Multi-head CNN–RNN for multi-time series anomaly detection: An industrial case study

•We propose a Multi-head CNN-RNN for multi-time series anomaly detection.•Time series are addressed independently to deal with heterogeneous sensor systems.•The Multi-head CNN can adapt its heads to the needs of each time series•The Multi-head CNN-RNN adapts to new sensor configurations using transf...

Full description

Saved in:
Bibliographic Details
Published inNeurocomputing (Amsterdam) Vol. 363; pp. 246 - 260
Main Authors Canizo, Mikel, Triguero, Isaac, Conde, Angel, Onieva, Enrique
Format Journal Article
LanguageEnglish
Published Elsevier B.V 21.10.2019
Subjects
Online AccessGet full text
ISSN0925-2312
1872-8286
1872-8286
DOI10.1016/j.neucom.2019.07.034

Cover

Abstract •We propose a Multi-head CNN-RNN for multi-time series anomaly detection.•Time series are addressed independently to deal with heterogeneous sensor systems.•The Multi-head CNN can adapt its heads to the needs of each time series•The Multi-head CNN-RNN adapts to new sensor configurations using transfer learning.•An industrial case study with elevator data is used to test the proposed method.•Experiments show promising results detecting anomalies in an industrial scenario. Detecting anomalies in time series data is becoming mainstream in a wide variety of industrial applications in which sensors monitor expensive machinery. The complexity of this task increases when multiple heterogeneous sensors provide information of different nature, scales and frequencies from the same machine. Traditionally, machine learning techniques require a separate data pre-processing before training, which tends to be very time-consuming and often requires domain knowledge. Recent deep learning approaches have shown to perform well on raw time series data, eliminating the need for pre-processing. In this work, we propose a deep learning based approach for supervised multi-time series anomaly detection that combines a Convolutional Neural Network (CNN) and a Recurrent Neural Network (RNN) in different ways. Unlike other approaches, we use independent CNNs, so-called convolutional heads, to deal with anomaly detection in multi-sensor systems. We address each sensor individually avoiding the need for data pre-processing and allowing for a more tailored architecture for each type of sensor. We refer to this architecture as Multi-head CNN–RNN. The proposed architecture is assessed against a real industrial case study, provided by an industrial partner, where a service elevator is monitored. Within this case study, three type of anomalies are considered: point, context-specific, and collective.The experimental results show that the proposed architecture is suitable for multi-time series anomaly detection as it obtained promising results on the real industrial scenario.
AbstractList •We propose a Multi-head CNN-RNN for multi-time series anomaly detection.•Time series are addressed independently to deal with heterogeneous sensor systems.•The Multi-head CNN can adapt its heads to the needs of each time series•The Multi-head CNN-RNN adapts to new sensor configurations using transfer learning.•An industrial case study with elevator data is used to test the proposed method.•Experiments show promising results detecting anomalies in an industrial scenario. Detecting anomalies in time series data is becoming mainstream in a wide variety of industrial applications in which sensors monitor expensive machinery. The complexity of this task increases when multiple heterogeneous sensors provide information of different nature, scales and frequencies from the same machine. Traditionally, machine learning techniques require a separate data pre-processing before training, which tends to be very time-consuming and often requires domain knowledge. Recent deep learning approaches have shown to perform well on raw time series data, eliminating the need for pre-processing. In this work, we propose a deep learning based approach for supervised multi-time series anomaly detection that combines a Convolutional Neural Network (CNN) and a Recurrent Neural Network (RNN) in different ways. Unlike other approaches, we use independent CNNs, so-called convolutional heads, to deal with anomaly detection in multi-sensor systems. We address each sensor individually avoiding the need for data pre-processing and allowing for a more tailored architecture for each type of sensor. We refer to this architecture as Multi-head CNN–RNN. The proposed architecture is assessed against a real industrial case study, provided by an industrial partner, where a service elevator is monitored. Within this case study, three type of anomalies are considered: point, context-specific, and collective.The experimental results show that the proposed architecture is suitable for multi-time series anomaly detection as it obtained promising results on the real industrial scenario.
Author Triguero, Isaac
Canizo, Mikel
Conde, Angel
Onieva, Enrique
Author_xml – sequence: 1
  givenname: Mikel
  orcidid: 0000-0001-8888-2375
  surname: Canizo
  fullname: Canizo, Mikel
  email: mcanizo@ikerlan.es
  organization: Ikerlan Technology Research Centre, Po. J. Ma. Arizmendiarrieta, 2., Arrasate-Mondragón 20500, Spain
– sequence: 2
  givenname: Isaac
  orcidid: 0000-0002-0150-0651
  surname: Triguero
  fullname: Triguero, Isaac
  organization: The Optimisation and Learning Lab, School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham NG8 1BB, United Kingdom
– sequence: 3
  givenname: Angel
  surname: Conde
  fullname: Conde, Angel
  organization: Ikerlan Technology Research Centre, Po. J. Ma. Arizmendiarrieta, 2., Arrasate-Mondragón 20500, Spain
– sequence: 4
  givenname: Enrique
  orcidid: 0000-0001-9581-1823
  surname: Onieva
  fullname: Onieva, Enrique
  organization: Deusto Institute of Technology (DeustoTech), University of Deusto, Avenida de las Universidades 24, Bilbao 48007, Spain
BookMark eNqNkE1OwzAQRi1UJNrCDVj4AgljO2mSLpCqij-pFAkBW8uxHeEqcSrbAXXHHbghJyElrFgAqxnNN-9bvAka2dZqhE4JxATI7GwTW93JtokpkCKGLAaWHKAxyTMa5TSfjdAYCppGlBF6hCbebwBIRmgxRk-3XR1M9KyFwsv1-uPt_X69xlXrcPMVBNNo7LUz2mNh20bUO6x00DKY1s7xwmJjVeeDM6LGUvj-OXRqd4wOK1F7ffI9p-jx8uJheR2t7q5ulotVJFlKQ6QFKEoVZErNsiqR_SYBkozolFEmgCYC8rKAKmFVCSxlWVnk_X1WQElzVrApSofezm7F7lXUNd860wi34wT4Xg7f8EEO38vhkPFeTs8lAydd673T1X-x-Q9MmiD2KoITpv4LPh9g3Qt5MdpxL422Uivjep9cteb3gk_oIpbt
CitedBy_id crossref_primary_10_53694_bited_1177504
crossref_primary_10_1016_j_cie_2024_110830
crossref_primary_10_3390_rs12071097
crossref_primary_10_1093_iob_obae036
crossref_primary_10_1016_j_engappai_2024_108940
crossref_primary_10_1016_j_aei_2025_103213
crossref_primary_10_1080_08839514_2022_2088452
crossref_primary_10_3390_s23115010
crossref_primary_10_1007_s11280_023_01171_1
crossref_primary_10_3390_a17080322
crossref_primary_10_3390_w16091238
crossref_primary_10_1007_s00603_024_04139_3
crossref_primary_10_1109_ACCESS_2023_3339500
crossref_primary_10_1155_2024_7481513
crossref_primary_10_1016_j_isprsjprs_2023_11_016
crossref_primary_10_1016_j_jksuci_2024_102232
crossref_primary_10_1016_j_jmsy_2022_07_004
crossref_primary_10_3390_app11146422
crossref_primary_10_1109_ACCESS_2021_3071269
crossref_primary_10_3390_app122111071
crossref_primary_10_1177_14644207211041326
crossref_primary_10_1016_j_asoc_2022_109714
crossref_primary_10_3390_s22155507
crossref_primary_10_1038_s41598_021_92973_8
crossref_primary_10_3390_electronics12071622
crossref_primary_10_1016_j_engappai_2024_107961
crossref_primary_10_1109_ACCESS_2022_3178592
crossref_primary_10_1016_j_optlastec_2024_110997
crossref_primary_10_25136_2409_7543_2023_2_40770
crossref_primary_10_3390_s22166080
crossref_primary_10_1089_big_2020_0159
crossref_primary_10_1016_j_asoc_2022_109164
crossref_primary_10_1016_j_engappai_2023_106144
crossref_primary_10_1016_j_ymssp_2022_109607
crossref_primary_10_3390_s23249679
crossref_primary_10_3390_s24051391
crossref_primary_10_1007_s00371_023_03124_1
crossref_primary_10_1016_j_engappai_2023_106467
crossref_primary_10_1080_08982112_2023_2179404
crossref_primary_10_1007_s10489_021_02532_x
crossref_primary_10_1109_ACCESS_2024_3368034
crossref_primary_10_3390_diagnostics13020254
crossref_primary_10_1088_1742_6596_2868_1_012021
crossref_primary_10_3390_s20092668
crossref_primary_10_1016_j_eswa_2023_120725
crossref_primary_10_1016_j_uclim_2023_101418
crossref_primary_10_1145_3582571
crossref_primary_10_1016_j_oceaneng_2022_111352
crossref_primary_10_3390_agriculture14060794
crossref_primary_10_1145_3630633
crossref_primary_10_3390_electronics13183667
crossref_primary_10_1007_s10489_025_06366_9
crossref_primary_10_1016_j_measen_2022_100625
crossref_primary_10_1109_TIM_2020_3024355
crossref_primary_10_1007_s10586_024_04434_2
crossref_primary_10_1145_3453155
crossref_primary_10_1016_j_agwat_2020_106113
crossref_primary_10_1007_s41365_022_01111_0
crossref_primary_10_1109_ACCESS_2021_3090936
crossref_primary_10_1088_1361_6501_ac9f5d
crossref_primary_10_1109_ACCESS_2024_3424488
crossref_primary_10_1007_s10489_022_03488_2
crossref_primary_10_1109_MCI_2021_3129962
crossref_primary_10_1016_j_neucom_2022_06_042
crossref_primary_10_1007_s10845_024_02447_7
crossref_primary_10_3390_atmos15010103
crossref_primary_10_1016_j_procs_2024_01_105
crossref_primary_10_3390_s25010101
crossref_primary_10_1088_1742_6596_1748_6_062075
crossref_primary_10_1007_s11276_023_03323_7
crossref_primary_10_1109_JIOT_2020_3016146
crossref_primary_10_1007_s12145_025_01736_w
crossref_primary_10_1016_j_procir_2024_10_118
crossref_primary_10_1109_ACCESS_2024_3368067
crossref_primary_10_1109_TTE_2023_3293551
crossref_primary_10_3390_agriculture13020480
crossref_primary_10_3390_w14192972
crossref_primary_10_3390_app13052912
crossref_primary_10_1016_j_neucom_2020_10_084
crossref_primary_10_1016_j_asoc_2023_110487
crossref_primary_10_1016_j_ymssp_2023_110814
crossref_primary_10_1016_j_engappai_2024_109552
crossref_primary_10_1007_s13762_023_04763_6
crossref_primary_10_1109_TII_2020_3019788
crossref_primary_10_1007_s12599_022_00778_4
crossref_primary_10_1109_ACCESS_2021_3123689
crossref_primary_10_1007_s10664_023_10302_1
crossref_primary_10_3390_electronics14010065
crossref_primary_10_1038_s41598_023_49579_z
crossref_primary_10_1016_j_jbi_2022_104216
crossref_primary_10_14778_3632093_3632110
crossref_primary_10_3390_agriculture11070635
crossref_primary_10_1007_s11356_022_19713_x
crossref_primary_10_1109_JBHI_2020_3004686
crossref_primary_10_1016_j_segan_2024_101497
crossref_primary_10_3390_app13074259
crossref_primary_10_1016_j_ast_2024_109064
crossref_primary_10_1016_j_neucom_2024_127791
crossref_primary_10_1016_j_cie_2022_108381
crossref_primary_10_1109_ACCESS_2024_3525357
crossref_primary_10_2514_1_I010971
crossref_primary_10_1016_j_rineng_2025_104194
crossref_primary_10_3390_electronics13091700
crossref_primary_10_1109_TITS_2024_3354852
crossref_primary_10_3390_math11030620
crossref_primary_10_1016_j_eswa_2021_115715
crossref_primary_10_1109_TITS_2022_3147826
crossref_primary_10_1177_09544062241245192
crossref_primary_10_1109_JIOT_2024_3493380
crossref_primary_10_1007_s10845_024_02338_x
crossref_primary_10_1111_exsy_13083
crossref_primary_10_2339_politeknik_1379049
crossref_primary_10_1016_j_iswa_2024_200438
crossref_primary_10_1016_j_rse_2020_111952
crossref_primary_10_1109_ACCESS_2021_3110947
crossref_primary_10_1016_j_asoc_2022_108912
crossref_primary_10_3390_foods14020247
crossref_primary_10_1016_j_aap_2020_105910
crossref_primary_10_1038_s41598_023_47812_3
crossref_primary_10_1785_0120220058
crossref_primary_10_1109_TKDE_2024_3523857
crossref_primary_10_1007_s00521_024_10424_7
crossref_primary_10_1016_j_measurement_2025_117180
crossref_primary_10_1016_j_knosys_2022_108290
crossref_primary_10_1080_0951192X_2023_2257665
crossref_primary_10_1016_j_asoc_2021_108084
crossref_primary_10_1016_j_compeleceng_2024_109631
crossref_primary_10_1002_nem_2144
crossref_primary_10_4018_JOEUC_300761
crossref_primary_10_1016_j_asoc_2021_107671
crossref_primary_10_1016_j_cie_2020_107015
crossref_primary_10_1016_j_ifacol_2024_11_170
crossref_primary_10_1109_ACCESS_2023_3333242
crossref_primary_10_1016_j_procir_2023_06_061
crossref_primary_10_1016_j_pnucene_2024_105501
crossref_primary_10_1109_ACCESS_2023_3349022
crossref_primary_10_3390_electronics12091970
crossref_primary_10_1109_TIM_2023_3244255
crossref_primary_10_1093_tse_tdad021
crossref_primary_10_1016_j_measurement_2024_116116
crossref_primary_10_3390_min13040461
crossref_primary_10_1016_j_future_2022_09_024
crossref_primary_10_3390_ai4010010
crossref_primary_10_1109_ACCESS_2022_3179047
crossref_primary_10_2139_ssrn_4117262
crossref_primary_10_1016_j_psep_2025_106871
crossref_primary_10_1007_s41060_024_00525_w
crossref_primary_10_1016_j_eswa_2024_125062
crossref_primary_10_32604_cmes_2023_047065
crossref_primary_10_1016_j_neucom_2022_03_048
crossref_primary_10_1016_j_knosys_2023_110639
crossref_primary_10_1007_s11227_020_03603_5
crossref_primary_10_1093_jcde_qwae072
crossref_primary_10_1007_s00521_021_06033_3
crossref_primary_10_1016_j_engappai_2020_103678
crossref_primary_10_3390_math11122760
crossref_primary_10_1109_JSTARS_2021_3120987
crossref_primary_10_3390_fractalfract8080460
crossref_primary_10_1016_j_energy_2023_128180
crossref_primary_10_1007_s41605_024_00507_3
crossref_primary_10_3390_app13095659
crossref_primary_10_1016_j_jag_2024_103795
crossref_primary_10_1109_JIOT_2021_3097437
crossref_primary_10_1109_JSEN_2024_3520091
crossref_primary_10_3390_s20185045
crossref_primary_10_1016_j_cie_2024_110074
crossref_primary_10_3390_su16083335
crossref_primary_10_7717_peerj_cs_1117
crossref_primary_10_3390_app122211393
crossref_primary_10_1007_s00607_021_00928_8
crossref_primary_10_1007_s13735_022_00234_9
crossref_primary_10_1016_j_asoc_2021_107474
crossref_primary_10_1109_ACCESS_2023_3281407
crossref_primary_10_1016_j_neucom_2021_03_062
crossref_primary_10_1016_j_ress_2022_108353
crossref_primary_10_1186_s42162_022_00230_7
crossref_primary_10_1007_s11227_025_07044_w
crossref_primary_10_1109_MIE_2020_3034884
crossref_primary_10_1038_s41598_021_96751_4
crossref_primary_10_1007_s42979_024_02704_9
crossref_primary_10_3389_fenrg_2024_1357406
crossref_primary_10_1109_ACCESS_2023_3291674
crossref_primary_10_1016_j_sigpro_2022_108657
crossref_primary_10_1016_j_procir_2022_09_095
crossref_primary_10_1016_j_asoc_2023_110763
crossref_primary_10_1016_j_imu_2024_101478
crossref_primary_10_1016_j_istruc_2024_106076
crossref_primary_10_1016_j_ipm_2023_103569
crossref_primary_10_3390_s24020311
crossref_primary_10_1109_ACCESS_2023_3349132
crossref_primary_10_1109_ACCESS_2021_3078553
crossref_primary_10_3390_s23218908
crossref_primary_10_1016_j_apacoust_2022_108660
crossref_primary_10_1007_s10489_023_04764_5
crossref_primary_10_1007_s10044_021_01053_0
crossref_primary_10_1016_j_asoc_2023_110419
crossref_primary_10_1016_j_cose_2023_103310
crossref_primary_10_1111_exsy_12959
crossref_primary_10_1177_14750902231226162
crossref_primary_10_1016_j_ijcip_2021_100452
crossref_primary_10_1109_ACCESS_2024_3426295
crossref_primary_10_3390_s21227628
crossref_primary_10_1016_j_compind_2021_103498
crossref_primary_10_1109_ACCESS_2021_3101844
crossref_primary_10_1080_01969722_2023_2240648
crossref_primary_10_1016_j_measurement_2022_110759
crossref_primary_10_3390_jmse11101964
crossref_primary_10_1016_j_neucom_2023_01_022
crossref_primary_10_1016_j_neucom_2025_129887
crossref_primary_10_1007_s11042_022_13304_1
crossref_primary_10_1155_2021_5854096
crossref_primary_10_1177_00202940221126497
crossref_primary_10_1016_j_asoc_2022_109147
crossref_primary_10_3390_s23146491
crossref_primary_10_3390_en18061385
Cites_doi 10.1016/j.renene.2018.04.059
10.1016/j.dsp.2017.06.015
10.1007/s00500-008-0392-y
10.1016/j.neucom.2017.04.070
10.1016/j.inffus.2018.11.010
10.1016/j.knosys.2017.02.023
10.1016/j.inffus.2017.06.004
10.1007/s10115-017-1067-8
10.1109/ACCESS.2017.2765544
10.1109/TCSS.2018.2857473
10.1016/j.neucom.2018.09.048
10.1016/j.ymssp.2016.09.010
10.1016/j.neucom.2017.03.021
10.1016/j.knosys.2017.10.017
10.1016/J.ENG.2017.05.015
10.1016/j.addma.2017.11.009
10.1016/j.measurement.2016.10.031
10.1049/iet-spr.2016.0547
10.1109/TSP.2016.2521605
10.1109/TIM.2009.2036347
10.1371/journal.pone.0118432
10.1109/TMC.2018.2878673
10.1016/j.eswa.2017.04.028
10.1109/78.650093
10.1109/TASLP.2016.2602884
10.1145/1541880.1541882
10.1016/j.engappai.2010.09.007
10.1109/ACCESS.2018.2882245
10.1016/j.neucom.2016.12.088
10.1016/j.inffus.2016.04.007
10.1016/j.measurement.2018.07.077
10.1016/j.eswa.2018.04.004
10.1038/nature14539
10.1007/s41060-017-0044-3
10.1109/TII.2016.2628409
10.3390/s16010115
10.3390/rs8010010
10.1016/j.asoc.2017.09.027
10.1109/TNNLS.2016.2582924
10.1016/j.inffus.2018.09.001
10.1016/j.inffus.2017.08.002
10.1109/MWC.2017.1600421
10.1016/j.sigpro.2017.10.011
10.1109/TII.2016.2645238
10.21629/JSEE.2017.01.18
10.1016/j.eswa.2017.09.013
10.1016/j.bspc.2017.08.021
10.1002/widm.1199
10.1109/ACCESS.2018.2880770
10.1109/TKDE.2015.2458858
10.1016/j.ins.2009.12.010
10.1186/s40537-016-0043-6
10.1109/ACCESS.2018.2840086
10.1016/j.neucom.2017.02.024
10.1109/TIP.2017.2675339
10.1109/TIP.2017.2662206
10.1109/JSTSP.2017.2679538
10.1371/journal.pone.0152173
10.1007/s10462-015-9433-y
10.1109/TIP.2017.2713048
10.1109/TKDE.2013.37
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.neucom.2019.07.034
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 260
ExternalDocumentID oai:nottingham-repository.worktribe.com:2315191
10_1016_j_neucom_2019_07_034
S0925231219309877
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c352t-ea0d22d07dd67f4cd07c00471e5323a024a08b90f43fb03537b983a0690b28393
IEDL.DBID .~1
ISSN 0925-2312
1872-8286
IngestDate Sun Oct 26 04:15:32 EDT 2025
Wed Oct 01 02:27:45 EDT 2025
Thu Apr 24 23:05:59 EDT 2025
Fri Feb 23 02:27:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Multi-sensor systems
Recurrent neural networks
Industry 4.0
Convolutional neural networks
Anomaly detection
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c352t-ea0d22d07dd67f4cd07c00471e5323a024a08b90f43fb03537b983a0690b28393
ORCID 0000-0001-8888-2375
0000-0002-0150-0651
0000-0001-9581-1823
OpenAccessLink https://proxy.k.utb.cz/login?url=https://nottingham-repository.worktribe.com/output/2315191
PageCount 15
ParticipantIDs unpaywall_primary_10_1016_j_neucom_2019_07_034
crossref_primary_10_1016_j_neucom_2019_07_034
crossref_citationtrail_10_1016_j_neucom_2019_07_034
elsevier_sciencedirect_doi_10_1016_j_neucom_2019_07_034
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-21
PublicationDateYYYYMMDD 2019-10-21
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-21
  day: 21
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Benkabou, Benabdeslem, Canitia (bib0037) 2018; 54
Liu, Zhang, Lin, Quek (bib0019) 2017; 11
García, Fernández, Luengo, Herrera (bib0082) 2009; 13
García, Herrera (bib0086) 2008; 9
Hua, Cheng, Wang, Qin, Li (bib0066) 2017; 11
Triguero, García-Gil, Maillo, Luengo, García, Herrera (bib0017) 2018
Garcia-Ceja, Galván-Tejada, Brena (bib0020) 2018; 40
Pourbabaee, Roshtkhari, Khorasani (bib0079) 2017
Kingma, Ba (bib0081) 2014; abs/1412.6
Cao, Li, Ma, Tao (bib0021) 2018; 41
Theissler (bib0006) 2017; 123
Liu, Meng, Yang, Sun, Chen (bib0033) 2017; 13
Bao, Tang, Li, Zhang (bib0053) 2018
Zhang, Zuo, Chen, Meng, Zhang (bib0077) 2017; 26
Zhong, Xu, Klotz, Newman (bib0011) 2017; 3
Goldstein, Uchida (bib0040) 2016; 11
Camps, Sama, Martín, Rodríguez-Martín, Pérez-López, Moreno Arostegui, Cabestany, Català, Alcaine, Mestre, Prats, Crespo-Maraver, Counihan, Browne, Quinlan, Laighin, Sweeney, Lewy, Vainstein, Costa, Annicchiarico, Bayés, Rodríguez-Molinero (bib0065) 2018; 139
Fu (bib0002) 2011; 24
Weiss, Khoshgoftaar, Wang (bib0024) 2016; 3
Tang, Zeng, Shi, Zhao (bib0042) 2018; 39
Moniz, Branco, Torgo (bib0058) 2017; 3
Triguero, Galar, Bustince, Herrera (bib0056) 2017
Ahmad, Lavin, Purdy, Agha (bib0013) 2017; 262
LeCun, Bengio, Hinton (bib0071) 2015; 521
Zhao, Luo, Peng, Fan (bib0072) 2017; 243
Ariyaluran Habeeb, Nasaruddin, Gani, Targio Hashem, Ahmed, Imran (bib0003) 2018
Kanarachos, Christopoulos, Chroneos, Fitzpatrick (bib0064) 2017; 85
Chung, Gulcehre, Cho, Bengio (bib0073) 2014
Kanjo, Younis, Ang (bib0060) 2019; 49
Bosman, Iacca, Tejada, Wörtche, Liotta (bib0063) 2017; 33
Cenedese, Luvisotto, Michieletto (bib0009) 2017; 13
Paragliola, Coronato (bib0052) 2018
Iglesias, Lu, Arellano, Yue, Ali, Sagardui (bib0023) 2017
Malhotra, Vig, Shroff, Agarwal (bib0043) 2015
Demšar (bib0085) 2006; 7
Shipmon (bib0049) 2017; abs/1708.0
Pang, Liu, Peng, Peng (bib0035) 2017; 95
Krizhevsky, Sutskever, Hinton (bib0076) 2012
Saeedi, Gebremedhin (bib0025) 2018
Tsironi, Barros, Weber, Wermter (bib0031) 2017; 268
Yaqoob, Ahmed, Hashem, Ahmed, Gani, Imran, Guizani (bib0010) 2017; 24
Chauhan, Vig (bib0044) 2015
Hashemian, Bean (bib0005) 2011; 60
Yang, Liu, Jiang (bib0038) 2018; 127
Schuster, Paliwal (bib0074) 1997; 45
Torkamani, Lohweg (bib0014) 2017; 7
LeCun, Bengio, Hinton (bib0028) 2015; 521
Zhao, Lu, Chen, Liu, Wu (bib0032) 2017; 28
Golik, Doetsch, Ney (bib0080) 2013
Greff, Srivastava, Koutnik, Steunebrink, Schmidhuber (bib0069) 2017; 28
Chattopadhyay, Wang, Tan (bib0051) 2018; 5
Ioffe, Szegedy (bib0075) 2015
Cao, Li, Woon, Ng (bib0057) 2013; 25
Yang, Liu, Jiang (bib0008) 2018; 127
Zhao, Li, Lu, Wang (bib0059) 2018; 322
Chandola, Banerjee, Kumar (bib0001) 2009; 41
Abdi, Hashemi (bib0055) 2016; 28
Zheng, Pan, Cheng (bib0015) 2017; 85
Malhotra (bib0045) 2016
Qian, Li, Wang (bib0027) 2018; 6
Ordóñez, Roggen (bib0029) 2016; 16
García, Fernández, Luengo, Herrera (bib0084) 2010; 180
Yan, Meng, Lu, Li (bib0004) 2017; 5
Scime, Beuth (bib0007) 2018; 19
Nguyen Thi, Cao, Le-Khac (bib0048) 2017; 36
Dao, Nguyen, Nasrabadi, Tran (bib0018) 2016; 64
Bontemps, Cao, McDermott, Le-Khac (bib0046) 2016
Cauteruccio, Fortino, Guerrieri, Liotta, Mocanu, Perra, Terracina, Torres Vega (bib0016) 2019; 52
Kim, Cho (bib0061) 2018; 106
Qian, Bi, Tan, Yu (bib0030) 2016; 24
Weinberg (bib0067) 2017; 69
Samuelsson (bib0034) 2016
Lu, Cheng, Xiao, Chang, Huang, Liang, Huang (bib0039) 2017; 26
Dey, Salemt (bib0070) 2017
Santafe, Inza, Lozano (bib0087) 2015; 44
Diez-Olivan, Pagan, Sanz, Sierra (bib0036) 2017; 241
Mohammadian Rad, Kia, Zarbo, van Laarhoven, Jurman, Venuti, Marchiori, Furlanello (bib0026) 2018; 144
Filonov (bib0047) 2016
Hamamoto, Carvalho, Sampaio, Abrão, Proença (bib0062) 2018; 92
Fernández, García, Galar, Prati, Krawczyk, Herrera (bib0022) 2018
Hu, Ji, Yan, Guo, Feng, Gong, Zhao, Dong (bib0041) 2018; 6
Saito, Rehmsmeier (bib0054) 2015; 10
Ignatov (bib0078) 2018; 62
Wang, Guo, Huang, Xiong, Qiao (bib0068) 2017; 26
Zhang, Zhang, Xie, Yin, Liu, Liu (bib0050) 2015; 8
Gołuch, Kuchmister, Ćmielewski, Bryś (bib0012) 2018; 130
Sheskin (bib0083) 2007
Zheng (10.1016/j.neucom.2019.07.034_bib0015) 2017; 85
Cao (10.1016/j.neucom.2019.07.034_bib0021) 2018; 41
Yang (10.1016/j.neucom.2019.07.034_bib0008) 2018; 127
Greff (10.1016/j.neucom.2019.07.034_bib0069) 2017; 28
LeCun (10.1016/j.neucom.2019.07.034_bib0028) 2015; 521
Yang (10.1016/j.neucom.2019.07.034_bib0038) 2018; 127
Hashemian (10.1016/j.neucom.2019.07.034_bib0005) 2011; 60
Santafe (10.1016/j.neucom.2019.07.034_bib0087) 2015; 44
Kanjo (10.1016/j.neucom.2019.07.034_bib0060) 2019; 49
Zhao (10.1016/j.neucom.2019.07.034_bib0059) 2018; 322
Liu (10.1016/j.neucom.2019.07.034_bib0033) 2017; 13
Zhong (10.1016/j.neucom.2019.07.034_bib0011) 2017; 3
Abdi (10.1016/j.neucom.2019.07.034_bib0055) 2016; 28
García (10.1016/j.neucom.2019.07.034_bib0082) 2009; 13
Triguero (10.1016/j.neucom.2019.07.034_bib0017) 2018
Krizhevsky (10.1016/j.neucom.2019.07.034_bib0076) 2012
Golik (10.1016/j.neucom.2019.07.034_bib0080) 2013
Dey (10.1016/j.neucom.2019.07.034_bib0070) 2017
Dao (10.1016/j.neucom.2019.07.034_bib0018) 2016; 64
Mohammadian Rad (10.1016/j.neucom.2019.07.034_bib0026) 2018; 144
García (10.1016/j.neucom.2019.07.034_bib0084) 2010; 180
Goldstein (10.1016/j.neucom.2019.07.034_bib0040) 2016; 11
Kanarachos (10.1016/j.neucom.2019.07.034_bib0064) 2017; 85
Theissler (10.1016/j.neucom.2019.07.034_bib0006) 2017; 123
Yan (10.1016/j.neucom.2019.07.034_bib0004) 2017; 5
Sheskin (10.1016/j.neucom.2019.07.034_bib0083) 2007
Zhang (10.1016/j.neucom.2019.07.034_bib0050) 2015; 8
Fernández (10.1016/j.neucom.2019.07.034_bib0022) 2018
Qian (10.1016/j.neucom.2019.07.034_bib0027) 2018; 6
Zhao (10.1016/j.neucom.2019.07.034_bib0072) 2017; 243
Lu (10.1016/j.neucom.2019.07.034_bib0039) 2017; 26
Bontemps (10.1016/j.neucom.2019.07.034_bib0046) 2016
Malhotra (10.1016/j.neucom.2019.07.034_bib0045) 2016
Ordóñez (10.1016/j.neucom.2019.07.034_bib0029) 2016; 16
Filonov (10.1016/j.neucom.2019.07.034_bib0047) 2016
Zhang (10.1016/j.neucom.2019.07.034_bib0077) 2017; 26
Iglesias (10.1016/j.neucom.2019.07.034_bib0023) 2017
Hamamoto (10.1016/j.neucom.2019.07.034_bib0062) 2018; 92
Ignatov (10.1016/j.neucom.2019.07.034_bib0078) 2018; 62
Triguero (10.1016/j.neucom.2019.07.034_bib0056) 2017
Hu (10.1016/j.neucom.2019.07.034_bib0041) 2018; 6
Bosman (10.1016/j.neucom.2019.07.034_bib0063) 2017; 33
Tang (10.1016/j.neucom.2019.07.034_bib0042) 2018; 39
Shipmon (10.1016/j.neucom.2019.07.034_bib0049) 2017; abs/1708.0
Liu (10.1016/j.neucom.2019.07.034_bib0019) 2017; 11
Wang (10.1016/j.neucom.2019.07.034_bib0068) 2017; 26
Ioffe (10.1016/j.neucom.2019.07.034_bib0075) 2015
Demšar (10.1016/j.neucom.2019.07.034_bib0085) 2006; 7
Weiss (10.1016/j.neucom.2019.07.034_bib0024) 2016; 3
Cenedese (10.1016/j.neucom.2019.07.034_bib0009) 2017; 13
Tsironi (10.1016/j.neucom.2019.07.034_bib0031) 2017; 268
Schuster (10.1016/j.neucom.2019.07.034_bib0074) 1997; 45
Cauteruccio (10.1016/j.neucom.2019.07.034_bib0016) 2019; 52
Pourbabaee (10.1016/j.neucom.2019.07.034_bib0079) 2017
Ariyaluran Habeeb (10.1016/j.neucom.2019.07.034_bib0003) 2018
Pang (10.1016/j.neucom.2019.07.034_bib0035) 2017; 95
Nguyen Thi (10.1016/j.neucom.2019.07.034_bib0048) 2017; 36
Paragliola (10.1016/j.neucom.2019.07.034_bib0052) 2018
Saito (10.1016/j.neucom.2019.07.034_bib0054) 2015; 10
LeCun (10.1016/j.neucom.2019.07.034_bib0071) 2015; 521
Kim (10.1016/j.neucom.2019.07.034_bib0061) 2018; 106
Qian (10.1016/j.neucom.2019.07.034_bib0030) 2016; 24
Hua (10.1016/j.neucom.2019.07.034_bib0066) 2017; 11
Chandola (10.1016/j.neucom.2019.07.034_sbref0001) 2009; 41
Camps (10.1016/j.neucom.2019.07.034_bib0065) 2018; 139
Benkabou (10.1016/j.neucom.2019.07.034_bib0037) 2018; 54
Samuelsson (10.1016/j.neucom.2019.07.034_bib0034) 2016
Chattopadhyay (10.1016/j.neucom.2019.07.034_bib0051) 2018; 5
Ahmad (10.1016/j.neucom.2019.07.034_bib0013) 2017; 262
Saeedi (10.1016/j.neucom.2019.07.034_bib0025) 2018
Zhao (10.1016/j.neucom.2019.07.034_bib0032) 2017; 28
Scime (10.1016/j.neucom.2019.07.034_bib0007) 2018; 19
Yaqoob (10.1016/j.neucom.2019.07.034_bib0010) 2017; 24
Fu (10.1016/j.neucom.2019.07.034_bib0002) 2011; 24
Gołuch (10.1016/j.neucom.2019.07.034_bib0012) 2018; 130
Chung (10.1016/j.neucom.2019.07.034_bib0073) 2014
Weinberg (10.1016/j.neucom.2019.07.034_bib0067) 2017; 69
Malhotra (10.1016/j.neucom.2019.07.034_bib0043) 2015
Bao (10.1016/j.neucom.2019.07.034_bib0053) 2018
Torkamani (10.1016/j.neucom.2019.07.034_bib0014) 2017; 7
Cao (10.1016/j.neucom.2019.07.034_bib0057) 2013; 25
Kingma (10.1016/j.neucom.2019.07.034_bib0081) 2014; abs/1412.6
Diez-Olivan (10.1016/j.neucom.2019.07.034_bib0036) 2017; 241
Moniz (10.1016/j.neucom.2019.07.034_bib0058) 2017; 3
Chauhan (10.1016/j.neucom.2019.07.034_bib0044) 2015
García (10.1016/j.neucom.2019.07.034_bib0086) 2008; 9
Garcia-Ceja (10.1016/j.neucom.2019.07.034_bib0020) 2018; 40
References_xml – volume: 24
  start-page: 10
  year: 2017
  end-page: 16
  ident: bib0010
  article-title: Internet of things architecture: recent advances, taxonomy, requirements, and open challenges
  publication-title: IEEE Wirel. Commun.
– year: 2018
  ident: bib0003
  article-title: Real-time big data processing for anomaly detection: a survey
  publication-title: Int. J. Inf. Manag.
– volume: abs/1708.0
  year: 2017
  ident: bib0049
  article-title: Time series anomaly detection; detection of anomalous drops with limited features and sparse examples in noisy highly periodic data
  publication-title: CoRR
– volume: 8
  start-page: 10
  year: 2015
  ident: bib0050
  article-title: Application of synthetic NDVI time series blended from landsat and MODIS data for grassland biomass estimation
  publication-title: Remote Sens.
– volume: 127
  start-page: 230
  year: 2018
  end-page: 241
  ident: bib0038
  article-title: An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring
  publication-title: Renew. Energy
– volume: 41
  start-page: 68
  year: 2018
  end-page: 79
  ident: bib0021
  article-title: Optimizing multi-sensor deployment via ensemble pruning for wearable activity recognition
  publication-title: Inf. Fusion
– volume: 6
  start-page: 69907
  year: 2018
  end-page: 69917
  ident: bib0027
  article-title: A new transfer learning method and its application on rotating machine fault diagnosis under variant working conditions
  publication-title: IEEE Access
– year: 2016
  ident: bib0047
  article-title: Multivariate industrial time series with cyber-Attack simulation: fault detection using an LSTM-based predictive data model
  publication-title: CoRR
– volume: 24
  start-page: 164
  year: 2011
  end-page: 181
  ident: bib0002
  article-title: A review on time series data mining
  publication-title: Eng. Appl. Artif. Intell.
– volume: 26
  start-page: 2055
  year: 2017
  end-page: 2068
  ident: bib0068
  article-title: Knowledge guided disambiguation for large-Scale scene classification with multi-resolution CNNs
  publication-title: IEEE Trans. Image Process.
– year: 2016
  ident: bib0034
  publication-title: Anomaly Detection In Time Series Data: a practical implementation for pulp and paper industry
– volume: 243
  start-page: 166
  year: 2017
  end-page: 173
  ident: bib0072
  article-title: Spatial pyramid deep hashing for large-scale image retrieval
  publication-title: Neurocomputing
– year: 2018
  ident: bib0022
  article-title: Learning from Imbalanced Data Sets
– year: 2018
  ident: bib0025
  article-title: A signal-Level transfer learning framework for autonomous reconfiguration of wearable systems
  publication-title: IEEE Trans. Mobile Comput.
– volume: 85
  start-page: 746
  year: 2017
  end-page: 759
  ident: bib0015
  article-title: Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines
  publication-title: Mech. Syst. Signal Process.
– volume: 3
  start-page: 616
  year: 2017
  end-page: 630
  ident: bib0011
  article-title: Intelligent manufacturing in the context of industry 4.0: a review
  publication-title: Engineering
– volume: 5
  start-page: 660
  year: 2018
  end-page: 675
  ident: bib0051
  article-title: Scenario-Based insider threat detection from cyber activities
  publication-title: IEEE Trans. Comput. Soc. Syst.
– volume: 85
  start-page: 292
  year: 2017
  end-page: 304
  ident: bib0064
  article-title: Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and hilbert transform
  publication-title: Expert Syst. Appl.
– volume: 13
  start-page: 959
  year: 2009
  end-page: 977
  ident: bib0082
  article-title: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability
  publication-title: Soft Comput.
– volume: 6
  start-page: 27760
  year: 2018
  end-page: 27776
  ident: bib0041
  article-title: Detecting anomalies in time series data via a meta-feature based approach
  publication-title: IEEE Access
– volume: abs/1412.6
  year: 2014
  ident: bib0081
  article-title: Adam: A Method for stochastic optimization
  publication-title: CoRR
– volume: 13
  start-page: 1310
  year: 2017
  end-page: 1320
  ident: bib0033
  article-title: Dislocated time series convolutional neural architecture: an intelligent fault diagnosis approach for electric machine
  publication-title: IEEE Trans. Indust. Inf.
– volume: 322
  start-page: 47
  year: 2018
  end-page: 57
  ident: bib0059
  article-title: A CNN–RNN architecture for multi-label weather recognition
  publication-title: Neurocomputing
– start-page: 448
  year: 2015
  end-page: 456
  ident: bib0075
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: Proceedings of the Thirty-second International Conference on Machine Learning
– start-page: 195
  year: 2017
  end-page: 204
  ident: bib0023
  article-title: Product line engineering of monitoring functionality in industrial cyber-physical systems: a domain analysis
  publication-title: Proceedings of the Twenty-first International Systems and Software Product Line Conference, 2017, Volume A, Sevilla, Spain, September 25–29, 2017
– volume: 40
  start-page: 45
  year: 2018
  end-page: 56
  ident: bib0020
  article-title: Multi-view stacking for activity recognition with sound and accelerometer data
  publication-title: Inf. Fusion
– volume: 144
  start-page: 180
  year: 2018
  end-page: 191
  ident: bib0026
  article-title: Deep learning for automatic stereotypical motor movement detection using wearable sensors in autism spectrum disorders
  publication-title: Signal Process.
– volume: 7
  start-page: e1199
  year: 2017
  ident: bib0014
  article-title: Survey on time series motif discovery
  publication-title: Wiley Interdiscipl. Rev. Data Min. Knowl. Discov.
– volume: 92
  start-page: 390
  year: 2018
  end-page: 402
  ident: bib0062
  article-title: Network anomaly detection system using genetic algorithm and fuzzy logic
  publication-title: Expert Syst. Appl.
– volume: 19
  start-page: 114
  year: 2018
  end-page: 126
  ident: bib0007
  article-title: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm
  publication-title: Addit. Manufact.
– volume: 268
  start-page: 76
  year: 2017
  end-page: 86
  ident: bib0031
  article-title: An analysis of convolutional long short-term memory recurrent neural networks for gesture recognition
  publication-title: Neurocomputing
– volume: 3
  start-page: 9
  year: 2016
  ident: bib0024
  article-title: A survey of transfer learning
  publication-title: J. Big Data
– year: 2014
  ident: bib0073
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
  publication-title: Proceedings of the NIPS 2014 Workshop on Deep Learning, December 2014
– volume: 25
  start-page: 2809
  year: 2013
  end-page: 2822
  ident: bib0057
  article-title: Integrated oversampling for imbalanced time series classification
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 24
  start-page: 2263
  year: 2016
  end-page: 2276
  ident: bib0030
  article-title: Very deep convolutional neural networks for noise robust speech recognition
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– year: 2007
  ident: bib0083
  article-title: Handbook of Parametric and Nonparametric Statistical Procedures
– start-page: 22
  year: 2015
  end-page: 24
  ident: bib0043
  article-title: Long short term memory networks for anomaly detection in time series
  publication-title: Proceedings of the European Symposium on Artificial Neural Networks
– volume: 26
  start-page: 4321
  year: 2017
  end-page: 4330
  ident: bib0039
  article-title: Unsupervised sequential outlier detection with deep architectures
  publication-title: IEEE Trans. Image Process.
– start-page: 2054
  year: 2017
  end-page: 2061
  ident: bib0056
  article-title: A first attempt on global evolutionary undersampling for imbalanced big data
  publication-title: Proceedings of the 2017 IEEE Congress on Evolutionary Computation (CEC)
– volume: 9
  start-page: 2677
  year: 2008
  end-page: 2694
  ident: bib0086
  article-title: An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons
  publication-title: J. Mach. Learn. Res.
– volume: 11
  start-page: 711
  year: 2017
  end-page: 720
  ident: bib0066
  article-title: Geometric means and medians with applications to target detection
  publication-title: IET Signal Process.
– start-page: 1
  year: 2017
  end-page: 10
  ident: bib0079
  article-title: Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– start-page: e1289
  year: 2018
  ident: bib0017
  article-title: Transforming big data into smart data: an insight on the use of the k-nearest neighbors algorithm to obtain quality data
  publication-title: Wiley Interdiscipl. Rev. Data Min. Knowl. Discov.
– volume: 69
  start-page: 1
  year: 2017
  end-page: 10
  ident: bib0067
  article-title: Geometric mean switching constant false alarm rate detector
  publication-title: Digital Signal Process.
– volume: 54
  start-page: 463
  year: 2018
  end-page: 486
  ident: bib0037
  article-title: Unsupervised outlier detection for time series by entropy and dynamic time warping
  publication-title: Knowl. Inf. Syst.
– year: 2018
  ident: bib0052
  article-title: Gait anomaly detection of subjects with Parkinson’s disease using a deep time series-based approach
  publication-title: IEEE Access
– volume: 64
  start-page: 2400
  year: 2016
  end-page: 2415
  ident: bib0018
  article-title: Collaborative multi-Sensor classification via sparsity-based representation
  publication-title: IEEE Trans. Signal Process.
– volume: 139
  start-page: 119
  year: 2018
  end-page: 131
  ident: bib0065
  article-title: Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit
  publication-title: Knowl. Based Syst.
– start-page: 1597
  year: 2017
  end-page: 1600
  ident: bib0070
  article-title: Gate-variants of Gated Recurrent Unit (GRU) neural networks
  publication-title: Proceedings of the 2017 IEEE Sixtieth International Midwest Symposium on Circuits and Systems (MWSCAS)
– volume: 45
  start-page: 2673
  year: 1997
  end-page: 2681
  ident: bib0074
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: bib0085
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 60
  start-page: 3480
  year: 2011
  end-page: 3492
  ident: bib0005
  article-title: State-of-the-Art predictive maintenance techniques
  publication-title: IEEE Trans. Instrum. Measur.
– volume: 52
  start-page: 13
  year: 2019
  end-page: 30
  ident: bib0016
  article-title: Short-long term anomaly detection in wireless sensor networks based on machine learning and multi-parameterized edit distance
  publication-title: Inf. Fusion
– volume: 39
  start-page: 448
  year: 2018
  end-page: 458
  ident: bib0042
  article-title: Brain activation detection by modified neighborhood one-class SVM on fmri data
  publication-title: Biomed. Signal Process. Control
– volume: 28
  start-page: 162
  year: 2017
  end-page: 169
  ident: bib0032
  article-title: Convolutional neural networks for time series classification
  publication-title: J. Syst. Eng. Electron.
– volume: 13
  start-page: 228
  year: 2017
  end-page: 237
  ident: bib0009
  article-title: Distributed clustering strategies in industrial wireless sensor networks
  publication-title: IEEE Trans. Indust. Inf.
– volume: 16
  start-page: 115
  year: 2016
  ident: bib0029
  article-title: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition
  publication-title: Sensors
– volume: 33
  start-page: 41
  year: 2017
  end-page: 56
  ident: bib0063
  article-title: Spatial anomaly detection in sensor networks using neighborhood information
  publication-title: Inf. Fusion
– year: 2016
  ident: bib0045
  article-title: LSTM-Based encoder-Decoder for multi-sensor anomaly detection
  publication-title: CoRR
– volume: 11
  start-page: 479
  year: 2017
  end-page: 491
  ident: bib0019
  article-title: Heterogeneous sensor data fusion by deep multimodal encoding
  publication-title: IEEE J. Select. Top. Signal Process.
– volume: 5
  start-page: 23484
  year: 2017
  end-page: 23491
  ident: bib0004
  article-title: Industrial big data in an industry 4.0 environment: challenges, schemes, and applications for predictive maintenance
  publication-title: IEEE Access
– start-page: 1
  year: 2015
  end-page: 7
  ident: bib0044
  article-title: Anomaly detection in ECG time signals via deep long short-term memory networks
  publication-title: Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA)
– start-page: 1756
  year: 2013
  end-page: 1760
  ident: bib0080
  article-title: Cross-entropy vs. squared error training: a theoretical and experimental comparison
  publication-title: Proceedings of the Forteenth Annual Conference of the International Speech Communication Association
– volume: 180
  start-page: 2044
  year: 2010
  end-page: 2064
  ident: bib0084
  article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
  publication-title: Inf. Sci.
– year: 2018
  ident: bib0053
  article-title: Computer vision and deep learning–based data anomaly detection method for structural health monitoring
  publication-title: Struct. Health Monitor. Int. J.
– start-page: 141
  year: 2016
  end-page: 152
  ident: bib0046
  article-title: Collective anomaly detection based on long short term memory recurrent neural network
  publication-title: Proceedings of the International Conference on Future Data and Security Engineering
– volume: 28
  start-page: 2222
  year: 2017
  end-page: 2232
  ident: bib0069
  article-title: LSTM: a search space odyssey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0076
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proceedings of the Twenty-fifth International Conference on Neural Information Processing Systems
– volume: 41
  year: 2009
  ident: bib0001
  article-title: Anomaly detection: a survey
  publication-title: ACM Comput. Surv.
– volume: 262
  start-page: 134
  year: 2017
  end-page: 147
  ident: bib0013
  article-title: Unsupervised real-time anomaly detection for streaming data
  publication-title: Neurocomputing
– volume: 95
  start-page: 280
  year: 2017
  end-page: 292
  ident: bib0035
  article-title: Anomaly detection based on uncertainty fusion for univariate monitoring series
  publication-title: Measurement
– volume: 106
  start-page: 66
  year: 2018
  end-page: 76
  ident: bib0061
  article-title: Web traffic anomaly detection using C-LSTM neural networks
  publication-title: Expert Syst. Appl.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0028
  article-title: Deep learning
  publication-title: Nature
– volume: 36
  start-page: 73
  year: 2017
  end-page: 85
  ident: bib0048
  article-title: One-class collective anomaly detection based on LSTM–RNNs
  publication-title: Trans. Large Scale Data Knowl. Center. Syst.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bib0071
  article-title: Deep learning
  publication-title: Nature
– volume: 241
  start-page: 97
  year: 2017
  end-page: 107
  ident: bib0036
  article-title: Data-driven prognostics using a combination of constrained K-means clustering, fuzzy modeling and LOF-based score
  publication-title: Neurocomputing
– volume: 49
  start-page: 46
  year: 2019
  end-page: 56
  ident: bib0060
  article-title: Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection
  publication-title: Inf. Fusion
– volume: 130
  start-page: 18
  year: 2018
  end-page: 31
  ident: bib0012
  article-title: Multi-sensors measuring system for geodetic monitoring of elevator guide rails
  publication-title: Measurement
– volume: 10
  start-page: e0118432
  year: 2015
  ident: bib0054
  article-title: The precision-Recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
  publication-title: PLOS ONE
– volume: 62
  start-page: 915
  year: 2018
  end-page: 922
  ident: bib0078
  article-title: Real-time human activity recognition from accelerometer data using convolutional neural networks
  publication-title: Appl. Soft Comput.
– volume: 11
  start-page: e0152173
  year: 2016
  ident: bib0040
  article-title: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data
  publication-title: PLoS One
– volume: 28
  start-page: 238
  year: 2016
  end-page: 251
  ident: bib0055
  article-title: To combat multi-Class imbalanced problems by means of over-Sampling techniques
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 44
  start-page: 467
  year: 2015
  end-page: 508
  ident: bib0087
  article-title: Dealing with the evaluation of supervised classification algorithms
  publication-title: Artif. Intell. Rev.
– volume: 26
  start-page: 3142
  year: 2017
  end-page: 3155
  ident: bib0077
  article-title: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 127
  start-page: 230
  year: 2018
  end-page: 241
  ident: bib0008
  article-title: An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring
  publication-title: Renew. Energy
– volume: 123
  start-page: 163
  year: 2017
  end-page: 173
  ident: bib0006
  article-title: Detecting known and unknown faults in automotive systems using ensemble-based anomaly detection
  publication-title: Knowl. Based Syst.
– volume: 3
  start-page: 161
  year: 2017
  end-page: 181
  ident: bib0058
  article-title: Resampling strategies for imbalanced time series forecasting
  publication-title: Int. J. Data Sci. Anal.
– volume: 127
  start-page: 230
  year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0008
  article-title: An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.04.059
– volume: 69
  start-page: 1
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0067
  article-title: Geometric mean switching constant false alarm rate detector
  publication-title: Digital Signal Process.
  doi: 10.1016/j.dsp.2017.06.015
– volume: 13
  start-page: 959
  issue: 10
  year: 2009
  ident: 10.1016/j.neucom.2019.07.034_bib0082
  article-title: A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability
  publication-title: Soft Comput.
  doi: 10.1007/s00500-008-0392-y
– year: 2016
  ident: 10.1016/j.neucom.2019.07.034_bib0047
  article-title: Multivariate industrial time series with cyber-Attack simulation: fault detection using an LSTM-based predictive data model
  publication-title: CoRR
– volume: 262
  start-page: 134
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0013
  article-title: Unsupervised real-time anomaly detection for streaming data
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.04.070
– volume: 52
  start-page: 13
  year: 2019
  ident: 10.1016/j.neucom.2019.07.034_bib0016
  article-title: Short-long term anomaly detection in wireless sensor networks based on machine learning and multi-parameterized edit distance
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.11.010
– volume: 123
  start-page: 163
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0006
  article-title: Detecting known and unknown faults in automotive systems using ensemble-based anomaly detection
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.02.023
– volume: 40
  start-page: 45
  year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0020
  article-title: Multi-view stacking for activity recognition with sound and accelerometer data
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.06.004
– volume: 54
  start-page: 463
  issue: 2
  year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0037
  article-title: Unsupervised outlier detection for time series by entropy and dynamic time warping
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-017-1067-8
– year: 2014
  ident: 10.1016/j.neucom.2019.07.034_bib0073
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– volume: 5
  start-page: 23484
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0004
  article-title: Industrial big data in an industry 4.0 environment: challenges, schemes, and applications for predictive maintenance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2765544
– volume: 5
  start-page: 660
  issue: 3
  year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0051
  article-title: Scenario-Based insider threat detection from cyber activities
  publication-title: IEEE Trans. Comput. Soc. Syst.
  doi: 10.1109/TCSS.2018.2857473
– start-page: 1097
  year: 2012
  ident: 10.1016/j.neucom.2019.07.034_bib0076
  article-title: ImageNet classification with deep convolutional neural networks
– volume: 36
  start-page: 73
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0048
  article-title: One-class collective anomaly detection based on LSTM–RNNs
  publication-title: Trans. Large Scale Data Knowl. Center. Syst.
– volume: 322
  start-page: 47
  year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0059
  article-title: A CNN–RNN architecture for multi-label weather recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.048
– volume: 85
  start-page: 746
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0015
  article-title: Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2016.09.010
– start-page: 141
  year: 2016
  ident: 10.1016/j.neucom.2019.07.034_bib0046
  article-title: Collective anomaly detection based on long short term memory recurrent neural network
– volume: abs/1412.6
  year: 2014
  ident: 10.1016/j.neucom.2019.07.034_bib0081
  article-title: Adam: A Method for stochastic optimization
  publication-title: CoRR
– year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0022
– volume: 243
  start-page: 166
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0072
  article-title: Spatial pyramid deep hashing for large-scale image retrieval
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.03.021
– volume: 139
  start-page: 119
  year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0065
  article-title: Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2017.10.017
– volume: 3
  start-page: 616
  issue: 5
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0011
  article-title: Intelligent manufacturing in the context of industry 4.0: a review
  publication-title: Engineering
  doi: 10.1016/J.ENG.2017.05.015
– volume: 19
  start-page: 114
  year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0007
  article-title: Anomaly detection and classification in a laser powder bed additive manufacturing process using a trained computer vision algorithm
  publication-title: Addit. Manufact.
  doi: 10.1016/j.addma.2017.11.009
– volume: 95
  start-page: 280
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0035
  article-title: Anomaly detection based on uncertainty fusion for univariate monitoring series
  publication-title: Measurement
  doi: 10.1016/j.measurement.2016.10.031
– volume: 11
  start-page: 711
  issue: 6
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0066
  article-title: Geometric means and medians with applications to target detection
  publication-title: IET Signal Process.
  doi: 10.1049/iet-spr.2016.0547
– volume: 64
  start-page: 2400
  issue: 9
  year: 2016
  ident: 10.1016/j.neucom.2019.07.034_bib0018
  article-title: Collaborative multi-Sensor classification via sparsity-based representation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2016.2521605
– start-page: 1
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0079
  article-title: Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 60
  start-page: 3480
  issue: 10
  year: 2011
  ident: 10.1016/j.neucom.2019.07.034_bib0005
  article-title: State-of-the-Art predictive maintenance techniques
  publication-title: IEEE Trans. Instrum. Measur.
  doi: 10.1109/TIM.2009.2036347
– volume: 10
  start-page: e0118432
  issue: 3
  year: 2015
  ident: 10.1016/j.neucom.2019.07.034_bib0054
  article-title: The precision-Recall plot is more informative than the ROC plot when evaluating binary classifiers on imbalanced datasets
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0118432
– year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0025
  article-title: A signal-Level transfer learning framework for autonomous reconfiguration of wearable systems
  publication-title: IEEE Trans. Mobile Comput.
  doi: 10.1109/TMC.2018.2878673
– start-page: 2054
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0056
  article-title: A first attempt on global evolutionary undersampling for imbalanced big data
– volume: 85
  start-page: 292
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0064
  article-title: Detecting anomalies in time series data via a deep learning algorithm combining wavelets, neural networks and hilbert transform
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.04.028
– volume: 45
  start-page: 2673
  issue: 11
  year: 1997
  ident: 10.1016/j.neucom.2019.07.034_bib0074
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– volume: 24
  start-page: 2263
  issue: 12
  year: 2016
  ident: 10.1016/j.neucom.2019.07.034_bib0030
  article-title: Very deep convolutional neural networks for noise robust speech recognition
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2016.2602884
– volume: 127
  start-page: 230
  year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0038
  article-title: An unsupervised spatiotemporal graphical modeling approach for wind turbine condition monitoring
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.04.059
– volume: 41
  issue: 3
  year: 2009
  ident: 10.1016/j.neucom.2019.07.034_sbref0001
  article-title: Anomaly detection: a survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1541880.1541882
– volume: 24
  start-page: 164
  issue: 1
  year: 2011
  ident: 10.1016/j.neucom.2019.07.034_bib0002
  article-title: A review on time series data mining
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2010.09.007
– year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0052
  article-title: Gait anomaly detection of subjects with Parkinson’s disease using a deep time series-based approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2882245
– volume: 268
  start-page: 76
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0031
  article-title: An analysis of convolutional long short-term memory recurrent neural networks for gesture recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.088
– start-page: 195
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0023
  article-title: Product line engineering of monitoring functionality in industrial cyber-physical systems: a domain analysis
– volume: 33
  start-page: 41
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0063
  article-title: Spatial anomaly detection in sensor networks using neighborhood information
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2016.04.007
– volume: 130
  start-page: 18
  year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0012
  article-title: Multi-sensors measuring system for geodetic monitoring of elevator guide rails
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.07.077
– volume: 106
  start-page: 66
  year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0061
  article-title: Web traffic anomaly detection using C-LSTM neural networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.04.004
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.neucom.2019.07.034_bib0071
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 3
  start-page: 161
  issue: 3
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0058
  article-title: Resampling strategies for imbalanced time series forecasting
  publication-title: Int. J. Data Sci. Anal.
  doi: 10.1007/s41060-017-0044-3
– volume: 13
  start-page: 228
  issue: 1
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0009
  article-title: Distributed clustering strategies in industrial wireless sensor networks
  publication-title: IEEE Trans. Indust. Inf.
  doi: 10.1109/TII.2016.2628409
– volume: 16
  start-page: 115
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2019.07.034_bib0029
  article-title: Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition
  publication-title: Sensors
  doi: 10.3390/s16010115
– volume: abs/1708.0
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0049
  article-title: Time series anomaly detection; detection of anomalous drops with limited features and sparse examples in noisy highly periodic data
  publication-title: CoRR
– volume: 8
  start-page: 10
  issue: 1
  year: 2015
  ident: 10.1016/j.neucom.2019.07.034_bib0050
  article-title: Application of synthetic NDVI time series blended from landsat and MODIS data for grassland biomass estimation
  publication-title: Remote Sens.
  doi: 10.3390/rs8010010
– year: 2016
  ident: 10.1016/j.neucom.2019.07.034_bib0045
  article-title: LSTM-Based encoder-Decoder for multi-sensor anomaly detection
  publication-title: CoRR
– volume: 62
  start-page: 915
  year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0078
  article-title: Real-time human activity recognition from accelerometer data using convolutional neural networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.09.027
– year: 2016
  ident: 10.1016/j.neucom.2019.07.034_bib0034
– volume: 28
  start-page: 2222
  issue: 10
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0069
  article-title: LSTM: a search space odyssey
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582924
– volume: 49
  start-page: 46
  year: 2019
  ident: 10.1016/j.neucom.2019.07.034_bib0060
  article-title: Deep learning analysis of mobile physiological, environmental and location sensor data for emotion detection
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2018.09.001
– year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0053
  article-title: Computer vision and deep learning–based data anomaly detection method for structural health monitoring
  publication-title: Struct. Health Monitor. Int. J.
– volume: 41
  start-page: 68
  year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0021
  article-title: Optimizing multi-sensor deployment via ensemble pruning for wearable activity recognition
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.08.002
– start-page: 1756
  year: 2013
  ident: 10.1016/j.neucom.2019.07.034_bib0080
  article-title: Cross-entropy vs. squared error training: a theoretical and experimental comparison
– start-page: 22
  year: 2015
  ident: 10.1016/j.neucom.2019.07.034_bib0043
  article-title: Long short term memory networks for anomaly detection in time series
– volume: 24
  start-page: 10
  issue: 3
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0010
  article-title: Internet of things architecture: recent advances, taxonomy, requirements, and open challenges
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.2017.1600421
– volume: 9
  start-page: 2677
  issue: Dec
  year: 2008
  ident: 10.1016/j.neucom.2019.07.034_bib0086
  article-title: An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons
  publication-title: J. Mach. Learn. Res.
– volume: 144
  start-page: 180
  year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0026
  article-title: Deep learning for automatic stereotypical motor movement detection using wearable sensors in autism spectrum disorders
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2017.10.011
– volume: 13
  start-page: 1310
  issue: 3
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0033
  article-title: Dislocated time series convolutional neural architecture: an intelligent fault diagnosis approach for electric machine
  publication-title: IEEE Trans. Indust. Inf.
  doi: 10.1109/TII.2016.2645238
– start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2019.07.034_bib0044
  article-title: Anomaly detection in ECG time signals via deep long short-term memory networks
– volume: 28
  start-page: 162
  issue: 1
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0032
  article-title: Convolutional neural networks for time series classification
  publication-title: J. Syst. Eng. Electron.
  doi: 10.21629/JSEE.2017.01.18
– volume: 92
  start-page: 390
  year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0062
  article-title: Network anomaly detection system using genetic algorithm and fuzzy logic
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.013
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.neucom.2019.07.034_bib0028
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 39
  start-page: 448
  year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0042
  article-title: Brain activation detection by modified neighborhood one-class SVM on fmri data
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.08.021
– volume: 7
  start-page: e1199
  issue: 2
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0014
  article-title: Survey on time series motif discovery
  publication-title: Wiley Interdiscipl. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1199
– volume: 6
  start-page: 69907
  year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0027
  article-title: A new transfer learning method and its application on rotating machine fault diagnosis under variant working conditions
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2880770
– volume: 28
  start-page: 238
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2019.07.034_bib0055
  article-title: To combat multi-Class imbalanced problems by means of over-Sampling techniques
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2015.2458858
– start-page: 448
  year: 2015
  ident: 10.1016/j.neucom.2019.07.034_bib0075
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
– start-page: 1597
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0070
  article-title: Gate-variants of Gated Recurrent Unit (GRU) neural networks
– volume: 180
  start-page: 2044
  issue: 10
  year: 2010
  ident: 10.1016/j.neucom.2019.07.034_bib0084
  article-title: Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2009.12.010
– volume: 3
  start-page: 9
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2019.07.034_bib0024
  article-title: A survey of transfer learning
  publication-title: J. Big Data
  doi: 10.1186/s40537-016-0043-6
– volume: 6
  start-page: 27760
  year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0041
  article-title: Detecting anomalies in time series data via a meta-feature based approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2840086
– volume: 241
  start-page: 97
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0036
  article-title: Data-driven prognostics using a combination of constrained K-means clustering, fuzzy modeling and LOF-based score
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.024
– volume: 26
  start-page: 2055
  issue: 4
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0068
  article-title: Knowledge guided disambiguation for large-Scale scene classification with multi-resolution CNNs
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2675339
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.neucom.2019.07.034_bib0085
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0077
  article-title: Beyond a gaussian denoiser: residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2662206
– year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0003
  article-title: Real-time big data processing for anomaly detection: a survey
  publication-title: Int. J. Inf. Manag.
– volume: 11
  start-page: 479
  issue: 3
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0019
  article-title: Heterogeneous sensor data fusion by deep multimodal encoding
  publication-title: IEEE J. Select. Top. Signal Process.
  doi: 10.1109/JSTSP.2017.2679538
– start-page: e1289
  year: 2018
  ident: 10.1016/j.neucom.2019.07.034_bib0017
  article-title: Transforming big data into smart data: an insight on the use of the k-nearest neighbors algorithm to obtain quality data
  publication-title: Wiley Interdiscipl. Rev. Data Min. Knowl. Discov.
– year: 2007
  ident: 10.1016/j.neucom.2019.07.034_bib0083
– volume: 11
  start-page: e0152173
  issue: 4
  year: 2016
  ident: 10.1016/j.neucom.2019.07.034_bib0040
  article-title: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0152173
– volume: 44
  start-page: 467
  issue: 4
  year: 2015
  ident: 10.1016/j.neucom.2019.07.034_bib0087
  article-title: Dealing with the evaluation of supervised classification algorithms
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-015-9433-y
– volume: 26
  start-page: 4321
  issue: 9
  year: 2017
  ident: 10.1016/j.neucom.2019.07.034_bib0039
  article-title: Unsupervised sequential outlier detection with deep architectures
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2713048
– volume: 25
  start-page: 2809
  issue: 12
  year: 2013
  ident: 10.1016/j.neucom.2019.07.034_bib0057
  article-title: Integrated oversampling for imbalanced time series classification
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.37
SSID ssj0017129
Score 2.6569595
Snippet •We propose a Multi-head CNN-RNN for multi-time series anomaly detection.•Time series are addressed independently to deal with heterogeneous sensor...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 246
SubjectTerms Anomaly detection
Convolutional neural networks
Deep learning
Industry 4.0
Multi-sensor systems
Recurrent neural networks
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFA4yPrgvXld0vZAHXzM0Sdu0vg2iiGBZxBFlH0rSpHiZyQzasuiT_8F_6C_xJG0HWRBX33oLTTmn-b4k3zkHoT2hqQkKI4mIS01CRhWRKjZElEB2NSC4kS52-DSLj4fhyWV02aoqXSyMnXi577UcE7do_nDjtpr7TqPkCkA160uTuprWMG3ngFYucH0-joCH99D8MPs9uPLJ9VhE4Lbf6kwE87HSXdycF3dZUzuxCKBf6nN38vAjXFqo7VQ-_pWj0TvcOVpCf7oeN3KTu35dqX7x9E8yx-990jJabOkoHjT-s4LmjF1FS12pB9z--WvowgfqEhi5NT7Istfnl7Msw0B4sVckEleiHjtvNg9Y2slYjh6xNpXXedl9PLD4ZlYjBBeAnNjntf2JhkeH5wfHpC3JQApgahUxMtCM6UBoHYsyLOCocAknqYk44xIAXwaJSoMy5KUKeMSFShO4DnNwBUQm5euoZyfWbCDMiiSVlHLwDBg4NE2UpIprlgQlDctYbSLeGSQv2nzlrmzGKO-Eabd5Y8bcmTEPRA5m3ERk1mra5Ov45HnR2TpvOUfDJXKAlE9a9meu8V-v-vXVBlvohztzSMnoNupV97XZAQpUqd3W198A6wAJgg
  priority: 102
  providerName: Unpaywall
Title Multi-head CNN–RNN for multi-time series anomaly detection: An industrial case study
URI https://dx.doi.org/10.1016/j.neucom.2019.07.034
https://nottingham-repository.worktribe.com/output/2315191
UnpaywallVersion submittedVersion
Volume 363
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LAB)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AKRWK
  dateStart: 19930201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHvTiW3yWHLymzWO72fVWiqUqLqJW9LQkmyxU6lq0RXoR_4P_0F_iZB9FD6J42t2QkGUyM98EvplB6FAaZmliFZF-aojHmSZK-5bIFIJdAwhulcsdPo_8_sA7vW3f1lC3yoVxtMrS9xc-PffW5UirlGZrPBy2rmjI4RbFwOQEhZuzyyj3POm6GDRf5zQPJhkv6u3xNnGzq_S5nOOV2anjjAAIhnkJT-H9BE-L02ysZi9qNPoCP71VtFzGjbhT_NoaqtlsHa1UPRlwaaIb6CbPqCXgYg3uRtHH2_tlFGGITHFOHSSulzx2amefscoeH9Roho2d5ISs7Ah3MjycN_PACUAczgvQbqJB7_i62ydl7wSSQEg1IVZRw7mh0hhfpl4Cb4mrDMlsW3ChAJkVDXRIU0-kmoq2kDoMYBwuyxoijlBsoXr2mNlthHkShIoxAUcIFm5YoBXTwvCApsxLfb2DRCWyOCkLi7v-FqO4YpDdx4WgYyfomMoYBL2DyHzVuCis8ct8WZ1G_E1BYvD9v6xszg_vT1vt_nurPbTkvhy2cbaP6pOnqT2AoGWiG7lWNtBC5-SsH8FzEF107j4Bh6ruQw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV25TsQwELU4Cmi4ETcuaM36SOKEDq1Ay5WCS3SWHTvSoiW7gl0hGsQ_8Id8CeMcKygQiC5ybNmasefNSG9mENqTljmaOU1klFsScGaINpEjMgdn1wKCO-1zhy_SqHMTnN6FdxOo3eTCeFplbfsrm15a63qkVUuzNeh2W1c04RBFMXhygkLkLCfRdBBy6SOw_dcxz4NJxquCezwkfnqTP1eSvAo38qQRQMGkrOEpgp_waWZUDPTLs-71vuDP8QKaqx1HfFidbRFNuGIJzTdNGXD9RpfRbZlSS8DGWtxO04-398s0xeCa4pI7SHwzeezvnXvCuug_6N4Ltm5YMrKKA3xY4O64mwfOAONwWYF2Bd0cH123O6RunkAy8KmGxGlqObdUWhvJPMjgK_OlIZkLBRcaoFnT2CQ0D0RuqAiFNEkM4xAtG3A5ErGKpop-4dYQ5lmcaMYE6BCeuGWx0cwIy2OasyCPzDoSjchUVlcW9w0ueqqhkN2rStDKC1pRqUDQ64iMVw2qyhq_zJeNNtS3G6LA-P-ycn-svD9ttfHvrXbRTOf64lydn6Rnm2jW__FAx9kWmho-jtw2eDBDs1Pe0E-hLe4o
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS-QwFA4yPrgvXld0vZAHXzM0Sdu0vg2iiGBZxBFlH0rSpHiZyQzasuiT_8F_6C_xJG0HWRBX33oLTTmn-b4k3zkHoT2hqQkKI4mIS01CRhWRKjZElEB2NSC4kS52-DSLj4fhyWV02aoqXSyMnXi577UcE7do_nDjtpr7TqPkCkA160uTuprWMG3ngFYucH0-joCH99D8MPs9uPLJ9VhE4Lbf6kwE87HSXdycF3dZUzuxCKBf6nN38vAjXFqo7VQ-_pWj0TvcOVpCf7oeN3KTu35dqX7x9E8yx-990jJabOkoHjT-s4LmjF1FS12pB9z--WvowgfqEhi5NT7Istfnl7Msw0B4sVckEleiHjtvNg9Y2slYjh6xNpXXedl9PLD4ZlYjBBeAnNjntf2JhkeH5wfHpC3JQApgahUxMtCM6UBoHYsyLOCocAknqYk44xIAXwaJSoMy5KUKeMSFShO4DnNwBUQm5euoZyfWbCDMiiSVlHLwDBg4NE2UpIprlgQlDctYbSLeGSQv2nzlrmzGKO-Eabd5Y8bcmTEPRA5m3ERk1mra5Ov45HnR2TpvOUfDJXKAlE9a9meu8V-v-vXVBlvohztzSMnoNupV97XZAQpUqd3W198A6wAJgg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-head+CNN%E2%80%93RNN+for+multi-time+series+anomaly+detection%3A+An+industrial+case+study&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Canizo%2C+Mikel&rft.au=Triguero%2C+Isaac&rft.au=Conde%2C+Angel&rft.au=Onieva%2C+Enrique&rft.date=2019-10-21&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=363&rft.spage=246&rft.epage=260&rft_id=info:doi/10.1016%2Fj.neucom.2019.07.034&rft.externalDocID=S0925231219309877
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon