzxT2gx_m43utwZ15oB5d3BrDCZSau17TE92rsC6zA6KOnfPxSPL_to0Gn_XjTJVXlBGKAUBXE2TBWzNCm5Aac5GKA5diknAtT_gcGDhFo4C5RqiIRcSO0bepQylC7UIKL-AFay_LMHSKsLRMmltTjuLBefApIBku5tJbSNLANxGoDJqaSFffVLUbJUhDZGz0Boyel0ZNZA10uvnmfi2r82fqk9ktSLbBJ4nUPmZRc0AY6X7yGpeHjHSpz-RTawAYaw3mMyQa6qv257OL3EY_-1_wYbQTzKUUoO0FrxXjqToGqFPqsnJkfH4jd-w priority: 102 providerName: Springer Nature  | 
    
| Title | Runoff Forecast Model Based on an EEMD-ANN and Meteorological Factors Using a Multicore Parallel Algorithm | 
    
| URI | https://link.springer.com/article/10.1007/s11269-023-03442-y https://www.proquest.com/docview/2792177340 https://www.proquest.com/docview/2887987517  | 
    
| Volume | 37 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-1650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-1650 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: 8FG dateStart: 19970201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-1650 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010090 issn: 0920-4741 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB61uxc4VDzFlrIyEjewsGMn3hwQ2kK2FWijqmKlcor8CggtSdlmD_33jPPYBSR6ixInlmbsmS8e-_sAXs0ME8rzhBqdeioFY9TEzFMuuNPGlTHXoaK7zJPzlfx0FV8dQD6chQnbKoeY2AZqV9uwRv42EN1xpYRk769_0aAaFaqrg4SG7qUV3LuWYuwQxlFgxhrB-DTLLy53dQVEFO2qS4o_TRKTaX-MpjtMx6MkpZjDaKDBi-jt36lqjz__KZm2mWjxAI56CEnmnc8fwoGvHsH9P4gFH8OPy21VlyUJwptW3zQkSJ6tySmmLEfqiuiKZNnyI53nOV47skToXG-GOEgWnQgPafcTEE3aU7qB75Jc6E0QX8He19_QOs33n09gtci-fDinvaoCtQi2GupdnGpu2UwJiw70Kabs1JZCSNuuESO-iAzimqTUiUyElcbNTKxUbHys0H3iKYyquvLPgBjHpU0VCzleukBMhQCEl0I5x1gZuQnwwYCF7SnHg_LFutiTJQejF2j0ojV6cTuB17t3rjvCjTtbnwx-KfrJd1Psh8oEXu4e47QJtRBd-XqLbTC4pvivxtUE3gz-3H_i_z0e393jc7gXdUOIMn4Co2az9S8QtjRmCoezxdkUxvOzr5-zaT8y8e4qmv8GsmnqeA | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcEE91SwEjwQks7NiJN4cKtXRXW9qNqqqVegt-BYS2SdmH0P45fhvjPHYBid56i5TElmfGnrHH830Ab_qGCeV5Qo1OPZWCMWpi5ikX3GnjipjrkNEdZ8noQn6-jC834FdXCxOuVXZrYr1Qu8qGM_IPAeiOKyUk-3j9gwbWqJBd7Sg0dEut4PZqiLG2sOPYL3_iFm62d3SI-n4bRcPB-acRbVkGqMXgY069i1PNLesrYXFAPkUXltpCCGnrM1P0t5FBP58UOpGJsNK4vomVio2PFQ5HYLt3YEsKmeLmb-tgkJ2erfIYGMHUpzwpbtIkOu-2bKcp3uNRklL0mTTA7kV0-bdrXMe7_6Roa883fAgP2pCV7Dc29gg2fPkY7v8BZPgEvp8tyqooSCD6tHo2J4FibUIO0EU6UpVEl2QwGB_S_SzDZ0fGGKpX027dJcOG9IfU9xeIJnVVcMDXJKd6GshesPfJV9TG_NvVU7i4Ffk-g82yKv02EOO4tKliIaaQLgBhYcDDC6GcY6yIXA94J8DcthDngWljkq_BmYPQcxR6Xgs9X_bg3eqf6wbg48avdzu95O1kn-Vr0-zB69VrnKYh96JLXy3wG1zMU9wbctWD950-1038v8edm3t8BXdH5-OT_OQoO34O96LGnCjju7A5ny78CwyZ5uZla5cEvtz2VPgNqwsj7A | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiE4IJ5ioYCR4ARW7diJNweECruhpeyqQlTqLfUroGqblN2s0P41fh3jPHYBid56i5TElscz_sYezzcAL4eGCeV5Qo1OPZWCMWpi5ikX3GnjipjrENGdTJP9Y_npJD7Zgl99Lky4Vtmvic1C7Sobzsh3A9EdV0pItlt01yKORtm7ix80VJAKkda-nEarIod-9RO3b4u3ByOc61dRlI2_ftinXYUBatHxqKl3caq5ZUMlLA7GpwhfqS2EkLY5L0WsjQxifFLoRCbCSuOGJlYqNj5WOBSB7V6D6yqwuIcs9ezjOoKBvktzvpPi9kwibHcJO23aHo-SlCJa0kC4F9HV36C48XT_Cc42mJfdgduds0r2Wu26C1u-vAe3_qAwvA9nX5ZlVRQklPi0elGTUFxtRt4jODpSlUSXZDyejOjedIrPjkzQSa_m_YpLsrbcD2luLhBNmnzgwKxJjvQ8lHnB3mffUPb19_MHcHwl0n0I22VV-kdAjOPSpooFb0K6QIGFrg4vhHKOsSJyA-C9AHPbkZuHGhuzfEPLHISeo9DzRuj5agCv1_9ctNQel369089L3pn5It8o5QBerF-jgYaoiy59tcRvcBlPcVfI1QDe9PO5aeL_PT6-vMfncAMNIP98MD18AjejVpso4zuwXc-X_in6SrV51iglgdOrtoLfmxchhg | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Runoff+Forecast+Model+Based+on+an+EEMD-ANN+and+Meteorological+Factors+Using+a+Multicore+Parallel+Algorithm&rft.jtitle=Water+resources+management&rft.au=Liao%2C+Shengli&rft.au=Wang%2C+Huan&rft.au=Liu%2C+Benxi&rft.au=Ma%2C+Xiangyu&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=37&rft.issue=4&rft.spage=1539&rft.epage=1555&rft_id=info:doi/10.1007%2Fs11269-023-03442-y&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon |