Multi-head CNN–RNN for multi-time series anomaly detection: An industrial case study
•We propose a Multi-head CNN-RNN for multi-time series anomaly detection.•Time series are addressed independently to deal with heterogeneous sensor systems.•The Multi-head CNN can adapt its heads to the needs of each time series•The Multi-head CNN-RNN adapts to new sensor configurations using transf...
Saved in:
| Published in | Neurocomputing (Amsterdam) Vol. 363; pp. 246 - 260 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
21.10.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0925-2312 1872-8286 1872-8286 |
| DOI | 10.1016/j.neucom.2019.07.034 |
Cover
| Abstract | •We propose a Multi-head CNN-RNN for multi-time series anomaly detection.•Time series are addressed independently to deal with heterogeneous sensor systems.•The Multi-head CNN can adapt its heads to the needs of each time series•The Multi-head CNN-RNN adapts to new sensor configurations using transfer learning.•An industrial case study with elevator data is used to test the proposed method.•Experiments show promising results detecting anomalies in an industrial scenario.
Detecting anomalies in time series data is becoming mainstream in a wide variety of industrial applications in which sensors monitor expensive machinery. The complexity of this task increases when multiple heterogeneous sensors provide information of different nature, scales and frequencies from the same machine. Traditionally, machine learning techniques require a separate data pre-processing before training, which tends to be very time-consuming and often requires domain knowledge. Recent deep learning approaches have shown to perform well on raw time series data, eliminating the need for pre-processing. In this work, we propose a deep learning based approach for supervised multi-time series anomaly detection that combines a Convolutional Neural Network (CNN) and a Recurrent Neural Network (RNN) in different ways. Unlike other approaches, we use independent CNNs, so-called convolutional heads, to deal with anomaly detection in multi-sensor systems. We address each sensor individually avoiding the need for data pre-processing and allowing for a more tailored architecture for each type of sensor. We refer to this architecture as Multi-head CNN–RNN. The proposed architecture is assessed against a real industrial case study, provided by an industrial partner, where a service elevator is monitored. Within this case study, three type of anomalies are considered: point, context-specific, and collective.The experimental results show that the proposed architecture is suitable for multi-time series anomaly detection as it obtained promising results on the real industrial scenario. |
|---|---|
| AbstractList | •We propose a Multi-head CNN-RNN for multi-time series anomaly detection.•Time series are addressed independently to deal with heterogeneous sensor systems.•The Multi-head CNN can adapt its heads to the needs of each time series•The Multi-head CNN-RNN adapts to new sensor configurations using transfer learning.•An industrial case study with elevator data is used to test the proposed method.•Experiments show promising results detecting anomalies in an industrial scenario.
Detecting anomalies in time series data is becoming mainstream in a wide variety of industrial applications in which sensors monitor expensive machinery. The complexity of this task increases when multiple heterogeneous sensors provide information of different nature, scales and frequencies from the same machine. Traditionally, machine learning techniques require a separate data pre-processing before training, which tends to be very time-consuming and often requires domain knowledge. Recent deep learning approaches have shown to perform well on raw time series data, eliminating the need for pre-processing. In this work, we propose a deep learning based approach for supervised multi-time series anomaly detection that combines a Convolutional Neural Network (CNN) and a Recurrent Neural Network (RNN) in different ways. Unlike other approaches, we use independent CNNs, so-called convolutional heads, to deal with anomaly detection in multi-sensor systems. We address each sensor individually avoiding the need for data pre-processing and allowing for a more tailored architecture for each type of sensor. We refer to this architecture as Multi-head CNN–RNN. The proposed architecture is assessed against a real industrial case study, provided by an industrial partner, where a service elevator is monitored. Within this case study, three type of anomalies are considered: point, context-specific, and collective.The experimental results show that the proposed architecture is suitable for multi-time series anomaly detection as it obtained promising results on the real industrial scenario. |
| Author | Triguero, Isaac Canizo, Mikel Conde, Angel Onieva, Enrique |
| Author_xml | – sequence: 1 givenname: Mikel orcidid: 0000-0001-8888-2375 surname: Canizo fullname: Canizo, Mikel email: mcanizo@ikerlan.es organization: Ikerlan Technology Research Centre, Po. J. Ma. Arizmendiarrieta, 2., Arrasate-Mondragón 20500, Spain – sequence: 2 givenname: Isaac orcidid: 0000-0002-0150-0651 surname: Triguero fullname: Triguero, Isaac organization: The Optimisation and Learning Lab, School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, United Kingdom – sequence: 3 givenname: Angel surname: Conde fullname: Conde, Angel organization: Ikerlan Technology Research Centre, Po. J. Ma. Arizmendiarrieta, 2., Arrasate-Mondragón 20500, Spain – sequence: 4 givenname: Enrique orcidid: 0000-0001-9581-1823 surname: Onieva fullname: Onieva, Enrique organization: Deusto Institute of Technology (DeustoTech), University of Deusto, Avenida de las Universidades 24, Bilbao 48007, Spain |
| BookMark | eNqNkE1OwzAQRi1UJNrCDVj4AgljO2mSLpCqij-pFAkBW8uxHeEqcSrbAXXHHbghJyElrFgAqxnNN-9bvAka2dZqhE4JxATI7GwTW93JtokpkCKGLAaWHKAxyTMa5TSfjdAYCppGlBF6hCbebwBIRmgxRk-3XR1M9KyFwsv1-uPt_X69xlXrcPMVBNNo7LUz2mNh20bUO6x00DKY1s7xwmJjVeeDM6LGUvj-OXRqd4wOK1F7ffI9p-jx8uJheR2t7q5ulotVJFlKQ6QFKEoVZErNsiqR_SYBkozolFEmgCYC8rKAKmFVCSxlWVnk_X1WQElzVrApSofezm7F7lXUNd860wi34wT4Xg7f8EEO38vhkPFeTs8lAydd673T1X-x-Q9MmiD2KoITpv4LPh9g3Qt5MdpxL422Uivjep9cteb3gk_oIpbt |
| CitedBy_id | crossref_primary_10_53694_bited_1177504 crossref_primary_10_1016_j_cie_2024_110830 crossref_primary_10_3390_rs12071097 crossref_primary_10_1093_iob_obae036 crossref_primary_10_1016_j_engappai_2024_108940 crossref_primary_10_1016_j_aei_2025_103213 crossref_primary_10_1080_08839514_2022_2088452 crossref_primary_10_3390_s23115010 crossref_primary_10_1007_s11280_023_01171_1 crossref_primary_10_3390_a17080322 crossref_primary_10_3390_w16091238 crossref_primary_10_1007_s00603_024_04139_3 crossref_primary_10_1109_ACCESS_2023_3339500 crossref_primary_10_1155_2024_7481513 crossref_primary_10_1016_j_isprsjprs_2023_11_016 crossref_primary_10_1016_j_jksuci_2024_102232 crossref_primary_10_1016_j_jmsy_2022_07_004 crossref_primary_10_3390_app11146422 crossref_primary_10_1109_ACCESS_2021_3071269 crossref_primary_10_3390_app122111071 crossref_primary_10_1177_14644207211041326 crossref_primary_10_1016_j_asoc_2022_109714 crossref_primary_10_3390_s22155507 crossref_primary_10_1038_s41598_021_92973_8 crossref_primary_10_3390_electronics12071622 crossref_primary_10_1016_j_engappai_2024_107961 crossref_primary_10_1109_ACCESS_2022_3178592 crossref_primary_10_1016_j_optlastec_2024_110997 crossref_primary_10_25136_2409_7543_2023_2_40770 crossref_primary_10_3390_s22166080 crossref_primary_10_1089_big_2020_0159 crossref_primary_10_1016_j_asoc_2022_109164 crossref_primary_10_1016_j_engappai_2023_106144 crossref_primary_10_1016_j_ymssp_2022_109607 crossref_primary_10_3390_s23249679 crossref_primary_10_3390_s24051391 crossref_primary_10_1007_s00371_023_03124_1 crossref_primary_10_1016_j_engappai_2023_106467 crossref_primary_10_1080_08982112_2023_2179404 crossref_primary_10_1007_s10489_021_02532_x crossref_primary_10_1109_ACCESS_2024_3368034 crossref_primary_10_3390_diagnostics13020254 crossref_primary_10_1088_1742_6596_2868_1_012021 crossref_primary_10_3390_s20092668 crossref_primary_10_1016_j_eswa_2023_120725 crossref_primary_10_1016_j_uclim_2023_101418 crossref_primary_10_1145_3582571 crossref_primary_10_1016_j_oceaneng_2022_111352 crossref_primary_10_3390_agriculture14060794 crossref_primary_10_1145_3630633 crossref_primary_10_3390_electronics13183667 crossref_primary_10_1007_s10489_025_06366_9 crossref_primary_10_1016_j_measen_2022_100625 crossref_primary_10_1109_TIM_2020_3024355 crossref_primary_10_1007_s10586_024_04434_2 crossref_primary_10_1145_3453155 crossref_primary_10_1016_j_agwat_2020_106113 crossref_primary_10_1007_s41365_022_01111_0 crossref_primary_10_1109_ACCESS_2021_3090936 crossref_primary_10_1088_1361_6501_ac9f5d crossref_primary_10_1109_ACCESS_2024_3424488 crossref_primary_10_1007_s10489_022_03488_2 crossref_primary_10_1109_MCI_2021_3129962 crossref_primary_10_1016_j_neucom_2022_06_042 crossref_primary_10_1007_s10845_024_02447_7 crossref_primary_10_3390_atmos15010103 crossref_primary_10_1016_j_procs_2024_01_105 crossref_primary_10_3390_s25010101 crossref_primary_10_1088_1742_6596_1748_6_062075 crossref_primary_10_1007_s11276_023_03323_7 crossref_primary_10_1109_JIOT_2020_3016146 crossref_primary_10_1007_s12145_025_01736_w crossref_primary_10_1016_j_procir_2024_10_118 crossref_primary_10_1109_ACCESS_2024_3368067 crossref_primary_10_1109_TTE_2023_3293551 crossref_primary_10_3390_agriculture13020480 crossref_primary_10_3390_w14192972 crossref_primary_10_3390_app13052912 crossref_primary_10_1016_j_neucom_2020_10_084 crossref_primary_10_1016_j_asoc_2023_110487 crossref_primary_10_1016_j_ymssp_2023_110814 crossref_primary_10_1016_j_engappai_2024_109552 crossref_primary_10_1007_s13762_023_04763_6 crossref_primary_10_1109_TII_2020_3019788 crossref_primary_10_1007_s12599_022_00778_4 crossref_primary_10_1109_ACCESS_2021_3123689 crossref_primary_10_1007_s10664_023_10302_1 crossref_primary_10_3390_electronics14010065 crossref_primary_10_1038_s41598_023_49579_z crossref_primary_10_1016_j_jbi_2022_104216 crossref_primary_10_14778_3632093_3632110 crossref_primary_10_3390_agriculture11070635 crossref_primary_10_1007_s11356_022_19713_x crossref_primary_10_1109_JBHI_2020_3004686 crossref_primary_10_1016_j_segan_2024_101497 crossref_primary_10_3390_app13074259 crossref_primary_10_1016_j_ast_2024_109064 crossref_primary_10_1016_j_neucom_2024_127791 crossref_primary_10_1016_j_cie_2022_108381 crossref_primary_10_1109_ACCESS_2024_3525357 crossref_primary_10_2514_1_I010971 crossref_primary_10_1016_j_rineng_2025_104194 crossref_primary_10_3390_electronics13091700 crossref_primary_10_1109_TITS_2024_3354852 crossref_primary_10_3390_math11030620 crossref_primary_10_1016_j_eswa_2021_115715 crossref_primary_10_1109_TITS_2022_3147826 crossref_primary_10_1177_09544062241245192 crossref_primary_10_1109_JIOT_2024_3493380 crossref_primary_10_1007_s10845_024_02338_x crossref_primary_10_1111_exsy_13083 crossref_primary_10_2339_politeknik_1379049 crossref_primary_10_1016_j_iswa_2024_200438 crossref_primary_10_1016_j_rse_2020_111952 crossref_primary_10_1109_ACCESS_2021_3110947 crossref_primary_10_1016_j_asoc_2022_108912 crossref_primary_10_3390_foods14020247 crossref_primary_10_1016_j_aap_2020_105910 crossref_primary_10_1038_s41598_023_47812_3 crossref_primary_10_1785_0120220058 crossref_primary_10_1109_TKDE_2024_3523857 crossref_primary_10_1007_s00521_024_10424_7 crossref_primary_10_1016_j_measurement_2025_117180 crossref_primary_10_1016_j_knosys_2022_108290 crossref_primary_10_1080_0951192X_2023_2257665 crossref_primary_10_1016_j_asoc_2021_108084 crossref_primary_10_1016_j_compeleceng_2024_109631 crossref_primary_10_1002_nem_2144 crossref_primary_10_4018_JOEUC_300761 crossref_primary_10_1016_j_asoc_2021_107671 crossref_primary_10_1016_j_cie_2020_107015 crossref_primary_10_1016_j_ifacol_2024_11_170 crossref_primary_10_1109_ACCESS_2023_3333242 crossref_primary_10_1016_j_procir_2023_06_061 crossref_primary_10_1016_j_pnucene_2024_105501 crossref_primary_10_1109_ACCESS_2023_3349022 crossref_primary_10_3390_electronics12091970 crossref_primary_10_1109_TIM_2023_3244255 crossref_primary_10_1093_tse_tdad021 crossref_primary_10_1016_j_measurement_2024_116116 crossref_primary_10_3390_min13040461 crossref_primary_10_1016_j_future_2022_09_024 crossref_primary_10_3390_ai4010010 crossref_primary_10_1109_ACCESS_2022_3179047 crossref_primary_10_2139_ssrn_4117262 crossref_primary_10_1016_j_psep_2025_106871 crossref_primary_10_1007_s41060_024_00525_w crossref_primary_10_1016_j_eswa_2024_125062 crossref_primary_10_32604_cmes_2023_047065 crossref_primary_10_1016_j_neucom_2022_03_048 crossref_primary_10_1016_j_knosys_2023_110639 crossref_primary_10_1007_s11227_020_03603_5 crossref_primary_10_1093_jcde_qwae072 crossref_primary_10_1007_s00521_021_06033_3 crossref_primary_10_1016_j_engappai_2020_103678 crossref_primary_10_3390_math11122760 crossref_primary_10_1109_JSTARS_2021_3120987 crossref_primary_10_3390_fractalfract8080460 crossref_primary_10_1016_j_energy_2023_128180 crossref_primary_10_1007_s41605_024_00507_3 crossref_primary_10_3390_app13095659 crossref_primary_10_1016_j_jag_2024_103795 crossref_primary_10_1109_JIOT_2021_3097437 crossref_primary_10_1109_JSEN_2024_3520091 crossref_primary_10_3390_s20185045 crossref_primary_10_1016_j_cie_2024_110074 crossref_primary_10_3390_su16083335 crossref_primary_10_7717_peerj_cs_1117 crossref_primary_10_3390_app122211393 crossref_primary_10_1007_s00607_021_00928_8 crossref_primary_10_1007_s13735_022_00234_9 crossref_primary_10_1016_j_asoc_2021_107474 crossref_primary_10_1109_ACCESS_2023_3281407 crossref_primary_10_1016_j_neucom_2021_03_062 crossref_primary_10_1016_j_ress_2022_108353 crossref_primary_10_1186_s42162_022_00230_7 crossref_primary_10_1007_s11227_025_07044_w crossref_primary_10_1109_MIE_2020_3034884 crossref_primary_10_1038_s41598_021_96751_4 crossref_primary_10_1007_s42979_024_02704_9 crossref_primary_10_3389_fenrg_2024_1357406 crossref_primary_10_1109_ACCESS_2023_3291674 crossref_primary_10_1016_j_sigpro_2022_108657 crossref_primary_10_1016_j_procir_2022_09_095 crossref_primary_10_1016_j_asoc_2023_110763 crossref_primary_10_1016_j_imu_2024_101478 crossref_primary_10_1016_j_istruc_2024_106076 crossref_primary_10_1016_j_ipm_2023_103569 crossref_primary_10_3390_s24020311 crossref_primary_10_1109_ACCESS_2023_3349132 crossref_primary_10_1109_ACCESS_2021_3078553 crossref_primary_10_3390_s23218908 crossref_primary_10_1016_j_apacoust_2022_108660 crossref_primary_10_1007_s10489_023_04764_5 crossref_primary_10_1007_s10044_021_01053_0 crossref_primary_10_1016_j_asoc_2023_110419 crossref_primary_10_1016_j_cose_2023_103310 crossref_primary_10_1111_exsy_12959 crossref_primary_10_1177_14750902231226162 crossref_primary_10_1016_j_ijcip_2021_100452 crossref_primary_10_1109_ACCESS_2024_3426295 crossref_primary_10_3390_s21227628 crossref_primary_10_1016_j_compind_2021_103498 crossref_primary_10_1109_ACCESS_2021_3101844 crossref_primary_10_1080_01969722_2023_2240648 crossref_primary_10_1016_j_measurement_2022_110759 crossref_primary_10_3390_jmse11101964 crossref_primary_10_1016_j_neucom_2023_01_022 crossref_primary_10_1016_j_neucom_2025_129887 crossref_primary_10_1007_s11042_022_13304_1 crossref_primary_10_1155_2021_5854096 crossref_primary_10_1177_00202940221126497 crossref_primary_10_1016_j_asoc_2022_109147 crossref_primary_10_3390_s23146491 crossref_primary_10_3390_en18061385 |
| Cites_doi | 10.1016/j.renene.2018.04.059 10.1016/j.dsp.2017.06.015 10.1007/s00500-008-0392-y 10.1016/j.neucom.2017.04.070 10.1016/j.inffus.2018.11.010 10.1016/j.knosys.2017.02.023 10.1016/j.inffus.2017.06.004 10.1007/s10115-017-1067-8 10.1109/ACCESS.2017.2765544 10.1109/TCSS.2018.2857473 10.1016/j.neucom.2018.09.048 10.1016/j.ymssp.2016.09.010 10.1016/j.neucom.2017.03.021 10.1016/j.knosys.2017.10.017 10.1016/J.ENG.2017.05.015 10.1016/j.addma.2017.11.009 10.1016/j.measurement.2016.10.031 10.1049/iet-spr.2016.0547 10.1109/TSP.2016.2521605 10.1109/TIM.2009.2036347 10.1371/journal.pone.0118432 10.1109/TMC.2018.2878673 10.1016/j.eswa.2017.04.028 10.1109/78.650093 10.1109/TASLP.2016.2602884 10.1145/1541880.1541882 10.1016/j.engappai.2010.09.007 10.1109/ACCESS.2018.2882245 10.1016/j.neucom.2016.12.088 10.1016/j.inffus.2016.04.007 10.1016/j.measurement.2018.07.077 10.1016/j.eswa.2018.04.004 10.1038/nature14539 10.1007/s41060-017-0044-3 10.1109/TII.2016.2628409 10.3390/s16010115 10.3390/rs8010010 10.1016/j.asoc.2017.09.027 10.1109/TNNLS.2016.2582924 10.1016/j.inffus.2018.09.001 10.1016/j.inffus.2017.08.002 10.1109/MWC.2017.1600421 10.1016/j.sigpro.2017.10.011 10.1109/TII.2016.2645238 10.21629/JSEE.2017.01.18 10.1016/j.eswa.2017.09.013 10.1016/j.bspc.2017.08.021 10.1002/widm.1199 10.1109/ACCESS.2018.2880770 10.1109/TKDE.2015.2458858 10.1016/j.ins.2009.12.010 10.1186/s40537-016-0043-6 10.1109/ACCESS.2018.2840086 10.1016/j.neucom.2017.02.024 10.1109/TIP.2017.2675339 10.1109/TIP.2017.2662206 10.1109/JSTSP.2017.2679538 10.1371/journal.pone.0152173 10.1007/s10462-015-9433-y 10.1109/TIP.2017.2713048 10.1109/TKDE.2013.37 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. |
| Copyright_xml | – notice: 2019 Elsevier B.V. |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.neucom.2019.07.034 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 260 |
| ExternalDocumentID | oai:nottingham-repository.worktribe.com:2315191 10_1016_j_neucom_2019_07_034 S0925231219309877 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c352t-ea0d22d07dd67f4cd07c00471e5323a024a08b90f43fb03537b983a0690b28393 |
| IEDL.DBID | .~1 |
| ISSN | 0925-2312 1872-8286 |
| IngestDate | Sun Oct 26 04:15:32 EDT 2025 Wed Oct 01 02:27:45 EDT 2025 Thu Apr 24 23:05:59 EDT 2025 Fri Feb 23 02:27:03 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Multi-sensor systems Recurrent neural networks Industry 4.0 Convolutional neural networks Anomaly detection |
| Language | English |
| License | cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c352t-ea0d22d07dd67f4cd07c00471e5323a024a08b90f43fb03537b983a0690b28393 |
| ORCID | 0000-0001-8888-2375 0000-0002-0150-0651 0000-0001-9581-1823 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://nottingham-repository.worktribe.com/output/2315191 |
| PageCount | 15 |
| ParticipantIDs | unpaywall_primary_10_1016_j_neucom_2019_07_034 crossref_primary_10_1016_j_neucom_2019_07_034 crossref_citationtrail_10_1016_j_neucom_2019_07_034 elsevier_sciencedirect_doi_10_1016_j_neucom_2019_07_034 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-21 |
| PublicationDateYYYYMMDD | 2019-10-21 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-21 day: 21 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Benkabou, Benabdeslem, Canitia (bib0037) 2018; 54 Liu, Zhang, Lin, Quek (bib0019) 2017; 11 García, Fernández, Luengo, Herrera (bib0082) 2009; 13 García, Herrera (bib0086) 2008; 9 Hua, Cheng, Wang, Qin, Li (bib0066) 2017; 11 Triguero, García-Gil, Maillo, Luengo, García, Herrera (bib0017) 2018 Garcia-Ceja, Galván-Tejada, Brena (bib0020) 2018; 40 Pourbabaee, Roshtkhari, Khorasani (bib0079) 2017 Kingma, Ba (bib0081) 2014; abs/1412.6 Cao, Li, Ma, Tao (bib0021) 2018; 41 Theissler (bib0006) 2017; 123 Liu, Meng, Yang, Sun, Chen (bib0033) 2017; 13 Bao, Tang, Li, Zhang (bib0053) 2018 Zhang, Zuo, Chen, Meng, Zhang (bib0077) 2017; 26 Zhong, Xu, Klotz, Newman (bib0011) 2017; 3 Goldstein, Uchida (bib0040) 2016; 11 Camps, Sama, Martín, Rodríguez-Martín, Pérez-López, Moreno Arostegui, Cabestany, Català, Alcaine, Mestre, Prats, Crespo-Maraver, Counihan, Browne, Quinlan, Laighin, Sweeney, Lewy, Vainstein, Costa, Annicchiarico, Bayés, Rodríguez-Molinero (bib0065) 2018; 139 Fu (bib0002) 2011; 24 Weiss, Khoshgoftaar, Wang (bib0024) 2016; 3 Tang, Zeng, Shi, Zhao (bib0042) 2018; 39 Moniz, Branco, Torgo (bib0058) 2017; 3 Triguero, Galar, Bustince, Herrera (bib0056) 2017 Ahmad, Lavin, Purdy, Agha (bib0013) 2017; 262 LeCun, Bengio, Hinton (bib0071) 2015; 521 Zhao, Luo, Peng, Fan (bib0072) 2017; 243 Ariyaluran Habeeb, Nasaruddin, Gani, Targio Hashem, Ahmed, Imran (bib0003) 2018 Kanarachos, Christopoulos, Chroneos, Fitzpatrick (bib0064) 2017; 85 Chung, Gulcehre, Cho, Bengio (bib0073) 2014 Kanjo, Younis, Ang (bib0060) 2019; 49 Bosman, Iacca, Tejada, Wörtche, Liotta (bib0063) 2017; 33 Cenedese, Luvisotto, Michieletto (bib0009) 2017; 13 Paragliola, Coronato (bib0052) 2018 Iglesias, Lu, Arellano, Yue, Ali, Sagardui (bib0023) 2017 Malhotra, Vig, Shroff, Agarwal (bib0043) 2015 Demšar (bib0085) 2006; 7 Shipmon (bib0049) 2017; abs/1708.0 Pang, Liu, Peng, Peng (bib0035) 2017; 95 Krizhevsky, Sutskever, Hinton (bib0076) 2012 Saeedi, Gebremedhin (bib0025) 2018 Tsironi, Barros, Weber, Wermter (bib0031) 2017; 268 Yaqoob, Ahmed, Hashem, Ahmed, Gani, Imran, Guizani (bib0010) 2017; 24 Chauhan, Vig (bib0044) 2015 Hashemian, Bean (bib0005) 2011; 60 Yang, Liu, Jiang (bib0038) 2018; 127 Schuster, Paliwal (bib0074) 1997; 45 Torkamani, Lohweg (bib0014) 2017; 7 LeCun, Bengio, Hinton (bib0028) 2015; 521 Zhao, Lu, Chen, Liu, Wu (bib0032) 2017; 28 Golik, Doetsch, Ney (bib0080) 2013 Greff, Srivastava, Koutnik, Steunebrink, Schmidhuber (bib0069) 2017; 28 Chattopadhyay, Wang, Tan (bib0051) 2018; 5 Ioffe, Szegedy (bib0075) 2015 Cao, Li, Woon, Ng (bib0057) 2013; 25 Yang, Liu, Jiang (bib0008) 2018; 127 Zhao, Li, Lu, Wang (bib0059) 2018; 322 Chandola, Banerjee, Kumar (bib0001) 2009; 41 Abdi, Hashemi (bib0055) 2016; 28 Zheng, Pan, Cheng (bib0015) 2017; 85 Malhotra (bib0045) 2016 Qian, Li, Wang (bib0027) 2018; 6 Ordóñez, Roggen (bib0029) 2016; 16 García, Fernández, Luengo, Herrera (bib0084) 2010; 180 Yan, Meng, Lu, Li (bib0004) 2017; 5 Scime, Beuth (bib0007) 2018; 19 Nguyen Thi, Cao, Le-Khac (bib0048) 2017; 36 Dao, Nguyen, Nasrabadi, Tran (bib0018) 2016; 64 Bontemps, Cao, McDermott, Le-Khac (bib0046) 2016 Cauteruccio, Fortino, Guerrieri, Liotta, Mocanu, Perra, Terracina, Torres Vega (bib0016) 2019; 52 Kim, Cho (bib0061) 2018; 106 Qian, Bi, Tan, Yu (bib0030) 2016; 24 Weinberg (bib0067) 2017; 69 Samuelsson (bib0034) 2016 Lu, Cheng, Xiao, Chang, Huang, Liang, Huang (bib0039) 2017; 26 Dey, Salemt (bib0070) 2017 Santafe, Inza, Lozano (bib0087) 2015; 44 Diez-Olivan, Pagan, Sanz, Sierra (bib0036) 2017; 241 Mohammadian Rad, Kia, Zarbo, van Laarhoven, Jurman, Venuti, Marchiori, Furlanello (bib0026) 2018; 144 Filonov (bib0047) 2016 Hamamoto, Carvalho, Sampaio, Abrão, Proença (bib0062) 2018; 92 Fernández, García, Galar, Prati, Krawczyk, Herrera (bib0022) 2018 Hu, Ji, Yan, Guo, Feng, Gong, Zhao, Dong (bib0041) 2018; 6 Saito, Rehmsmeier (bib0054) 2015; 10 Ignatov (bib0078) 2018; 62 Wang, Guo, Huang, Xiong, Qiao (bib0068) 2017; 26 Zhang, Zhang, Xie, Yin, Liu, Liu (bib0050) 2015; 8 Gołuch, Kuchmister, Ćmielewski, Bryś (bib0012) 2018; 130 Sheskin (bib0083) 2007 Zheng (10.1016/j.neucom.2019.07.034_bib0015) 2017; 85 Cao (10.1016/j.neucom.2019.07.034_bib0021) 2018; 41 Yang (10.1016/j.neucom.2019.07.034_bib0008) 2018; 127 Greff (10.1016/j.neucom.2019.07.034_bib0069) 2017; 28 LeCun (10.1016/j.neucom.2019.07.034_bib0028) 2015; 521 Yang (10.1016/j.neucom.2019.07.034_bib0038) 2018; 127 Hashemian (10.1016/j.neucom.2019.07.034_bib0005) 2011; 60 Santafe (10.1016/j.neucom.2019.07.034_bib0087) 2015; 44 Kanjo (10.1016/j.neucom.2019.07.034_bib0060) 2019; 49 Zhao (10.1016/j.neucom.2019.07.034_bib0059) 2018; 322 Liu (10.1016/j.neucom.2019.07.034_bib0033) 2017; 13 Zhong (10.1016/j.neucom.2019.07.034_bib0011) 2017; 3 Abdi (10.1016/j.neucom.2019.07.034_bib0055) 2016; 28 García (10.1016/j.neucom.2019.07.034_bib0082) 2009; 13 Triguero (10.1016/j.neucom.2019.07.034_bib0017) 2018 Krizhevsky (10.1016/j.neucom.2019.07.034_bib0076) 2012 Golik (10.1016/j.neucom.2019.07.034_bib0080) 2013 Dey (10.1016/j.neucom.2019.07.034_bib0070) 2017 Dao (10.1016/j.neucom.2019.07.034_bib0018) 2016; 64 Mohammadian Rad (10.1016/j.neucom.2019.07.034_bib0026) 2018; 144 García (10.1016/j.neucom.2019.07.034_bib0084) 2010; 180 Goldstein (10.1016/j.neucom.2019.07.034_bib0040) 2016; 11 Kanarachos (10.1016/j.neucom.2019.07.034_bib0064) 2017; 85 Theissler (10.1016/j.neucom.2019.07.034_bib0006) 2017; 123 Yan (10.1016/j.neucom.2019.07.034_bib0004) 2017; 5 Sheskin (10.1016/j.neucom.2019.07.034_bib0083) 2007 Zhang (10.1016/j.neucom.2019.07.034_bib0050) 2015; 8 Fernández (10.1016/j.neucom.2019.07.034_bib0022) 2018 Qian (10.1016/j.neucom.2019.07.034_bib0027) 2018; 6 Zhao (10.1016/j.neucom.2019.07.034_bib0072) 2017; 243 Lu (10.1016/j.neucom.2019.07.034_bib0039) 2017; 26 Bontemps (10.1016/j.neucom.2019.07.034_bib0046) 2016 Malhotra (10.1016/j.neucom.2019.07.034_bib0045) 2016 Ordóñez (10.1016/j.neucom.2019.07.034_bib0029) 2016; 16 Filonov (10.1016/j.neucom.2019.07.034_bib0047) 2016 Zhang (10.1016/j.neucom.2019.07.034_bib0077) 2017; 26 Iglesias (10.1016/j.neucom.2019.07.034_bib0023) 2017 Hamamoto (10.1016/j.neucom.2019.07.034_bib0062) 2018; 92 Ignatov (10.1016/j.neucom.2019.07.034_bib0078) 2018; 62 Triguero (10.1016/j.neucom.2019.07.034_bib0056) 2017 Hu (10.1016/j.neucom.2019.07.034_bib0041) 2018; 6 Bosman (10.1016/j.neucom.2019.07.034_bib0063) 2017; 33 Tang (10.1016/j.neucom.2019.07.034_bib0042) 2018; 39 Shipmon (10.1016/j.neucom.2019.07.034_bib0049) 2017; abs/1708.0 Liu (10.1016/j.neucom.2019.07.034_bib0019) 2017; 11 Wang (10.1016/j.neucom.2019.07.034_bib0068) 2017; 26 Ioffe (10.1016/j.neucom.2019.07.034_bib0075) 2015 Demšar (10.1016/j.neucom.2019.07.034_bib0085) 2006; 7 Weiss (10.1016/j.neucom.2019.07.034_bib0024) 2016; 3 Cenedese (10.1016/j.neucom.2019.07.034_bib0009) 2017; 13 Tsironi (10.1016/j.neucom.2019.07.034_bib0031) 2017; 268 Schuster (10.1016/j.neucom.2019.07.034_bib0074) 1997; 45 Cauteruccio (10.1016/j.neucom.2019.07.034_bib0016) 2019; 52 Pourbabaee (10.1016/j.neucom.2019.07.034_bib0079) 2017 Ariyaluran Habeeb (10.1016/j.neucom.2019.07.034_bib0003) 2018 Pang (10.1016/j.neucom.2019.07.034_bib0035) 2017; 95 Nguyen Thi (10.1016/j.neucom.2019.07.034_bib0048) 2017; 36 Paragliola (10.1016/j.neucom.2019.07.034_bib0052) 2018 Saito (10.1016/j.neucom.2019.07.034_bib0054) 2015; 10 LeCun (10.1016/j.neucom.2019.07.034_bib0071) 2015; 521 Kim (10.1016/j.neucom.2019.07.034_bib0061) 2018; 106 Qian (10.1016/j.neucom.2019.07.034_bib0030) 2016; 24 Hua (10.1016/j.neucom.2019.07.034_bib0066) 2017; 11 Chandola (10.1016/j.neucom.2019.07.034_sbref0001) 2009; 41 Camps (10.1016/j.neucom.2019.07.034_bib0065) 2018; 139 Benkabou (10.1016/j.neucom.2019.07.034_bib0037) 2018; 54 Samuelsson (10.1016/j.neucom.2019.07.034_bib0034) 2016 Chattopadhyay (10.1016/j.neucom.2019.07.034_bib0051) 2018; 5 Ahmad (10.1016/j.neucom.2019.07.034_bib0013) 2017; 262 Saeedi (10.1016/j.neucom.2019.07.034_bib0025) 2018 Zhao (10.1016/j.neucom.2019.07.034_bib0032) 2017; 28 Scime (10.1016/j.neucom.2019.07.034_bib0007) 2018; 19 Yaqoob (10.1016/j.neucom.2019.07.034_bib0010) 2017; 24 Fu (10.1016/j.neucom.2019.07.034_bib0002) 2011; 24 Gołuch (10.1016/j.neucom.2019.07.034_bib0012) 2018; 130 Chung (10.1016/j.neucom.2019.07.034_bib0073) 2014 Weinberg (10.1016/j.neucom.2019.07.034_bib0067) 2017; 69 Malhotra (10.1016/j.neucom.2019.07.034_bib0043) 2015 Bao (10.1016/j.neucom.2019.07.034_bib0053) 2018 Torkamani (10.1016/j.neucom.2019.07.034_bib0014) 2017; 7 Cao (10.1016/j.neucom.2019.07.034_bib0057) 2013; 25 Kingma (10.1016/j.neucom.2019.07.034_bib0081) 2014; abs/1412.6 Diez-Olivan (10.1016/j.neucom.2019.07.034_bib0036) 2017; 241 Moniz (10.1016/j.neucom.2019.07.034_bib0058) 2017; 3 Chauhan (10.1016/j.neucom.2019.07.034_bib0044) 2015 García (10.1016/j.neucom.2019.07.034_bib0086) 2008; 9 Garcia-Ceja (10.1016/j.neucom.2019.07.034_bib0020) 2018; 40 |
| References_xml | – volume: 24 start-page: 10 year: 2017 end-page: 16 ident: bib0010 article-title: Internet of things architecture: recent advances, taxonomy, requirements, and open challenges publication-title: IEEE Wirel. Commun. – year: 2018 ident: bib0003 article-title: Real-time big data processing for anomaly detection: a survey publication-title: Int. J. Inf. Manag. – volume: abs/1708.0 year: 2017 ident: bib0049 article-title: Time series anomaly detection; detection of anomalous drops with limited features and sparse examples in noisy highly periodic data publication-title: CoRR – volume: 8 start-page: 10 year: 2015 ident: bib0050 article-title: Application of synthetic NDVI time series blended from landsat and MODIS data for grassland biomass estimation publication-title: Remote Sens. – volume: 127 start-page: 230 year: 2018 end-page: 241 ident: bib0038 article-title: An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring publication-title: Renew. Energy – volume: 41 start-page: 68 year: 2018 end-page: 79 ident: bib0021 article-title: Optimizing multi-sensor deployment via ensemble pruning for wearable activity recognition publication-title: Inf. Fusion – volume: 6 start-page: 69907 year: 2018 end-page: 69917 ident: bib0027 article-title: A new transfer learning method and its application on rotating machine fault diagnosis under variant working conditions publication-title: IEEE Access – year: 2016 ident: bib0047 article-title: Multivariate industrial time series with cyber-Attack simulation: fault detection using an LSTM-based predictive data model publication-title: CoRR – volume: 24 start-page: 164 year: 2011 end-page: 181 ident: bib0002 article-title: A review on time series data mining publication-title: Eng. Appl. Artif. Intell. – volume: 26 start-page: 2055 year: 2017 end-page: 2068 ident: bib0068 article-title: Knowledge guided disambiguation for large-Scale scene classification with multi-resolution CNNs publication-title: IEEE Trans. Image Process. – year: 2016 ident: bib0034 publication-title: Anomaly Detection In Time Series Data: a practical implementation for pulp and paper industry – volume: 243 start-page: 166 year: 2017 end-page: 173 ident: bib0072 article-title: Spatial pyramid deep hashing for large-scale image retrieval publication-title: Neurocomputing – year: 2018 ident: bib0022 article-title: Learning from Imbalanced Data Sets – year: 2018 ident: bib0025 article-title: A signal-Level transfer learning framework for autonomous reconfiguration of wearable systems publication-title: IEEE Trans. Mobile Comput. – volume: 85 start-page: 746 year: 2017 end-page: 759 ident: bib0015 article-title: Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines publication-title: Mech. Syst. Signal Process. – volume: 3 start-page: 616 year: 2017 end-page: 630 ident: bib0011 article-title: Intelligent manufacturing in the context of industry 4.0: a review publication-title: Engineering – volume: 5 start-page: 660 year: 2018 end-page: 675 ident: bib0051 article-title: Scenario-Based insider threat detection from cyber activities publication-title: IEEE Trans. Comput. Soc. Syst. – volume: 85 start-page: 292 year: 2017 end-page: 304 ident: bib0064 article-title: Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and hilbert transform publication-title: Expert Syst. Appl. – volume: 13 start-page: 959 year: 2009 end-page: 977 ident: bib0082 article-title: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability publication-title: Soft Comput. – volume: 6 start-page: 27760 year: 2018 end-page: 27776 ident: bib0041 article-title: Detecting anomalies in time series data via a meta-feature based approach publication-title: IEEE Access – volume: abs/1412.6 year: 2014 ident: bib0081 article-title: Adam: A Method for stochastic optimization publication-title: CoRR – volume: 13 start-page: 1310 year: 2017 end-page: 1320 ident: bib0033 article-title: Dislocated time series convolutional neural architecture: an intelligent fault diagnosis approach for electric machine publication-title: IEEE Trans. Indust. Inf. – volume: 322 start-page: 47 year: 2018 end-page: 57 ident: bib0059 article-title: A CNN–RNN architecture for multi-label weather recognition publication-title: Neurocomputing – start-page: 448 year: 2015 end-page: 456 ident: bib0075 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift publication-title: Proceedings of the Thirty-second International Conference on Machine Learning – start-page: 195 year: 2017 end-page: 204 ident: bib0023 article-title: Product line engineering of monitoring functionality in industrial cyber-physical systems: a domain analysis publication-title: Proceedings of the Twenty-first International Systems and Software Product Line Conference, 2017, Volume A, Sevilla, Spain, September 25–29, 2017 – volume: 40 start-page: 45 year: 2018 end-page: 56 ident: bib0020 article-title: Multi-view stacking for activity recognition with sound and accelerometer data publication-title: Inf. Fusion – volume: 144 start-page: 180 year: 2018 end-page: 191 ident: bib0026 article-title: Deep learning for automatic stereotypical motor movement detection using wearable sensors in autism spectrum disorders publication-title: Signal Process. – volume: 7 start-page: e1199 year: 2017 ident: bib0014 article-title: Survey on time series motif discovery publication-title: Wiley Interdiscipl. Rev. Data Min. Knowl. Discov. – volume: 92 start-page: 390 year: 2018 end-page: 402 ident: bib0062 article-title: Network anomaly detection system using genetic algorithm and fuzzy logic publication-title: Expert Syst. Appl. – volume: 19 start-page: 114 year: 2018 end-page: 126 ident: bib0007 article-title: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm publication-title: Addit. Manufact. – volume: 268 start-page: 76 year: 2017 end-page: 86 ident: bib0031 article-title: An analysis of convolutional long short-term memory recurrent neural networks for gesture recognition publication-title: Neurocomputing – volume: 3 start-page: 9 year: 2016 ident: bib0024 article-title: A survey of transfer learning publication-title: J. Big Data – year: 2014 ident: bib0073 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling publication-title: Proceedings of the NIPS 2014 Workshop on Deep Learning, December 2014 – volume: 25 start-page: 2809 year: 2013 end-page: 2822 ident: bib0057 article-title: Integrated oversampling for imbalanced time series classification publication-title: IEEE Trans. Knowl. Data Eng. – volume: 24 start-page: 2263 year: 2016 end-page: 2276 ident: bib0030 article-title: Very deep convolutional neural networks for noise robust speech recognition publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. – year: 2007 ident: bib0083 article-title: Handbook of Parametric and Nonparametric Statistical Procedures – start-page: 22 year: 2015 end-page: 24 ident: bib0043 article-title: Long short term memory networks for anomaly detection in time series publication-title: Proceedings of the European Symposium on Artificial Neural Networks – volume: 26 start-page: 4321 year: 2017 end-page: 4330 ident: bib0039 article-title: Unsupervised sequential outlier detection with deep architectures publication-title: IEEE Trans. Image Process. – start-page: 2054 year: 2017 end-page: 2061 ident: bib0056 article-title: A first attempt on global evolutionary undersampling for imbalanced big data publication-title: Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC) – volume: 9 start-page: 2677 year: 2008 end-page: 2694 ident: bib0086 article-title: An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons publication-title: J. Mach. Learn. Res. – volume: 11 start-page: 711 year: 2017 end-page: 720 ident: bib0066 article-title: Geometric means and medians with applications to target detection publication-title: IET Signal Process. – start-page: 1 year: 2017 end-page: 10 ident: bib0079 article-title: Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients publication-title: IEEE Trans. Syst. Man Cybern. Syst. – start-page: e1289 year: 2018 ident: bib0017 article-title: Transforming big data into smart data: an insight on the use of the k-nearest neighbors algorithm to obtain quality data publication-title: Wiley Interdiscipl. Rev. Data Min. Knowl. Discov. – volume: 69 start-page: 1 year: 2017 end-page: 10 ident: bib0067 article-title: Geometric mean switching constant false alarm rate detector publication-title: Digital Signal Process. – volume: 54 start-page: 463 year: 2018 end-page: 486 ident: bib0037 article-title: Unsupervised outlier detection for time series by entropy and dynamic time warping publication-title: Knowl. Inf. Syst. – year: 2018 ident: bib0052 article-title: Gait anomaly detection of subjects with Parkinson’s disease using a deep time series-based approach publication-title: IEEE Access – volume: 64 start-page: 2400 year: 2016 end-page: 2415 ident: bib0018 article-title: Collaborative multi-Sensor classification via sparsity-based representation publication-title: IEEE Trans. Signal Process. – volume: 139 start-page: 119 year: 2018 end-page: 131 ident: bib0065 article-title: Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit publication-title: Knowl. Based Syst. – start-page: 1597 year: 2017 end-page: 1600 ident: bib0070 article-title: Gate-variants of Gated Recurrent Unit (GRU) neural networks publication-title: Proceedings of the 2017 IEEE Sixtieth International Midwest Symposium on Circuits and Systems (MWSCAS) – volume: 45 start-page: 2673 year: 1997 end-page: 2681 ident: bib0074 article-title: Bidirectional recurrent neural networks publication-title: IEEE Trans. Signal Process. – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: bib0085 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 60 start-page: 3480 year: 2011 end-page: 3492 ident: bib0005 article-title: State-of-the-Art predictive maintenance techniques publication-title: IEEE Trans. Instrum. Measur. – volume: 52 start-page: 13 year: 2019 end-page: 30 ident: bib0016 article-title: Short-long term anomaly detection in wireless sensor networks based on machine learning and multi-parameterized edit distance publication-title: Inf. Fusion – volume: 39 start-page: 448 year: 2018 end-page: 458 ident: bib0042 article-title: Brain activation detection by modified neighborhood one-class SVM on fmri data publication-title: Biomed. Signal Process. Control – volume: 28 start-page: 162 year: 2017 end-page: 169 ident: bib0032 article-title: Convolutional neural networks for time series classification publication-title: J. Syst. Eng. Electron. – volume: 13 start-page: 228 year: 2017 end-page: 237 ident: bib0009 article-title: Distributed clustering strategies in industrial wireless sensor networks publication-title: IEEE Trans. Indust. Inf. – volume: 16 start-page: 115 year: 2016 ident: bib0029 article-title: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition publication-title: Sensors – volume: 33 start-page: 41 year: 2017 end-page: 56 ident: bib0063 article-title: Spatial anomaly detection in sensor networks using neighborhood information publication-title: Inf. Fusion – year: 2016 ident: bib0045 article-title: LSTM-Based encoder-Decoder for multi-sensor anomaly detection publication-title: CoRR – volume: 11 start-page: 479 year: 2017 end-page: 491 ident: bib0019 article-title: Heterogeneous sensor data fusion by deep multimodal encoding publication-title: IEEE J. Select. Top. Signal Process. – volume: 5 start-page: 23484 year: 2017 end-page: 23491 ident: bib0004 article-title: Industrial big data in an industry 4.0 environment: challenges, schemes, and applications for predictive maintenance publication-title: IEEE Access – start-page: 1 year: 2015 end-page: 7 ident: bib0044 article-title: Anomaly detection in ECG time signals via deep long short-term memory networks publication-title: Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA) – start-page: 1756 year: 2013 end-page: 1760 ident: bib0080 article-title: Cross-entropy vs. squared error training: a theoretical and experimental comparison publication-title: Proceedings of the Forteenth Annual Conference of the International Speech Communication Association – volume: 180 start-page: 2044 year: 2010 end-page: 2064 ident: bib0084 article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power publication-title: Inf. Sci. – year: 2018 ident: bib0053 article-title: Computer vision and deep learning–based data anomaly detection method for structural health monitoring publication-title: Struct. Health Monitor. Int. J. – start-page: 141 year: 2016 end-page: 152 ident: bib0046 article-title: Collective anomaly detection based on long short term memory recurrent neural network publication-title: Proceedings of the International Conference on Future Data and Security Engineering – volume: 28 start-page: 2222 year: 2017 end-page: 2232 ident: bib0069 article-title: LSTM: a search space odyssey publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 1097 year: 2012 end-page: 1105 ident: bib0076 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proceedings of the Twenty-fifth International Conference on Neural Information Processing Systems – volume: 41 year: 2009 ident: bib0001 article-title: Anomaly detection: a survey publication-title: ACM Comput. Surv. – volume: 262 start-page: 134 year: 2017 end-page: 147 ident: bib0013 article-title: Unsupervised real-time anomaly detection for streaming data publication-title: Neurocomputing – volume: 95 start-page: 280 year: 2017 end-page: 292 ident: bib0035 article-title: Anomaly detection based on uncertainty fusion for univariate monitoring series publication-title: Measurement – volume: 106 start-page: 66 year: 2018 end-page: 76 ident: bib0061 article-title: Web traffic anomaly detection using C-LSTM neural networks publication-title: Expert Syst. Appl. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0028 article-title: Deep learning publication-title: Nature – volume: 36 start-page: 73 year: 2017 end-page: 85 ident: bib0048 article-title: One-class collective anomaly detection based on LSTM–RNNs publication-title: Trans. Large Scale Data Knowl. Center. Syst. – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0071 article-title: Deep learning publication-title: Nature – volume: 241 start-page: 97 year: 2017 end-page: 107 ident: bib0036 article-title: Data-driven prognostics using a combination of constrained K-means clustering, fuzzy modeling and LOF-based score publication-title: Neurocomputing – volume: 49 start-page: 46 year: 2019 end-page: 56 ident: bib0060 article-title: Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection publication-title: Inf. Fusion – volume: 130 start-page: 18 year: 2018 end-page: 31 ident: bib0012 article-title: Multi-sensors measuring system for geodetic monitoring of elevator guide rails publication-title: Measurement – volume: 10 start-page: e0118432 year: 2015 ident: bib0054 article-title: The precision-Recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets publication-title: PLOS ONE – volume: 62 start-page: 915 year: 2018 end-page: 922 ident: bib0078 article-title: Real-time human activity recognition from accelerometer data using convolutional neural networks publication-title: Appl. Soft Comput. – volume: 11 start-page: e0152173 year: 2016 ident: bib0040 article-title: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data publication-title: PLoS One – volume: 28 start-page: 238 year: 2016 end-page: 251 ident: bib0055 article-title: To combat multi-Class imbalanced problems by means of over-Sampling techniques publication-title: IEEE Trans. Knowl. Data Eng. – volume: 44 start-page: 467 year: 2015 end-page: 508 ident: bib0087 article-title: Dealing with the evaluation of supervised classification algorithms publication-title: Artif. Intell. Rev. – volume: 26 start-page: 3142 year: 2017 end-page: 3155 ident: bib0077 article-title: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising publication-title: IEEE Trans. Image Process. – volume: 127 start-page: 230 year: 2018 end-page: 241 ident: bib0008 article-title: An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring publication-title: Renew. Energy – volume: 123 start-page: 163 year: 2017 end-page: 173 ident: bib0006 article-title: Detecting known and unknown faults in automotive systems using ensemble-based anomaly detection publication-title: Knowl. Based Syst. – volume: 3 start-page: 161 year: 2017 end-page: 181 ident: bib0058 article-title: Resampling strategies for imbalanced time series forecasting publication-title: Int. J. Data Sci. Anal. – volume: 127 start-page: 230 year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0008 article-title: An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring publication-title: Renew. Energy doi: 10.1016/j.renene.2018.04.059 – volume: 69 start-page: 1 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0067 article-title: Geometric mean switching constant false alarm rate detector publication-title: Digital Signal Process. doi: 10.1016/j.dsp.2017.06.015 – volume: 13 start-page: 959 issue: 10 year: 2009 ident: 10.1016/j.neucom.2019.07.034_bib0082 article-title: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability publication-title: Soft Comput. doi: 10.1007/s00500-008-0392-y – year: 2016 ident: 10.1016/j.neucom.2019.07.034_bib0047 article-title: Multivariate industrial time series with cyber-Attack simulation: fault detection using an LSTM-based predictive data model publication-title: CoRR – volume: 262 start-page: 134 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0013 article-title: Unsupervised real-time anomaly detection for streaming data publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.04.070 – volume: 52 start-page: 13 year: 2019 ident: 10.1016/j.neucom.2019.07.034_bib0016 article-title: Short-long term anomaly detection in wireless sensor networks based on machine learning and multi-parameterized edit distance publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.11.010 – volume: 123 start-page: 163 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0006 article-title: Detecting known and unknown faults in automotive systems using ensemble-based anomaly detection publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.02.023 – volume: 40 start-page: 45 year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0020 article-title: Multi-view stacking for activity recognition with sound and accelerometer data publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.06.004 – volume: 54 start-page: 463 issue: 2 year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0037 article-title: Unsupervised outlier detection for time series by entropy and dynamic time warping publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-017-1067-8 – year: 2014 ident: 10.1016/j.neucom.2019.07.034_bib0073 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling – volume: 5 start-page: 23484 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0004 article-title: Industrial big data in an industry 4.0 environment: challenges, schemes, and applications for predictive maintenance publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2765544 – volume: 5 start-page: 660 issue: 3 year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0051 article-title: Scenario-Based insider threat detection from cyber activities publication-title: IEEE Trans. Comput. Soc. Syst. doi: 10.1109/TCSS.2018.2857473 – start-page: 1097 year: 2012 ident: 10.1016/j.neucom.2019.07.034_bib0076 article-title: ImageNet classification with deep convolutional neural networks – volume: 36 start-page: 73 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0048 article-title: One-class collective anomaly detection based on LSTM–RNNs publication-title: Trans. Large Scale Data Knowl. Center. Syst. – volume: 322 start-page: 47 year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0059 article-title: A CNN–RNN architecture for multi-label weather recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.048 – volume: 85 start-page: 746 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0015 article-title: Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2016.09.010 – start-page: 141 year: 2016 ident: 10.1016/j.neucom.2019.07.034_bib0046 article-title: Collective anomaly detection based on long short term memory recurrent neural network – volume: abs/1412.6 year: 2014 ident: 10.1016/j.neucom.2019.07.034_bib0081 article-title: Adam: A Method for stochastic optimization publication-title: CoRR – year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0022 – volume: 243 start-page: 166 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0072 article-title: Spatial pyramid deep hashing for large-scale image retrieval publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.03.021 – volume: 139 start-page: 119 year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0065 article-title: Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2017.10.017 – volume: 3 start-page: 616 issue: 5 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0011 article-title: Intelligent manufacturing in the context of industry 4.0: a review publication-title: Engineering doi: 10.1016/J.ENG.2017.05.015 – volume: 19 start-page: 114 year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0007 article-title: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm publication-title: Addit. Manufact. doi: 10.1016/j.addma.2017.11.009 – volume: 95 start-page: 280 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0035 article-title: Anomaly detection based on uncertainty fusion for univariate monitoring series publication-title: Measurement doi: 10.1016/j.measurement.2016.10.031 – volume: 11 start-page: 711 issue: 6 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0066 article-title: Geometric means and medians with applications to target detection publication-title: IET Signal Process. doi: 10.1049/iet-spr.2016.0547 – volume: 64 start-page: 2400 issue: 9 year: 2016 ident: 10.1016/j.neucom.2019.07.034_bib0018 article-title: Collaborative multi-Sensor classification via sparsity-based representation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2016.2521605 – start-page: 1 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0079 article-title: Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 60 start-page: 3480 issue: 10 year: 2011 ident: 10.1016/j.neucom.2019.07.034_bib0005 article-title: State-of-the-Art predictive maintenance techniques publication-title: IEEE Trans. Instrum. Measur. doi: 10.1109/TIM.2009.2036347 – volume: 10 start-page: e0118432 issue: 3 year: 2015 ident: 10.1016/j.neucom.2019.07.034_bib0054 article-title: The precision-Recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets publication-title: PLOS ONE doi: 10.1371/journal.pone.0118432 – year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0025 article-title: A signal-Level transfer learning framework for autonomous reconfiguration of wearable systems publication-title: IEEE Trans. Mobile Comput. doi: 10.1109/TMC.2018.2878673 – start-page: 2054 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0056 article-title: A first attempt on global evolutionary undersampling for imbalanced big data – volume: 85 start-page: 292 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0064 article-title: Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and hilbert transform publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.04.028 – volume: 45 start-page: 2673 issue: 11 year: 1997 ident: 10.1016/j.neucom.2019.07.034_bib0074 article-title: Bidirectional recurrent neural networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.650093 – volume: 24 start-page: 2263 issue: 12 year: 2016 ident: 10.1016/j.neucom.2019.07.034_bib0030 article-title: Very deep convolutional neural networks for noise robust speech recognition publication-title: IEEE/ACM Trans. Audio Speech Lang. Process. doi: 10.1109/TASLP.2016.2602884 – volume: 127 start-page: 230 year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0038 article-title: An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring publication-title: Renew. Energy doi: 10.1016/j.renene.2018.04.059 – volume: 41 issue: 3 year: 2009 ident: 10.1016/j.neucom.2019.07.034_sbref0001 article-title: Anomaly detection: a survey publication-title: ACM Comput. Surv. doi: 10.1145/1541880.1541882 – volume: 24 start-page: 164 issue: 1 year: 2011 ident: 10.1016/j.neucom.2019.07.034_bib0002 article-title: A review on time series data mining publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2010.09.007 – year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0052 article-title: Gait anomaly detection of subjects with Parkinson’s disease using a deep time series-based approach publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2882245 – volume: 268 start-page: 76 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0031 article-title: An analysis of convolutional long short-term memory recurrent neural networks for gesture recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.088 – start-page: 195 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0023 article-title: Product line engineering of monitoring functionality in industrial cyber-physical systems: a domain analysis – volume: 33 start-page: 41 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0063 article-title: Spatial anomaly detection in sensor networks using neighborhood information publication-title: Inf. Fusion doi: 10.1016/j.inffus.2016.04.007 – volume: 130 start-page: 18 year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0012 article-title: Multi-sensors measuring system for geodetic monitoring of elevator guide rails publication-title: Measurement doi: 10.1016/j.measurement.2018.07.077 – volume: 106 start-page: 66 year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0061 article-title: Web traffic anomaly detection using C-LSTM neural networks publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.04.004 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.neucom.2019.07.034_bib0071 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 3 start-page: 161 issue: 3 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0058 article-title: Resampling strategies for imbalanced time series forecasting publication-title: Int. J. Data Sci. Anal. doi: 10.1007/s41060-017-0044-3 – volume: 13 start-page: 228 issue: 1 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0009 article-title: Distributed clustering strategies in industrial wireless sensor networks publication-title: IEEE Trans. Indust. Inf. doi: 10.1109/TII.2016.2628409 – volume: 16 start-page: 115 issue: 1 year: 2016 ident: 10.1016/j.neucom.2019.07.034_bib0029 article-title: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition publication-title: Sensors doi: 10.3390/s16010115 – volume: abs/1708.0 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0049 article-title: Time series anomaly detection; detection of anomalous drops with limited features and sparse examples in noisy highly periodic data publication-title: CoRR – volume: 8 start-page: 10 issue: 1 year: 2015 ident: 10.1016/j.neucom.2019.07.034_bib0050 article-title: Application of synthetic NDVI time series blended from landsat and MODIS data for grassland biomass estimation publication-title: Remote Sens. doi: 10.3390/rs8010010 – year: 2016 ident: 10.1016/j.neucom.2019.07.034_bib0045 article-title: LSTM-Based encoder-Decoder for multi-sensor anomaly detection publication-title: CoRR – volume: 62 start-page: 915 year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0078 article-title: Real-time human activity recognition from accelerometer data using convolutional neural networks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.09.027 – year: 2016 ident: 10.1016/j.neucom.2019.07.034_bib0034 – volume: 28 start-page: 2222 issue: 10 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0069 article-title: LSTM: a search space odyssey publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2582924 – volume: 49 start-page: 46 year: 2019 ident: 10.1016/j.neucom.2019.07.034_bib0060 article-title: Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection publication-title: Inf. Fusion doi: 10.1016/j.inffus.2018.09.001 – year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0053 article-title: Computer vision and deep learning–based data anomaly detection method for structural health monitoring publication-title: Struct. Health Monitor. Int. J. – volume: 41 start-page: 68 year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0021 article-title: Optimizing multi-sensor deployment via ensemble pruning for wearable activity recognition publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.08.002 – start-page: 1756 year: 2013 ident: 10.1016/j.neucom.2019.07.034_bib0080 article-title: Cross-entropy vs. squared error training: a theoretical and experimental comparison – start-page: 22 year: 2015 ident: 10.1016/j.neucom.2019.07.034_bib0043 article-title: Long short term memory networks for anomaly detection in time series – volume: 24 start-page: 10 issue: 3 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0010 article-title: Internet of things architecture: recent advances, taxonomy, requirements, and open challenges publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.2017.1600421 – volume: 9 start-page: 2677 issue: Dec year: 2008 ident: 10.1016/j.neucom.2019.07.034_bib0086 article-title: An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons publication-title: J. Mach. Learn. Res. – volume: 144 start-page: 180 year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0026 article-title: Deep learning for automatic stereotypical motor movement detection using wearable sensors in autism spectrum disorders publication-title: Signal Process. doi: 10.1016/j.sigpro.2017.10.011 – volume: 13 start-page: 1310 issue: 3 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0033 article-title: Dislocated time series convolutional neural architecture: an intelligent fault diagnosis approach for electric machine publication-title: IEEE Trans. Indust. Inf. doi: 10.1109/TII.2016.2645238 – start-page: 1 year: 2015 ident: 10.1016/j.neucom.2019.07.034_bib0044 article-title: Anomaly detection in ECG time signals via deep long short-term memory networks – volume: 28 start-page: 162 issue: 1 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0032 article-title: Convolutional neural networks for time series classification publication-title: J. Syst. Eng. Electron. doi: 10.21629/JSEE.2017.01.18 – volume: 92 start-page: 390 year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0062 article-title: Network anomaly detection system using genetic algorithm and fuzzy logic publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.09.013 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.neucom.2019.07.034_bib0028 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 39 start-page: 448 year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0042 article-title: Brain activation detection by modified neighborhood one-class SVM on fmri data publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.08.021 – volume: 7 start-page: e1199 issue: 2 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0014 article-title: Survey on time series motif discovery publication-title: Wiley Interdiscipl. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1199 – volume: 6 start-page: 69907 year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0027 article-title: A new transfer learning method and its application on rotating machine fault diagnosis under variant working conditions publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2880770 – volume: 28 start-page: 238 issue: 1 year: 2016 ident: 10.1016/j.neucom.2019.07.034_bib0055 article-title: To combat multi-Class imbalanced problems by means of over-Sampling techniques publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2015.2458858 – start-page: 448 year: 2015 ident: 10.1016/j.neucom.2019.07.034_bib0075 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift – start-page: 1597 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0070 article-title: Gate-variants of Gated Recurrent Unit (GRU) neural networks – volume: 180 start-page: 2044 issue: 10 year: 2010 ident: 10.1016/j.neucom.2019.07.034_bib0084 article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power publication-title: Inf. Sci. doi: 10.1016/j.ins.2009.12.010 – volume: 3 start-page: 9 issue: 1 year: 2016 ident: 10.1016/j.neucom.2019.07.034_bib0024 article-title: A survey of transfer learning publication-title: J. Big Data doi: 10.1186/s40537-016-0043-6 – volume: 6 start-page: 27760 year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0041 article-title: Detecting anomalies in time series data via a meta-feature based approach publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2840086 – volume: 241 start-page: 97 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0036 article-title: Data-driven prognostics using a combination of constrained K-means clustering, fuzzy modeling and LOF-based score publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.024 – volume: 26 start-page: 2055 issue: 4 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0068 article-title: Knowledge guided disambiguation for large-Scale scene classification with multi-resolution CNNs publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2675339 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.neucom.2019.07.034_bib0085 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 26 start-page: 3142 issue: 7 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0077 article-title: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2662206 – year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0003 article-title: Real-time big data processing for anomaly detection: a survey publication-title: Int. J. Inf. Manag. – volume: 11 start-page: 479 issue: 3 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0019 article-title: Heterogeneous sensor data fusion by deep multimodal encoding publication-title: IEEE J. Select. Top. Signal Process. doi: 10.1109/JSTSP.2017.2679538 – start-page: e1289 year: 2018 ident: 10.1016/j.neucom.2019.07.034_bib0017 article-title: Transforming big data into smart data: an insight on the use of the k-nearest neighbors algorithm to obtain quality data publication-title: Wiley Interdiscipl. Rev. Data Min. Knowl. Discov. – year: 2007 ident: 10.1016/j.neucom.2019.07.034_bib0083 – volume: 11 start-page: e0152173 issue: 4 year: 2016 ident: 10.1016/j.neucom.2019.07.034_bib0040 article-title: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data publication-title: PLoS One doi: 10.1371/journal.pone.0152173 – volume: 44 start-page: 467 issue: 4 year: 2015 ident: 10.1016/j.neucom.2019.07.034_bib0087 article-title: Dealing with the evaluation of supervised classification algorithms publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-015-9433-y – volume: 26 start-page: 4321 issue: 9 year: 2017 ident: 10.1016/j.neucom.2019.07.034_bib0039 article-title: Unsupervised sequential outlier detection with deep architectures publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2713048 – volume: 25 start-page: 2809 issue: 12 year: 2013 ident: 10.1016/j.neucom.2019.07.034_bib0057 article-title: Integrated oversampling for imbalanced time series classification publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2013.37 |
| SSID | ssj0017129 |
| Score | 2.6569595 |
| Snippet | •We propose a Multi-head CNN-RNN for multi-time series anomaly detection.•Time series are addressed independently to deal with heterogeneous sensor... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 246 |
| SubjectTerms | Anomaly detection Convolutional neural networks Deep learning Industry 4.0 Multi-sensor systems Recurrent neural networks |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFA4yPrgvXld0vZAHXzM0Sdu0vg2iiGBZxBFlH0rSpHiZyQzasuiT_8F_6C_xJG0HWRBX33oLTTmn-b4k3zkHoT2hqQkKI4mIS01CRhWRKjZElEB2NSC4kS52-DSLj4fhyWV02aoqXSyMnXi577UcE7do_nDjtpr7TqPkCkA160uTuprWMG3ngFYucH0-joCH99D8MPs9uPLJ9VhE4Lbf6kwE87HSXdycF3dZUzuxCKBf6nN38vAjXFqo7VQ-_pWj0TvcOVpCf7oeN3KTu35dqX7x9E8yx-990jJabOkoHjT-s4LmjF1FS12pB9z--WvowgfqEhi5NT7Istfnl7Msw0B4sVckEleiHjtvNg9Y2slYjh6xNpXXedl9PLD4ZlYjBBeAnNjntf2JhkeH5wfHpC3JQApgahUxMtCM6UBoHYsyLOCocAknqYk44xIAXwaJSoMy5KUKeMSFShO4DnNwBUQm5euoZyfWbCDMiiSVlHLwDBg4NE2UpIprlgQlDctYbSLeGSQv2nzlrmzGKO-Eabd5Y8bcmTEPRA5m3ERk1mra5Ov45HnR2TpvOUfDJXKAlE9a9meu8V-v-vXVBlvohztzSMnoNupV97XZAQpUqd3W198A6wAJgg priority: 102 providerName: Unpaywall |
| Title | Multi-head CNN–RNN for multi-time series anomaly detection: An industrial case study |
| URI | https://dx.doi.org/10.1016/j.neucom.2019.07.034 https://nottingham-repository.worktribe.com/output/2315191 |
| UnpaywallVersion | submittedVersion |
| Volume | 363 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LAB) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8286 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AKRWK dateStart: 19930201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHvTiW3yWHLymzWO72fVWiqUqLqJW9LQkmyxU6lq0RXoR_4P_0F_iZB9FD6J42t2QkGUyM98EvplB6FAaZmliFZF-aojHmSZK-5bIFIJdAwhulcsdPo_8_sA7vW3f1lC3yoVxtMrS9xc-PffW5UirlGZrPBy2rmjI4RbFwOQEhZuzyyj3POm6GDRf5zQPJhkv6u3xNnGzq_S5nOOV2anjjAAIhnkJT-H9BE-L02ysZi9qNPoCP71VtFzGjbhT_NoaqtlsHa1UPRlwaaIb6CbPqCXgYg3uRtHH2_tlFGGITHFOHSSulzx2amefscoeH9Roho2d5ISs7Ah3MjycN_PACUAczgvQbqJB7_i62ydl7wSSQEg1IVZRw7mh0hhfpl4Cb4mrDMlsW3ChAJkVDXRIU0-kmoq2kDoMYBwuyxoijlBsoXr2mNlthHkShIoxAUcIFm5YoBXTwvCApsxLfb2DRCWyOCkLi7v-FqO4YpDdx4WgYyfomMoYBL2DyHzVuCis8ct8WZ1G_E1BYvD9v6xszg_vT1vt_nurPbTkvhy2cbaP6pOnqT2AoGWiG7lWNtBC5-SsH8FzEF107j4Bh6ruQw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsQwELU4Cmi4ETcuaM36SOKEDq1Ay5WCS3SWHTvSoiW7gl0hGsQ_8Id8CeMcKygQiC5ybNmasefNSG9mENqTljmaOU1klFsScGaINpEjMgdn1wKCO-1zhy_SqHMTnN6FdxOo3eTCeFplbfsrm15a63qkVUuzNeh2W1c04RBFMXhygkLkLCfRdBBy6SOw_dcxz4NJxquCezwkfnqTP1eSvAo38qQRQMGkrOEpgp_waWZUDPTLs-71vuDP8QKaqx1HfFidbRFNuGIJzTdNGXD9RpfRbZlSS8DGWtxO04-398s0xeCa4pI7SHwzeezvnXvCuug_6N4Ltm5YMrKKA3xY4O64mwfOAONwWYF2Bd0cH123O6RunkAy8KmGxGlqObdUWhvJPMjgK_OlIZkLBRcaoFnT2CQ0D0RuqAiFNEkM4xAtG3A5ErGKpop-4dYQ5lmcaMYE6BCeuGWx0cwIy2OasyCPzDoSjchUVlcW9w0ueqqhkN2rStDKC1pRqUDQ64iMVw2qyhq_zJeNNtS3G6LA-P-ycn-svD9ttfHvrXbRTOf64lydn6Rnm2jW__FAx9kWmho-jtw2eDBDs1Pe0E-hLe4o |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFA4yPrgvXld0vZAHXzM0Sdu0vg2iiGBZxBFlH0rSpHiZyQzasuiT_8F_6C_xJG0HWRBX33oLTTmn-b4k3zkHoT2hqQkKI4mIS01CRhWRKjZElEB2NSC4kS52-DSLj4fhyWV02aoqXSyMnXi577UcE7do_nDjtpr7TqPkCkA160uTuprWMG3ngFYucH0-joCH99D8MPs9uPLJ9VhE4Lbf6kwE87HSXdycF3dZUzuxCKBf6nN38vAjXFqo7VQ-_pWj0TvcOVpCf7oeN3KTu35dqX7x9E8yx-990jJabOkoHjT-s4LmjF1FS12pB9z--WvowgfqEhi5NT7Istfnl7Msw0B4sVckEleiHjtvNg9Y2slYjh6xNpXXedl9PLD4ZlYjBBeAnNjntf2JhkeH5wfHpC3JQApgahUxMtCM6UBoHYsyLOCocAknqYk44xIAXwaJSoMy5KUKeMSFShO4DnNwBUQm5euoZyfWbCDMiiSVlHLwDBg4NE2UpIprlgQlDctYbSLeGSQv2nzlrmzGKO-Eabd5Y8bcmTEPRA5m3ERk1mra5Ov45HnR2TpvOUfDJXKAlE9a9meu8V-v-vXVBlvohztzSMnoNupV97XZAQpUqd3W198A6wAJgg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-head+CNN%E2%80%93RNN+for+multi-time+series+anomaly+detection%3A+An+industrial+case+study&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Canizo%2C+Mikel&rft.au=Triguero%2C+Isaac&rft.au=Conde%2C+Angel&rft.au=Onieva%2C+Enrique&rft.date=2019-10-21&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=363&rft.spage=246&rft.epage=260&rft_id=info:doi/10.1016%2Fj.neucom.2019.07.034&rft.externalDocID=S0925231219309877 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |